WO2021229872A1 - 圧電振動子 - Google Patents

圧電振動子 Download PDF

Info

Publication number
WO2021229872A1
WO2021229872A1 PCT/JP2021/004218 JP2021004218W WO2021229872A1 WO 2021229872 A1 WO2021229872 A1 WO 2021229872A1 JP 2021004218 W JP2021004218 W JP 2021004218W WO 2021229872 A1 WO2021229872 A1 WO 2021229872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resin layer
crystal
electrode
vibration element
Prior art date
Application number
PCT/JP2021/004218
Other languages
English (en)
French (fr)
Inventor
徹 木津
弘明 開田
雄一郎 長峰
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021229872A1 publication Critical patent/WO2021229872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to a piezoelectric vibrator.
  • Piezoelectric oscillators such as crystal vibration elements whose main vibration is thickness slip vibration are widely used as the signal source of the reference signal used for oscillators and band filters. In such a piezoelectric vibrator, improvement of vibration characteristics or electrical characteristics is required.
  • Patent Document 1 discloses a crystal oscillator having a structure in which a crystal vibrating element integrally molded with a frame is sealed by being sandwiched between flat plates made of quartz, glass, Si, or the like. There is.
  • the crystal oscillator described in Patent Document 1 enhances the impact resistance of the crystal oscillator by joining the glass container body and the crystal diaphragm by anode bonding, and reduces the occurrence of defects in vibration characteristics. ..
  • Patent Document 2 describes a crystal oscillator having a structure in which a crystal vibrating element is not mounted on a substrate to be mounted on an external substrate but is suspended on a substrate on the side facing the substrate on the mounting side. It has been disclosed.
  • the crystal unit described in Patent Document 2 improves the stability of the electrical characteristics of the crystal unit by suppressing an electromagnetic influence from the outside and an electromagnetic influence on the outside.
  • the present invention has been invented in view of such circumstances, and an object of the present invention is a piezoelectric vibrator capable of mitigating the influence of stress and improving the stability of the resonance frequency by using a simple configuration. Is to provide.
  • the piezoelectric vibrator includes a piezoelectric vibration element, a first substrate on which the piezoelectric vibration element is mounted, a resin layer provided around the piezoelectric vibration element in the first substrate, and a first substrate.
  • a second substrate is provided, which is arranged on the side where the piezoelectric vibration element and the resin layer are provided, is surrounded by the resin layer, and forms an internal space in which the piezoelectric vibration element is arranged.
  • the substrate has an external mounting surface mounted on the external substrate on the side opposite to the surface facing the first substrate.
  • the present invention it is possible to provide a piezoelectric vibrator capable of alleviating the influence of stress and improving the stability of the resonance frequency by using a simple configuration.
  • FIG. 2 is a sectional view taken along line II-II of FIG. It is a bottom view for demonstrating the structure of the crystal oscillator which concerns on 1st Embodiment. It is sectional drawing for demonstrating the structure of the crystal oscillator which concerns on 2nd Embodiment. It is a bottom view for demonstrating the structure of the crystal oscillator which concerns on 2nd Embodiment. It is a figure for demonstrating the structure of the resin layer which concerns on a modification. It is a figure for demonstrating the structure of the resin layer which concerns on a modification. It is a figure for demonstrating the structure of the resin layer which concerns on a modification. It is a figure for demonstrating the structure of the resin layer which concerns on a modification.
  • FIG. 1 is a perspective view showing the appearance of the crystal oscillator 1 according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • the crystal oscillator 1 according to the first embodiment is an example of a piezoelectric vibrator.
  • the crystal oscillator 1 is mounted on the first substrate 10, the second substrate 20, the resin layer 30 arranged between the first substrate 10 and the second substrate 20, and the first substrate 10, and the crystal oscillator 1 vibrates. It is provided with a crystal vibration element (Quartz Crystal Resonator) 40 housed in the internal space 35 of the child 1.
  • a crystal vibration element Quadrat oscillator
  • the conductive holding member 15 for electrically connecting and adhering the crystal vibrating element 40 to the first substrate 10 and the resin layer 30 are attached to the first substrate 10 and the second substrate 20, respectively. It is provided with a resin adhesive material 25 for adhering to.
  • the crystal oscillator 1 includes a plurality of electrodes formed on either the main surface of each of the first substrate 10, the second substrate 20, and the crystal vibrating element 40 and the outer peripheral surface of the resin layer 30.
  • the crystal oscillator 1 is mounted on an external substrate (not shown), for example, by soldering.
  • This external substrate is, for example, a glass epoxy substrate.
  • the second substrate 20 of the crystal oscillator 1 is located on the external substrate side, while the first substrate 10 and the crystal vibrating element 40 are on the side away from the external substrate. Located in.
  • the state in which the first substrate 10, the second substrate 20, the resin layer 30, and the crystal vibrating element 40 are assembled to form the crystal oscillator 1 may be referred to as an “assembled state”. Further, in the assembled state, the thickness direction (or height direction) of the crystal oscillator 1 and the thickness direction (or height direction) of each component of the crystal oscillator 1 are Z'shown in FIG. It matches the axial direction.
  • FIG. 3 is a bottom view for explaining the configuration of the crystal pendulum 1 according to the first embodiment.
  • the display of the arrangement position of the side electrode 60 is a schematic display showing the connection relationship between the electrodes, and does not indicate the actual arrangement position of the side electrode 60.
  • some electrodes of the crystal vibration element 40 are not shown.
  • the crystal vibration element 40 is an example of a piezoelectric vibration element and has a plate shape. Further, the crystal vibration element 40 includes a crystal piece 41 and an electrode pattern formed on the crystal piece 41. Further, the electrode pattern of the crystal vibration element 40 includes a pair of excitation electrodes 45, a pair of electrode pads 46, and an extraction electrode 47 and an extraction electrode 48.
  • the crystal piece 41 is an example of a piezoelectric substrate, for example, an AT-cut crystal substrate.
  • the AT-cut crystal substrate has the Y-axis and Z-axis around the X-axis in the direction from the Y-axis to the Z-axis at 35 degrees 15 minutes ⁇ 1 minute.
  • XY'plane a plane parallel to the plane specified by the X-axis and the Y'axis
  • the crystal vibrating element 40 that employs the AT-cut crystal piece 41 has a thickness slip vibration mode as the main vibration.
  • the cut angle of the crystal piece 41 is not limited, and for example, a BT cut, a GT cut, an SC cut, or the like can be applied.
  • the crystal piece 41 is a plate-shaped member.
  • the crystal piece 41 has a mesa-shaped structure.
  • the crystal piece 41 has a central portion 42 constituting a mesa portion, a peripheral portion 43 provided around the central portion 42, and a penetrating portion 44 provided between the central portion 42 and the peripheral portion 43. And have.
  • the central portion 42 of the crystal vibrating element 40 is mainly a vibrating portion that vibrates the thickness of the crystal vibrating element 40. Further, the central portion 42 has a main surface 421 and a main surface 422 on both sides in the thickness direction, and a side surface 423 formed perpendicular to the main surface 421 and the main surface 422.
  • the peripheral portion 43 is a portion that supports the central portion 42 in the assembled state.
  • the peripheral portion 43 has a smaller dimension in the thickness direction than the central portion 42.
  • the peripheral portion 43 has a main surface 431 and a main surface 432 on both sides in the thickness direction, and a side surface 433 formed perpendicular to the main surface 431 and the main surface 432.
  • the main surface 431 and the main surface 432 of the peripheral portion 43 are connected to the side surface 423 of the central portion 42.
  • the penetrating portion 44 is a slot that penetrates the crystal piece 41 in the thickness direction.
  • the peripheral portion 43 can support the central portion 42, and the binding force exerted by the peripheral portion 43 on the vibration of the central portion 42 can be reduced. As a result, the stability of the resonance frequency of the central portion 42 can be improved.
  • the pair of excitation electrodes 45 are electrodes for causing the central portion 42 to slide and vibrate in thickness when a voltage is applied. Further, each of the pair of excitation electrodes 45 is provided on each of the main surface 421 and the main surface 422 of the central portion 42 so as to face each other with the central portion 42 interposed therebetween.
  • each excitation electrode 45 is metal films made of the same material.
  • the material of each excitation electrode 45 is not particularly limited.
  • each excitation electrode 45 may be composed of a chromium (Cr) layer as a base and a gold (Au) layer on the surface of the chromium layer.
  • each of the other electrodes described later according to the first embodiment that is, the electrode pad 46, the extraction electrode 47, the extraction electrode 48, the connection electrode 13, the connection electrode 14, the side electrode 60, the external electrode 62, and the external electrode 63, respectively.
  • it is made of the same material as each excitation electrode 45.
  • Each electrode of the crystal oscillator 1 may be made of a different material.
  • the two electrode pads 46 are terminals for electrically connecting the crystal vibration element 40 to the first substrate 10. Further, the two electrode pads 46 are formed on the main surface 431 of the peripheral portion 43. In the assembled state, each of the two electrode pads 46 is electrically connected to each of the connection electrode 13 and the connection electrode 14 formed on the first substrate 10 described later via the conductive holding member 15, and the crystal is formed. An electrical connection between the vibrating element 40 and the first substrate 10 is realized.
  • the extraction electrode 47 and the extraction electrode 48 are electrodes for electrically connecting each excitation electrode 45 to each electrode pad 46.
  • the extraction electrode 47 is formed so as to extend from the main surface 421 of the central portion 42 to the main surface 431 of the peripheral portion 43.
  • the extraction electrode 47 electrically connects the excitation electrode 45 on the main surface 421 of the central portion 42 and one electrode pad 46 on the main surface 431 of the peripheral portion 43.
  • the extraction electrode 48 is formed so as to extend from the main surface 422 of the central portion 42 to the main surface 431 of the peripheral portion 43.
  • the extraction electrode 48 electrically connects the excitation electrode 45 on the main surface 422 and the other electrode pad 46 on the main surface 431 of the peripheral portion 43.
  • the first substrate 10 is a plate-shaped member.
  • the first substrate 10 is preferably made of a light-transmitting material.
  • the material of the first substrate 10 according to the first embodiment is glass.
  • the material of the first substrate 10 may be a semiconductor material (for example, a silicon material). In that case, an integrated circuit constituting an oscillation circuit can be formed on the semiconductor material.
  • the first substrate 10 has a main surface 11 and a main surface 12 on both sides in the thickness direction.
