WO2021227390A1 - 触控基板及显示装置 - Google Patents

触控基板及显示装置 Download PDF

Info

Publication number
WO2021227390A1
WO2021227390A1 PCT/CN2020/126577 CN2020126577W WO2021227390A1 WO 2021227390 A1 WO2021227390 A1 WO 2021227390A1 CN 2020126577 W CN2020126577 W CN 2020126577W WO 2021227390 A1 WO2021227390 A1 WO 2021227390A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
disconnection
grid
metal
cut
Prior art date
Application number
PCT/CN2020/126577
Other languages
English (en)
French (fr)
Inventor
王玉
何帆
徐鹏
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010414660.XA external-priority patent/CN113672111B/zh
Priority claimed from CN202010576852.0A external-priority patent/CN111736726B/zh
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP20935860.5A priority Critical patent/EP4033336A4/en
Priority to US17/418,198 priority patent/US11782563B2/en
Publication of WO2021227390A1 publication Critical patent/WO2021227390A1/zh
Priority to US18/455,737 priority patent/US20230409153A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display and touch technology, and in particular to a touch substrate and a display device.
  • FMLOC Flexible Multi Layer On Cell
  • the driving electrodes (Tx) and sensing electrodes (Rx) in the touch structure layer are in the form of Metal Mesh, and the detection device cannot be sure when detecting poor touch in the touch structure layer.
  • the specific location where the defect occurs makes it impossible to repair the defect in time, which affects the improvement of product yield.
  • An embodiment of the present disclosure provides a touch substrate, including a touch structure layer disposed on a base, the touch structure layer including a plurality of first touch electrodes disposed along a first direction and a second direction A plurality of second touch electrodes, the first direction intersects the second direction;
  • the touch structure layer includes a metal mesh, the metal mesh includes a plurality of mesh patterns, the mesh pattern is A polygon formed by a plurality of metal wires, the plurality of grid patterns are provided with a plurality of first cuts and a plurality of second cuts, and the plurality of first cuts are located between the first touch electrode and the The boundary position of the second touch electrode, the plurality of second incisions are located at positions other than the boundary position; the first incision makes the metal wire where it is located to form a first disconnection, and the second incision makes The metal line where it is located forms a second disconnection; in the plurality of grid patterns, the first disconnection and the metal lines adjacent to it are the first disconnection unit, and the second disconnection and the adjacent metal
  • the form of the first disconnection unit includes the shape of the end face of the first disconnection
  • the form of the second disconnection unit includes the shape of the end face of the second disconnection
  • the first disconnection The end face shape of is different from the end face shape of the second broken wire.
  • the shape of the end surface of the first broken line is any one or more of a flat surface, a curved surface, an inclined surface, and a folded surface.
  • the first cut disconnects the metal wire from the middle to form two of the first broken wires
  • the second cut cuts the metal wire from the middle to form two of the first broken wires.
  • the form of the first disconnection unit includes two lengths of the first disconnection, and the form of the second disconnection unit includes two lengths of the second disconnection;
  • the lengths of the two first broken wires are the same, and the lengths of the two second broken wires are different; or, the lengths of the two first broken wires are different, and the lengths of the two second broken wires are the same.
  • the form of the first disconnection unit includes the number of the first disconnection
  • the form of the second disconnection unit includes the number of the second disconnection, and the number of the first disconnection Different from the number of the second disconnection;
  • the first cut cuts off the metal wire in the middle to form two first broken wires, or the first cut cuts off one end of the metal wire to form one of the first broken wires. Disconnected.
  • the imaginary connection of the plurality of first cuts is called the first A dividing line, along the extension direction of the first dividing line, one of the two adjacent first disconnections is connected to the first touch electrode, and the other is connected to the second touch electrode .
  • the first cut disconnects the metal wire from the middle to form two of the first broken wires
  • the second cut cuts the metal wire from the middle to form two of the first broken wires.
  • the form of the first disconnection unit includes the distance between two of the first disconnection
  • the form of the second disconnection unit includes the distance between the two second disconnections
  • the two The distance between the first broken wires is different from the distance between the two second broken wires.
  • a marking part is provided on the first broken line, and the marking part is not provided on the second broken line.
  • the marking part is provided at an end of the first broken wire close to the first cut, or the marking part is provided at a position where the first broken wire intersects with other metal wires.
  • a metal wire adjacent to the first broken wire is provided with a marking portion, and a metal wire adjacent to the second broken wire is not provided with the marking portion.
  • the marking part is provided at an intermediate position of the metal wire adjacent to the first broken wire.
  • the marking portion includes protrusions or bumps protruding from the metal wire where it is located.
  • the bumps are any one or more of polygons, circles, and ellipses.
  • the touch substrate further includes a display structure layer disposed on the base, the touch structure layer is disposed on the display structure layer, and the display structure layer includes a light-emitting area and a non-light-emitting area,
  • the light-emitting area includes a plurality of sub-pixels arranged periodically, and the non-light-emitting area includes a sub-pixel boundary between adjacent sub-pixels;
  • the area enclosed by the orthographic projection of the metal lines of the grid pattern on the substrate includes the orthographic projection of at least one sub-pixel on the substrate, and the orthographic projection of the sub-pixel boundary on the substrate includes all The orthographic projection of the metal lines of the grid pattern on the substrate.
  • the touch structure layer includes a bridge layer, an insulating layer, and a touch layer sequentially stacked on the display structure layer, the touch layer includes the metal mesh, and the touch layer includes The plurality of first touch electrodes, the plurality of second touch electrodes, and a plurality of first connecting portions, the first connecting portions are connected to two adjacent first touch electrodes, and the first The touch electrodes and the first connecting portions are alternately arranged, the bridge layer includes a plurality of second connecting portions, and the second connecting portions are connected to two adjacent second contacts through vias provided on the insulating layer. Control electrode connection.
  • embodiments of the present disclosure also provide a touch substrate, including a base substrate and a touch electrode layer on the base substrate, the touch electrode layer having a grid structure composed of wires ;
  • the touch electrode layer includes a plurality of first touch electrodes extending in a first direction and a plurality of second touch electrodes extending in a second direction, where the first direction and the second direction intersect;
  • the first touch electrode includes a plurality of first touch sub-electrodes arranged along the first direction
  • the second touch electrode includes a plurality of second touch sub-electrodes arranged along the second direction
  • the The first touch sub-electrode includes a plurality of first touch electrode grids
  • the second touch sub-electrode includes a plurality of second touch electrode grids;
  • the touch electrode layer also includes adjacent first A plurality of boundary grids between the touch sub-electrodes and the second touch sub-electrodes, each of the boundary grids includes at least two first network lines, and each of the first network lines is provided with a first break,
  • the first breaks in the plurality of boundary grids insulate the adjacent first touch sub-electrodes and the second touch sub-electrode
  • the pattern shapes of the first mesh line and the second mesh line are different; or, the mesh lines in the boundary grid are provided with protrusions.
  • the first network cable includes a first disconnection and a first disconnection, and the first disconnection disconnects the first network cable to form the first disconnection;
  • the second network cable has a second disconnection and a second disconnection, and the second disconnection disconnects the second network cable to form the second disconnection.
  • the cross-sectional shape of the end of the first disconnection near the first fracture is different from the cross-sectional shape of the end of the second disconnection near the second fracture.
  • the cross section of the end of the first disconnection near the first fracture is non-rectangular; the cross section of the end of the second disconnection near the second fracture is rectangular.
  • the cross section of the end of the first disconnection near the first fracture is fan-shaped or T-shaped.
  • the length of the first disconnection is different from the length of the second disconnection.
  • the first network cable includes a first break and two first breaks located at both ends of the first break; the two first breaks have different lengths;
  • the second network cable includes a second break and two second breaks respectively located at two ends of the second break; the two second breaks have the same length.
  • the pitch width of the first fracture is different from the pitch width of the second fracture.
  • the pitch width of the first fracture is greater than the pitch width of the second fracture.
  • the number of the first disconnection in the first network cable is different from the number of the second disconnection in the second network cable.
  • the first network cable includes a first break and a first break at one end of the first break
  • the second network cable includes a second break and two second breaks respectively located at two ends of the second break.
  • the size and/or shape of the end of the first mesh wire is different from the size and/or shape of the end of the second mesh wire.
  • the size of the two ends of the second network cable is the same; the size of at least one end of the first network cable is larger than the size of the end of the second network cable.
  • a protruding part is provided on the mesh line in the demarcation grid, and the mesh line provided with the protruding part is located between the two first mesh lines in the demarcation grid.
  • each grid in the grid-like structure is hexagonal.
  • an embodiment of the present disclosure also provides a display device, including the touch substrate as described in any one of the above.
  • FIG. 1 is a schematic diagram of a structure of a touch structure layer
  • FIGS. 2-1 to 2-5 are respectively structural schematic diagrams of the metal mesh of the touch structure layer in some exemplary embodiments
  • FIG. 3 is a schematic diagram of the structure of a touch structure layer in the form of a metal mesh in some exemplary embodiments
  • FIGS. 4-1 to 4-3 are respectively structural schematic diagrams of pixel units in some exemplary embodiments.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a display structure layer in some exemplary embodiments
  • FIG. 6 is a schematic diagram of the corresponding positions of the metal grid of the touch structure layer and the sub-pixels of the display structure layer in some exemplary embodiments;
  • FIG. 7 is a schematic diagram of the structure of the first cut and the second cut of the metal mesh of the touch structure layer in some technologies
  • FIGS. 8-14 are schematic diagrams of the first cut and the second cut of the metal mesh of the touch structure layer in some exemplary embodiments
  • FIG. 15 is a schematic structural diagram of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a partially enlarged structure of the touch electrode layer in FIG. 15;
  • FIG. 17 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of a partial structure of a touch electrode layer in a touch substrate provided by another embodiment of the present disclosure.
  • connection means fixed connection or Removable connection, or integral connection
  • installation means fixed connection or Removable connection, or integral connection
  • installation can be direct connection, indirect connection through an intermediate medium, or internal communication between two components.
  • An embodiment of the present disclosure provides a touch substrate, which includes a touch structure layer disposed on a base, and the touch structure layer includes a plurality of first touch electrodes disposed along a first direction and a plurality of first touch electrodes disposed along a second direction.
  • the touch structure layer includes a metal mesh
  • the metal mesh includes a plurality of mesh patterns
  • the mesh pattern is A polygon formed by a plurality of metal wires
  • the plurality of grid patterns are provided with a plurality of first cuts and a plurality of second cuts, and the plurality of first cuts are located between the first touch electrode and the The boundary position of the second touch electrode, the plurality of second incisions are located at positions other than the boundary position; the first incision makes the metal wire where it is located to form a first disconnection, and the second incision makes The metal line where it is located forms a second disconnection; in the plurality of grid patterns, the first disconnection and the metal lines adjacent to it are the first disconnection unit, and the second disconnection and the adjacent metal lines are The metal wire is a second disconnection unit, and the shape of the first disconnection unit is different from that of the second disconnection unit.
  • the touch substrate further includes a display structure layer disposed on the base, the touch structure layer is disposed on the display structure layer, and the display structure layer includes a light-emitting area and A non-light-emitting area, the light-emitting area includes a plurality of sub-pixels arranged periodically, the non-light-emitting area includes a sub-pixel boundary between adjacent sub-pixels; the metal lines of the grid pattern are formed on the substrate
  • the area enclosed by the orthographic projection includes the orthographic projection of at least one sub-pixel on the substrate, and the orthographic projection of the sub-pixel boundary on the substrate includes the orthographic projection of the metal lines of the grid pattern on the substrate. projection.
  • the display structure layer may be a liquid crystal display (LCD) structure layer, or may be an organic light emitting diode (OLED) structure layer, or may be a plasma display panel (PDP) structure layer, or may be an electrophoresis Display (EPD) structure layer.
  • the display structure layer is an OLED structure layer, and the OLED structure layer includes a substrate, a driving circuit layer disposed on the substrate, a light emitting structure layer disposed on the driving circuit layer, and an encapsulation disposed on the light emitting structure layer.
  • the touch structure layer is arranged on the encapsulation layer of the display structure layer.
  • the touch control structure layer includes a bridge layer, an insulating layer, and a touch control layer sequentially stacked on the display structure layer, the touch control layer includes the metal mesh, the The touch layer includes the plurality of first touch electrodes, the plurality of second touch electrodes, and a plurality of first connecting portions, and the first connecting portions are connected to two adjacent first touch electrodes, The first touch electrodes and the first connecting portions are alternately arranged, the bridge layer includes a plurality of second connecting portions, and the second connecting portions are connected to adjacent two through vias provided on the insulating layer. The second touch electrode is connected.
  • FIG. 1 is a schematic structural diagram of a touch structure layer.
  • the touch structure layer includes a plurality of first touch units 101 and a plurality of second touch units 201.
  • the first touch unit 101 has a line shape extending along the first direction D1
  • a plurality of first touch units 101 are sequentially arranged along the second direction D2
  • the second touch unit 201 has a line shape extending along the second direction D2.
  • the plurality of second touch units 201 are sequentially arranged along the first direction D1, and the first direction D1 and the second direction D2 intersect.
  • Each first touch unit 101 includes a plurality of first touch electrodes 10 and a first connection portion 11 arranged along a first direction D1, and the plurality of first touch electrodes 10 and a plurality of first connection portions 11 are alternately arranged and Connect in order.
  • Each second touch unit 201 includes a plurality of second touch electrodes 20 arranged along the second direction D2, the plurality of second touch electrodes 20 are arranged at intervals, and adjacent second touch electrodes 20 pass through the second connecting portion 21 are connected to each other.
  • the layer where the second connection portion 21 is located is different from the layer where the first touch electrode 10 and the second touch electrode 20 are located.
  • the first touch electrodes 10 and the second touch electrodes 20 are alternately arranged in the third direction D3, and the third direction D3 intersects the first direction D1 and the second direction D2.
  • Each first touch unit 101 is connected to the first pad electrode 103 through a first transmission line 102
  • each second touch unit 201 is connected to the second pad electrode 203 through a second transmission line 202.
  • the first touch electrode 10 is connected to the driver of the display panel through the first pad electrode 103
  • the second touch electrode 20 is connected to the driver through the second pad electrode 203
  • the driver applies a driving signal to On the second touch electrode 20, and receive the output signal from the first touch electrode 10, or the driver may apply a driving signal to the first touch electrode 10 and receive the output signal from the second touch electrode 20.
  • the driver can determine the location of the touch by detecting the sensing signals generated in the multiple electrodes when different electrodes emit touch signals.
  • the touch structure layer may include a bridge layer, an insulating layer, and a touch layer that are stacked.
  • the plurality of first touch electrodes 10, the plurality of second touch electrodes 20, and the plurality of first connection portions 11 may be disposed on the touch layer in the same layer, and may be formed by the same patterning process.
  • the first touch electrodes 10 and The first connecting portion 11 may be an integral structure connected to each other, and the second connecting portion 21 may be provided on the bridge layer, and adjacent second touch electrodes 20 are connected to each other through vias provided on the insulating layer.
  • the plurality of first touch electrodes 10, the plurality of second touch electrodes 20, and the plurality of second connection portions 21 may be provided in the same layer on the touch layer, and the second touch electrodes 20 and the first The two connecting portions 21 may be an integral structure connected to each other, and the first connecting portion 11 may be provided on the bridge layer, and the adjacent first touch electrodes 10 are connected to each other through the via holes provided on the insulating layer.
  • the first touch electrode may be a driving electrode (Tx)
  • the second touch electrode may be a sensing electrode (Rx)
  • the first touch electrode may be a sensing electrode (Rx).
  • the two touch electrodes may be driving electrodes (Tx).
  • the shape of the first touch electrode 10 and the second touch electrode 20 may be a rhombus. In other possible implementation manners, the shape of the first touch electrode 10 and the second touch electrode 20 may be any one of a triangle, a square, a trapezoid, a parallelogram, a pentagon, a hexagon, and other polygons. Or more, the embodiments of the present disclosure are not limited herein.
  • the first touch electrode 10 and the second touch electrode 20 may be in the form of a metal mesh.
  • the metal mesh is formed by interweaving a plurality of metal wires.
  • the metal mesh includes a plurality of mesh patterns.
  • the grid pattern is a polygon composed of multiple metal lines.
  • the first touch electrode 10 and the second touch electrode 20 in the form of a metal mesh have the advantages of small resistance, small thickness, and fast response speed.
  • the area enclosed by the metal line includes the sub-pixel area in the display structure layer, and the position of the metal line is located between adjacent sub-pixels.
  • the sub-pixel area is the light-emitting area defined by the pixel defining layer in the light-emitting structure layer
  • the area enclosed by the metal line includes the light-emitting area
  • the metal line is located at the corresponding position of the pixel defining layer. That is, it is located in the non-light emitting area.
  • FIGS. 2-1 to 2-5 are schematic diagrams of the structure of several metal grids.
  • the metal grid includes multiple grid patterns.
  • the grid pattern is a polygon composed of metal lines, or in other words, the metal grid is repeated and continuously spliced by the grid pattern.
  • the shape of the grid pattern enclosed by the metal wires may be a rhombus, as shown in FIG. 2-1.
  • the shape of the grid pattern enclosed by the metal wires can be a triangle, as shown in Figure 2-2.
  • the shape of the grid pattern enclosed by the metal wires can be rectangular, as shown in Figure 2-3.
  • the shape of the grid pattern enclosed by the metal wires may be a hexagon, as shown in Figs. 2-4.
  • the shape of the grid pattern enclosed by the metal wires can be a combination of multiple shapes, such as a combination of pentagons and hexagons, as shown in Figure 2-5.
  • the shape of the grid pattern surrounded by the metal wires may include any one or more of triangles, squares, rectangles, rhombuses, trapezoids, pentagons, and hexagons.
  • the grid pattern enclosed by the metal wire may be a regular shape or an irregular shape, and the sides of the grid pattern may be straight lines or curved lines. The embodiments of the present disclosure are not described here. Make a limit.
  • the line width of the metal lines of the metal grid is less than or equal to 5 ⁇ m.
  • FIG. 3 is a schematic structural diagram of a touch structure layer in the form of a metal mesh
  • FIG. 3 is an enlarged view of area A in FIG. 1, and the structure shown in FIG. 3 can be regarded as a touch structure A repeating unit of the layer.
  • the touch layer of the touch structure layer is in the shape of a metal grid, and the grid pattern is a hexagon.
  • the first touch electrode 10 and the second touch electrode 20 are arranged on the same layer on the touch layer. In order to insulate the first touch electrode 10 and the second touch electrode 20 from each other, a plurality of first touch electrodes are arranged on the metal grid.