  • the main surface 11 is a surface facing the outside of the crystal oscillator 1.
  • the main surface 12 faces the inside of the crystal oscillator 1 and constitutes an internal space 35.
  • the main surface 12 is a surface for mounting the crystal vibration element 40.
  • a connection electrode 13 and a connection electrode 14 are formed on the main surface 12.
  • connection electrode 13 and the connection electrode 14 are examples of the electrode pattern of the first substrate 10, and are terminals for electrically connecting to the electrode pad of the crystal vibration element 40.
  • one excitation electrode 45 of the crystal vibration element 40 is electrically connected to the connection electrode 13
  • the other excitation electrode 45 of the crystal vibration element 40 is connected to the connection electrode 14.
  • connection electrode 13 and the connection electrode 14 formed on the first substrate 10 are interposed via the conductive holding member 15, the pair of electrode pads 46, and the extraction electrode 47 and the extraction electrode 48. Therefore, it is electrically connected to a pair of excitation electrodes 45 of the crystal vibration element 40.
  • the first substrate 10 is electrically connected to the crystal vibration element 40 via the electrode pattern and the conductive holding member 15 described above.
  • the second substrate 20 is a plate-shaped member.
  • the second substrate 20 is preferably made of a light-transmitting material.
  • the material of the second substrate 20 according to the first embodiment is the same as the material of the first substrate 10, that is, glass.
  • the second substrate 20 has a main surface 21 and a main surface 22 on both sides in the thickness direction.
  • the main surface 21 faces the inside of the crystal oscillator 1 and constitutes an internal space 35.
  • the main surface 22 faces the outside of the crystal oscillator 1 and constitutes an external mounting surface for mounting on an external substrate.
  • two external electrodes 62 and two external electrodes 63 are formed at the four corners of the main surface 22. Note that solder bumps (not shown) for connecting (mounting) the crystal oscillator 1 and the external substrate may be provided on each of the two external electrodes 62 and the two external electrodes 63.
  • the two external electrodes 62 are input / output electrodes to which the input / output signals of the crystal vibration element 40 are supplied.
  • each of the two external electrodes 62 of the second substrate 20 is electrically connected to each of the connection electrode 13 and the connection electrode 14 formed on the first substrate 10 by the side electrode 60 described later.
  • it is also electrically connected to the external board by soldering. In this way, the electrical connection between the second substrate 20 and the first substrate 10 and the crystal vibration element 40 and the electrical connection between the second substrate 20 and the external substrate are realized.
  • the two external electrodes 63 are electrodes to which the input / output signal of the crystal vibration element 40 is not supplied. Further, input / output signals of other electronic elements on an external substrate (not shown) are not supplied to the two external electrodes 63. Alternatively, at least one of the two external electrodes 63 may be a grounding electrode to which a grounding potential is supplied.
  • the resin layer 30 functions as a sealing frame for the crystal oscillator 1 and has a frame shape.
  • the material of the resin layer 30 is, for example, polyimide.
  • the thickness (height) of the resin layer 30 is at least larger than the thickness of the central portion 42 of the crystal vibration element 40 mounted on the first substrate.
  • the thickness of the resin layer 30 according to the first embodiment is, for example, 100 ⁇ m.
  • the height of the resin layer 30 on the first substrate 10 is equal to or higher than the height of the main surface of the crystal vibration element 40 mounted on the first substrate 10 on the side opposite to the first substrate 10.
  • the resin layer 30 has an end surface 31 and an end surface 32 on both sides in the thickness direction, and an inner peripheral surface 33 and an outer peripheral surface 34 formed perpendicular to the end surface 31 and the end surface 32.
  • the shape of the cross section of the resin layer 30 is rectangular.
  • the end face 31 of the resin layer 30 and the end face 32 have the same shape.
  • the conductive holding member 15 is an adhesive for electrically connecting each electrode pad 46 of the crystal vibration element 40 to each of the connection electrode 13 and the connection electrode 14 of the first substrate 10. Further, the conductive holding member 15 is formed by, for example, thermosetting a conductive adhesive. In the first embodiment, the crystal vibrating element 40 is oscillatedly supported by the main surface 12 of the first substrate by the conductive holding member 15.
  • the resin adhesive material 25 is an adhesive for adhering the resin layer 30 to each of the first substrate 10 and the second substrate 20. Further, the resin adhesive material 25 is formed by, for example, heat-curing a resin adhesive.
  • the resin layer 30 is adhered to the first substrate 10 and the second substrate 20 by the resin adhesive material 25, the internal space 35 accommodating the crystal vibration element 40 is sealed, and the second substrate 20 is sealed. The side surface of the substrate 20 and the outer peripheral surface of the resin layer 30 are connected. Then, the side electrode 60 can be formed on the side surface of the second substrate 20 and the outer peripheral surface of the resin layer 30.
  • the two side electrode 60s are an example of side wiring of the crystal oscillator 1. Further, the two side electrode 60s are conduction electrodes for connecting each of the two external electrodes 62 to each of the connection electrode 13 and the connection electrode 14. As described above, the side electrode 60 is formed on the external electrode 62 formed on the second substrate 20, the connection electrode 13 and the connection electrode 14 formed on the first substrate 10, and the crystal vibration element 40. The excitation electrode 45 is electrically connected. In other words, the second substrate 20, the first substrate 10, and the crystal vibration element 40 are electrically connected by the connection of the side electrode 60.
  • the crystal vibrating element 40 specifically, between the pair of exciting electrodes 45 of the crystal vibrating element 40, via the two external electrodes 62, the side electrode 60, the connecting electrode 13, and the connecting electrode 14.
  • An alternating electric field can be applied to the. Due to this alternating electric field, the central portion 42 of the crystal piece 41 vibrates in a predetermined vibration mode such as the thickness slip vibration mode, and the resonance characteristic associated with the vibration is obtained.
  • connection electrode 13 and a connection electrode 14 for electrically connecting the crystal vibration element 40 are formed on the main surface 12 of the first substrate 10.
  • the crystal vibration element 40 is mounted on the prepared first substrate 10. Specifically, a conductive adhesive (that is, a conductive holding member 15 before being thermoset) is applied onto the connection electrode 13 and the connection electrode 14 on the main surface 12 of the first substrate 10, and the crystal vibrating element. The conductive adhesive is thermally cured with the 40 mounted. In this way, the two electrode pads 46 of the crystal vibration element 40 and the connection electrodes 13 and 14 of the first substrate 10 are electrically connected by the conductive holding member 15 in which the conductive adhesive is thermally cured. The crystal vibrating element 40 can be excitedably held by the conductive holding member 15.
  • a conductive adhesive that is, a conductive holding member 15 before being thermoset
  • the resin layer 30 is adhered to the first substrate 10 on which the crystal vibration element 40 is mounted.
  • a resin layer 30 coated with a resin adhesive that is, a resin adhesive material 25 before being thermoset
  • the resin adhesive between the first substrate 10 and the resin layer 30 is thermoset.
  • the resin layer 30 is adhered to the first substrate 10 so as to be located around the crystal vibrating element 40 in the first substrate 10 by the resin adhesive material 25 in which the resin adhesive is thermally cured.
  • the crystal vibration element 40 mounted on the first substrate 10 is attached to the main surface 12 of the first substrate 10 and the inner circumference of the resin layer 30. It is sealed in the internal space 35 composed of the surface 33 and the main surface 21 of the second substrate 20.
  • a resin coated with a resin adhesive that is, a resin adhesive material 25 before being thermoset
  • the second substrate 20 is bonded to the resin layer 30 by thermally curing the resin adhesive.
  • two side electrode 60s are formed on the side surface of the crystal oscillator 1. Specifically, each of the two external electrodes 62 formed on the main surface 22 of the second substrate 20 and each of the connection electrode 13 and the connection electrode 14 formed on the main surface 12 of the first substrate 10 are electrically connected.
  • the side electrode 60 is formed on the side surface of the second substrate 20 and the corner portion of the outer peripheral surface 34 of the resin layer 30 so as to be connected to each other.
  • solder bumps may be formed on each of the external electrode 62 and the external electrode 63 of the second substrate 20.
  • the resonance frequency may be adjusted for the assembled crystal oscillator 1.
  • the crystal vibrating element 40 is irradiated by transmitting a laser through the first substrate 10 and / or the second substrate 20 made of glass.
  • light having high energy other than the laser may be used.
  • the resonance frequency of the crystal oscillator 1 fluctuates as compared with that before sealing. Therefore, the resonance frequency of the crystal oscillator 1 can be adjusted by irradiating the sealed crystal vibration element 40 with a laser via the first substrate 10 and / or the second substrate 20 made of glass. can.
  • the adjustment of the resonance frequency of the crystal oscillator 1 may be performed after the crystal oscillator 1 is mounted on the external substrate.
  • the crystal oscillator 1 is mounted on the external substrate by soldering. Specifically, first, the solder bumps provided on the external electrodes 62 and the external electrodes 63 of the second substrate 20 of the crystal oscillator 1 are heated. Then, the main surface 22 of the crystal oscillator 1 is directed toward the external substrate, and the heated solder bumps are pressed against the external substrate to bond the crystal oscillator 1 to the external substrate. In this way, the mounting of the crystal oscillator 1 on the external substrate is completed.
  • the crystal oscillator 1 uses a simple configuration to alleviate the influence of stress on the crystal vibration element 40.
  • the crystal vibration element 40 is mounted on a first substrate 10 arranged on a side away from the external substrate 20 with respect to the second substrate 20. That is, the crystal oscillator 1 adopts a configuration in which the crystal vibrating element 40 is suspended from the first substrate.
  • the crystal vibrating element 40 is mounted on the second substrate 20 as compared with the case where the crystal vibrating element 40 is mounted on the second substrate 20 which is directly bonded to the external substrate. Since it is not in direct contact with 20, the stress generated by the second substrate 20 is not directly transmitted to the crystal vibration element 40.
  • the stress transmitted to the crystal vibrating element 40 adopting the suspending configuration is smaller than that in the case where the crystal vibrating element 40 is mounted on the second substrate 20. Therefore, the influence of the stress applied to the crystal vibrating element 40 can be reduced, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the crystal oscillator 1 employs a resin layer 30 as a sealing frame between the second substrate 20 and the first substrate 10. That is, the crystal oscillator 1 adopts an elastic sealing frame made of an elastic material.