  • the cutout 30, the plurality of first cutouts 30 disconnect the metal wires of the grid pattern, so as to realize the isolation between the grid pattern of the first touch electrode 10 and the grid pattern of the second touch electrode 20.
  • a black block is used to represent the first cut 30, and the first cut 30 can be understood as an imaginary line for cutting a metal wire.
  • the imaginary connection of the first cuts 30 located at the boundary between the first touch electrode 10 and the second touch electrode 20 may be referred to as a first boundary line 500.
  • the touch structure layer includes a touch (Bulk) area 100, a boundary (Boundary) area 200, and a bridge area 300 in a direction parallel to the touch substrate.
  • Each grid pattern of the touch layer located in the boundary area 200 is provided with a first cut 30, and the first cut 30 cuts off the metal lines of the grid pattern, so that each grid pattern is divided into two parts, one part belongs to The other part of the first touch electrode 10 belongs to the second touch electrode 20.
  • the touch area 100 includes a first touch electrode 10 and a second touch electrode.
  • the connecting bridge area 300 includes a first connecting portion and a second connecting portion. The first connecting portion is used to realize the connection between two adjacent first touch electrodes 10, and the second connecting portion is used to realize two adjacent second touch electrodes. For the connection between the touch electrodes 20, one of the first connection portion and the second connection portion is located in the touch layer, and the other is located in the bridge layer.
  • the touch layer of the touch area 100 is further provided with a plurality of second cuts 40, the plurality of second cuts 40 disconnect the metal wires of the grid pattern, and the plurality of second cuts 40 are in contact with each other.
  • One or more dummy areas 70 may be formed in the control area 100.
  • the dummy area 70 may be insulated from the first touch electrode 10 or the second touch electrode 20 in the touch area 100 where the dummy area 70 is located.
  • the shape can be unlimited.
  • the dummy area 70 can be regarded as an area surrounded by the imaginary lines of the second cuts 40, and the virtual lines of the second cuts 40 can be referred to as the second boundary line 900.
  • the touch area 100 on one side of the boundary area 200 includes a first touch electrode 10 and a dummy area 70, and the touch area 100 on the other side of the boundary area 200 includes a second touch electrode 20 and a dummy area 70.
  • the multiple second cutouts 40 provided on the touch layer of the touch area 100 may not form the dummy area 70, and multiple second cuts 40 are provided inside the first touch electrode 10 and the second touch electrode 20.
  • the second notch 40 can make the notches arranged on the metal grid as evenly as possible, and avoid only setting the notches in the border area 200, which can improve the watermark defect of the border area 200.
  • the display structure layer includes a plurality of pixel units regularly arranged.
  • Each pixel unit may include three sub-pixels of red (R) sub-pixel, green (G) sub-pixel, and blue (B) sub-pixel.
  • each pixel unit may include four sub-pixels.
  • each pixel unit includes a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel, or each pixel unit includes a red sub-pixel. , Two green sub-pixels and blue sub-pixels.
  • the number and arrangement of sub-pixels in each pixel unit are not limited.
  • Figures 4-1 to 4-3 show schematic diagrams of the three types of pixel units.
  • the four sub-pixels can be rectangular and arranged in parallel, from left to right: R sub-pixel, G sub-pixel, B sub-pixel, and G sub-pixel, as shown in Figure 4-1.
  • the four sub-pixels may adopt pentagonal and hexagonal shapes, respectively, and are arranged in a parallel manner.
  • the two pentagonal G sub-pixels are located in the middle of the pixel unit, and the hexagonal R sub-pixel and the hexagonal B sub-pixel are located in the middle of the pixel unit.
  • the pixels are located on both sides of the G sub-pixel, as shown in Figure 4-2.
  • the three rectangular-shaped sub-pixels may be arranged in a parallel manner in a horizontal direction, or may be arranged in a parallel manner in a vertical direction, as shown in FIG. 4-3.
  • the shape of the sub-pixels can be any one or more of triangles, squares, rectangles, rhombuses, trapezoids, parallelograms, pentagons, hexagons and other polygons, and the arrangement can be X-shaped, cross-shaped, or fret-shaped, etc., are not limited in the embodiments of the present disclosure.
  • FIG. 5 is a schematic cross-sectional structure diagram of a display structure layer, illustrating the structure of two sub-pixels during OLED display.
  • the display structure layer includes a driving circuit layer 62 disposed on a substrate 61, a light emitting structure layer 63 disposed on the driving circuit layer 62, and a light emitting structure layer 63. ⁇ encapsulation layer 64.
  • the touch structure layer is disposed on the encapsulation layer 64.
  • the substrate 61 may be a flexible substrate or a rigid substrate.
  • the display structure layer may further include other film layers, and other film layers may be provided between the touch structure layer and the encapsulation layer, which is not limited in the embodiments of the present disclosure.
  • the substrate 61 is a flexible substrate, and the substrate 61 may include a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second inorganic material layer that are stacked.
  • the flexible material layer and the second flexible material layer can be made of materials such as polyimide (PI), polyethylene terephthalate (PET), or surface-treated polymer soft film.
  • the first inorganic material layer and The material of the second inorganic material layer can be silicon nitride (SiNx) or silicon oxide (SiOx) to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer can be amorphous silicon (a-si).
  • the driving circuit layer 62 may include transistors and storage capacitors constituting the pixel driving circuit.
  • each sub-pixel includes one transistor and one storage capacitor as an example for illustration.
  • the driving circuit layer 62 of each sub-pixel may include: a first insulating layer disposed on the substrate, an active layer disposed on the first insulating layer, and a second insulating layer covering the active layer , The gate electrode and the first capacitor electrode arranged on the second insulating layer, the third insulating layer covering the gate electrode and the first capacitor electrode, the second capacitor electrode arranged on the third insulating layer, covering the second capacitor electrode
  • the fourth insulating layer, the fourth insulating layer is provided with a via hole, the via hole exposes the active layer, the source electrode and the drain electrode are arranged on the fourth insulating layer, the source electrode and the drain electrode pass through the via hole and the active layer respectively Connect to cover the flat layer of the aforementioned structure.
  • the active layer, the gate electrode, the source electrode and the drain electrode constitute a transistor, and the first capacitor electrode and the second capacitor electrode constitute a storage capacitor.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may be silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON). Any one or more of can be single-layer, multi-layer or composite layer.
  • the first insulating layer can be called a buffer layer to improve the water and oxygen resistance of the substrate
  • the second and third insulating layers can be called gate insulating (GI) layers
  • the fourth insulating layer can be called It is the Interlayer Insulation (ILD) layer.
  • the first metal film, the second metal film and the third metal film can be made of metal materials, such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), may have a single-layer structure or a multilayer composite structure, such as Ti/Al/Ti.
  • metal materials such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the active layer film can use amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polysilicon (p-Si) , Hexathiophene or polythiophene materials, that is, the embodiments of the present disclosure are applicable to transistors manufactured based on oxide technology, silicon technology, or organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polysilicon
  • Hexathiophene or polythiophene materials that is, the embodiments of the present disclosure are applicable to transistors manufactured based on oxide technology, silicon technology, or organic technology.
  • the light-emitting structure layer 63 may include an anode, a pixel defining layer, an organic light-emitting layer, and a cathode.
  • the anode is disposed on the flat layer and is connected to the drain electrode through a via hole opened on the flat layer.
  • the pixel defining layer is disposed On the anode and the flat layer, there are pixel openings, the pixel openings expose the anode, the organic light-emitting layer is arranged in the pixel opening, the cathode is arranged on the organic light-emitting layer, and the organic light-emitting layer emits under the action of voltage applied to the anode and the cathode The light of the corresponding color.
  • the encapsulation layer 64 may include a first encapsulation layer, a second encapsulation layer, and a third encapsulation layer that are stacked, the first encapsulation layer and the third encapsulation layer may be made of inorganic materials, and the second encapsulation layer may be Using organic materials, the encapsulation layer 64 can prevent external water vapor from entering the light-emitting structure layer 63.
  • the display structure layer includes a light-emitting area and a non-light-emitting area.
  • the pixel opening area is the light-emitting area P1
  • the area outside the pixel opening is the non-light-emitting area P2
  • the non-light-emitting area P2 is located in the light-emitting area. The periphery of P1.
  • each light-emitting area P1 is called a sub-pixel, such as a red sub-pixel, a blue sub-pixel, or a green sub-pixel, and each non-light-emitting area P2 is called a sub-pixel boundary.
  • the light-emitting area of the display structure layer includes a plurality of sub-pixels arranged periodically, and the non-light-emitting area of the display structure layer includes the sub-pixel boundary between adjacent sub-pixels.
  • the display structure layer includes a plurality of pixel units 50 arranged regularly.
  • the grid pattern 801 of the metal grid of the layer is hexagonal, and the shape of the grid pattern 801 matches the shape of the B sub-pixel and the R sub-pixel in the pixel unit 50.
  • the B sub-pixels and R sub-pixels in one pixel unit 50 are respectively located in the area enclosed by two grid patterns 801, and the two G sub-pixels are located in the area enclosed by the same grid pattern 801.
  • the metal lines of the grid pattern 801 are located within the sub-pixel boundary between adjacent sub-pixels.
  • each side of the polygon can be regarded as each metal line of the grid pattern, and the number of sides of the polygon is the number of metal lines of the grid pattern.
  • the grid pattern is hexagonal, the grid pattern has six metal lines.
  • the metal wire provided with the first cut is called the first metal wire
  • the metal wire provided with the second cut is called the second metal wire.
  • the first incision can be set in the middle position of the first metal wire (it can be a centered position or a non-centered position), and the first metal wire is formed by being disconnected from the middle. The first two are disconnected.
  • the first cut can be set at one end of the first metal wire, and it can be regarded that the end of the first metal wire is cut off by the first cut, and the remaining part of the first metal wire forms a first cut. String.
  • the second cut, the second metal wire, and the second broken wire can be understood in the same way.
  • the grid pattern at the boundary between the first touch electrode 10 and the second touch electrode 20 is provided with a first cutout 30, and the first touch electrode 10 is provided with a first cutout 30.
  • the form of the first broken line 31 formed by the first cut 30 is the same as the form of the second broken line 41 formed by the second cut 40.
  • the form of the first disconnection unit includes the shape of the end surface of the first disconnection 31, and the form of the second disconnection unit includes the shape of the end surface of the second disconnection 41,
  • the shape of the end face of the first broken wire 31 is different from the shape of the end face of the second broken wire 41.
  • FIG. 8 shows three grid patterns side by side, and the grid pattern is a hexagon.
  • the thin lines in the grid pattern represent the first touch electrodes 10, and the thick lines represent the second touch electrodes 20.
  • the thin lines and thick lines in the grid pattern are only used to distinguish the first touch electrode 10 and the second touch electrode 20, and do not represent the actual line width, and the actual line width may be the same.
  • a first cut 30 is provided in the middle of the metal wire shared by the grid pattern in the middle and the grid pattern on the right, and the metal wire (ie, the first metal wire) includes two first broken wires 31.
  • a second cut 40 is provided in the middle of the metal wire shared by the grid pattern on the left and the grid pattern in the middle, and the metal wire (ie, the second metal wire) includes two second broken wires 41.
  • the second cut 40 is provided on the grid pattern of the first touch electrode 10.
  • FIG. 8 of this example only a first cut 30 and a second cut 40 are shown, and the other first part of the boundary position of the first touch electrode 10 and the second touch electrode 20 in the three grid patterns is shown. Port 30 is not shown.
  • the end surface 411 of the second broken line 41 is a flat surface
  • the end surface 311 of the first broken line 31 may be any one or more of a curved surface, an inclined surface, and a folded surface.
  • the curved surface can be a curved surface, a wavy surface, and so on.
  • the folded surface includes at least two intersecting surfaces, for example, the folded surface includes an intersecting plane and an inclined surface, or the folded surface includes a plurality of intersecting inclined surfaces.
  • the end surface 411 of the second broken line 41 may be any one of a curved surface, an inclined surface, and a folded surface
  • the end surface 311 of the first broken line 31 may be a flat surface, a curved surface, an inclined surface, or a folded surface.
  • any one or more of the shape of the end surface of the broken wire 41 is any one or more of the shape of the end surface of the broken wire 41.
  • the end surfaces 411 of the two second broken wires 41 are both flat, and the end surfaces 311 of the two first broken wires 31 are all curved surfaces, or the end surface 311 of one of the first broken wires 31 is provided It is a curved surface, and the end surface 311 of the other first broken wire 31 is set to a plane or other arbitrary shapes.
  • the first cut causes the metal wire to be cut from the middle to form two of the first broken wires
  • the second cut cuts the metal wire to be cut from the middle to form two of the first broken wires.
  • the lengths of the two first broken wires are the same, and the lengths of the two second broken wires are different; or, the lengths of the two first broken wires are different, and the lengths of the two second broken wires are the same .
  • the non-centered position of the metal wire shared by the grid pattern in the middle and the grid pattern on the right is provided with a first cut 30.
  • the first cut 30 makes the metal wire break from the middle to form two different lengths of the metal wire.
  • a second cut 40 is provided in the center of the metal wire shared by the grid pattern on the left and the grid pattern in the middle. The second cut 40 allows the metal wire to be disconnected from the middle to form two second broken wires of the same length. 41.
  • the second cut 40 is provided on the grid pattern of the first touch electrode 10.
  • the form of the first disconnection unit includes the number of the first disconnection
  • the form of the second disconnection unit includes the number of the second disconnection
  • the first The number of broken wires is different from the number of the second broken wires
  • the first cut causes the metal wire to be cut from the middle to form two of the first broken wires, or the first cut makes One end of the metal wire is cut off to form the first broken wire.
  • FIG. 10 shows five grid patterns and five grids. The patterns are arranged in two rows, and the grid pattern is hexagonal.
  • a first cut 30 is provided on a vertical metal line of the grid pattern on the left side of the first row.
  • the first cut 30 cuts off one end of the vertical metal line to form a first broken line 31.
  • a first cut 30 is provided on the metal line shared by the grid pattern on the left side of the first row and the grid pattern in the middle of the second row. The first cut 30 cuts off one end of the metal wire to form a first ⁇ 31 ⁇ Broken line 31.
  • the metal wire shared by the grid pattern in the middle of the second row and the grid pattern on the right of the second row is provided with a first cut 30.
  • the first cut 30 cuts off one end of the metal wire to form a first cut. Line 31.
  • Another metal wire of the grid pattern on the right side of the second row is provided with a first cut 30, and the first cut 30 cuts off one end of the metal wire to form a first broken wire 31. In the five grid patterns shown in FIG.
  • first cuts 30 and four first breaks 31 there are a total of four first cuts 30 and four first breaks 31, and the metal wires (ie, first metal wires) provided with the first cuts 30 all form a first cut Line 31.
  • a second cut 40 is provided in the grid pattern of the second touch electrode 20, and the second cut 40 disconnects the metal wire in the middle to form two second broken wires 41.
  • the first cut cuts off one end of the metal wire where it is located to form one of the first broken wires, connect the imaginary connection lines of the plurality of first cuts Called the first dividing line, along the extension direction of the first dividing line, one of the two adjacent first disconnections is connected to the first touch electrode, and the other is connected to the second Touch electrode connection.
  • the grid pattern provided with the first cut 30 at least two metal wires of the grid pattern are provided with the first cut 30, and the metal wire provided with the first cut 30 (ie, the second Each metal wire) forms a first disconnection 31.
  • the imaginary connection connecting the four first cuts 30 in series is the first touch electrode 10 and the second The first dividing line 500 of the two touch electrodes 20.
  • the grid pattern on one side of the first dividing line 500 is the first touch electrode 10
  • the grid pattern of the first touch electrode 10 is represented by thin lines
  • the grid pattern on the other side of the first dividing line 500 is the second touch.
  • the control electrode 20 and the second touch electrode 20 are represented by thick lines.
  • connection of the electrodes 20 can also be understood as that along the extension direction of the first dividing line 500, the first touch electrodes 10 and the second touch electrodes 20 are alternately provided with first disconnections 31.
  • first touch electrodes 10 and the second touch electrodes 20 are alternately provided with first disconnections 31, so that, on the one hand, it is beneficial to distinguish the first cut 30 and the second cut 40. , On the other hand, it can reduce the risk of metal trace short circuit occurring at the boundary between the first touch electrode 10 and the second touch electrode 20.
  • the first cut causes the metal wire to be cut from the middle to form two of the first broken wires
  • the second cut cuts the metal wire to be cut from the middle to form two of the first broken wires.
  • the distance between the two first broken wires is different from the distance between the two second broken wires.
  • FIG. 11 shows three grid patterns side by side, and the grid pattern is a hexagon.
  • the thin lines in the grid pattern represent the first touch electrodes 10, and the thick lines represent the second touch electrodes 20.
  • a first cut 30 is provided in the middle of the metal wire shared by the grid pattern in the middle and the grid pattern on the right.
  • the first cut 30 disconnects the metal wire from the middle to form two first broken wires 31.
  • a second cut 40 is provided in the middle of the metal wire shared by the grid pattern on the left and the grid pattern in the middle, and the second cut 40 disconnects the metal wire from the middle to form two second broken wires 41.
  • the second cut 40 is provided on the grid pattern of the first touch electrode 10.
  • the distance between the two first broken wires 31 is greater than the distance between the two second broken wires 41, and it can also be understood that the width of the first cut 30 is greater than that of the second cut 40 width.
  • the increase in the distance between the two first broken wires 31 is beneficial to distinguish the first cut 30 and the second cut 40 on the one hand, and on the other hand, it can reduce the boundary between the first touch electrode 10 and the second touch electrode 20 There is a risk of short-circuiting of metal traces at the location.
  • the first disconnection line is provided with a marking part, and the The marking portion is not provided on the second broken wire; or, the metal wire adjacent to the first broken wire is provided with a marking portion, and the metal wire adjacent to the second broken wire is not provided with the mark Department.
  • the marking portion may include protrusions or bumps protruding from the metal wire where it is located.
  • the bump may be any one or more of polygon, circle, and ellipse. Polygons can be triangles, rectangles, rhombuses, etc.
  • the marking part is provided at an end of the first disconnection near the first incision.
  • FIG. 12 shows three grid patterns side by side, and the grid patterns are hexagons.
  • the thin lines in the grid pattern represent the first touch electrodes 10, and the thick lines represent the second touch electrodes 20.
  • a first cut 30 is provided in the middle of the metal wire shared by the grid pattern in the middle and the grid pattern on the right. The first cut 30 disconnects the metal wire from the middle to form two first broken wires 31.
  • the end of the first broken line 31 close to the first cut 30 is provided with a marking portion 600
  • the marking portion 600 is a bump
  • the shape of the bump may not be limited, for example, it may be a rectangle, a diamond, a circle, or an ellipse.
  • the bumps protrude from the rest of the first broken line 31 in a direction perpendicular to the first broken line 31.
  • a second cut 40 is provided in the middle of the metal wire shared by the grid pattern on the left and the grid pattern in the middle. The second cut 40 disconnects the metal wire from the middle to form two second broken wires 41.
  • the marking portion 600 is not provided on the second disconnection line 41, and the second cutout 40 is provided on the grid pattern of the first touch electrode 10.
  • the end of at least one of the two first broken wires 31 close to the first cut 30 is provided with a marking portion 600, and the ends of the two first broken wires 31 close to the first cut 30 can be both.
  • a marking part 600 is provided.
  • the marking part is provided at a position where the first broken wire intersects with other metal wires.
  • the marking part when the first cut causes the metal wire to be disconnected from the middle to form two first broken wires, there are two positions where the two first broken wires intersect with other metal wires, and the two intersect