  • an elastic sealing frame for example, a resin layer 30
  • it occurs in the second substrate 20 as compared with the case where a sealing frame (for example, a metal frame) made of a non-elastic material is adopted. It can absorb a part of the stress. Therefore, the stress transmitted to the crystal vibration element 40 is small. As a result, the influence of stress on the crystal vibrating element 40 can be alleviated, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the elastic sealing frame such as the resin layer 30 has a certain thickness. Therefore, when the sealing frame having such a thickness is adopted, the stress is transmitted to the crystal vibration element 40 before the stress is transmitted to the crystal vibrating element 40, as compared with the case where the thin sealing frame is adopted or the sealing frame is not adopted. , Can be weakened. Therefore, the stress transmitted to the crystal vibration element 40 is small. As a result, the influence of stress on the crystal vibrating element 40 can be reduced, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the crystal oscillator 1 employs an elastic adhesive such as the resin adhesive material 25 as an adhesive for adhering the resin layer 30 to the first substrate 10 and the second substrate 20.
  • an elastic adhesive material for example, resin adhesive material 25
  • a part of the stress generated in the second substrate 20 can be absorbed as compared with the case where the non-elastic adhesive material is adopted. Therefore, the stress transmitted to the crystal vibration element 40 is small. As a result, the influence of the stress applied to the crystal vibrating element 40 can be weakened, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the crystal vibration element 40 according to the first embodiment is provided with a penetration portion 44.
  • a penetrating portion 44 When such a penetrating portion 44 is adopted, it becomes difficult to transmit the stress generated in the peripheral portion 43 to the central portion 42 as compared with the case where the penetrating portion 44 is not adopted. Therefore, the influence of the stress applied to the crystal vibrating element 40 can be reduced, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the side electrode 60 is adopted as the conduction electrode of the first substrate 10 and the second substrate 20.
  • the volume of the conduction electrode can be reduced as compared with the case where an electrode such as a via electrode is adopted. Therefore, it becomes difficult for the stress generated in the second substrate 20 to be transmitted to the crystal vibration element 40. As a result, the influence of stress on the crystal vibrating element 40 can be alleviated, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • a material having light transmittance such as glass is adopted as the material of the first substrate 10 and the second substrate 20.
  • a material having light transmittance such as glass
  • crystal vibration is performed by using a laser even after the crystal oscillator 1 is sealed.
  • the resonance frequency of the crystal oscillator 1 that fluctuates due to the sealing heat can be adjusted. Therefore, the influence of the stress applied to the crystal vibrating element 40 can be reduced, and the stability of the resonance frequency of the crystal vibrating element 40 can be improved.
  • the crystal oscillator 1 capable of alleviating the influence of stress and improving the stability of the resonance frequency by using a simple configuration.
  • FIG. 4 is a cross-sectional view for explaining the configuration of the crystal oscillator 2 according to the second embodiment.
  • FIG. 5 is a bottom view for explaining the configuration of the crystal oscillator 2 according to the second embodiment.
  • the crystal oscillator 2 according to the second embodiment is an example of a piezoelectric vibrator.
  • the difference between the crystal oscillator 2 according to the second embodiment and the crystal oscillator 1 according to the first embodiment is that the crystal oscillator 2 according to the second embodiment replaces the side electrode 60 according to the first embodiment.
  • the via electrode 80 formed in the penetrating portion 38 and the penetrating portion 28 penetrating each of the resin layer 30 and the second substrate 20 is adopted.
  • the via electrode 80 is an example of a through electrode.
  • the crystal oscillator 2 according to the second embodiment can improve the stability of electrical conduction between the first substrate 10 and the second substrate 20 by adopting the via electrode 80.
  • the stability of the resonance frequency of the crystal vibration element 40 similar to that of the first embodiment can be improved, and the electrical characteristics of the crystal oscillator 2 can be improved.
  • the stability of the can be improved.
  • FIGS. 6A to 6G are diagrams for explaining the configuration of the resin layer 30 according to the modified example.
  • the resin layer 30 has been described as having a rectangular cross-sectional shape, but the present invention is not limited to the above configuration.
  • the cross-sectional shape of the resin layer 30 may be another polyhedron or an irregular shape.
  • the cross section of the resin layer 30 has a first width and a second width in a width direction intersecting the thickness direction on the first substrate 10, and the second width is closer to the second substrate 20 than the first width. It may have a shape in which the first width is larger than the second width.
  • the cross section of the resin layer 30 may have a shape in which the width in the width direction intersecting the thickness direction on the first substrate 10 becomes smaller as it approaches the second substrate 20.
  • the cross section of the resin layer 30 is located on the first substrate 10, and the width in the width direction intersecting the thickness direction of the first substrate 10 is the first.
  • the side of the second substrate 20 may have a smaller trapezoidal shape than the side of the substrate 10. Due to the resin layer 30 having such a trapezoidal cross section, the stress generated in the resin layer 30 gradually decreases from the second substrate 20 toward the first substrate 10. Further, the resin layer 30 having a trapezoidal cross section can further weaken the stress transmitted to the first substrate 10 and the crystal vibration element 40 as compared with the resin layer 30 having a rectangular cross section.
  • the cross section of the resin layer 30 has a width at the center of the resin layer 30 in the thickness direction or on the side closer to the second substrate 20 than the center, and the width of the other portion. It may have a small portion 36 formed smaller than.
  • the number of small portions 36 may be two or more.
  • the cross section of the resin layer 30 is located on the first substrate 10, and the width in the width direction intersecting the thickness direction of the first substrate 10 is larger than that on the side of the first substrate 10.
  • the side of the second substrate 20 may have a large trapezoidal shape.
  • the resin layer 30 having such a trapezoidal cross section reduces the influence of stress on the crystal vibrating element 40 and can increase the installation space on the side where the crystal vibrating element 40 is provided. Therefore, the workability of assembling the crystal oscillator 1 can be improved.
  • the resin layer 30 may be composed of a plurality of resin layers.
  • the resin layer 30 may have a first resin layer 310 and a second resin layer 320. With such a resin layer 30, the influence of stress on the crystal vibration element 40 is reduced, and the degree of freedom in designing the resin layer 30 can be improved.
  • the crystal vibrating element 40 the first substrate 10 on which the crystal vibrating element 40 is mounted, and the resin provided around the crystal vibrating element 40 in the first substrate 10.
  • the second substrate 20 includes a second substrate 20 forming the space 35, and the second substrate 20 has a main surface 22 which is an external mounting surface mounted on the external substrate on the side opposite to the surface facing the first substrate 10.
  • the thickness (height) of the resin layer 30 provided on the first substrate 10 is formed to be at least larger than the thickness (height) of the crystal vibration element 40 mounted on the first substrate 10. You may. According to the above configuration, since the stress is weakened before being transmitted to the crystal vibrating element, the influence of the stress on the crystal vibrating element can be reduced.
  • the resin layer 30 has a first width and a second width in the width direction intersecting the thickness direction of the first substrate 10, and the second width is closer to the second substrate 20 than the first width.
  • the first width may be formed larger than the second width.
  • the resin layer 30 may become smaller as the width in the width direction intersecting the thickness direction of the first substrate 10 approaches the second substrate 20. According to the above configuration, the transmitted stress is gradually reduced, the influence of the stress can be gradually reduced, and the stability of the resonance frequency of the quartz resonator can be improved.
  • the cross section of the resin layer 30 has a trapezoidal shape in which the width in the width direction intersecting the height direction of the first substrate 10 is smaller on the side of the second substrate 20 than on the side of the first substrate 10. good. According to the above configuration, since the resin layer close to the second substrate is deformed to relieve the stress, the stress generated on the first substrate side on which the quartz resonator is mounted becomes smaller, and the resonance frequency of the quartz resonator is stable. Can be efficiently realized.
  • the resin layer 30 may be adhered to each of the first substrate 10 and the second substrate 20 by the resin adhesive material 25. According to the above configuration, the stress is absorbed by the bonding material having a low elastic modulus, so that the stress can be relaxed and the stability of the resonance frequency can be improved.
  • At least one of the first substrate 10 and the second substrate 20 may be made of a light-transmitting material. According to the above configuration, even if the resonance frequency fluctuates due to stress due to sealing or outgas, the resonance frequency can be adjusted by a laser from the outside after sealing.
  • the first substrate 10 is provided with the connection electrode 13 and the connection electrode 14, which are examples of the electrode patterns electrically connected to the crystal vibration element 40, and the outer peripheral surface 34 of the resin layer 30 is provided with the connection electrode 13.
  • the side electrode 60 which is an example of the side wiring electrically connected to the connection electrode 13 and the connection electrode 14, may be provided. According to the above configuration, the volume of the conduction path connecting the second substrate and the first substrate becomes small, stress is difficult to transmit, and the stability of the resonance frequency can be improved.
  • the first substrate 10 is provided with the connection electrode 13 and the connection electrode 14 which are examples of the electrode patterns electrically connected to the crystal vibration element 40, and the resin layer 30 is provided with the connection electrode 13.
  • the via electrode 80 which is an example of the through electrode electrically connected to the connection electrode 14, may be provided.
  • each of the embodiments described above is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention.
  • the present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed.
  • each embodiment is an example, and it goes without saying that partial substitution or combination of the configurations shown in different embodiments is possible, and these are also included in the scope of the present invention as long as the features of the present invention are included. ..