  • the marking part may be arranged at one intersection position among the positions, or the marking part may be arranged at both intersection positions.
  • the marking portion may be a convex strip or a bump protruding from the intersection position.
  • FIG. 13 shows five grid patterns, the five grid patterns are arranged in two rows, and the grid pattern is a hexagon.
  • a first cut 30 is provided on the left vertical metal line of the grid pattern on the left side of the first row.
  • the first cut 30 breaks the vertical metal line from the middle to form two upper and lower first broken wires 31 ,
  • the position where the first broken line 31 at the bottom intersects with the oblique metal line at the bottom left of the grid pattern on the left side of the first row is provided with a marking portion 600.
  • a first cut 30 is provided on the metal line shared by the grid pattern on the left side of the first row and the grid pattern in the middle of the second row.
  • the first cut 30 disconnects the metal wire from the middle to form two second One broken line 31, the position where the two first broken lines 31 intersect with the oblique metal line at the lower left of the grid pattern on the left of the first row and the right vertical metal line of the grid pattern on the left of the first row. Both are provided with a marking part 600.
  • the metal wire shared by the grid pattern in the middle of the second row and the grid pattern on the right of the second row is provided with a first cut 30.
  • the first cut 30 disconnects the metal wire from the middle to form upper and lower second rows.
  • a mark portion 600 is provided at a position where a broken wire 31 and two first broken wires 31 respectively intersect with other metal wires.
  • the oblique metal wire at the bottom left of the grid pattern on the right side of the second row is provided with a first cut 30.
  • the first cut 30 breaks the metal wire from the middle to form two first broken wires 31, one of which is the first broken wire 31.
  • a marking portion 600 is provided at a position where a broken line 31 intersects with the left vertical metal line of the grid pattern on the right side of the second row.
  • a second cut 40 is provided on the upper right metal line of the grid pattern on the right side of the second row. The second cut 40 breaks the metal line from the middle to form two second broken wires 41.
  • the marking portion 600 is not provided on the line 41.
  • the second cutout 40 is provided inside the second touch electrode 20.
  • the marking portion 600 is a bump
  • the shape of the bump is a rectangle.
  • the shape of the bump may be a regular pattern or an irregular pattern such as a circle, an ellipse, a diamond, or a triangle.
  • the first cut 30 disconnects the metal wire from the middle to form two first broken wires 31, and the second cut 40 cuts the metal wire from the middle to form two second broken wires 41.
  • the first cut 30 can cut off one end of the metal wire to form a first broken wire 31, and the second cut 40 can cut off one end of the metal wire to form a second broken wire. Line 41.
  • a marking part is provided on a metal line adjacent to the first broken line, and the marking part is not provided on a metal line adjacent to the second broken line.
  • the marking part is provided in the middle position (centered or non-centered position) of the metal wire adjacent to the first broken wire.
  • the marking portion may be a convex strip or a bump protruding from the metal line where it is located.
  • FIG. 14 shows five grid patterns, the five grid patterns are arranged in two rows, and the grid pattern is a hexagon.
  • the thin lines in the grid pattern represent the first touch electrodes 10, and the thick lines represent the second touch electrodes 20.
  • a first cut 30 is provided on one vertical metal line of the grid pattern on the left side of the first row, and the first cut 30 breaks the vertical metal line from the middle to form two upper and lower first broken wires 31.
  • a first cut 30 is provided on the metal line shared by the grid pattern on the left side of the first row and the grid pattern in the middle of the second row. The first cut 30 disconnects the metal wire from the middle to form two second A disconnection 31.
  • the metal wire shared by the grid pattern in the middle of the second row and the grid pattern on the right of the second row is provided with a first cut 30.
  • the first cut 30 cuts the metal wire from the middle to form two first cuts. ⁇ 31 ⁇ Broken line 31.
  • the oblique metal wire at the bottom left of the grid pattern on the right side of the second row is provided with a first cut 30, and the first cut 30 breaks the metal wire from the middle to form two first broken wires 31.
  • a second cut 40 is provided on the upper right metal line of the grid pattern on the right side of the second row.
  • the second cut 40 breaks the metal line from the middle to form two second broken wires 41.
  • the line 41 is not adjacent to the first broken line 31 (it can be understood as not directly connected).
  • the second cutout 40 is provided inside the second touch electrode 20.
  • the metal line shared by the grid pattern on the left side of the first row and the grid pattern on the left side of the second row is provided with a marking portion 600.
  • the metal wire provided with the marking portion 600 is connected to two first The broken wires 31 are all adjacent.
  • a marking portion 600 is provided on the inclined metal line at the upper right of the grid pattern in the middle of the second row, and the metal line is adjacent to the two first broken lines 31 connected at both ends thereof.
  • a marking portion 600 is provided on the inclined metal line at the lower right, and the inclined metal line is adjacent to the two first broken lines 31 connected to the same end.
  • no marking portion is provided on the metal wire adjacent to the second broken wire 41.
  • the marking portion 600 is a convex strip protruding from the metal line where it is located, and the number of the marking portion 600 is set to one.
  • the marking portion 600 may be a bump protruding from the metal line where it is located, and the number of the marking portion 600 may be one or more.
  • the first cut 30 disconnects the metal wire from the middle to form two first broken wires 31, and the second cut 40 cuts the metal wire from the middle to form two second broken wires 41.
  • the first cut 30 can cut off one end of the metal wire to form a first broken wire 31, and the second cut 40 can cut off one end of the metal wire to form a second broken wire. Line 41.
  • a variety of solutions are adopted to make the shape of the first disconnection unit different from that of the second disconnection unit, so that the first cut and the second cut Can be distinguished.
  • a detection device such as an AOI device
  • the detection device can determine that the specific location of the defect belongs to the first
  • the boundary position between the touch electrode and the second touch electrode still belongs to a position other than the boundary position, so that defects can be repaired in time, and the product yield rate can be improved.
  • FIG. 15 to FIG. 23 is an enlarged schematic diagram of the structure of the touch electrode layer in the area S in the dashed frame in FIG. 15.
  • the schematic structural diagrams of FIGS. 17 to 23 are examples of specific embodiments of the present disclosure.
  • the touch control substrate includes a base substrate 100 and a touch electrode layer on the base substrate 100, and the touch electrode layer has a grid structure composed of wires;
  • the touch electrode layer includes a plurality of first touch electrodes 1 extending along a first direction X and a plurality of second touch electrodes 2 extending along a second direction Y.
  • the first direction X Intersects the second direction Y;
  • the first touch electrode 1 includes a plurality of first touch sub-electrodes 10 arranged along the first direction X
  • the second touch electrode 2 includes a plurality of second touch electrodes arranged along the second direction Y
  • the control sub-electrode 20, the first touch-control sub-electrode 10 includes a plurality of first touch-control electrode grids 11 (a grid surrounded by gray lines in FIG.
  • the second touch-control sub-electrode 20 includes a plurality of second The touch electrode grid 12 (the grid surrounded by black lines in FIG. 16); the touch electrode layer also includes multiple touch electrodes located between adjacent first touch sub-electrodes 10 and second touch sub-electrodes 20. There are two dividing grids 13 (a grid surrounded by gray lines and black lines in Fig. 16).
  • Each dividing grid 13 includes at least two first net lines 21, and each first net line 21 is provided with a first The fracture 210, the first fracture 210 in the plurality of dividing grids 13 insulates the adjacent first touch sub-electrodes 10 and the second touch sub-electrodes 20; the first touch electrode grid 11 and/or the second A second wire 22 is provided in the two touch electrode grid 12, and a second break 220 is provided on the second wire 22;
  • the pattern shapes of the first mesh line 21 and the second mesh line 22 are different; or, the mesh line in the boundary grid 13 is provided with a protrusion 3.
  • the “mesh line” refers to the lines enclosing a grid.
  • the touch electrode layer is a grid-like structure surrounded by wires, and the material of the net wire is a wire; for example, the wire may be a metal material, That is, the touch electrode layer may have a metal mesh pattern structure.
  • first touch electrode first touch sub-electrode
  • second touch electrode second touch sub-electrode
  • the dashed frame area in FIG. 15 includes the intersection area of a first touch electrode 1 and a second touch electrode 2.
  • the intersection area is along the first direction X of two first touch sub-electrodes 10 (first touch The electrode grid 11) is directly connected, and the two second touch sub-electrodes 20 (the second touch electrode grid 12) in the cross area along the second direction Y are electrically connected through the bridge structure 200.
  • the bridge structure 200 may also adopt a grid structure. For example, the enlarged view in the intersection area shown in FIG.
  • 16 is a schematic diagram of the touch electrode layer grid and the grid pattern of the bridge structure overlapped. Specifically, in the touch electrode layer grid, there is a boundary grid 13 between the first touch electrode grid 11 and the second touch electrode grid 12, and the first break 210 in the boundary grid 13 connects the first touch The control electrode grid 11 and the second touch electrode grid 12 are disconnected, so that the first touch sub-electrode 10 and the second touch sub-electrode 20 are insulated.
  • a grid completely surrounded by gray lines is the first touch electrode grid 11, and a grid completely surrounded by black lines It is the second touch electrode grid 12, and a grid surrounded by gray lines and black lines is a boundary grid 13.
  • a grid surrounded by gray lines and black lines is a boundary grid 13.
  • all the first breaks provided in the boundary grid are configured to be able to disconnect the electrical connection between the first touch electrode grid and the second touch electrode grid;
  • the second breaks provided in the touch electrode grid and the second touch electrode grid can be specifically arranged according to current distribution requirements and/or avoiding continuous patterns to cause moiré.
  • first direction X and the second direction Y are orthogonal, that is, the extending direction of the first touch electrode 1 and the extending direction of the second touch electrode 2 may be orthogonal to each other.
  • the touch electrode layer includes a first touch sub-electrode 10 (first touch electrode grid 11), a second touch sub-electrode 20 (second touch electrode grid 12). ) And the boundary grid 13 between the first touch sub-electrode 10 and the second touch sub-electrode 20.
  • the boundary grid 13 is provided with a first break 210 so that the first touch sub-electrode 10 (first touch The control electrode grid 11) and the second touch sub-electrode 20 (the second touch electrode grid 12) are disconnected and insulated.
  • the first touch electrode grid 11 and/or the second touch electrode grid 12 are There is a second break 220, because the pattern shape of the first mesh line 21 provided with the first break 210 is different from the pattern shape of the second mesh line 22 provided with the second break 220, or on the mesh line in the dividing grid 13
  • the protrusion 3 is provided to easily and effectively distinguish the dividing grid 13 from the first touch electrode grid 11 and the second touch electrode grid 12, and can directly distinguish the first grid line 21 from the second grid line 22 and the first fracture 210 and the second fracture 220. Furthermore, when a defect occurs in the touch electrode layer, the detection device can quickly and effectively detect the specific location of the defect and repair it in time, thereby improving the yield.
  • the touch electrode layer is prone to electrical connection of the network cable and the short circuit (Short) is not good.
  • Specific location since the pattern shapes of the first mesh line and the second mesh line provided with the fracture are different, it is easy to find the location of the defective fracture through the optical inspection equipment (AOI), and determine that the defective position is the touch unit net
  • AOI optical inspection equipment
  • the pattern shape of the first mesh line 21 provided with the first break 210 is different from the pattern shape of the second mesh line 22 provided with the second break 220, or the mesh lines in the boundary grid 13 A protrusion 3 is provided on the upper surface, so that the pattern of the boundary grid is different from the pattern shape of the touch electrode grid (the first touch electrode grid and the second touch electrode grid), so that it is easy to distinguish the boundary grid from the touch electrode grid.
  • Touch electrode grid therefore, the solution of the embodiment of the present disclosure can not only quickly determine the specific location of the touch electrode layer short-circuit defect, but also improve the efficiency of judging specific locations and types of other defects and the efficiency of repairing defects. For example, it is beneficial to improve the detection efficiency of a bad open circuit in a certain place, which will not be repeated here.
  • the touch substrate provided by the embodiments of the present disclosure may be a display substrate prepared by flexible multilayer integrated touch technology (FMLOC), that is, when the display substrate is designed, it is directly on the light-emitting film layer and the packaging film layer.
  • FMLOC flexible multilayer integrated touch technology
  • the production of the film layer of the touch electrode reduces the use of optical adhesive (OCA), and does not need to be connected through a touch flexible circuit board (TFPC), which can well realize the lightness and thinness of the product.
  • the touch substrate provided by the embodiments of the present disclosure may also be a structure independent of the display substrate, and configured to be bonded to the display substrate through optical adhesive (OCA).
  • OCA optical adhesive
  • each grid in the grid-like structure of the touch electrode layer (the first touch electrode grid 11, the second touch electrode grid 12, and the boundary grid 13) It is a hexagon.
  • the touch electrode layer has a honeycomb pattern with regular structure, good stability and easy patterning, and has a large aperture ratio, which is beneficial to increase the aperture ratio of the display panel.
  • FIGS. 17 to 23 illustrate a part of the first touch electrode grid 11 and the boundary grid 13.
  • the following uses FIGS. 17 to 23 as a reference to illustrate some specific embodiments of the present disclosure.
  • the demarcation grid 13 includes a first network line 21, which includes a first break 210 and a first break 211, and the first break 210 breaks the first network line 21. Open to form a first disconnection 211; the first touch electrode grid 11 and/or the second touch electrode grid is provided with a second network line 22, the second network line 22 has a second break 220 and a second disconnection 221 , The second break 220 disconnects the second network cable 22 to form a second break 221.
  • the first network line 21 and the second network line 22 are both a segment of the network line enclosing a grid.
  • the grid is a hexagon
  • the first network line 21 and the second network line 22 are a hexagonal section. side.
  • the first mesh line 21 is a section of the mesh line enclosing the boundary grid 13
  • the second mesh line 22 is a section of the mesh line enclosing the first touch electrode grid 11 and/or the second touch electrode grid.
  • Both the first network cable 21 and the second network cable 22 are provided with breaks, so that a disconnection is formed in the first network cable 21 and the second network cable 22, and the electrical connection between the disconnections is disconnected.
  • both the first touch electrode grid 11 and the second touch electrode grid are provided with a second network line 22, that is, both the first touch electrode grid 11 and the second touch electrode grid are provided with The second fracture 220.
  • the pattern shapes of the first break 210 and the first break 211 are different from the pattern shapes of the second break 220 and the second break 221.
  • the pattern shape of the first break 210 and the first break 211 is different from the pattern shape of the second break 220 and the second break 221, it is easy to determine whether the bad break is located in the touch electrode unit or in the two touch electrodes. Control the boundary of the electrode unit, and then it is easy to determine the specific location and type of the defect. For example, it is easy to determine whether the first wire 21 between the two touch electrodes is short-circuited badly or the second inside a certain touch electrode. The network cable 22 is poorly connected.
  • the cross-sectional shape of the end of the first disconnection 211 near the first fracture 210 is different from the cross-sectional shape of the end of the second disconnection 221 near the second fracture 220. Furthermore, by observing the cross-sectional shape of the broken wire end, the type and location of the corresponding broken wire and broken wire can be judged.
  • the cross section of the end of the first broken line 211 close to the first break 210 is non-rectangular; the cross section of the end of the second broken line 221 close to the second break 220 is rectangular.
  • the cross section of the end of the first disconnection 211 near the first fracture 210 may be fan-shaped, or, as shown in FIG. 18, the end of the first disconnection 211 near the first fracture 210
  • the cross section can be T-shaped.
  • the length of the first broken line 211 is different from the length of the second broken line 221. Specifically, by observing the length of the disconnection, the type and location of the corresponding fracture and disconnection can be judged.
  • the first network cable 21 includes a first break 210 and two first breaks 211 respectively located at two ends of the first break 210; the lengths of the two first breaks 211 are different.
  • the second network cable 22 includes a second break 220 and two second breaks 221 respectively located at two ends of the second break 220; the two second breaks 221 have the same length.
  • the lengths of the two first broken wires 211 and the two second broken wires 221 are all different, the two second broken wires 221 are symmetrically arranged with respect to the second break 220, and the two first broken wires 211 are in the first break
  • the lengths on both sides of 210 are uneven, which makes it easy to distinguish.
  • the spacing width of the first fracture opening 210 is different from the spacing width of the second fracture opening 220. Specifically, by observing the width of the fracture, the type and location of the corresponding fracture and disconnection can be judged.
  • the spacing width of the first fracture opening 210 is greater than the spacing width of the second fracture opening 220.
  • the number of the first disconnection 211 in the first network cable 21 is different from the number of the second disconnection 221 in the second network cable 22. Specifically, by observing the number of broken lines adjacent to the fracture, the type and location of the corresponding fracture and broken line can be judged.
  • the first network cable 21 includes a first break 210 and a first break 211 located at one end of the first break 210.
  • the second network cable 22 includes a second break 220 and two second breaks 221 located at two ends of the second break 220 respectively.
  • the size and/or shape of the end of the first mesh wire 21 is different from the size and/or shape of the end of the second mesh wire 22. Specifically, by observing the size and/or shape of the end of the network cable, it is possible to determine the type and location of the fracture and disconnection of the segment of the network cable.
  • the size of the two ends of the second network cable 22 is the same; the size of at least one end of the first network cable 21 is larger than the size of the end of the second network cable 22.
  • the sizes of both ends of the first mesh wire 21 are larger than the sizes of the two ends of the second mesh wire 22.
  • the shape of the two ends of the second mesh wire 22 is a conventional circular shape, and the shape of the two ends of the first mesh wire 21 may be a square.
  • protrusions 3 are provided on the mesh lines in the demarcation grid, and the mesh lines provided with the protrusions 3 are located between the two first mesh lines 21 in the demarcation mesh.
  • both ends of the network cable provided with the protruding portion 3 are connected to the two first network cables 21 respectively. Specifically, by observing whether there is a protruding part on the network cable, the type and location of the network cable adjacent to the segment of the network cable, the fracture, and the disconnection can be determined.
  • the protruding portion 3 is a section of linear structure and extends perpendicularly with respect to the network wire connected to it.
  • the protruding portion 3 protrudes toward the inner side of the boundary grid relative to the mesh line connected to it.
  • the present disclosure also provides a display device, which includes any one of the above-mentioned touch substrates.
  • the display device may be an OLED display device, which may be specifically applied to display devices such as tablet computers and mobile phones.
  • the display device may be a FMLOC display device, which has high integration and is relatively thin and light.
  • the touch substrate and the display device may also include other structures, which may be determined according to actual requirements, and the embodiments of the present disclosure do not limit this.
  • the shape of the grid structure provided by the embodiments of the present disclosure, the size and shape of the first network line, the first break, the first break, the second network, the second break, and the second break are not limited to the above In the embodiment, as long as the pattern shape of the first mesh line in the boundary grid can be made different from the pattern shape of the second mesh line in the touch electrode grid, it will not be repeated here.
  • the drawings of the present disclosure are only schematic diagrams, and the specific sizes and proportions of the structures in the figures do not represent the actual size proportions of the structures.

Abstract

一种触控基板及显示装置,触控基板包括设置在基底上的触控结构层,触控结构层包括多个第一触控电极和多个第二触控电极;所述触控结构层包括金属网格,所述金属网格包括多个网格图案,所述网格图案是由多条金属线构成的多边形,所述多个网格图案上设有多个第一切口和多个第二切口,所述多个第一切口位于第一触控电极和第二触控电极的分界位置,所述多个第二切口位于所述分界位置以外的其它位置;所述第一切口使所在的金属线形成第一断线,所述第二切口使所在的金属线形成第二断线;所述多个网格图案中,第一断线及与其相邻的金属线为第一断线单元,第二断线及与其相邻的金属线为第二断线单元,第一断线单元的形态不同于第二断线单元的形态。

Description

触控基板及显示装置
相关申请的交叉引用
本公开要求在2020年05月15日提交中国专利局、申请号为202010414660.X、申请名称为“触控基板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中;本公开要求在2020年06月22日提交中国专利局、申请号为202010576852.0、申请名称为“一种触控基板及触控显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及但不限于显示和触控技术领域,具体涉及一种触控基板及显示装置。
背景技术
随着有源矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMLOED)显示行业的飞速发展,显示装置也朝着窄边框和轻薄化发展。目前,采用柔性多层一体化集成触控技术(Flexible Multi Layer On Cell,FMLOC)便可更好地实现这些高的需求。采用FMLOC技术的显示装置在设计时,触控结构层直接制作在叠设的发光结构层和封装层上面,减少了光学透明胶(Optically Clear Adhesive,OCA)的使用,且不需要通过驱动触控的柔性电路板(Touch FPC,TFPC)连接,可以很好地实现产品的轻薄化。
触控基板在设计过程中,存在较多工艺和技术问题,从而导致较多触控不良。其中,触控结构层在制备过程中,由于刻蚀后显示区域金属残留(Remain)而导致的触控结构层中金属走线之间短路(Short)不良占的比例最大。一些技术中,触控结构层中的驱动电极(Tx)和感应电极(Rx)采用金属网格(Metal Mesh)形式,检测设备在对触控结构层中的触控不良进行检测时,不能确定 不良出现的具体位置,导致不能及时对不良进行修复,影响产品良率提升。
发明内容
本公开实施例提供了一种触控基板,包括设置在基底上的触控结构层,所述触控结构层包括沿第一方向设置的多个第一触控电极和沿第二方向设置的多个第二触控电极,所述第一方向与所述第二方向相交;所述触控结构层包括金属网格,所述金属网格包括多个网格图案,所述网格图案是由多条金属线构成的多边形,所述多个网格图案上设有多个第一切口和多个第二切口,所述多个第一切口位于所述第一触控电极和所述第二触控电极的分界位置,所述多个第二切口位于所述分界位置以外的其它位置;所述第一切口使所在的金属线形成第一断线,所述第二切口使所在的金属线形成第二断线;所述多个网格图案中,所述第一断线及与其相邻的金属线为第一断线单元,所述第二断线及与其相邻的金属线为第二断线单元,所述第一断线单元的形态不同于所述第二断线单元的形态。
可选地,所述第一断线单元的形态包括所述第一断线的端面形状,所述第二断线单元的形态包括所述第二断线的端面形状,所述第一断线的端面形状不同于所述第二断线的端面形状。
可选地,所述第一断线的端面形状为平面、曲面、斜面、折面中的任一种或多种。
可选地,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;
所述第一断线单元的形态包括两个所述第一断线的长度,所述第二断线单元的形态包括两个所述第二断线的长度;
两个所述第一断线的长度相同,两个所述第二断线的长度不同;或者,两个所述第一断线的长度不同,两个所述第二断线的长度相同。
可选地,所述第一断线单元的形态包括所述第一断线的数目,所述第二断线单元的形态包括所述第二断线的数目,所述第一断线的数目与所述第二 断线的数目不同;
所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,或者,所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线。
可选地,在所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线的情况下,将所述多个第一切口的假想连线称为第一分界线,沿着所述第一分界线的延伸方向,相邻的两个所述第一断线中的一个与所述第一触控电极连接,另一个与所述第二触控电极连接。
可选地,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;
所述第一断线单元的形态包括两个所述第一断线之间的距离,所述第二断线单元的形态包括两个所述第二断线之间的距离,两个所述第一断线之间的距离不同于两个所述第二断线之间的距离。
可选地,所述第一断线上设置有标记部,所述第二断线上未设置所述标记部。
可选地,所述第一断线的靠近所述第一切口的端部设置有所述标记部,或者,所述第一断线与其他金属线相交的位置设置有所述标记部。
可选地,与所述第一断线相邻的金属线上设置有标记部,与所述第二断线相邻的金属线上未设置所述标记部。
可选地,与所述第一断线相邻的金属线的中间位置设置有所述标记部。
可选地,所述标记部包括凸出于其所在的金属线设置的凸条或凸块。
可选地,所述凸块为多边形、圆形、椭圆形中的任一种或多种。
可选地,所述触控基板还包括设置在所述基底上的显示结构层,所述触控结构层设置在所述显示结构层上,所述显示结构层包括发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边界;
所述网格图案的金属线在所述基底上的正投影所围成的区域包含至少一个子像素在所述基底上的正投影,所述子像素边界在所述基底上的正投影包 含所述网格图案的金属线在所述基底上的正投影。
可选地,所述触控结构层包括依次叠设在所述显示结构层上的桥接层、绝缘层和触控层,所述触控层包括所述金属网格,所述触控层包括所述多个第一触控电极、所述多个第二触控电极和多个第一连接部,所述第一连接部与相邻的两个第一触控电极连接,所述第一触控电极和所述第一连接部交替设置,所述桥接层包括多个第二连接部,所述第二连接部通过所述绝缘层上设置的过孔与相邻的两个第二触控电极连接。
另一方面,本公开实施例还提供了一种触控基板,包括衬底基板和位于所述衬底基板上的触控电极层,所述触控电极层具有由导线组成的网格状结构;
所述触控电极层包括多条沿第一方向延伸的第一触控电极和多条沿第二方向延伸的第二触控电极,所述第一方向和所述第二方向相交;所述第一触控电极包括沿所述第一方向布置的多个第一触控子电极,所述第二触控电极包括沿所述第二方向布置的多个第二触控子电极,所述第一触控子电极包括多个第一触控电极网格,所述第二触控子电极包括多个第二触控电极网格;所述触控电极层还包括位于相邻的第一触控子电极与第二触控子电极之间的多个分界网格,每个所述分界网格中包括至少两个第一网线,每个所述第一网线上设有第一断口,所述多个分界网格中的第一断口使得相邻的所述第一触控子电极和所述第二触控子电极之间绝缘;所述第一触控电极网格和/或所述第二触控电极网格中设有第二网线,所述第二网线上设有第二断口;
所述第一网线与所述第二网线的图案形状不同;或者,所述分界网格中的网线上设有凸出部。
可选地,所述第一网线包括第一断口和第一断线,所述第一断口将所述第一网线断开以形成所述第一断线;
所述第二网线具有第二断口和第二断线,所述第二断口将所述第二网线断开以形成所述第二断线。
可选地,所述第一断线靠近所述第一断口的一端的横截面形状与所述第 二断线靠近所述第二断口的一端的横截面形状不同。
可选地,所述第一断线靠近所述第一断口的一端的横截面为非矩形;所述第二断线靠近所述第二断口的一端的横截面为矩形。
可选地,所述第一断线靠近所述第一断口的一端的横截面为扇形或T型。
可选地,所述第一断线的长度与所述第二断线的长度不同。
可选地,所述第一网线包括一个第一断口和分别位于所述第一断口两端的两个第一断线;所述两个第一断线的长度不同;
所述第二网线包括一个第二断口和分别位于所述第二断口两端的两个第二断线;所述两个第二断线的长度相同。
可选地,所述第一断口的间距宽度与所述第二断口的间距宽度不同。
可选地,所述第一断口的间距宽度大于所述第二断口的间距宽度。
可选地,所述第一网线中的第一断线与所述第二网线中的第二断线的数量不同。
可选地,所述第一网线包括一个第一断口和位于所述第一断口一端的一个第一断线;
所述第二网线包括一个第二断口和分别位于所述第二断口两端的两个第二断线。
可选地,所述第一网线的端部尺寸和/或形状与所述第二网线的端部尺寸和/或形状不同。
可选地,所述第二网线的两个端部的尺寸相同;所述第一网线的至少一个端部的尺寸大于所述第二网线的端部尺寸。
可选地,所述分界网格中的网线上设有凸出部,设有凸出部的所述网线位于所述分界网格中两个所述第一网线之间。
可选地,所述网格状结构中的每一个网格为六边形。
另一方面,本公开实施例还提供了一种显示装置,包括如上述任一项所述的触控基板。
附图说明
图1为一种触控结构层的结构示意图;
图2-1到图2-5分别为一些示例性实施例中触控结构层的金属网格的结构示意图;
图3为一些示例性实施例中金属网格形式的触控结构层的结构示意图;
图4-1到图4-3分别为一些示例性实施例中像素单元的结构示意图;
图5为一些示例性实施例中显示结构层的剖面结构示意图;
图6为一些示例性实施例中触控结构层的金属网格与显示结构层的子像素的对应位置示意图;
图7为一些技术中触控结构层的金属网格的第一切口与第二切口的结构示意图;
图8-图14分别为一些示例性实施例中触控结构层的金属网格的第一切口与第二切口的结构示意图;
图15为本公开另一实施例提供的一种触控基板中触控电极层的结构示意图;
图16为图15中触控电极层的部分放大结构示意图;
图17为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图;
图18为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图;
图19为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图;
图20为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图;
图21为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图;
图22为本公开另一实施例提供的一种触控基板中触控电极层的部分结构 示意图;
图23为本公开另一实施例提供的一种触控基板中触控电极层的部分结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“顶”、“内”、“外”、“轴向”、“四角”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例的简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开实施例的描述中,除非另有明确的规定和限定,术语“连接”、“固定连接”、“安装”、“装配”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;术语“安装”、“连接”、“固定连接”可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开实施例中的具体含义。
本公开实施例提供的一种触控基板,包括设置在基底上的触控结构层,所述触控结构层包括沿第一方向设置的多个第一触控电极和沿第二方向设置的多个第二触控电极,所述第一方向与所述第二方向相交;所述触控结构层包括金属网格,所述金属网格包括多个网格图案,所述网格图案是由多条金属线构成的多边形,所述多个网格图案上设有多个第一切口和多个第二切口,所述多个第一切口位于所述第一触控电极和所述第二触控电极的分界位置,所述多个第二切口位于所述分界位置以外的其它位置;所述第一切口使所在 的金属线形成第一断线,所述第二切口使所在的金属线形成第二断线;所述多个网格图案中,所述第一断线及与其相邻的金属线为第一断线单元,所述第二断线及与其相邻的金属线为第二断线单元,所述第一断线单元的形态不同于所述第二断线单元的形态。
在一些示例性实施例中,所述触控基板还包括设置在所述基底上的显示结构层,所述触控结构层设置在所述显示结构层上,所述显示结构层包括发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边界;所述网格图案的金属线在所述基底上的正投影所围成的区域包含至少一个子像素在所述基底上的正投影,所述子像素边界在所述基底上的正投影包含所述网格图案的金属线在所述基底上的正投影。
在一些示例性实施例中,显示结构层可以是液晶显示(LCD)结构层,或者可以是有机发光二极管(OLED)结构层,或者可以是等离子体显示面板(PDP)结构层,或者可以是电泳显示(EPD)结构层。在一些示例性实施方式中,显示结构层是OLED结构层,OLED结构层包括基底、设置在基底上的驱动电路层、设置在驱动电路层上的发光结构层以及设置在发光结构层上的封装层。触控结构层设置在显示结构层的封装层上。
在一些示例性实施例中,所述触控结构层包括依次叠设在所述显示结构层上的桥接层、绝缘层和触控层,所述触控层包括所述金属网格,所述触控层包括所述多个第一触控电极、所述多个第二触控电极和多个第一连接部,所述第一连接部与相邻的两个第一触控电极连接,所述第一触控电极和所述第一连接部交替设置,所述桥接层包括多个第二连接部,所述第二连接部通过所述绝缘层上设置的过孔与相邻的两个第二触控电极连接。
在一些示例性实施例中,图1为一种触控结构层的结构示意图,如图1所示,触控结构层包括多个第一触控单元101和多个第二触控单元201,第一触控单元101具有沿第一方向D1延伸的线形状,多个第一触控单元101沿第二方向D2依次排列,第二触控单元201具有沿第二方向D2延伸的线形状, 多个第二触控单元201沿第一方向D1依次排列,第一方向D1与第二方向D2交叉。
每个第一触控单元101包括沿第一方向D1排列的多个第一触控电极10和第一连接部11,多个第一触控电极10和多个第一连接部11交替设置且依次连接。每个第二触控单元201包括沿第二方向D2排列的多个第二触控电极20,多个第二触控电极20间隔设置,相邻的第二触控电极20通过第二连接部21彼此连接。第二连接部21所在的层不同于第一触控电极10和第二触控电极20所在的层。第一触控电极10和第二触控电极20在第三方向D3上交替布置,第三方向D3与第一方向D1和第二方向D2交叉。
每个第一触控单元101通过第一传输线102连接到第一焊盘电极103,每个第二触控单元201通过第二传输线202连接到第二焊盘电极203。在示例性实施方式中,第一触控电极10通过第一焊盘电极103连接到显示面板的驱动器,第二触控电极20通过第二焊盘电极203连接到驱动器,驱动器将驱动信号施加到第二触控电极20上,并且接收来自第一触控电极10的输出信号,或者,驱动器可以将驱动信号施加到第一触控电极10,并且接收来自第二触控电极20的输出信号。驱动器通过检测不同电极发射触控信号时多个电极中产生的感应信号,即可确定出触摸发生的位置。