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

水晶振動子1は、水晶振動素子40と、水晶振動素子40が搭載された第1基板10と、第1基板10における水晶振動素子40の周囲に設けられた樹脂層30と、第1基板10における水晶振動素子40及び樹脂層30が設けられた側に配置され、第1基板10との間に樹脂層30で囲まれかつ水晶振動素子40が配置された内部空間35を形成する第2基板20と、を備え、第2基板20は、第1基板10に対向する面とは反対側に、外部基板に実装される外部実装面である主面22を有する。

Description

圧電振動子
 本発明は、圧電振動子に関する。
 発振装置や帯域フィルタ等に用いられる基準信号の信号源に、厚みすべり振動を主振動とする水晶振動素子等の圧電振動子が広く用いられている。このような圧電振動子では、振動特性若しくは電気特性の向上が求められている。
 例えば、特許文献1には、枠体と一体に成形した水晶振動素子を、水晶、ガラス及びSi等からなる平板状の基板によって挟むことで封止する構造を有する、水晶振動子が開示されている。特許文献1に記載された水晶振動子は、ガラス容器体と水晶振動板とを陽極接合で接合することで、水晶振動子の耐衝撃性を高め、振動特性の不具合の発生を軽減している。
 また、例えば、特許文献2には、水晶振動素子が外部基板と実装する基板に搭載されず、実装する側に基板と対向する側の基板に吊り下げられている構造を有する、水晶振動子が開示されている。特許文献2に記載された水晶振動子は、外部からの電磁的影響と外部に与える電磁的影響を抑えることで、水晶振動子の電気特性の安定性を向上している。
特開2006-339840号公報 特開2002-261548号公報
 しかしながら、特許文献1及び特許文献2のいずれも、水晶振動素子が実装される基板と、外部基板との熱膨張係数の相違に起因する応力による影響により、水晶振動素子の共振周波数特性が低下する可能性があることについて考慮されていない。
 本発明はこのような事情に鑑みて発明されたものであり、本発明の目的は、簡易な構成を用いて、応力の影響を緩和し、共振周波数の安定性の向上を実現できる圧電振動子を提供することである。
 本発明の一側面に係る圧電振動子は、圧電振動素子と、圧電振動素子が搭載された第1基板と、第1基板における圧電振動素子の周囲に設けられた樹脂層と、第1基板における圧電振動素子及び樹脂層が設けられた側に配置され、第1基板との間に樹脂層で囲まれかつ圧電振動素子が配置された内部空間を形成する第2基板と、を備え、第2基板は、第1基板に対向する面とは反対側に、外部基板に実装される外部実装面を有する。
 本発明によれば、簡易な構成を用いて、応力の影響を緩和し、共振周波数の安定性の向上を実現できる圧電振動子を提供することが可能となる。
第1実施形態に係る水晶振動子の外観を示す斜視図である。 図1のII-II線断面図である。 第1実施形態に係る水晶振動子の構成を説明するための下面図である。 第2実施形態に係る水晶振動子の構成を説明するための断面図である。 第2実施形態に係る水晶振動子の構成を説明するための下面図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。 変形例に係る樹脂層の構成を説明するための図である。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を前記実施形態に限定して解するべきではない。
 [第1実施形態]
 <水晶振動子1の概要>
 まず、図1及び図2を参照しつつ、本実施形態に係る水晶振動子(Quartz Crystal Resonator Unit)1の構成を説明する。ここで、図1は、第1実施形態に係る水晶振動子1の外観を示す斜視図である。図2は、図1のII-II線断面図である。
 第1実施形態に係る水晶振動子1は、圧電振動子の一例である。この水晶振動子1は、第1基板10と、第2基板20と、第1基板10及び第2基板20の間に配置されている樹脂層30と、第1基板10に搭載され、水晶振動子1の内部空間35に収容されている水晶振動素子(Quartz Crystal Resonator)40とを備える。
 また、水晶振動子1は、水晶振動素子40を第1基板10に電気的に接続しかつ接着するための導電性保持部材15と、樹脂層30を第1基板10及び第2基板20のそれぞれに接着するための樹脂接着材料25とを備える。さらに、水晶振動子1は、第1基板10、第2基板20及び水晶振動素子40のそれぞれの主面と樹脂層30の外周面のいずれかに形成されている複数の電極を備える。
 また、水晶振動子1は、例えば、半田付けによって、図示されていない外部基板に実装される。この外部基板は、例えば、ガラスエポキシ基板である。また、水晶振動子1が外部基板に実装された場合、水晶振動子1の第2基板20が外部基板側に位置し、一方、第1基板10及び水晶振動素子40は、外部基板から離れる側に位置する。
 以下では、第1基板10、第2基板20、樹脂層30及び水晶振動素子40が組み立てられて水晶振動子1が構成された状態を「組立状態」と呼ぶことがある。また、組立状態において、水晶振動子1の厚み方向(又は高さ方向)と、水晶振動子1の各構成部品の厚み方向(又は高さ方向)とは、図1に示されているZ´軸方向と一致している。
 <水晶振動子1の詳細>
 次に、図1乃至図3を参照しつつ、水晶振動子1の各構成について詳細に説明する。図3は、第1実施形態に係る水晶振子1の構成を説明するための下面図である。なお、図2において、側面電極60の配置位置の表示は、電極間の接続関係を示す模式的な表示であり、側面電極60の実際の配置位置を示すものではない。図3において、水晶振動素子40の一部の電極の図示は省略されている。
 (水晶振動素子40)
 水晶振動素子40は、圧電振動素子の一例であり、板状をなしている。また、水晶振動素子40は、水晶片41と、水晶片41に形成されている電極パターンとを備える。また、水晶振動素子40の電極パターンは、一対の励振電極45と、一対の電極パッド46と、引出電極47及び引出電極48とを含む。
 水晶片41は、圧電基板の一例であり、例えば、ATカットの水晶基板である。ATカットの水晶基板は、水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸をそれぞれY´軸及びZ´軸とした場合、X軸及びY´軸によって特定される面と平行な面(以下、「XY´面」とする。他の軸によって特定される面についても同様である。)を主面として人工水晶(Synthetic Quartz Crystal)から切り出されたものである。ATカットの水晶片41を採用する水晶振動素子40は、厚みすべり振動モードを主要振動とする。なお、水晶片41のカット角度は限定されるものではなく、例えば、BTカット、GTカット又はSCカット等を適用することができる。
 また、水晶片41は、板状部材である。図2に示す例では、水晶片41は、メサ型構造をなしている。この水晶片41は、メサ部分を構成している中央部42と、中央部42の周囲に設けられている周辺部43と、中央部42及び周辺部43の間に設けられている貫通部44とを有する。
 水晶振動素子40における中央部42は、主として、水晶振動素子40の厚みすべり振動を行う振動部である。また、中央部42は、厚み方向の両側にある主面421及び主面422と、主面421及び主面422に対して垂直に形成されている側面423とを有する。
 周辺部43は、組立状態において、中央部42を支持する部分である。この周辺部43は、中央部42よりも厚み方向における寸法が小さい。また、周辺部43は、厚み方向の両側にある主面431及び主面432と、主面431及び主面432に対して垂直に形成されている側面433とを有する。周辺部43の主面431及び主面432は、中央部42の側面423と接続している。
 貫通部44は、厚み方向にて、水晶片41を貫通するスロットである。この貫通部44によって、周辺部43が中央部42を支持することができるとともに、周辺部43が中央部42の振動に与える拘束力を減少することができる。その結果、中央部42の共振周波数の安定性を向上することができる。
 一対の励振電極45は、電圧が印加されることで中央部42を厚みすべり振動をさせるための電極である。また、一対の励振電極45のそれぞれは、中央部42を挟んで互いに対向するように、中央部42の主面421及び主面422のそれぞれに設けられている。
 また、一対の励振電極45は、同じ材料によって構成された金属膜である。各励振電極45の材料は、特に限定されるものではない。例えば、各励振電極45は、下地としてクロム(Cr)層と、クロム層の表面にさらに金(Au)層とからなるものであってもよい。また、第1実施形態に係る後述する他の電極、すなわち、電極パッド46、引出電極47、引出電極48、接続電極13、接続電極14、側面電極60、外部電極62及び外部電極63のそれぞれも、例えば、各励振電極45と同じ材料によって構成されている。なお、水晶振動子1の各電極は、異なる材料によって構成されてもよい。
 2つの電極パッド46は、水晶振動素子40を第1基板10に電気的に接続するための端子である。また、2つの電極パッド46は、周辺部43の主面431に形成されている。組立状態において、2つの電極パッド46のそれぞれは、導電性保持部材15を介して、後述する第1基板10に形成されている接続電極13及び接続電極14のそれぞれと電気的に接続され、水晶振動素子40と第1基板10との電気的な接続を実現している。
 引出電極47及び引出電極48は、各励振電極45を各電極パッド46に電気的に接続するための電極である。引出電極47は、中央部42の主面421から周辺部43の主面431に渡るように形成されている。この引出電極47は、中央部42の主面421にある励振電極45と、周辺部43の主面431にある1つの電極パッド46とを電気的に接続している。引出電極48は、中央部42の主面422から周辺部43の主面431に渡るように形成されている。この引出電極48は、主面422にある励振電極45と、周辺部43の主面431にある他の1つの電極パッド46とを電気的に接続している。
 (第1基板10)
 第1基板10は、板状部材である。この第1基板10は、光透過性を有する材料によって構成されることが好ましい。第1実施形態に係る第1基板10の材料は、ガラスである。なお、第1基板10の材料は、半導体材料(例えば、シリコン材料)であってもよい。その場合、半導体材料に発振回路を構成する集積回路を形成することができる。
 また、第1基板10は、厚み方向の両側にある、主面11と、主面12とを有する。組立状態において、主面11は、水晶振動子1の外部に向かう面である。主面12は、水晶振動子1の内部に向かい、内部空間35を構成する面である。言い換えれば、主面12は、水晶振動素子40を搭載するための面である。また、主面12には、接続電極13及び接続電極14が形成されている。
 接続電極13及び接続電極14は、第1基板10の電極パターンの一例であり、水晶振動素子40の電極パッドと電気的に接続するための端子である。組立状態において、接続電極13には水晶振動素子40の一方の励振電極45が電気的に接続され、接続電極14には水晶振動素子40の他方の励振電極45が接続されている。
 このように、組立状態において、第1基板10に形成されている接続電極13及び接続電極14は、導電性保持部材15と、一対の電極パッド46と、引出電極47及び引出電極48とを介して、水晶振動素子40の一対の励振電極45に電気的に接続されている。言い換えれば、第1基板10は、上記した電極パターン及び導電性保持部材15を介して、水晶振動素子40と電気的に接続されている。
 (第2基板20)
 第2基板20は、板状部材である。この第2基板20は、光透過性を有する材料によって構成されることが好ましい。第1実施形態に係る第2基板20の材料は、第1基板10の材料と同じ、すなわちガラスである。
 また、第2基板20は、厚み方向の両側にある、主面21と、主面22とを有する。組立状態において、主面21は、水晶振動子1の内部に向かい、内部空間35を構成する面である。主面22は、水晶振動子1の外部に向かい、外部基板に実装されるための外部実装面を構成する面である。また、主面22の4つの角部には、2つの外部電極62及び2つの外部電極63が形成されている。なお、2つの外部電極62及び2つの外部電極63のそれぞれ上に、水晶振動子1と外部基板との接続(実装)のための、図示されていない半田バンプを設けてもよい。
 2つの外部電極62は、水晶振動素子40の入出力信号が供給される入出力電極である。組立状態において、第2基板20の2つの外部電極62のそれぞれは、後述する側面電極60によって、第1基板10に形成されている接続電極13及び接続電極14のそれぞれと電気的に接続されているとともに、半田によって外部基板とも電気的に接続されている。こうして、第2基板20と第1基板10及び水晶振動素子40との電気的な接続と、第2基板20と外部基板との電気的な接続とが実現されている。
 2つの外部電極63は、水晶振動素子40の入出力信号が供給されない電極である。また、2つの外部電極63には、図示しない外部基板上の他の電子素子の入出力信号も供給されない。あるいは、2つの外部電極63の少なくともいずれか1つは、接地電位が供給される接地用電極であってもよい。
 (樹脂層30)
 樹脂層30は、水晶振動子1の封止枠として機能し、枠状をなしている。この樹脂層30の材料は、例えば、ポリイミドである。また、組立状態において、樹脂層30の厚さ(高さ)は、少なくとも、第1基板上に搭載されている水晶振動素子40の中央部42の厚さよりも大きい。第1実施形態に係る樹脂層30の厚さは、例えば、100μmである。第1基板10の上における樹脂層30の高さは、第1基板10の上に搭載された水晶振動素子40における第1基板10と反対側の主面の高さ以上である。
 また、樹脂層30は、厚み方向の両側にある端面31及び端面32と、端面31及び端面32に対して垂直に形成されている、内周面33及び外周面34とを有する。第1実施形態では、図2に示すように、樹脂層30の断面の形状は、矩形状である。樹脂層30の端面31と、端面32とは、同じ形状を有する。
 (導電性保持部材15)
 導電性保持部材15は、水晶振動素子40の各電極パッド46を第1基板10の接続電極13及び接続電極14のそれぞれに電気的に接続するための接着材である。また、導電性保持部材15は、例えば、導電性接着剤が熱硬化して形成されたものである。第1実施形態では、導電性保持部材15によって、水晶振動素子40は、第1基板の主面12に励振可能に支持されている。
 (樹脂接着材料25)
 樹脂接着材料25は、樹脂層30を第1基板10及び第2基板20のそれぞれに接着するための接着材である。また、樹脂接着材料25は、例えば、樹脂接着剤が熱硬化して形成されたものである。第1実施形態では、樹脂接着材料25によって、樹脂層30と、第1基板10及び第2基板20とが接着され、水晶振動素子40を収容する内部空間35が封止されるとともに、第2基板20の側面及び樹脂層30の外周面が接続される。そして、第2基板20の側面及び樹脂層30の外周面に、側面電極60を形成することができる。
 (側面電極60)
 2つの側面電極60は、水晶振動子1の側面配線の一例である。また、2つの側面電極60は、2つの外部電極62のそれぞれと、接続電極13及び接続電極14のそれぞれとを接続するための導通電極である。このように、側面電極60によって、第2基板20に形成されている外部電極62と、第1基板10に形成されている接続電極13及び接続電極14と、水晶振動素子40に形成されている励振電極45とが電気的に接続されている。言い換えれば、側面電極60の接続によって、第2基板20と、第1基板10と、水晶振動素子40とが電気的に接続されている。
 その結果、2つの外部電極62と、側面電極60と、接続電極13及び接続電極14とを介して、水晶振動素子40に、具体的には、水晶振動素子40の一対の励振電極45の間に交番電界を印加することができる。この交番電界よって、厚みすべり振動モード等の所定の振動モードによって水晶片41の中央部42が振動し、該振動に伴う共振特性が得られる。
 <水晶振動子1の組立>
 続いて、図1乃至図3を参照しつつ、水晶振動子1の組立について説明する。
 まず、第1基板10を準備する。第1基板10の主面12には、水晶振動素子40を電気的に接続するための接続電極13及び接続電極14が形成されている。
 次に、準備した第1基板10に、水晶振動素子40を搭載する。