在一些示例性实施方式中,触控结构层可以包括叠设的桥接层、绝缘层和触控层。多个第一触控电极10、多个第二触控电极20和多个第一连接部11可以同层设置在触控层,且可以通过同一次构图工艺形成,第一触控电极10和第一连接部11可以为相互连接的一体结构,第二连接部21可以设置在桥接层,通过绝缘层上设置的过孔使相邻的第二触控电极20相互连接。在一些可能的实现方式中,多个第一触控电极10、多个第二触控电极20和多个第二连接部21可以同层设置在触控层,第二触控电极20和第二连接部21可以为相互连接的一体结构,第一连接部11可以设置在桥接层,通过绝缘层上设置的过孔使相邻的第一触控电极10相互连接。在一些示例性实施方式中,第一触控电极可以是驱动电极(Tx),第二触控电极可以是感应电极(Rx),或 者,第一触控电极可以是感应电极(Rx),第二触控电极可以是驱动电极(Tx)。
在一些示例性实施方式中,第一触控电极10和第二触控电极20的形状可以为菱形。在另一些可能的实现方式中,第一触控电极10和第二触控电极20的形状可以为三角形、正方形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,本公开实施例在此不做限定。
在一些示例性实施方式中,第一触控电极10和第二触控电极20可以是金属网格形式,金属网格由多条金属线交织形成,金属网格包括多个网格图案,网格图案是由多条金属线构成的多边形。金属网格形式的第一触控电极10和第二触控电极20具有电阻小、厚度小和反应速度快等优点。在一些示例性实施方式中,一个网格图案中,金属线所围成的区域包含显示结构层中的子像素区域,金属线所在位置位于相邻子像素之间。例如,当显示结构层为OLED显示结构层时,子像素区域是发光结构层中像素界定层限定的发光区域,金属线所围成的区域包含发光区域,金属线位于像素界定层的对应位置,即位于非发光区域中。
在一些示例性实施方式中,图2-1到图2-5为几种金属网格的结构示意图。如图2-1到图2-5所示,金属网格包括多个网格图案,网格图案是由金属线构成的多边形,或者说,金属网格是由网格图案重复且连续设置拼接而成。在一些示例性实施方式中,金属线围成的网格图案的形状可以为菱形,如图2-1所示。或者,金属线围成的网格图案的形状可以为三角形,如图2-2所示。或者,金属线围成的网格图案的形状可以为矩形,如图2-3所示。或者,金属线围成的网格图案的形状可以为六边形,如图2-4所示。或者,金属线围成的网格图案的形状可以为多种形状的组合,如五边形和六边形的组合,如图2-5所示。或者,金属线围成的网格图案的形状可以包括三角形、正方形、矩形、菱形、梯形、五边形和六边形中的任意一种或多种。在一些可能的实现方式中,金属线围成的网格图案可以为规则的形状,或者为不规则的形状,网格图案的边可以为直线,或者可以为曲线,本公开实施例在此不做限定。在一些可能的实现方式中,金属网格的金属线的线宽≤5μm。
在一些示例性实施方式中,图3为一种金属网格形式的触控结构层的结构示意图,图3为图1中A区域的放大图,图3所示结构可看做是触控结构层的一个重复单元。如图3所示,触控结构层的触控层为金属网格状,网格图案为六边形。第一触控电极10和第二触控电极20同层设置在触控层上,为了使第一触控电极10和第二触控电极20相互绝缘,金属网格上设置有多个第一切口30,多个第一切口30断开网格图案的金属线,实现第一触控电极10的网格图案与第二触控电极20的网格图案的隔离。图3中采用黑色块表示第一切口30,第一切口30可以理解为切断金属线的假想线。位于第一触控电极10和第二触控电极20分界位置的多个第一切口30的假想连线可称为第一分界线500。在一些示例性实施方式中,触控结构层在平行于触控基板的方向上包括触控(Bulk)区100、边界(Boundary)区200和连接桥(Bridge)区300。位于边界区200的触控层的每一个网格图案中均设置有第一切口30,第一切口30截断网格图案的金属线,使每一个网格图案分为两部分,一部分属于第一触控电极10,另一部分属于第二触控电极20。触控区100包括第一触控电极10和第二触控电极。连接桥区300包括第一连接部和第二连接部,第一连接部用于实现相邻两个第一触控电极10之间的连接,第二连接部用于实现相邻两个第二触控电极20之间的连接,第一连接部和第二连接部中的一个位于触控层,另一个位于桥接层。在一些示例性实施方式中,触控区100的触控层上还设置有多个第二切口40,多个第二切口40断开网格图案的金属线,多个第二切口40在触控区100内可以形成一个或多个虚拟(Dummy)区70,虚拟(Dummy)区70可以与其所在触控区100内的第一触控电极10或第二触控电极20绝缘,虚拟区70的形状可以不受限制。虚拟(Dummy)区70可看做是多个第二切口40的假想连线所围成的区域,多个第二切口40的假想连线可称为第二分界线900。位于边界区200一侧的触控区100包括第一触控电极10和虚拟区70,位于边界区200另一侧的触控区100包括第二触控电极20和虚拟区70。在另一些示例性实施方式中,触控区100的触控层上设置的多个第二切口40可以不形成虚拟区70,在第一触控电极10和第二触控电极 20内部设置多个第二切口40,可使得切口在金属网格上尽可能均匀设置,避免只在边界区200设置切口,这样可改善边界区200的水印缺陷。
在一些示例性实施方式中,显示结构层包括规则排布的多个像素单元。每个像素单元可以包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素三个子像素。在另一些示例中,每个像素单元可以包括四个子像素,比如,每个像素单元包括红色子像素、绿色子像素、蓝色子像素和白色子像素,或者,每个像素单元包括红色子像素、两个绿色子像素和蓝色子像素。本公开实施例中对每个像素单元中的子像素的个数和排布方式不作限制。图4-1至图4-3示出了三种像素单元的结构示意图。四个子像素可以采用矩形状,以并列方式排列,从左到右分别为:R子像素、G子像素、B子像素和G子像素,如图4-1所示。或者,四个子像素可以分别采用五边形和六边形状,以并列方式排列,两个五边形的G子像素位于像素单元的中部,六边形的R子像素和六边形的B子像素分别位于G子像素的两侧,如图4-2所示。当像素单元包括三个子像素时,三个矩形状的子像素可以以水平方向并列方式排列,或者可以以竖直方向并列方式排列,如图4-3所示。在一些可能的实现方式中,子像素的形状可以是三角形、正方形、矩形、菱形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,排列方式可以是X形、十字形或品字形等,本公开实施例在此不做限定。
在一些示例性实施方式中,图5为一种显示结构层的剖面结构示意图,示意了OLED显示时两个子像素的结构。如图5所示,在垂直于显示结构层的平面上,显示结构层包括设置在基底61上的驱动电路层62、设置在驱动电路层62上的发光结构层63以及设置在发光结构层63上的封装层64。在形成本公开实施例触控基板时,将触控结构层设置在封装层64上。基底61可以为柔性基底或刚性基底。在一些可能的实现方式中,显示结构层还可以包括其它膜层,触控结构层与封装层之间可以设置其它膜层,本公开实施例在此不做限定。
在一些示例性实施方式中,基底61为柔性基底,基底61可以包括叠设 的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在一些示例性实施方式中,驱动电路层62可以包括构成像素驱动电路的晶体管和存储电容,图5中以每个子像素包括一个晶体管和一个存储电容为例进行示意。在一些可能的实现方式中,每个子像素的驱动电路层62可以包括:设置在基底上的第一绝缘层,设置在第一绝缘层上的有源层,覆盖有源层的第二绝缘层,设置在第二绝缘层上的栅电极和第一电容电极,覆盖栅电极和第一电容电极的第三绝缘层,设置在第三绝缘层上的第二电容电极,覆盖第二电容电极的第四绝缘层,第四绝缘层上开设有过孔,过孔暴露出有源层,设置在第四绝缘层上的源电极和漏电极,源电极和漏电极分别通过过孔与有源层连接,覆盖前述结构的平坦层。有源层、栅电极、源电极和漏电极组成晶体管,第一电容电极和第二电容电极组成存储电容。在一些可能的实现方式中,第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一绝缘层可称之为缓冲(Buffer)层,用于提高基底的抗水氧能力,第二绝缘层和第三绝缘层可称之为栅绝缘(GI)层,第四绝缘层可称之为层间绝缘(ILD)层。第一金属薄膜、第二金属薄膜和第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩或聚噻吩等材料,即本公开实施例适用于基于氧化物(Oxide)技术、硅技术或有机物技术制造的晶体管。
在一些示例性实施方式中,发光结构层63可以包括阳极、像素定义层、有机发光层和阴极,阳极设置在平坦层上,通过平坦层上开设的过孔与漏电极连接,像素定义层设置在阳极和平坦层上,其上设置有像素开口,像素开口暴露出阳极,有机发光层设置在像素开口内,阴极设置在有机发光层上,有机发光层在阳极和阴极施加电压的作用下出射相应颜色的光线。在一些示例性实施方式中,封装层64可以包括叠设的第一封装层、第二封装层和第三封装层,第一封装层和第三封装层可采用无机材料,第二封装层可采用有机材料,封装层64可以防止外界水汽进入发光结构层63。
在一些示例性实施方式中,显示结构层包括发光区域和非发光区域。如图5所示,由于有机发光层是在像素定义层所限定的像素开口区域出射光线,因而像素开口区域为发光区域P1,像素开口以外区域为非发光区域P2,非发光区域P2位于发光区域P1的外围。本公开实施例中,将每个发光区域P1称为子像素(sub pixel),如红色子像素、蓝色子像素或绿色子像素,每个不发光区域P2称为子像素边界。这样,显示结构层的发光区域包括周期性排布的多个子像素,显示结构层的非发光区域包括位于相邻子像素之间的子像素边界。
在一些示例性实施方式中,如图6所示,显示结构层包括规则排布的多个像素单元50,当像素单元50采用图4-2所示的结构时,触控结构层中触控层的金属网格的网格图案801为六边形,网格图案801的形状与像素单元50中的B子像素和R子像素的形状相适配。一个像素单元50中的B子像素和R子像素分别位于两个网格图案801所围成的区域内,两个G子像素位于同一个网格图案801所围成的区域内。网格图案801的金属线位于相邻子像素之间的子像素边界内。
本公开实施例中,网格图案的形状为多边形的情况下,多边形的每条边可看做为网格图案的每条金属线,多边形的边数即为网格图案的金属线的条数。比如,网格图案为六边形时,网格图案具有六条金属线。网格图案中,设置有第一切口的金属线称为第一金属线,设置有第二切口的金属线称为第 二金属线。以第一切口和第一金属线为例说明,第一切口可以设置在第一金属线的中间位置(可以是居中位置或者非居中位置),则第一金属线从中间断开而形成两个第一断线。或者,第一切口可以设置在第一金属线的一端位置,则可看作第一金属线的该端部被第一切口切掉,第一金属线剩下的部分形成一个第一断线。同理,第二切口、第二金属线和第二断线可做相同理解。
一些触控基板中,如图7所示,位于第一触控电极10和第二触控电极20分界位置的网格图案设置有第一切口30,第一触控电极10内部设置有第二切口40。由第一切口30形成的第一断线31的形态与由第二切口40形成的第二断线41的形态相同。这样,当第一切口30或第二切口40处存在金属残留(Remain)而导致金属线之间短路(Short)不良时,由于第一切口30和第二切口40不能被区分,因此,检测设备(例如自动光学检测(Automated Optical Inspection)设备,简称AOI设备)在检测出金属残留类不良时,不能确定该不良所在的具体位置是属于边界区还是属于触控区,从而不能及时对不良进行维修,影响良率提升。
在一些示例性实施例中,所述第一断线单元的形态包括所述第一断线31的端面形状,所述第二断线单元的形态包括所述第二断线41的端面形状,所述第一断线31的端面形状不同于所述第二断线41的端面形状。示例性地,如图8所示,图8示出了并排的三个网格图案,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。本文中,网格图案中的细线和粗线只是为了区分第一触控电极10和第二触控电极20,不代表真实线宽,真实线宽可以是相同的。中间的网格图案和右侧的网格图案所共用的金属线的中间位置设有第一切口30,该金属线(即第一金属线)包括两个第一断线31。左侧的网格图案和中间的网格图案所共用的金属线的中间位置设有第二切口40,该金属线(即第二金属线)包括两个第二断线41。第二切口40设置在第一触控电极10的网格图案上。本示例的图8中,只是示出了一个第一切口30和一个第二切口40,三个网格图案中第一触控电极10和第二触控电极20分界位置的其他第一切口30并未示出。示例性地,第二 断线41的端面411为平面,第一断线31的端面311可以为曲面、斜面、折面中的任一种或多种。曲面可以是弧面、波浪面等。折面包括至少两个相交的面,比如,折面包括相交的平面和斜面,或者,折面包括相交的多个斜面。在其他示例中,第二断线41的端面411可以为曲面、斜面、折面中的任一种,第一断线31的端面311可以为平面、曲面、斜面、折面中不同于第二断线41的端面形状的任一种或多种。图8所示的示例中,两个第二断线41的端面411均为平面,两个第一断线31的端面311均为弧面,或者,其中一个第一断线31的端面311设置为弧面,另一个第一断线31的端面311设置为平面或其他任意形状。
在一些示例性实施例中,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;所述第一断线单元的形态包括两个所述第一断线的长度,所述第二断线单元的形态包括两个所述第二断线的长度;两个所述第一断线的长度相同,两个所述第二断线的长度不同;或者,两个所述第一断线的长度不同,两个所述第二断线的长度相同。以两个所述第一断线的长度不同,两个所述第二断线的长度相同为例说明,如图9所示,图9示出了并排的三个网格图案,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。中间的网格图案和右侧的网格图案所共用的金属线的非居中位置设有第一切口30,第一切口30使得该金属线从中间断开而形成两个不同长度的第一断线31。左侧的网格图案和中间的网格图案所共用的金属线的居中位置设有第二切口40,第二切口40使得该金属线从中间断开而形成两个相同长度的第二断线41。第二切口40设置在第一触控电极10的网格图案上。
在一些示例性实施例中,所述第一断线单元的形态包括所述第一断线的数目,所述第二断线单元的形态包括所述第二断线的数目,所述第一断线的数目与所述第二断线的数目不同;所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,或者,所述第一切口使所在的金属线的一端切掉 而形成一个所述第一断线。以所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线为例说明,如图10所示,图10示出了五个网格图案,五个网格图案呈两行排布,网格图案为六边形。第一行左侧的网格图案的一个竖直金属线上设有第一切口30,第一切口30使该竖直金属线的一端切掉而形成一个第一断线31。第一行左侧的网格图案与第二行中间的网格图案所共用的金属线上设有第一切口30,第一切口30使该金属线的一端切掉而形成一个第一断线31。第二行中间的网格图案与第二行右侧的网格图案所共用的金属线设有第一切口30,第一切口30使该金属线的一端切掉而形成一个第一断线31。第二行右侧的网格图案的另一个金属线设有第一切口30,第一切口30使该金属线的一端切掉而形成一个第一断线31。图10示出的五个网格图案中共四个第一切口30和四个第一断线31,设置有第一切口30的金属线(即第一金属线)均形成一个第一断线31。第二触控电极20的网格图案中设置有第二切口40,第二切口40使所在的金属线从中间断开而形成两个第二断线41。