 具体的には、第1基板10の主面12上の接続電極13及び接続電極14上に導電性接着剤(すなわち、熱硬化される前の導電性保持部材15)を塗布し、水晶振動素子40を搭載した状態で導電性接着剤を熱硬化させる。こうして、導電性接着剤が熱硬化した導電性保持部材15によって、水晶振動素子40の2つの電極パッド46と、第1基板10の接続電極13及び接続電極14とを電気的に接続される。導電性保持部材15によって水晶振動素子40を励振可能に保持することができる。
 続いて、水晶振動素子40が搭載された第1基板10に、樹脂層30を接着する。
 具体的には、まず、端面31に樹脂接着剤(すなわち、熱硬化される前の樹脂接着材料25)が塗布された樹脂層30を第1基板10の主面12に設ける。その後、第1基板10と樹脂層30との間の樹脂接着剤を熱硬化させる。こうして、樹脂接着剤が熱硬化した樹脂接着材料25によって、樹脂層30は、第1基板10における水晶振動素子40の周囲に位置するように、第1基板10に接着される。
 次に、樹脂層30の端面32に、第2基板20を接合することにより、第1基板10に搭載された水晶振動素子40を、第1基板10の主面12、樹脂層30の内周面33及び第2基板20の主面21によって構成された内部空間35に封止する。
 具体的には、第2基板20の主面21を内部空間35に向かうように、第2基板20を、樹脂接着剤(すなわち、熱硬化される前の樹脂接着材料25)が塗布された樹脂層30の端面32に搭載する。そして、樹脂接着剤を熱硬化させることで、第2基板20を樹脂層30に接合する。
 その後、水晶振動子1の側面に、2つの側面電極60を形成する。
 具体的には、第2基板20の主面22に形成された2つの外部電極62のそれぞれと、第1基板10の主面12に形成された接続電極13及び接続電極14のそれぞれとを電気的に接続するように、第2基板20の側面及び樹脂層30の外周面34の角部に、側面電極60を形成する。なお、側面電極60が形成された後、第2基板20の外部電極62及び外部電極63のそれぞれの上に、半田バンプを形成してもよい。
 こうして、水晶振動子1の組立は完了する。
 なお、その後、組み立てられた水晶振動子1に対して共振周波数の調整を行ってもよい。
 具体的には、レーザをガラスによって構成された第1基板10及び/又は第2基板20を透過させることで、水晶振動素子40を照射する。なお、レーザ以外の高いエネルギを有する光を使用してもよい。
 水晶振動子1の組立過程において、樹脂層30や第2基板20の接着等の封止作業を行うときに生じた封止熱によって、水晶振動子1に応力やアウトガスが発生する。このような応力やアウトガスの影響で、水晶振動子1の共振周波数は、封止する前に比べて変動してしまう。そこで、ガラスによって構成された第1基板10及び/又は第2基板20を介して、封止後の水晶振動素子40をレーザで照射することで、水晶振動子1の共振周波数を調整することができる。なお、このような水晶振動子1の共振周波数の調整は、水晶振動子1が外部基板に実装された後に、行ってもよい。
 <水晶振動子1における外部基板への実装>
 続いて、水晶振動子1における外部基板への実装の詳細に説明する。具体的には、以下では、水晶振動子1の実装手順と、実装に生じた応力影響の緩和について説明する。
 (実装手順)
 第1実施形態では、水晶振動子1が半田付けによって外部基板に実装される。具体的には、まず、水晶振動子1の第2基板20の各外部電極62及び各外部電極63上に設けられた半田バンプを加熱する。そして、水晶振動子1の主面22を外部基板に向かい、加熱された半田バンプを外部基板に押し付けることで、水晶振動子1を外部基板に接着する。こうして、水晶振動子1における外部基板への実装は完了する。
 (実装に生じた応力影響の緩和)
 このように、水晶振動子1を外部基板に半田実装するとき、半田バンプを加熱することで、外部基板の温度と、水晶振動子1の温度、特に外部基板側に接着されている第2基板20の温度は上昇する。また、第2基板20及び外部基板のそれぞれが上昇した温度の量は、ほぼ同じである。一方、第2基板20の材料であるガラスの熱膨張係数(約0.9*10-5/℃)は、外部基板の材料であるガラエポの熱膨張係数(約2.1*10-5/℃)よりも小さい。よって、同じ温度が上昇した場合、外部基板は、第2基板20よりも大きく膨張する。その結果、第2基板20は外部基板の膨張による外力を受け、第2基板20に応力が生じる。
 このような応力が水晶振動素子40に伝達すると、水晶振動素子40の共振周波数に影響を与える。また、水晶振動素子40に伝達された応力が大きくなるほど、共振周波数に与える影響が大きくなり、共振周波数の安定性が悪くなる。よって、水晶振動素子40の共振周波数の安定性を向上するために、応力が水晶振動素子40に与える影響を緩和する必要がある。これに対して、第1実施形態に係る水晶振動子1は、簡易な構成を用いて、応力が水晶振動素子40に与える影響を緩和している。
 まず、第1実施形態に係る水晶振動子1は、水晶振動素子40を、第2基板20よりも外部基板から離れる側に配置されている第1基板10に搭載している。すなわち、水晶振動子1は、水晶振動素子40を第1基板に吊り下げる構成を採用している。このような水晶振動素子40の吊り下げる構成を採用する場合は、水晶振動素子40を外部基板に直接接着されている第2基板20に搭載する場合に比べて、水晶振動素子40が第2基板20と直接接触していないため、第2基板20の生じた応力は、水晶振動素子40に直接伝達することがない。言い換えれば、水晶振動素子40を第2基板20に搭載する場合に比べて、吊り下げる構成を採用した水晶振動素子40に伝達される応力小さくなっている。よって、水晶振動素子40が受ける応力の影響を低減し、水晶振動素子40の共振周波数の安定性を向上することができる。
 次に、第1実施形態に係る水晶振動子1は、第2基板20と第1基板10との間に、樹脂層30を封止枠として採用している。すなわち、水晶振動子1は、弾性材料によって構成された弾性封止枠を採用している。このような弾性封止枠(例えば、樹脂層30)を採用する場合は、非弾性材料によって構成された封止枠(例えば、金属枠)を採用する場合に比べて、第2基板20に生じた応力の一部を吸収することができる。よって、水晶振動素子40に伝達される応力小さくなっている。その結果、水晶振動素子40が受ける応力の影響を緩和し、水晶振動素子40の共振周波数の安定性を高めることができる。
 また、樹脂層30のような弾性封止枠は、一定の厚みを有する。よって、このような厚みがある封止枠を採用する場合は、薄い封止枠を採用する場合や封止枠を採用しない場合に比べて、応力を、水晶振動素子40に伝達される前に、弱めることができる。よって、水晶振動素子40に伝達される応力小さくなっている。その結果、水晶振動素子40が受ける応力の影響を軽減し、水晶振動素子40の共振周波数の安定性を向上することができる。
 そのほか、第1実施形態に係る水晶振動子1は、樹脂接着材料25のような弾性接着材を、樹脂層30を第1基板10及び第2基板20に接着するための接着材として採用している。このような弾性接着材(例えば、樹脂接着材料25)を採用する場合は、非弾性接着材を採用する場合に比べて、第2基板20に生じた応力の一部を吸収することができる。よって、水晶振動素子40に伝達される応力小さくなっている。その結果、水晶振動素子40が受ける応力の影響を弱め、水晶振動素子40の共振周波数の安定性を高めることができる。
 また、第1実施形態に係る水晶振動素子40には、貫通部44が設けられている。このような貫通部44を採用する場合は、貫通部44を採用しない場合に比べて、周辺部43に生じた応力が中央部42に伝達し難くなる。よって、水晶振動素子40が受ける応力の影響を軽減し、水晶振動素子40の共振周波数の安定性を向上することができる。
 また、第1実施形態に係る水晶振動子1は、側面電極60を第1基板10と第2基板20の導通電極として採用している。このような側面電極60を採用する場合は、ビア電極等の電極を採用する場合に比べて、導通電極の体積を小さくすることができる。よって、第2基板20に生じた応力が水晶振動素子40に伝達するし難くなる。その結果、水晶振動素子40が受ける応力の影響を緩和し、水晶振動素子40の共振周波数の安定性を高めることができる。
 また、第1実施形態に係る水晶振動子1は、ガラス等の光透過性を有する材料を第1基板10及び第2基板20の材料として採用している。このような光透過性を有する材料を採用する場合は、光透過性を有しない材料を採用する場合に比べて、水晶振動子1が封止された後になっても、レーザを用いて水晶振動素子40を照射すること、封止熱によって変動した水晶振動子1の共振周波数を調整することができる。よって、水晶振動素子40が受ける応力の影響を減少し、水晶振動素子40の共振周波数の安定性を向上することができる。
 つまり、上述したように、第1実施形では、簡易な構成を用いて、応力の影響を緩和し、共振周波数の安定性の向上を実現できる水晶振動子1を提供することができる。
 [第2実施形態]
 続いて、図4及び図5を参照しつつ、第2実施形態に係る水晶振動子2の構成について説明する。図4は、第2実施形態に係る水晶振動子2の構成を説明するための断面図である。図5は、第2実施形態に係る水晶振動子2の構成を説明するための下面図である。
 第2実施形態に係る水晶振動子2は、圧電振動子の一例である。第2実施形態に係る水晶振動子2と、第1実施形態に係る水晶振動子1との相違は、第2実施形態に係る水晶振動子2は、第1実施形態に係る側面電極60の代わりに、樹脂層30及び第2基板20それぞれを貫通する貫通部38及び貫通部28に形成されたビア電極80を採用していることである。このビア電極80は、貫通電極の一例である。
 このように、第2実施形態に係る水晶振動子2は、ビア電極80を採用することで、第1基板10と第2基板20との電気的な導通の安定性を向上することができる。
 よって、このような第2実施形態に係る水晶振動子2によれば、第1実施形態と同様の水晶振動素子40の共振周波数の安定性を高めることができるとともに、水晶発振装置2の電気特性の安定性を向上することができる。
 [樹脂層30の変形例]
 続いて、図6A乃至図6Gを参照しつつ、樹脂層30の様々な変形例のうちの一部について説明する。図6A乃至図6Gは、変形例に係る樹脂層30の構成を説明するための図である。
 上記実施形態では、樹脂層30を断面形状が矩形状のものとして説明したが、上記構成に限定されるものではない。例えば、樹脂層30の断面形状は、その他の多辺形や、不規則な形状であってもよい。例えば、樹脂層30の断面は、第1基板10の上の厚み方向と交差する幅方向における第1幅と第2幅を有し、第2幅は第1幅よりも第2基板20の側に位置し、第1幅が第2幅よりも大きい形状を有してもよい。また、例えば、樹脂層30の断面は、第1基板10の上の厚み方向と交差する幅方向の幅が、第2基板20に近づくにつれて小さくなっている形状を有してもよい。
 具体的には、例えば、図6A及び図6Eに示すように、樹脂層30の断面は、第1基板10に位置し、第1基板10の厚み方向と交差する幅方向の幅が、第1基板10の側よりも第2基板20の側が小さい台形状であってもよい。このような台形状の断面を有する樹脂層30によって、第2基板20から第1基板10に向かって、樹脂層30に生じる応力が徐々に小さくなる。また、矩形状の断面を有する樹脂層30に比べて、台形状の断面を有する樹脂層30は、より第1基板10及び水晶振動素子40に伝達する応力をさらに弱めることができる。
 また、例えば、図6B及び図6Cに示すように、樹脂層30の断面は、その樹脂層30の厚み方向の中央、又は中央より第2基板20に近い側に、幅がその他の部分の幅よりも小さく形成されている寸小部36を有してもよい。このような寸小部36を採用することで、応力を寸小部36で集中させることができる。よって、寸小部36を有しない樹脂層30に比べて、より第1基板10及び水晶振動素子40に伝達する応力を弱めることができる。また、例えば、図6Dに示すように、寸小部36は2以上であってもよい。複数の寸小部36を採用することで、より第1基板10及び水晶振動素子40に伝達する応力を弱める効果を高めることができる。
 また、例えば、図6Fに示すように、樹脂層30の断面は、第1基板10に位置し、第1基板10の厚み方向と交差する幅方向の幅が、第1基板10の側よりも第2基板20の側が大きい台形状であってもよい。このような台形状の断面を有する樹脂層30によって、水晶振動素子40が受ける応力の影響は小さくなるとともに、水晶振動素子40が設けられる側の設置スペースを広げることができる。よって、水晶振動子1の組立の作業性を向上することができる。
 また、例えば、樹脂層30は、複数の樹脂層によって構成されてもよい。例えば、図6Gに示すように、樹脂層30は、第1樹脂層310と、第2樹脂層320とを有してもよい。このような樹脂層30によって、水晶振動素子40が受ける応力の影響は小さくなるとともに、樹脂層30の設計自由度を向上することができる。
 以上、本発明の例示的な実施形態について説明した。
 本発明の一実施形態に係る水晶振動子1では、水晶振動素子40と、水晶振動素子40が搭載された第1基板10と、第1基板10における水晶振動素子40の周囲に設けられた樹脂層30と、第1基板10における水晶振動素子40及び樹脂層30が設けられた側に配置され、第1基板10との間に樹脂層30で囲まれかつ水晶振動素子40が配置された内部空間35を形成する第2基板20とを備え、第2基板20は、第1基板10に対向する面とは反対側に、外部基板に実装される外部実装面である主面22を有する。
 上記構成によれば、簡易な構成を用いて、応力の影響を緩和し、共振周波数の安定性の向上を実現ことができる。
 また、上記構成において、第1基板10に設けられた樹脂層30の厚み(高さ)は、少なくとも、第1基板10に搭載された水晶振動素子40の厚み(高さ)よりも大きく形成されてもよい。
 上記構成によれば、応力が水晶振動素子に伝達される前に弱められたため、水晶振動素子が受ける応力の影響を軽減することができる。
 また、上記構成において、樹脂層30は、第1基板10の厚み方向と交差する幅方向における第1幅と第2幅を有し、第2幅は第1幅よりも第2基板20の側に位置し、第1幅が第2幅よりも大きく形成されてもよい。
 上記構成によれば、応力が第1基板に伝達し難くなるため、応力の影響を緩和することができる。
 また、上記構成において、樹脂層30は、第1基板10の厚み方向と交差する幅方向の幅が、第2基板20に近づくにつれて小さくなってもよい。
 上記構成によれば、伝達される応力が徐々に小さくなり、応力の影響を徐々に軽減することができ、水晶共振子の共振周波数の安定性を向上することができる。
 また、上記構成において、樹脂層30の断面は、第1基板10の高さ方向と交差する幅方向の幅が第1基板10の側よりも第2基板20の側が小さい台形状であってもよい。
 上記構成によれば、第2基板に近い樹脂層が変形し応力を緩和するため、水晶共振子を搭載した第1基板側に発生する応力がより小さくなり、水晶共振子の共振周波数の安定性の向上を効率的に実現ことができる。
 また、上記構成において、樹脂層30は、第1基板10及び第2基板20のそれぞれと樹脂接着材料25によって接着されてもよい。
 上記構成によれば、応力が低弾性率の接合材によって吸収されることで、応力を緩和し、共振周波数の安定性を高めることができる。
 また、上記構成において、第1基板10及び第2基板20のうち少なくとも一方は、光透過性を有する材料によって構成されてもよい。
 上記構成によれば、封止による応力やアウトガスを起因として共振周波数の変動が生じても、封止後に外部からレーザで共振周波数を調整することができる。
 また、上記構成において、第1基板10には、水晶振動素子40に電気的に接続された電極パターンの一例である接続電極13及び接続電極14が設けられ、樹脂層30の外周面34には、接続電極13及び接続電極14と電気的に接続された側面配線の一例である側面電極60が設けられてもよい。
 上記構成によれば、第2基板と第1基板とをつなぐ導通経路の体積が小さくなり、応力が伝達し難くなり、共振周波数の安定性を向上することができる。
 また、上記構成において、第1基板10には、水晶振動素子40に電気的に接続された電極パターンの一例である接続電極13及び接続電極14が設けられ、樹脂層30には、接続電極13及び接続電極14と電気的に接続された貫通電極の一例であるビア電極80が設けられてもよい。
 上記構成によれば、水晶振動子の共振周波数の安定性を高めることができるとともに、電気特性の安定性を向上することができる。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 1,2…水晶振動子、10…第1基板、20…第2基板、30…樹脂層、40…水晶振動素子、60…側面電極