在一些示例性实施例中,在所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线的情况下,将所述多个第一切口的假想连线称为第一分界线,沿着所述第一分界线的延伸方向,相邻的两个所述第一断线中的一个与所述第一触控电极连接,另一个与所述第二触控电极连接。如图10所示,设置有第一切口30的网格图案中,网格图案的至少两个金属线均设置有第一切口30,设置有第一切口30的金属线(即第一金属线)均形成一个第一断线31。图10示出的五个网格图案中共四个第一切口30和四个第一断线31,串连这四个第一切口30的假想连线为第一触控电极10和第二触控电极20的第一分界线500。第一分界线500一侧的网格图案为第一触控电极10,第一触控电极10的网格图案用细线表示,第一分界线500另一侧的网格图案为第二触控电极20,第二触控电极20用粗线表示。沿着第一分界线500的延伸方向,相邻的两个第一断线31中的一个第一断线31与第一触控电极10连接,另一个第一断线31与第二触控电极20连接,也可理解为,沿着第一分界线500的延伸方向,第一触控电极10和第二触控电极20交替设置有第一断线31。 沿着第一分界线500的延伸方向,第一触控电极10和第二触控电极20交替设置有第一断线31,这样,一方面有利于区分第一切口30和第二切口40,另一方面可减少第一触控电极10和第二触控电极20的分界位置发生金属走线短路的风险。
在一些示例性实施例中,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;所述第一断线单元的形态包括两个所述第一断线之间的距离,所述第二断线单元的形态包括两个所述第二断线之间的距离,两个所述第一断线之间的距离不同于两个所述第二断线之间的距离。示例性地,如图11所示,图11示出了并排的三个网格图案,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。中间的网格图案和右侧的网格图案所共用的金属线的中间位置设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31。左侧的网格图案和中间的网格图案所共用的金属线的中间位置设有第二切口40,第二切口40使该金属线从中间断开而形成两个第二断线41。第二切口40设置在第一触控电极10的网格图案上。图11所示实施例中,两个第一断线31之间的距离大于两个第二断线41之间的距离,也可理解为,第一切口30的宽度大于第二切口40的宽度。两个第一断线31之间的距离增大,一方面有利于区分第一切口30和第二切口40,另一方面可减少第一触控电极10和第二触控电极20的分界位置发生金属走线短路的风险。
在一些示例性实施例中,为了使所述第一断线单元的形态不同于所述第二断线单元的形态,可以采用如下方案:所述第一断线上设置有标记部,所述第二断线上未设置所述标记部;或者,与所述第一断线相邻的金属线上设置有标记部,与所述第二断线相邻的金属线上未设置所述标记部。示例性地,所述标记部可以包括凸出于其所在的金属线设置的凸条或凸块。所述凸块可以为多边形、圆形、椭圆形中的任一种或多种。多边形可以为三角形、矩形、菱形等。
在一些示例性实施例中,所述第一断线的靠近所述第一切口的端部设置有所述标记部。示例性地,如图12所示,图12示出了并排的三个网格图案,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。中间的网格图案和右侧的网格图案所共用的金属线的中间位置设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31,第一断线31的靠近第一切口30的端部设置有标记部600,该标记部600为凸块,凸块的形状可以不受限制,比如可以为矩形、菱形、圆形、椭圆形等规则图形或不规则图形,凸块在垂直于第一断线31的方向上凸出于第一断线31的其余部分。左侧的网格图案和中间的网格图案所共用的金属线的中间位置设有第二切口40,第二切口40使该金属线从中间断开而形成两个第二断线41,第二断线41上未设置所述标记部600,第二切口40设置在第一触控电极10的网格图案上。本实施例中,两个第一断线31中至少一个的靠近第一切口30的端部设置有标记部600,两个第一断线31的靠近第一切口30的端部可以均设置有标记部600。
在一些示例性实施例中,所述第一断线与其他金属线相交的位置设置有所述标记部。本实施例中,当第一切口使所在的金属线从中间断开而形成两个第一断线时,两个第一断线与其他金属线相交的位置有两个,该两个相交位置中可以有一个相交位置设置所述标记部,或者两个相交位置均设置有所述标记部。所述标记部可以为凸出于其所在相交位置的凸条或凸块。本实施例的一个示例中,如上图13所示,图13示出了五个网格图案,五个网格图案呈两行排布,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。第一行左侧的网格图案的左侧竖直金属线上设有第一切口30,第一切口30使该竖直金属线从中间断开而形成上下两个第一断线31,下部的第一断线31与第一行左侧的网格图案的左下部的倾斜金属线相交的位置设置有标记部600。第一行左侧的网格图案与第二行中间的网格图案所共用的金属线上设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31,两个第一断线31分别与第一行左侧的网格图案的左下部 的倾斜金属线和第一行左侧的网格图案的右侧竖直金属线相交的位置均设置有标记部600。第二行中间的网格图案与第二行右侧的网格图案所共用的金属线设有第一切口30,第一切口30使该金属线从中间断开而形成上下两个第一断线31,两个第一断线31分别与其他金属线相交的位置均设置有标记部600。第二行右侧的网格图案的左下部的倾斜金属线设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31,其中一个第一断线31与第二行右侧的网格图案的左侧竖直金属线相交的位置设置有标记部600。第二行右侧的网格图案的右上部的金属线上设置有第二切口40,第二切口40使该金属线从中间断开而形成两个第二断线41,两个第二断线41上未设置标记部600。第二切口40设置在第二触控电极20内部。本示例中,标记部600为凸块,凸块的形状为矩形,在其他示例中,凸块的形状可以为圆形、椭圆形、菱形或三角形等规则图形或不规则图形。本示例中,第一切口30使所在的金属线从中间断开而形成两个第一断线31,第二切口40使所在的金属线从中间断开而形成两个第二断线41,在其他示例中,第一切口30可以使所在的金属线的一端切掉而形成一个第一断线31,第二切口40可以使所在的金属线的一端切掉而形成一个第二断线41。
在一些示例性实施例中,与所述第一断线相邻的金属线上设置有标记部,与所述第二断线相邻的金属线上未设置所述标记部。本实施例的一个示例中,与所述第一断线相邻的金属线的中间位置(居中或非居中位置)设置有所述标记部。所述标记部可以为凸出于其所在金属线的凸条或凸块。示例性地,如图14所示,图14示出了五个网格图案,五个网格图案呈两行排布,网格图案为六边形。网格图案中的细线代表第一触控电极10,粗线代表第二触控电极20。第一行左侧的网格图案的一个竖直金属线上设有第一切口30,第一切口30使该竖直金属线从中间断开而形成上下两个第一断线31。第一行左侧的网格图案与第二行中间的网格图案所共用的金属线上设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31。第二行中间的网格图案与第二行右侧的网格图案所共用的金属线设有第一切口30,第一切口30 使该金属线从中间断开而形成两个第一断线31。第二行右侧的网格图案的左下部的倾斜金属线设有第一切口30,第一切口30使该金属线从中间断开而形成两个第一断线31。第二行右侧的网格图案的右上部的金属线上设置有第二切口40,第二切口40使该金属线从中间断开而形成两个第二断线41,两个第二断线41与第一断线31不相邻(可理解为不直接相连)。第二切口40设置在第二触控电极20内部。第一行左侧的网格图案与第二行左侧的网格图案所共用的金属线上设置有标记部600,该设置有标记部600的金属线与连接在其两端的两个第一断线31均相邻。第二行中间的网格图案的右上部的倾斜金属线上设置有标记部600,该金属线与连接在其两端的两个第一断线31均相邻。第二行中间的网格图案中,位于右下部的倾斜金属线上设置有标记部600,该倾斜金属线与连接在其同一端的两个第一断线31均相邻。网格图案中,与第二断线41相邻的金属线上未设置标记部。本示例中,标记部600为凸出于其所在金属线的凸条,标记部600的数目设置为一个。在其他示例中,标记部600可以为凸出于其所在金属线的凸块,标记部600的数目可以为一个或多个。本示例中,第一切口30使所在的金属线从中间断开而形成两个第一断线31,第二切口40使所在的金属线从中间断开而形成两个第二断线41,在其他示例中,第一切口30可以使所在的金属线的一端切掉而形成一个第一断线31,第二切口40可以使所在的金属线的一端切掉而形成一个第二断线41。
上述图8-图14示出的实施例中,通过采用多种方案使得所述第一断线单元的形态不同于所述第二断线单元的形态,从而使得第一切口与第二切口能够被区分。这样,检测设备(例如AOI设备)在对触控结构层出现的不良进行检测时,由于第一切口和第二切口能够被区分,因此,检测设备可以确定不良所在的具体位置是属于第一触控电极和第二触控电极的分界位置还是属于分界位置以外的其他位置,进而可以及时对不良进行维修,提升产品良率。
基于同一发明构思,本公开实施例还提供了另一种触控基板,请参考图15至图23。具体地,图16为图15中虚线框区域S的触控电极层结构的放大示意图。图17至图23的结构示意图是对本公开具体实施例的示例说明。触 控基板包括衬底基板100和位于衬底基板100上的触控电极层,触控电极层具有由导线组成的网格状结构;
如图15至图23所示,触控电极层包括多条沿第一方向X延伸的第一触控电极1和多条沿第二方向Y延伸的第二触控电极2,第一方向X和第二方向Y相交;第一触控电极1包括沿第一方向X布置的多个第一触控子电极10,第二触控电极2包括沿第二方向Y布置的多个第二触控子电极20,第一触控子电极10包括多个第一触控电极网格11(图16中由灰色线条所围成的网格),第二触控子电极20包括多个第二触控电极网格12(图16中由黑色线条所围成的网格);触控电极层还包括位于相邻的第一触控子电极10与第二触控子电极20之间的多个分界网格13(图16中由灰色线条和黑色线条共同围成的网格),每个分界网格13中包括至少两个第一网线21,每个第一网线21上设有第一断口210,多个分界网格13中的第一断口210使得相邻的第一触控子电极10和第二触控子电极20之间绝缘;第一触控电极网格11和/或第二触控电极网格12中设有第二网线22,第二网线22上设有第二断口220;
如图17至图23所示,第一网线21与第二网线22的图案形状不同;或者,分界网格13中的网线上设有凸出部3。
具体地,‘网线’即围成网格的线条,本公开中触控电极层为通过导线围成的网格状结构,则网线的材料即为导线;示例性的,导线可以为金属材料,即触控电极层可以为金属网格图形结构。
具体地,第一触控电极(第一触控子电极)和第二触控电极(第二触控子电极)可以分别被配置为发射电极和感应电极。图15中的虚线框区域包括一条第一触控电极1与一条第二触控电极2的交叉区域,该交叉区域沿第一方向X的两个第一触控子电极10(第一触控电极网格11)直接相连,该交叉区域沿第二方向Y的两个第二触控子电极20(第二触控电极网格12)通过桥结构200电连接。具体地,桥结构200也可以采用网格结构,例如,图16中所示的交叉区域内放大图即是触控电极层网格和桥结构网格图案交叠后的示意图。具体地,触控电极层网格中,第一触控电极网格11与第二触控电极网 格12之间具有分界网格13,分界网格13中的第一断口210将第一触控电极网格11和第二触控电极网格12之间断开,从而使得第一触控子电极10与第二触控子电极20之间绝缘。
具体地,本公开实施例提供的附图中,参照图16至图23所示,完全由灰色线条围成的网格为第一触控电极网格11,完全由黑色线条围成的网格为第二触控电极网格12,由灰色线条和黑色线条共同围成的网格为分界网格13。需要说明的是,本公开实施例提供附图中仅示意性的画出了触控电极层中的部分网格结构以及网格结构中的部分断口,因此具体实施时,触控电极层的实际图形并不限定以这些附图为标准。具体地,触控电极层中,分界网格中设有的所有第一断口被配置为能够将第一触控电极网格与第二触控电极网格之间的电连接断开;第一触控电极网格和第二触控电极网格中设有的第二断口,具体可以根据电流分配需求和/或避免连续图案导致摩尔纹等要求进行布置。
具体地,第一方向X和第二方向Y为正交,即第一触控电极1延伸方向与第二触控电极2延伸方向可以是相互正交。
本公开实施例提供的触控基板中,触控电极层包括第一触控子电极10(第一触控电极网格11)、第二触控子电极20(第二触控电极网格12)以及位于第一触控子电极10和第二触控子电极20之间的分界网格13,分界网格13中设有第一断口210以使得第一触控子电极10(第一触控电极网格11)和第二触控子电极20(第二触控电极网格12)之间断开并绝缘,第一触控电极网格11和/或第二触控电极网格12中设有第二断口220,由于设有第一断口210的第一网线21的图案形状与设有第二断口220的第二网线22的图案形状设置不同,或者在分界网格13中的网线上设置有凸出部3,进而很容易有效地将分界网格13与第一触控电极网格11和第二触控电极网格12区分开,并可以直接区别第一网线21与第二网线22以及第一断口210与第二断口220,进而,当触控电极层出现不良时,通过检测设备能够快速有效地检测不良出现的具体位置,并能及时修复,从而提高良率。
具体地,例如,由于金属残留(Remain)等问题,触控电极层很容易出现网线断口电连接而导致短路(Short)不良,此时,通过光学检测设备(AOI)很难判断出不良断口的具体位置。本公开中,由于设有断口的第一网线和第二网线的图案形状不同,因此,通过光学检测设备(AOI)即可以很容易找到不良断口所处位置,并确定不良位置是触控单元网格内部还是两个触控单元之间的分界网格处,进而能够有效提高检测和修复的效率。
另外,由于触控电极层中,设有第一断口210的第一网线21的图案形状与设有第二断口220的第二网线22的图案形状设置不同,或者在分界网格13中的网线上设置有凸出部3,使得分界网格的图案与触控电极网格(第一触控电极网格和第二触控电极网格)的图案形状不同,进而很容易区分分界网格与触控电极网格,因此,本公开实施例的方案,除了能够快速判断触控电极层短路不良的具体位置,还能够提高对其他不良的具体位置和类型的判断效率和对不良的修复效率,例如有利于提高某处的断路不良的检出效率,此处不再赘述。
具体地,本公开实施例提供触控基板可以是采用柔性多层一体化集成触控技术(FMLOC)制备而成的显示基板,即显示基板在设计时,在发光膜层和封装膜层上面直接制作触控电极的膜层,减少了光学胶(OCA)的使用,且不需要通过触控柔性线路板(TFPC)连接,可以很好的实现产品的轻薄化。
当然,本公开实施例提供的触控基板也可以是独立于显示基板的结构,被配置为通过光学胶(OCA)与显示基板贴合。
如图16所示,一些实施例中,触控电极层的网格状结构中的每一个网格(第一触控电极网格11,第二触控电极网格12以及分界网格13)为六边形。此时,触控电极层呈蜂窝状图案,结构规则,稳定性很好且便于构图,而且开口率很大,有利于提高显示面板的开口率。
具体地,图17至图23中示意出了部分第一触控电极网格11和分界网格13,下面以图17至图23作为参考,对于本公开的一些具体实施例进行举例说明。
如图17至图23所示,一些实施例中,分界网格13包括第一网线21,第一网线21包括第一断口210和第一断线211,第一断口210将第一网线21断开以形成第一断线211;第一触控电极网格11和/或第二触控电极网格中设有第二网线22,第二网线22具有第二断口220和第二断线221,第二断口220将第二网线22断开以形成第二断线221。
具体地,第一网线21和第二网线22均是围成网格的一段网线,例如,网格为六边形,则第一网线21和第二网线22即是围成六边形的一条边。
具体地,第一网线21是围成分界网格13的一段网线,第二网线22是围成第一触控电极网格11和/或第二触控电极网格的一段网线。第一网线21和第二网线22内均设有断口,从而使得第一网线21和第二网线22内形成有断线,断线之间的电连接被断开。
示例性的,第一触控电极网格11和第二触控电极网格中均设有第二网线22,即第一触控电极网格11和第二触控电极网格内均设有第二断口220。
如图17至图22所示,一些实施例中,第一断口210和第一断线211的图案形状与第二断口220和第二断线221的图案形状不同。
具体地,第一断口210和第一断线211的图案形状与第二断口220和第二断线221的图案形状不同,则很容易判断不良断口是位于触控电极单元内还是位于两个触控电极单元的分界处,进而很容易确定不良的具体位置和类型,例如,很容易确定是两个触控电极之间的第一网线21短接不良,还是某个触控电极内部的第二网线22短接不良。
一些具体的实施例中,如图17和图18所示,第一断线211靠近第一断口210的一端的横截面形状与第二断线221靠近第二断口220的一端的横截面形状不同。进而,通过观察断线端部的横截面形状,即可以判断相应的断口和断线的类型及所在的位置。
示例性的,第一断线211靠近第一断口210的一端的横截面为非矩形;第二断线221靠近第二断口220的一端的横截面为矩形。
具体地,例如,如图17所示,第一断线211靠近第一断口210的一端的 横截面可以为扇形,或者,如图18所示,第一断线211靠近第一断口210的一端的横截面可以为T型。
一些具体的实施例中,如图19所示,第一断线211的长度与第二断线221的长度不同。具体地,通过观察断线长度,即可以判断相应的断口和断线的类型及所在的位置。
示例性的,如图19所示,第一网线21包括一个第一断口210和分别位于第一断口210两端的两个第一断线211;两个第一断线211的长度不同。第二网线22包括一个第二断口220和分别位于第二断口220两端的两个第二断线221;两个第二断线221的长度相同。此时,两个第一断线211和两个第二断线221的长度均不同,两个第二断线221相对于第二断口220对称设置,两个第一断线211在第一断口210两侧长度参差不齐,进而很容易区分。
一些具体的实施例中,如图20所示,第一断口210的间距宽度与第二断口220的间距宽度不同。具体地,通过观察断口宽度大小,即可以判断相应的断口和断线的类型及所在的位置。
示例性的,第一断口210的间距宽度大于第二断口220的间距宽度。
一些具体的实施例中,如图21所示,第一网线21中的第一断线211与第二网线22中的第二断线221的数量不同。具体地,通过观察与断口相邻的断线的数量,即可以判断相应的断口和断线的类型及所在的位置。
示例性的,第一网线21包括一个第一断口210和位于第一断口210一端的一个第一断线211。第二网线22包括一个第二断口220和分别位于第二断口220两端的两个第二断线221。
一些具体的实施例中,如图22所示,第一网线21的端部尺寸和/或形状与第二网线22的端部尺寸和/或形状不同。具体地,通过观察网线的端部尺寸和/或形状,即可以判断该段网线的断口和断线的类型及所在的位置。
示例性的,第二网线22的两个端部的尺寸相同;第一网线21的至少一个端部的尺寸大于第二网线22的端部尺寸。例如,如图22所示,第一网线21的两个端部的尺寸均大于第二网线22的两个端部的尺寸。
示例性的,第二网线22的两个端部形状呈常规的圆形,第一网线21的两个端部的形状可以呈方形。
如图23所示,一些实施例中,分界网格中的网线上设有凸出部3,设有凸出部3的网线位于分界网格中两个第一网线21之间。示例性的,设有凸出部3的网线的两端分别与两个第一网线21相连。具体地,通过观察网线上是否具有凸出部,即可以确定与该段网线相邻的网线、断口和断线的类型及所在的位置。
示例性的,该凸出部3为一段线形结构,并相对于与其相连的网线垂直伸出。
示例性的,该凸出部3相对于与其相连的网线朝向分界网格的内侧凸出。
基于同一发明构思,本公开还提供了一种显示装置,该显示装置包括上述任一项的触控基板。
具体地,该显示装置可以为OLED显示装置,具体可以应用于平板电脑、手机等显示设备。
示例性的,该显示装置可以为FMLOC显示装置,集成度高,比较轻薄。
需要说明的是,本公开的一些实施例中,触控基板和显示装置还可以包括其他的结构,这可以根据实际需求而定,本公开的实施例对此不作限制。另外,关于本公开实施例提供的网格结构的形状,第一网线,第一断口,第一断线,第二网线,第二断口,第二断线等结构的尺寸和形状并不限于上述实施例,只要能够使得分界网格中第一网线的图案形状与触控电极网格中第二网线的图案形状不同即可,此处不再赘述。再者,本公开附图只是示意图,图中各部分结构的具体尺寸和比例并不代表各结构的实际尺寸比例。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种触控基板,其中,包括设置在基底上的触控结构层,所述触控结构层包括沿第一方向设置的多个第一触控电极和沿第二方向设置的多个第二触控电极,所述第一方向与所述第二方向相交;
    所述触控结构层包括金属网格,所述金属网格包括多个网格图案,所述网格图案是由多条金属线构成的多边形,所述多个网格图案上设有多个第一切口和多个第二切口,所述多个第一切口位于所述第一触控电极和所述第二触控电极的分界位置,所述多个第二切口位于所述分界位置以外的其它位置;
    所述第一切口使所在的金属线形成第一断线,所述第二切口使所在的金属线形成第二断线;
    所述多个网格图案中,所述第一断线及与其相邻的金属线为第一断线单元,所述第二断线及与其相邻的金属线为第二断线单元,所述第一断线单元的形态不同于所述第二断线单元的形态。
  2. 如权利要求1所述的触控基板,其中,所述第一断线单元的形态包括所述第一断线的端面形状,所述第二断线单元的形态包括所述第二断线的端面形状,所述第一断线的端面形状不同于所述第二断线的端面形状。
  3. 如权利要求2所述的触控基板,其中,所述第一断线的端面形状为平面、曲面、斜面、折面中的任一种或多种。
  4. 如权利要求1所述的触控基板,其中,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;
    所述第一断线单元的形态包括两个所述第一断线的长度,所述第二断线单元的形态包括两个所述第二断线的长度;
    两个所述第一断线的长度相同,两个所述第二断线的长度不同;或者,两个所述第一断线的长度不同,两个所述第二断线的长度相同。
  5. 如权利要求1所述的触控基板,其中,所述第一断线单元的形态包括 所述第一断线的数目,所述第二断线单元的形态包括所述第二断线的数目,所述第一断线的数目与所述第二断线的数目不同;
    所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,或者,所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线。
  6. 如权利要求5所述的触控基板,其中,在所述第一切口使所在的金属线的一端切掉而形成一个所述第一断线的情况下,将所述多个第一切口的假想连线称为第一分界线,沿着所述第一分界线的延伸方向,相邻的两个所述第一断线中的一个与所述第一触控电极连接,另一个与所述第二触控电极连接。
  7. 如权利要求1所述的触控基板,其中,所述第一切口使所在的金属线从中间断开而形成两个所述第一断线,所述第二切口使所在的金属线从中间断开而形成两个所述第二断线;
    所述第一断线单元的形态包括两个所述第一断线之间的距离,所述第二断线单元的形态包括两个所述第二断线之间的距离,两个所述第一断线之间的距离不同于两个所述第二断线之间的距离。
  8. 如权利要求1所述的触控基板,其中,所述第一断线上设置有标记部,所述第二断线上未设置所述标记部。
  9. 如权利要求8所述的触控基板,其中,所述第一断线的靠近所述第一切口的端部设置有所述标记部,或者,所述第一断线与其他金属线相交的位置设置有所述标记部。
  10. 如权利要求1所述的触控基板,其中,与所述第一断线相邻的金属线上设置有标记部,与所述第二断线相邻的金属线上未设置所述标记部。
  11. 如权利要求10所述的触控基板,其中,与所述第一断线相邻的金属线的中间位置设置有所述标记部。
  12. 如权利要求8-11任一项所述的触控基板,其中,所述标记部包括凸出于其所在的金属线设置的凸条或凸块。
  13. 如权利要求12所述的触控基板,其中,所述凸块为多边形、圆形、 椭圆形中的任一种或多种。
  14. 如权利要求1所述的触控基板,其中,所述触控基板还包括设置在所述基底上的显示结构层,所述触控结构层设置在所述显示结构层上,所述显示结构层包括发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边界;
    所述网格图案的金属线在所述基底上的正投影所围成的区域包含至少一个子像素在所述基底上的正投影,所述子像素边界在所述基底上的正投影包含所述网格图案的金属线在所述基底上的正投影。
  15. 如权利要求14所述的触控基板,其中,所述触控结构层包括依次叠设在所述显示结构层上的桥接层、绝缘层和触控层,所述触控层包括所述金属网格,所述触控层包括所述多个第一触控电极、所述多个第二触控电极和多个第一连接部,所述第一连接部与相邻的两个第一触控电极连接,所述第一触控电极和所述第一连接部交替设置,所述桥接层包括多个第二连接部,所述第二连接部通过所述绝缘层上设置的过孔与相邻的两个第二触控电极连接。
  16. 一种触控基板,其中,包括衬底基板和位于所述衬底基板上的触控电极层,所述触控电极层具有由导线组成的网格状结构;
    所述触控电极层包括多条沿第一方向延伸的第一触控电极和多条沿第二方向延伸的第二触控电极,所述第一方向和所述第二方向相交;所述第一触控电极包括沿所述第一方向布置的多个第一触控子电极,所述第二触控电极包括沿所述第二方向布置的多个第二触控子电极,所述第一触控子电极包括多个第一触控电极网格,所述第二触控子电极包括多个第二触控电极网格;所述触控电极层还包括位于相邻的第一触控子电极与第二触控子电极之间的多个分界网格,每个所述分界网格中包括至少两个第一网线,每个所述第一网线上设有第一断口,所述多个分界网格中的第一断口使得相邻的所述第一触控子电极和所述第二触控子电极之间绝缘;所述第一触控电极网格和/或所述第二触控电极网格中设有第二网线,所述第二网线上设有第二断口;
    所述第一网线与所述第二网线的图案形状不同;或者,所述分界网格中的网线上设有凸出部。
  17. 如权利要求16所述的触控基板,其中,所述第一网线包括第一断口和第一断线,所述第一断口将所述第一网线断开以形成所述第一断线;
    所述第二网线具有第二断口和第二断线,所述第二断口将所述第二网线断开以形成所述第二断线。
  18. 如权利要求17所述的触控基板,其中,所述第一断线靠近所述第一断口的一端的横截面形状与所述第二断线靠近所述第二断口的一端的横截面形状不同。
  19. 如权利要求18所述的触控基板,其中,所述第一断线靠近所述第一断口的一端的横截面为非矩形;所述第二断线靠近所述第二断口的一端的横截面为矩形。
  20. 如权利要求19所述的触控基板,其中,所述第一断线靠近所述第一断口的一端的横截面为扇形或T型。
  21. 如权利要求17所述的触控基板,其中,所述第一断线的长度与所述第二断线的长度不同。
  22. 如权利要求21所述的触控基板,其中,
    所述第一网线包括一个第一断口和分别位于所述第一断口两端的两个第一断线;所述两个第一断线的长度不同;
    所述第二网线包括一个第二断口和分别位于所述第二断口两端的两个第二断线;所述两个第二断线的长度相同。
  23. 如权利要求17所述的触控基板,其中,所述第一断口的间距宽度与所述第二断口的间距宽度不同。
  24. 如权利要求23所述的触控基板,其中,所述第一断口的间距宽度大于所述第二断口的间距宽度。
  25. 如权利要求17所述的触控基板,其中,所述第一网线中的第一断线与所述第二网线中的第二断线的数量不同。
  26. 如权利要求25所述的触控基板,其中,所述第一网线包括一个第一断口和位于所述第一断口一端的一个第一断线;
    所述第二网线包括一个第二断口和分别位于所述第二断口两端的两个第二断线。
  27. 如权利要求17所述的触控基板,其中,所述第一网线的端部尺寸和/或形状与所述第二网线的端部尺寸和/或形状不同。
  28. 如权利要求27所述的触控基板,其中,所述第二网线的两个端部的尺寸相同;所述第一网线的至少一个端部的尺寸大于所述第二网线的端部尺寸。
  29. 如权利要求16-28任一项所述的触控基板,其中,所述分界网格中的网线上设有凸出部,设有凸出部的所述网线位于所述分界网格中两个所述第一网线之间。
  30. 如权利要求16-28任一项所述的触控基板,其中,所述网格状结构中的每一个网格为六边形。
  31. 一种显示装置,其中,包括如权利要求1-30任一项所述的触控基板。
PCT/CN2020/126577 2020-05-15 2020-11-04 触控基板及显示装置 WO2021227390A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20935860.5A EP4033336A4 (en) 2020-05-15 2020-11-04 TOUCH SUBSTRATE AND DISPLAY DEVICE
US17/418,198 US11782563B2 (en) 2020-05-15 2020-11-04 Touch substrate and display device
US18/455,737 US20230409153A1 (en) 2020-05-15 2023-08-25 Touch substrate and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010414660.XA CN113672111B (zh) 2020-05-15 2020-05-15 触控基板及显示装置
CN202010414660.X 2020-05-15
CN202010576852.0 2020-06-22
CN202010576852.0A CN111736726B (zh) 2020-06-22 2020-06-22 一种触控基板及触控显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/418,198 A-371-Of-International US11782563B2 (en) 2020-05-15 2020-11-04 Touch substrate and display device
US18/455,737 Continuation US20230409153A1 (en) 2020-05-15 2023-08-25 Touch substrate and display device

Publications (1)

Publication Number Publication Date
WO2021227390A1 true WO2021227390A1 (zh) 2021-11-18

Family

ID=78526347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126577 WO2021227390A1 (zh) 2020-05-15 2020-11-04 触控基板及显示装置

Country Status (3)

Country Link
US (2) US11782563B2 (zh)
EP (1) EP4033336A4 (zh)
WO (1) WO2021227390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236287A1 (zh) * 2022-06-06 2023-12-14 武汉华星光电半导体显示技术有限公司 触控显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967958A (zh) * 2021-02-24 2022-08-30 京东方科技集团股份有限公司 触控面板及其制备方法、显示触控装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912181A (zh) * 2016-05-24 2016-08-31 昆山龙腾光电有限公司 触摸屏制造方法及触摸屏
CN107239181A (zh) * 2016-03-28 2017-10-10 松下知识产权经营株式会社 触摸面板传感器用构件以及触摸面板
JP2018018320A (ja) * 2016-07-28 2018-02-01 凸版印刷株式会社 タッチセンサ用電極フィルムの継ぎ合せ方法
CN110162214A (zh) * 2019-05-05 2019-08-23 武汉华星光电半导体显示技术有限公司 触控面板
WO2020020027A1 (zh) * 2018-07-25 2020-01-30 京东方科技集团股份有限公司 触控模组、触控显示基板和触控显示装置
US20200064958A1 (en) * 2017-06-05 2020-02-27 Samsung Display Co., Ltd. Electronic device
CN111736726A (zh) * 2020-06-22 2020-10-02 京东方科技集团股份有限公司 一种触控基板及触控显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140151098A1 (en) 2011-09-27 2014-06-05 Lg Chem, Ltd Conductive substrate comprising conductive pattern and touch panel comprising same
EP2867754B1 (de) 2012-06-28 2018-04-04 PolyIC GmbH & Co. KG Mehrschichtkörper
WO2014104028A1 (ja) 2012-12-28 2014-07-03 シャープ株式会社 タッチパネル基板、タッチパネル基板の製造方法、及び電子機器
KR101867749B1 (ko) 2014-05-16 2018-06-15 후지필름 가부시키가이샤 터치 패널용 도전 시트 및 정전 용량식 터치 패널
KR102329084B1 (ko) * 2017-06-30 2021-11-18 엘지디스플레이 주식회사 터치 스크린 패널 및 터치 스크린 일체형 표시 장치
KR102632179B1 (ko) 2018-02-22 2024-02-01 삼성디스플레이 주식회사 표시 장치
CN110429207B (zh) 2019-08-07 2022-06-03 合肥鑫晟光电科技有限公司 显示面板、显示装置及制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107239181A (zh) * 2016-03-28 2017-10-10 松下知识产权经营株式会社 触摸面板传感器用构件以及触摸面板
CN105912181A (zh) * 2016-05-24 2016-08-31 昆山龙腾光电有限公司 触摸屏制造方法及触摸屏
JP2018018320A (ja) * 2016-07-28 2018-02-01 凸版印刷株式会社 タッチセンサ用電極フィルムの継ぎ合せ方法
US20200064958A1 (en) * 2017-06-05 2020-02-27 Samsung Display Co., Ltd. Electronic device
WO2020020027A1 (zh) * 2018-07-25 2020-01-30 京东方科技集团股份有限公司 触控模组、触控显示基板和触控显示装置
CN110162214A (zh) * 2019-05-05 2019-08-23 武汉华星光电半导体显示技术有限公司 触控面板
CN111736726A (zh) * 2020-06-22 2020-10-02 京东方科技集团股份有限公司 一种触控基板及触控显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033336A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236287A1 (zh) * 2022-06-06 2023-12-14 武汉华星光电半导体显示技术有限公司 触控显示面板

Also Published As

Publication number Publication date
US20230409153A1 (en) 2023-12-21
EP4033336A4 (en) 2022-12-28
EP4033336A1 (en) 2022-07-27
US11782563B2 (en) 2023-10-10
US20220413656A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
TWI775560B (zh) 顯示裝置
CN111736726B (zh) 一种触控基板及触控显示装置
KR102622089B1 (ko) 유기 발광 표시 장치
TW201917882A (zh) 有機發光二極體顯示器
US20230409153A1 (en) Touch substrate and display device
US11442574B2 (en) Touch structure and touch display panel
WO2021078175A1 (zh) 显示基板及其制备方法、显示面板
US11921963B2 (en) Touch structure, touch display structure, and touch display device
WO2021121095A1 (zh) 阵列基板、显示面板及显示装置
KR20220031889A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN116075171B (zh) 显示面板及其制备方法
WO2019227818A1 (zh) 一种有源矩阵有机发光二极管显示器
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
WO2021237723A1 (zh) 显示面板、触控结构和显示装置
WO2021237720A1 (zh) 显示面板、触控结构和显示装置
US20230205342A1 (en) Touch display device
WO2023141836A1 (zh) 触控结构、触控显示面板及显示装置
WO2023040360A1 (zh) 显示面板
CN112599583B (zh) 显示面板及显示装置
WO2021237722A1 (zh) 显示面板、触控结构和显示装置
WO2022099507A1 (zh) 显示面板的制作方法及显示基板
WO2024021077A1 (zh) 显示面板及显示装置
WO2023035188A1 (zh) 触控面板、触控显示面板和触控显示装置
CN218867111U (zh) 显示面板以及显示装置
WO2023245601A1 (zh) 驱动背板及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: CN2020126577

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020935860

Country of ref document: EP

Effective date: 20220421

NENP Non-entry into the national phase

Ref country code: DE