Claims (9)

  1.  圧電振動素子と、
     前記圧電振動素子が搭載された第1基板と、
     前記第1基板における前記圧電振動素子の周囲に設けられた樹脂層と、
     前記第1基板における前記圧電振動素子及び前記樹脂層が設けられた側に配置され、前記第1基板との間に前記樹脂層で囲まれかつ前記圧電振動素子が配置された内部空間を形成する第2基板と、
    を備え、
     前記第2基板は、前記第1基板に対向する面とは反対側に、外部基板に実装される外部実装面を有する、圧電振動子。
  2.  前記第1基板上における前記樹脂層の厚みは、少なくとも、前記第1基板上に搭載された前記圧電振動素子の厚みよりも大きい、請求項1に記載の圧電振動子。
  3.  前記樹脂層は、前記第1基板上の厚み方向と交差する幅方向における第1幅と第2幅を有し、前記第2幅は前記第1幅よりも前記第2基板の側に位置し、前記第1幅が前記第2幅よりも大きい、請求項1又は2に記載の圧電振動子。
  4.  前記樹脂層は、前記第1基板上の厚み方向と交差する幅方向の幅が、前記第2基板に近づくにつれて小さくなっている、請求項1乃至3のいずれか一項に記載の圧電振動子。
  5.  前記樹脂層の断面は、前記第1基板上の厚み方向と交差する幅方向の幅が前記第1基板の側よりも前記第2基板の側が小さい台形状である、
    請求項1乃至4の何れか一項に記載の圧電振動子。
  6.  前記樹脂層は、前記第1基板及び前記第2基板のそれぞれと樹脂接着材料によって接着されている、請求項1乃至5の何れか一項に記載の圧電振動子。
  7.  前記第1基板及び前記第2基板のうち少なくとも一方は、光透過性を有する材料によって構成されている、請求項1乃至6の何れか一項に記載の圧電振動子。
  8.  前記第1基板には、前記圧電振動素子に電気的に接続された電極パターンが設けられ、
     前記樹脂層の外周面には、前記電極パターンと電気的に接続された側面配線が設けられている、請求項1乃至7の何れか一項に記載の圧電振動子。
  9.  前記第1基板には、前記圧電振動素子に電気的に接続された電極パターンが設けられ、
     前記樹脂層には、前記電極パターンと電気的に接続された貫通電極が設けられている、請求項1乃至7の何れか一項に記載の圧電振動子。
PCT/JP2021/004218 2020-05-13 2021-02-05 圧電振動子 WO2021229872A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-084284 2020-05-13
JP2020084284 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021229872A1 true WO2021229872A1 (ja) 2021-11-18

Family

ID=78525774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004218 WO2021229872A1 (ja) 2020-05-13 2021-02-05 圧電振動子

Country Status (1)

Country Link
WO (1) WO2021229872A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057699A1 (ja) * 2007-10-30 2009-05-07 Kyocera Corporation 弾性波装置
JP2009194091A (ja) * 2008-02-13 2009-08-27 Seiko Instruments Inc 電子部品、電子機器、及びベース部材製造方法
JP2013038727A (ja) * 2011-08-11 2013-02-21 Nec Schott Components Corp 気密パッケージおよびその製造方法。
JP2015167305A (ja) * 2014-03-04 2015-09-24 日本電波工業株式会社 圧電デバイス
JP2016086049A (ja) * 2014-10-24 2016-05-19 セイコーエプソン株式会社 パッケージ、パッケージの製造方法、電子デバイス、電子機器及び移動体
WO2016140301A1 (ja) * 2015-03-03 2016-09-09 株式会社村田製作所 水晶振動子
JP2017098340A (ja) * 2015-11-19 2017-06-01 日本カーバイド工業株式会社 素子搭載用基板の製造方法及び電子部品の製造方法
JP2017228825A (ja) * 2016-06-20 2017-12-28 日本電波工業株式会社 圧電デバイス及びベース

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057699A1 (ja) * 2007-10-30 2009-05-07 Kyocera Corporation 弾性波装置
JP2009194091A (ja) * 2008-02-13 2009-08-27 Seiko Instruments Inc 電子部品、電子機器、及びベース部材製造方法
JP2013038727A (ja) * 2011-08-11 2013-02-21 Nec Schott Components Corp 気密パッケージおよびその製造方法。
JP2015167305A (ja) * 2014-03-04 2015-09-24 日本電波工業株式会社 圧電デバイス
JP2016086049A (ja) * 2014-10-24 2016-05-19 セイコーエプソン株式会社 パッケージ、パッケージの製造方法、電子デバイス、電子機器及び移動体
WO2016140301A1 (ja) * 2015-03-03 2016-09-09 株式会社村田製作所 水晶振動子
JP2017098340A (ja) * 2015-11-19 2017-06-01 日本カーバイド工業株式会社 素子搭載用基板の製造方法及び電子部品の製造方法
JP2017228825A (ja) * 2016-06-20 2017-12-28 日本電波工業株式会社 圧電デバイス及びベース

Similar Documents

Publication Publication Date Title
TWI667879B (zh) 壓電振動件和模組構件及其等之製造方法
JP5699809B2 (ja) 圧電振動片
WO2019065519A1 (ja) 圧電振動子及び圧電振動子の製造方法
JP7396496B2 (ja) 恒温槽型圧電発振器
WO2015162958A1 (ja) 水晶振動装置及びその製造方法
WO2021229872A1 (ja) 圧電振動子
JP4466691B2 (ja) 弾性表面波デバイス
WO2022050414A1 (ja) 恒温槽型圧電発振器
JP2022032562A (ja) 振動デバイス
JP2009239475A (ja) 表面実装型圧電発振器
JP5396780B2 (ja) 圧電デバイス
JP7307397B2 (ja) 振動素子、振動子及び振動素子の製造方法
JP6449618B2 (ja) 圧電デバイス及び圧電デバイスの製造方法
US12009801B2 (en) Resonator device
WO2022158028A1 (ja) 圧電振動子
JP2014195133A (ja) 圧電発振器
US20220173715A1 (en) Resonator Device
WO2022024880A1 (ja) 圧電デバイス
WO2023032342A1 (ja) 圧電振動子
JP7420225B2 (ja) 恒温槽型圧電発振器
JP6555500B2 (ja) 圧電振動素子及び圧電振動子
JP6904837B2 (ja) 水晶デバイス
JPH066167A (ja) 水晶振動子とその製造方法
JP2020123816A (ja) 振動素子用の台座、振動子及び発振器
JP2024051472A (ja) 振動素子および振動デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP