WO2021237720A1 - 显示面板、触控结构和显示装置 - Google Patents

显示面板、触控结构和显示装置 Download PDF

Info

Publication number
WO2021237720A1
WO2021237720A1 PCT/CN2020/093478 CN2020093478W WO2021237720A1 WO 2021237720 A1 WO2021237720 A1 WO 2021237720A1 CN 2020093478 W CN2020093478 W CN 2020093478W WO 2021237720 A1 WO2021237720 A1 WO 2021237720A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
density
ratio
notch
touch
Prior art date
Application number
PCT/CN2020/093478
Other languages
English (en)
French (fr)
Inventor
刘丽艳
王新星
孙雪菲
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000868.5A priority Critical patent/CN114072919A/zh
Priority to US17/271,582 priority patent/US11460940B2/en
Priority to EP20904256.3A priority patent/EP3993056A4/en
Priority to PCT/CN2020/093478 priority patent/WO2021237720A1/zh
Publication of WO2021237720A1 publication Critical patent/WO2021237720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and particularly refers to a display panel, a touch control structure, and a display device.
  • OLED Organic Light Emitting Diode
  • OLED is an active light emitting display device, which has the advantages of self-luminescence, wide viewing angle, high contrast, low power consumption, and extremely high response speed.
  • OLED is Light-emitting devices and flexible display devices (Flexible Display) controlled by thin film transistors (TFTs for short) have become mainstream products in the current display field.
  • the OLED touch substrate adopts a flexible multi-layer covered surface (Flexible Multi Layer On Cell, referred to as FMLOC) structure, and the flexible touch substrate is set on the encapsulation layer of the OLED backplane On top, it has the advantages of being light, thin and foldable.
  • the driving electrodes (Tx) and sensing electrodes (Rx) in the touch substrate adopt the form of metal mesh.
  • metal meshes Compared with the use of transparent conductive materials (such as Indium Tin Oxide, ITO for short) to form touch electrodes, metal meshes have the advantages of small resistance, small thickness, and fast response speed.
  • the present disclosure provides a display panel including a substrate, a display structure layer provided on the substrate, and a touch structure layer provided on the display structure layer; the display structure layer includes a light-emitting area and a non-luminous area.
  • a light-emitting area, the light-emitting area includes a plurality of sub-pixels arranged periodically, the non-light-emitting area includes a sub-pixel boundary between adjacent sub-pixels;
  • the touch structure layer includes a plurality of grid patterns, the The grid pattern is a polygon formed by metal lines.
  • the area enclosed by the orthographic projection of the metal line on the substrate includes the orthographic projection of at least one sub-pixel on the substrate.
  • the boundary of the sub-pixel is on the substrate.
  • the orthographic projection on the substrate includes the orthographic projection of the metal wire on the substrate;
  • the touch structure layer includes a bridge layer, an insulating layer, and a touch layer that are stacked, and the touch layer includes a plurality of first touch electrodes and a plurality of first connection portions sequentially arranged along a first extension direction, and A plurality of second touch electrodes arranged in sequence along a second extending direction, the first extending direction intersects the second extending direction; the plurality of first touch electrodes and the plurality of first connecting parts are alternately arranged and Sequentially connected, the plurality of second touch electrodes are arranged at intervals; the bridge layer includes a connecting bridge, and the connecting bridge is connected with the adjacent second touch electrode;
  • the touch structure layer includes a plurality of repeating units repeatedly and continuously arranged, a plurality of cuts are provided in the plurality of grid patterns of the repeating unit, and the cuts cut off the metal wires of the grid pattern;
  • the maximum characteristic length S L*tan(1/(57.3*CPD)); where L is the distance from the viewer’s eyes to the display screen, CPD is the spatial frequency within 1 degree of the viewer’s eyes, and L is 100mm to 1000mm, The CPD is greater than or equal to 10, and the maximum characteristic length of the repeating unit is the maximum dimension in a certain direction of the repeating unit.
  • the distance between the viewer’s eyes and the display screen is 100mm to 400mm, and the maximum characteristic length of the repeating unit is 0.2mm to 0.4mm; the distance between the viewer’s eyes and the display screen is 400mm to 1000mm. , The maximum characteristic length of the repeating unit is 0.4mm to 1.2mm.
  • the grid pattern includes at least two first sides parallel to each other and two second sides parallel to each other, and the first side and the second side are not parallel;
  • the incisions include continuous incisions, the number of incisions in the continuous incisions is less than or equal to 3, and the continuous incisions are two of each of the at least one grid pattern continuously arranged in the first direction. Cuts are provided on each of the first sides, and the first direction crosses the first side of each grid pattern, or the continuous cuts are each of at least one of the grid patterns continuously arranged in the second direction. Two second sides of each grid pattern are provided with cuts, and the second direction crosses the second side of each grid pattern.
  • the incision further includes a corner incision.
  • the corner incision has continuous incisions in the first direction or the second direction, the number of incisions in the continuous incision is less than or equal to 2;
  • the corner cuts are provided with cuts on a first side and a second side of the grid pattern.
  • the multiple corner cuts when there are multiple corner cuts, the multiple corner cuts constitute an open figure.
  • the touch structure layer includes a touch area, a boundary area, and a connecting bridge area
  • the touch area includes a first touch electrode and a second touch electrode
  • the connecting bridge area includes A first connecting portion and a second connecting portion; among the multiple repeating units that are repeatedly and continuously arranged to form the touch structure layer, the repeating unit is divided into a first repeating unit including a cutout in the touch area and a boundary The second repeating unit of the cut in the zone and the third repeating unit including the cut in the connecting bridge zone;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the second The ratio of the notch density of the repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the notch density is the ratio of the number of notches in the repeating unit to the number of grid patterns in the repeating unit.
  • the incision includes at least a first direction incision that cuts off the first side and a second direction incision that cuts off the second side;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the second repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the second repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the second repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the second repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the cut density in the first direction is the ratio of the number of cuts in the first direction in the repeating unit to the number of grid patterns in the repeating unit
  • the cut density in the second direction is the number of cuts in the second direction in the repeating unit and the number of cuts in the repeating unit. The ratio of the number of grid patterns.
  • the multiple sub-pixels include a first sub-pixel emitting a first color, a second sub-pixel emitting a second color, and a third sub-pixel emitting a third color; in the first repeat Unit, the second repeating unit, and the third repeating unit, the cutout includes a first cutout located between the first sub-pixel and the second sub-pixel, and located between the second sub-pixel and the third sub-pixel A second incision between the first and third sub-pixels, and a third incision between the first sub-pixel and the third sub-pixel;
  • the ratio of the first notch density to the second notch density is 0.7 to 1.3
  • the ratio of the second notch density to the third notch density is 0.7 to 1.3
  • the ratio of the density of the first notch to the density of the third notch is 0.7 to 1.3;
  • the first notch density is the ratio of the number of first notches in the repeating unit to the number of grid patterns in the repeating unit
  • the second notch density is the ratio of the number of second notches in the repeating unit to the number of grids in the repeating unit
  • the ratio of the number of patterns, the third cut density is the ratio of the number of third cuts in the repeating unit to the number of grid patterns in the repeating unit.
  • the ratio of the first incision density to the second incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal incision density to the second horizontal incision density is 0.7 to 1.3, and the first vertical incision density is 0.7 to 1.3.
  • the ratio of the density of the straight incision to the density of the second vertical incision is 0.7 to 1.3, and the ratio of the density of the first oblique incision to the density of the second oblique incision is 0.7 to 1.3;
  • the ratio of the second incision density to the third incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the second horizontal incision density to the third horizontal incision density is 0.7 to 1.3, and the second The ratio of the vertical incision density to the third vertical incision density is 0.7 to 1.3, and the ratio of the second oblique incision density to the third oblique incision density is 0.7 to 1.3;
  • the ratio of the first incision density to the third incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal incision density to the third horizontal incision density is 0.7 to 1.3, and the first vertical incision density is 0.7 to 1.3.
  • the ratio of the density of the straight incision to the density of the third vertical incision is 0.7 to 1.3, and the ratio of the density of the first oblique incision to the density of the third oblique incision is 0.7 to 1.3.
  • the ratio of the first notch density of the first repeating unit to the first notch density of the second repeating unit is 0.7 to 1.3; the second notch density of the first repeating unit is relative to the second repeating unit The ratio of the second notch density of the second repeating unit is 0.7 to 1.3; the ratio of the third notch density of the first repeating unit to the third notch density of the second repeating unit is 0.7 to 1.3;
  • the ratio of the first notch density of the first repeating unit to the first notch density of the third repeating unit is 0.7 to 1.3; the second notch density of the first repeating unit is relative to the third repeating unit The ratio of the second notch density of the first repeating unit is 0.7 to 1.3; the ratio of the third notch density of the first repeating unit to the third notch density of the third repeating unit is 0.7 to 1.3;
  • the ratio of the first notch density of the second repeating unit to the first notch density of the third repeating unit is 0.7 to 1.3; the second notch density of the second repeating unit is relative to the third repeating unit
  • the connecting bridge includes a pad portion and a second connecting wire, the pad portion is configured to be connected to an adjacent second touch electrode through a via on the insulating layer, and the second connecting wire is configured to connect to the Land part
  • the touch layer further includes a second connection unit and a first connection line.
  • the second connection unit and the first connection line are spaced apart and insulated from each other.
  • the position of the second connection unit and the pad of the bridge layer Corresponding to the position of the part, configured to be connected to the pad part through the via hole on the insulating layer, the orthographic projection of the first connecting line on the substrate and the second connecting line on the substrate
  • the orthographic projections basically overlap.
  • the present disclosure also provides a display device including the aforementioned display panel.
  • the present disclosure also provides a touch control structure, including a bridge layer, an insulating layer, and a touch layer that are stacked, the touch layer including a plurality of first touch electrodes sequentially arranged along a first extension direction And a plurality of first connecting portions, and a plurality of second touch electrodes sequentially arranged along a second extension direction, the first extension direction intersects the second extension direction; the plurality of first touch electrodes and A plurality of first connecting parts are alternately arranged and connected in sequence, the plurality of second touch electrodes are arranged at intervals; the bridge layer includes a connecting bridge, and the connecting bridge is connected to an adjacent second touch electrode;
  • the touch structure layer includes a plurality of repeating units repeatedly and continuously arranged, the repeating unit includes a plurality of grid patterns, the grid patterns are polygons formed by metal lines, and the plurality of grid patterns are provided with multiple repeating units.
  • a cut, the cut cuts off the metal wire of the grid pattern;
  • the maximum characteristic length of the repeating unit S L*tan(1/(57.3*CPD)); where L is the distance from the viewer’s eyes to the display screen, CPD is the spatial frequency within 1 degree of the viewer's eyes, L is 100 mm to 1000 mm, CPD is greater than or equal to 10, and the maximum characteristic length of the repeating unit is the maximum dimension of the repeating unit in a certain direction.
  • the distance between the viewer’s eyes and the display screen is 100mm to 400mm, and the maximum characteristic length of the repeating unit is 0.2mm to 0.4mm; the distance between the viewer’s eyes and the display screen is 400mm to 1000mm. , The maximum characteristic length of the repeating unit is 0.4mm to 1.2mm.
  • the grid pattern includes at least two first sides parallel to each other and two second sides parallel to each other, and the first side and the second side are not parallel;
  • the incisions include continuous incisions, the number of incisions in the continuous incisions is less than or equal to 3, and the continuous incisions are two of each of the at least one grid pattern continuously arranged in the first direction. Cuts are provided on each of the first sides, and the first direction intersects the first side of each grid pattern, or each grid pattern in at least one of the grid patterns continuously arranged in the second direction Cuts are provided on both of the two second sides, and the second direction crosses the second side of each grid pattern.
  • the incision further includes a corner incision.
  • the corner incision has continuous incisions in the first direction or the second direction, the number of incisions in the continuous incision is less than or equal to 2;
  • the corner cut is provided with cuts on a first side and a second side of the grid pattern, and there is a continuous cut in one direction of the corner cut, which means that the grid pattern adjacent to the first side has a continuous cut.
  • the cut, or the grid pattern adjacent to the second side has a continuous cut.
  • the multiple corner cuts when there are multiple corner cuts, the multiple corner cuts constitute an open figure.
  • the touch structure layer includes a touch area, a boundary area, and a connecting bridge area
  • the touch area includes a first touch electrode and a second touch electrode
  • the connecting bridge area includes A first connecting portion and a second connecting portion; among the multiple repeating units that are repeatedly and continuously arranged to form the touch structure layer, the repeating unit is divided into a first repeating unit including a cutout in the touch area and a boundary The second repeating unit of the cut in the zone and the third repeating unit including the cut in the connecting bridge zone;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the second The ratio of the notch density of the repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the notch density is the ratio of the number of notches in the repeating unit to the number of grid patterns in the repeating unit.
  • the incision includes at least a first direction incision that cuts off the first side and a second direction incision that cuts off the second side;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the second repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the second repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the second repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the second repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the cut density in the first direction is the ratio of the number of cuts in the first direction in the repeating unit to the number of grid patterns in the repeating unit
  • the cut density in the second direction is the number of cuts in the second direction in the repeating unit and the number of cuts in the repeating unit. The ratio of the number of grid patterns.
  • the connecting bridge includes a pad portion and a second connecting wire, the pad portion is configured to be connected to an adjacent second touch electrode through a via on the insulating layer, and the second connecting wire is configured to connect to the Land part
  • the touch layer further includes a second connection unit and a first connection line.
  • the second connection unit and the first connection line are spaced apart and insulated from each other.
  • the position of the second connection unit and the pad of the bridge layer The position of the part corresponds to that of the pad part through the via hole on the insulating layer.
  • the orthographic projection of the first connecting line on the substrate is the same as that of the second connecting line on the substrate The orthographic projections basically overlap.
  • FIG. 1 is a schematic diagram of a structure of a touch structure layer
  • Figure 2-1 to Figure 2-5 are schematic diagrams of the structure of the metal grid
  • FIG. 3 is a schematic diagram of the structure of a touch structure layer in the form of a metal mesh
  • FIG. 4 is a schematic diagram of a planar structure showing a structure layer
  • Figures 5-1 to 5-3 are schematic diagrams of the structure of the pixel unit
  • FIG. 6 is a schematic diagram showing a cross-sectional structure of the structure layer
  • FIGS. 7-1 to 7-3 are schematic structural diagrams of a display panel according to an exemplary embodiment of the present disclosure.
  • Figures 8-1 to 8-4 are schematic diagrams of touch area, boundary area and connection bridge area
  • Figure 9-1 to Figure 9-2 are schematic diagrams of watermark defects in the touch area
  • Fig. 10 is a schematic diagram of a repeating unit according to an exemplary embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of the spatial frequency within 1 degree of the viewer's eye
  • Figures 12-1 to 12-3 are schematic diagrams of the shape of the repeating unit
  • Figures 13-1 to 13-2 are schematic diagrams of continuous incisions in an exemplary embodiment of the present disclosure.
  • 14-1 to 14-2 are schematic diagrams of corner cuts in an exemplary embodiment of the present disclosure.
  • 15-1 to 15-2 are schematic diagrams of open graphics of exemplary embodiments of the present disclosure.
  • 16-1 to 16-2 are schematic diagrams of directional cuts in an exemplary embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of the incision density of an exemplary embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a repeating unit according to an exemplary embodiment of the present disclosure.
  • Fig. 19 is a schematic diagram of another repeating unit of an exemplary embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of area setting of an exemplary embodiment of the present disclosure.
  • Figures 21 to 24 are schematic diagrams of several repeating units in an exemplary embodiment of the present disclosure.
  • FIG. 25 is a schematic diagram of repeated unit watermark simulation according to an exemplary embodiment of the present disclosure.
  • Figure 26-1 to Figure 26-3 are schematic diagrams of a metal grid connecting bridge area
  • FIG. 27-1 to FIG. 27-2 are schematic diagrams of the structure of the metal grid connecting the bridge area according to an exemplary embodiment of the present disclosure.
  • connection part 20—Second connection part; 30—cut; 50—pixel unit;
  • 51 the first sub-pixel
  • 52 the second sub-pixel
  • 53 the third sub-pixel
  • 63 Light-emitting structure layer
  • 64 encapsulation layer
  • 100 touch area
  • 200 Border area
  • 201 Second touch unit
  • 202 Second transmission line
  • 702 sub-pixel horizontal boundary
  • 703 sub-pixel vertical boundary
  • 800 touch structure layer
  • 801 Grid pattern
  • 802 Horizontal metal line
  • 803 Very metal line
  • 901 The first horizontal incision
  • 902 The second horizontal incision
  • 903 The first vertical incision
  • installation should be interpreted broadly unless otherwise clearly defined and defined.
  • it can be a fixed connection, or a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate piece, or a connection between two components.
  • connection can be a fixed connection, or a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate piece, or a connection between two components.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between the drain electrode (drain electrode terminal, drain region, or drain electrode) and the source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, channel region, and source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged. Therefore, in this specification, “source electrode” and “drain electrode” can be interchanged.
  • electrical connection includes the case where constituent elements are connected together by elements having a certain electrical function.
  • An element having a certain electrical function is not particularly limited as long as it can transmit and receive electrical signals between connected constituent elements.
  • elements having a certain electrical function include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel refers to a state where the angle formed by two straight lines is -10° or more and 10° or less, and therefore, it also includes a state where the angle is -5° or more and 5° or less.
  • perpendicular refers to a state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore also includes a state where an angle of 85° or more and 95° or less is included.
  • film and “layer” can be interchanged.
  • conductive layer can be replaced with “conductive film”.
  • insulating film may sometimes be replaced with an “insulating layer.”
  • the "about” in the present disclosure refers to a value within the allowable process and measurement error range without strictly limiting the limit.
  • the display panel of the present disclosure includes a display structure layer provided on a substrate and a touch control structure layer provided on the display structure layer.
  • the display structure layer may be a liquid crystal display (LCD) structure layer, or may be an organic light emitting diode (OLED) structure layer, or may be a plasma display panel (PDP) structure layer, or may be an electrophoretic display (EPD) structure layer.
  • the display structure layer is an OLED structure layer
  • the OLED structure layer includes a substrate, a driving circuit layer disposed on the substrate, a light emitting structure layer disposed on the driving circuit layer, and an encapsulation layer disposed on the light emitting structure layer .
  • the touch structure layer is arranged on the encapsulation layer of the display structure layer to form a touch on Thin Film Encapsulation (Touch on TFE) structure.
  • Touch on TFE Thin Film Encapsulation
  • FIG. 1 is a schematic diagram of the structure of a touch structure layer.
  • the touch structure layer includes a plurality of first touch units 101 and a plurality of second touch units 201.
  • a line shape extending in the first extension direction D1 a plurality of first touch units 101 are arranged in sequence along a second extension direction D2
  • a second touch unit 201 has a line shape extending in a second extension direction D2
  • the control units 201 are arranged in sequence along the first extension direction D1, and the first extension direction D1 crosses the second extension direction D2.
  • Each first touch unit 101 includes a plurality of first touch electrodes 10 and a first connection portion 11 arranged in sequence along a first extension direction D1, and the plurality of first touch electrodes 10 and a plurality of first connection portions 11 alternately Set up and connect sequentially.
  • Each second touch unit 201 includes a plurality of second touch electrodes 20 arranged in sequence along the second extension direction D2, the plurality of second touch electrodes 20 are arranged at intervals, and adjacent second touch electrodes 20 pass through the second The connecting parts 21 are connected to each other.
  • the layer where the second connection portion 21 is located is different from the layer where the first touch electrode 10 and the second touch electrode 20 are located.
  • the first touch electrodes 10 and the second touch electrodes 20 are alternately arranged in the third extension direction D3, and the third direction D3 intersects the first extension direction D1 and the second extension direction D2.
  • Each first touch unit 101 is connected to the first pad electrode 103 through a first transmission line 102
  • each second touch unit 201 is connected to the second pad electrode 203 through a second transmission line 202.
  • the first touch electrode 10 is connected to the driver of the display panel through the first pad electrode 103
  • the second touch electrode 20 is connected to the driver through the second pad electrode 203
  • the driver applies a driving signal to On the second touch electrode 20 and receive the output signal from the first touch electrode 10, or the driver may apply a driving signal to the first touch electrode 10 and receive the output signal from the second touch electrode 20.
  • the driver can determine the location of the touch by detecting the sensing signals generated in the multiple electrodes when different electrodes emit touch signals.
  • the plurality of first touch electrodes 10, the plurality of second touch electrodes 20, and the plurality of first connection portions 11 may be provided on the touch layer in the same layer, and may be formed by the same patterning process,
  • the first touch electrode 10 and the first connecting portion 11 may be an integral structure connected to each other.
  • the second connecting portion 21 may be disposed on the bridge layer, and the adjacent second touch electrodes 20 are connected to each other through via holes, and an insulating layer is disposed between the touch layer and the bridge layer.
  • the plurality of first touch electrodes 10, the plurality of second touch electrodes 20, and the plurality of second connecting portions 21 may be provided in the same layer on the touch layer, and the second touch electrodes 20 and the first The two connecting portions 21 may be an integral structure connected to each other, and the first connecting portion 11 may be disposed on the bridge layer, and adjacent first touch electrodes 10 are connected to each other through via holes.
  • the first touch electrode may be a driving electrode (Tx)
  • the second touch electrode may be a sensing electrode (Rx)
  • the first touch electrode may be a sensing electrode (Rx)
  • the second touch electrode may be a sensing electrode (Rx).
  • the touch electrodes may be driving electrodes (Tx).
  • the first touch electrode 10 and the second touch electrode 20 may have a rhombus shape, such as a regular rhombus, a horizontally long rhombus, or a vertically long rhombus.
  • the first touch electrode 10 and the second touch electrode 20 may have any one or more of triangles, squares, trapezoids, parallelograms, pentagons, hexagons and other polygons. , The present disclosure is not limited here.
  • the first touch electrode 10 and the second touch electrode 20 may be in the form of a metal mesh.
  • the metal mesh is formed by interweaving a plurality of metal wires.
  • the metal mesh includes a plurality of mesh patterns.
  • the pattern is a polygon composed of multiple metal lines.
  • the first touch electrode 10 and the second touch electrode 20 formed in the metal mesh format have the advantages of small resistance, small thickness, and fast response speed.
  • the area enclosed by the metal lines in a grid pattern includes the area of the sub-pixels in the display structure layer, and the position of the metal line is located between adjacent sub-pixels.
  • the sub-pixel area may be the light-emitting area defined by the pixel defining layer in the light-emitting structure layer, and the area enclosed by the metal line includes the light-emitting area, and the metal line is located in the corresponding pixel defining layer. Location, that is, in a non-luminous area.
  • Figure 2-1 to Figure 2-5 are schematic diagrams of several metal grid structures.
  • the metal grid includes a plurality of grid patterns, and the grid pattern is a polygon formed by metal lines.
  • the metal grid is formed by repeating and continuously setting and splicing grid patterns.
  • the shape of the grid pattern enclosed by the metal wires may be a rhombus, as shown in FIG. 2-1.
  • the shape of the grid pattern enclosed by the metal wires can be a triangle, as shown in Figure 2-2.
  • the shape of the grid pattern enclosed by the metal wires can be rectangular, as shown in Figure 2-3.
  • the shape of the grid pattern enclosed by the metal wires may be hexagonal, as shown in Figs. 2-4.
  • the shape of the grid pattern enclosed by the metal wires can be a combination of multiple shapes, such as a combination of pentagons and hexagons, as shown in Figure 2-5.
  • the shape of the grid pattern surrounded by the metal wires may include any one or more of triangles, squares, rectangles, rhombuses, trapezoids, pentagons, and hexagons.
  • the grid pattern enclosed by the metal wire may be a regular shape or an irregular shape, and the sides of the grid pattern may be straight lines or curved lines, which is not limited in the present disclosure. .
  • the line width of the metal wire is ⁇ 5 ⁇ m.
  • FIG. 3 is a schematic structural diagram of a touch structure layer in the form of a metal mesh, which is an enlarged area of area A in FIG. 1, and the mesh pattern is a rhombus shape.
  • a plurality of cuts 30 are provided on the metal grid, and the multiple cuts 30 break the metal wires of the grid pattern to realize the second
  • the grid pattern of one touch electrode 10 is separated from the grid pattern of the second touch electrode 20.
  • a black block is used to represent the incision 30, and the incision 30 can be understood as an imaginary line for cutting a metal wire.
  • a plurality of cuts 30 makes a metal mesh form a Bulk area 100, a boundary area 200 and a bridge area 300.
  • Each grid pattern in the boundary area 200 is provided with a cut, which cuts off the metal lines of the grid pattern, so that each grid pattern is divided into two parts, one part belongs to the first touch electrode 10, and the other part belongs to the second touch electrode.
  • the control electrode 20, or a part belongs to the second touch electrode 20, and the other part belongs to the first touch electrode 10.
  • the connecting bridge area 300 includes a first connecting portion and a second connecting portion. The first connecting portion is used to realize the connection between the two first touch electrodes 10, and the second connecting portion is used to realize the two The second touch electrodes 20 are connected to each other.
  • the touch area 100 is also provided with multiple cuts (not shown), and the multiple cuts respectively form one or more dummy areas in the touch area.
  • the control area includes a first touch electrode and a virtual area, and the touch area on the other side of the boundary area includes a second touch electrode and the virtual area.
  • the connecting bridge area 300 is also provided with multiple cuts (not shown), and the multiple cuts realize isolation and connection of related grid patterns.
  • Fig. 4 is a schematic diagram of a planar structure showing a structure layer.
  • the display structure layer includes a plurality of pixel units regularly arranged.
  • each pixel unit may include 3 sub-pixels, or may include 4 sub-pixels, or may include a plurality of sub-pixels.
  • the 3 sub-pixels include a first sub-pixel that emits light of the first color, a second sub-pixel that emits light of the second color, and a third sub-pixel that emits light of the third color.
  • the 4 sub-pixels include a first sub-pixel that emits light of the first color, a second sub-pixel that emits light of a second color, a third sub-pixel that emits light of a third color, and a fourth color.
  • the fourth sub-pixel of the light As an exemplary illustration, the pixel unit 50 shown in FIG. 4 includes 4 sub-pixels, namely a first sub-pixel 51, a second sub-pixel 52, a third sub-pixel 53 and a fourth sub-pixel 54.
  • the shapes of the four sub-pixels are all It is square, arranged in a square manner.
  • the first sub-pixel 51 and the fourth sub-pixel 54 are green sub-pixels that emit green (G) light
  • the second sub-pixel 52 is a red sub-pixel that emits red (R) light
  • the third sub-pixel is The pixel 53 is a blue sub-pixel emitting blue (B) light, and forms a pixel unit 50 in a square arrangement of RGGB.
  • the first sub-pixel 51 may be a green sub-pixel
  • the second sub-pixel 52 may be a red sub-pixel
  • the third sub-pixel 53 may be a blue sub-pixel
  • the fourth sub-pixel 54 may be a white sub-pixel.
  • the pixel unit may include red sub-pixels, green sub-pixels, blue sub-pixels, cyan sub-pixels, magenta sub-pixels, yellow sub-pixels, and white sub-pixels.
  • the 4 sub-pixels included in the pixel unit 50 may adopt various shapes and be arranged in various ways.
  • Figures 5-1 to 5-3 are schematic diagrams of the structure of several pixel units.
  • the 4 sub-pixels can be rectangular and arranged in parallel, from left to right: R sub-pixel, G sub-pixel, B sub-pixel, and G sub-pixel, as shown in Figure 5-1.
  • the 4 sub-pixels can adopt pentagonal and hexagonal shapes respectively, and are arranged in a parallel manner.
  • the two pentagonal G sub-pixels are located in the middle of the pixel unit, and the hexagonal R sub-pixel and the hexagonal B sub-pixel are located in the middle of the pixel unit.
  • the pixels are located on both sides of the G sub-pixel, as shown in Figure 5-2.
  • the 3 rectangular-shaped sub-pixels may be arranged in a parallel manner in a horizontal direction, or may be arranged in a parallel manner in a vertical direction, as shown in FIG. 5-3.
  • the shape of the sub-pixels can be any one or more of triangles, squares, rectangles, rhombuses, trapezoids, parallelograms, pentagons, hexagons and other polygons, and the arrangement can be X-shaped, cross-shaped, or fret-shaped, etc., are not limited in the present disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of a display structure layer, illustrating the structure of two sub-pixels during OLED display.
  • the display structure layer includes a driving circuit layer 62 disposed on a flexible substrate 61, a light emitting structure layer 63 disposed on the driving circuit layer 62, and a light emitting structure layer. 63 on the encapsulation layer 64.
  • the touch structure layer is disposed on the encapsulation layer 64.
  • the display structure layer may include other film layers, and other film layers may be provided between the touch structure layer and the encapsulation layer, which is not limited in the present disclosure.
  • the flexible substrate 61 may include a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second inorganic material layer that are stacked, the first flexible material layer and the second inorganic material layer.
  • the material of the flexible material layer can be made of polyimide (PI), polyethylene terephthalate (PET) or surface-treated polymer soft film, etc.
  • the first inorganic material layer and the second inorganic material layer are The material can be silicon nitride (SiNx) or silicon oxide (SiOx) to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer can be amorphous silicon (a-si).
  • the driving circuit layer 62 may include transistors and storage capacitors constituting the pixel driving circuit.
  • each sub-pixel includes one transistor and one storage capacitor as an example for illustration.
  • the driving circuit layer 62 of each sub-pixel may include: a first insulating layer disposed on the flexible substrate, an active layer disposed on the first insulating layer, and a second insulating layer covering the active layer.
  • the fourth insulating layer is provided with a via hole, the via hole exposes the active layer, the source electrode and the drain electrode are arranged on the fourth insulating layer, and the source electrode and the drain electrode pass through the via hole and the active layer respectively.
  • Layer connection covering the flat layer of the aforementioned structure.
  • the active layer, the gate electrode, the source electrode and the drain electrode constitute a transistor, and the first capacitor electrode and the second capacitor electrode constitute a storage capacitor.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer can be made of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON). Any one or more of can be a single layer, multiple layers or composite layers.
  • the first insulating layer can be called a buffer layer to improve the water and oxygen resistance of the substrate
  • the second insulating layer and the third insulating layer can be called gate insulating (GI) layers
  • the fourth insulating layer can be called It is the Interlayer Insulation (ILD) layer.
  • the first metal film, the second metal film and the third metal film can be made of metal materials, such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), may have a single-layer structure or a multilayer composite structure, such as Ti/Al/Ti.
  • metal materials such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the active layer film can use amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polysilicon (p-Si) , Hexathiophene or polythiophene and other materials, that is, the present disclosure is applicable to transistors manufactured based on Oxide technology, silicon technology or organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polysilicon
  • Hexathiophene or polythiophene and other materials that is, the present disclosure is applicable to transistors manufactured based on Oxide technology, silicon technology or organic technology.
  • the light-emitting structure layer 63 may include an anode, a pixel definition layer, an organic light-emitting layer, and a cathode.
  • the anode is disposed on the flat layer and is connected to the drain electrode through a via hole opened on the flat layer.
  • the pixel definition layer is disposed on the flat layer.
  • the anode and the flat layer are provided with pixel openings, the pixel openings expose the anode, the organic light-emitting layer is provided in the pixel opening, and the cathode is provided on the organic light-emitting layer.
  • the organic light-emitting layer emits light under the action of the voltage applied to the anode and the cathode. Color light.
  • the encapsulation layer 64 may include a first encapsulation layer, a second encapsulation layer, and a third encapsulation layer that are stacked, the first encapsulation layer and the third encapsulation layer may be made of inorganic materials, and the second encapsulation layer may be Organic material, the second encapsulation layer is arranged between the first encapsulation layer and the third encapsulation layer, which can ensure that outside water vapor cannot enter the light-emitting structure layer 63.
  • the display structure layer includes a light-emitting area and a non-light-emitting area.
  • the pixel opening area is the light-emitting area P1
  • the area outside the pixel opening is the non-light-emitting area P2
  • the non-light-emitting area P2 is located in the light-emitting area. The periphery of P1.
  • each light-emitting area P1 is called a sub-pixel, such as a red sub-pixel, a blue sub-pixel, or a green sub-pixel
  • each non-light-emitting area P2 is called a sub-pixel boundary, such as The red-green sub-pixel boundary between the red sub-pixel and the green sub-pixel, and the blue-green sub-pixel boundary between the blue sub-pixel and the green sub-pixel.
  • the light-emitting area of the display structure layer includes a plurality of sub-pixels arranged periodically, and the non-light-emitting area of the display structure layer includes the sub-pixel boundary between adjacent sub-pixels.
  • FIG. 7-1 to FIG. 7-3 are schematic diagrams of the structure of a display panel according to an exemplary embodiment of the present disclosure.
  • the display panel includes a display structure layer 700 and a touch structure layer 800 stacked on a substrate.
  • the display structure layer 700 includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel that are periodically arranged, and four square-shaped sub-pixels are arranged in a square manner, as shown in FIG. 7 -1 shown.
  • Figure 7-1 illustrates 20 sub-pixel rows and 20 sub-pixel columns, forming 20*20 sub-pixels 701, multiple sub-pixel horizontal boundaries 702 between adjacent sub-pixel rows, and between adjacent sub-pixel columns
  • a plurality of sub-pixel vertical boundaries 703, the sub-pixel horizontal boundaries 702 extend along the horizontal direction
  • the sub-pixel vertical boundaries 703 extend along the vertical direction.
  • the touch structure layer 800 includes a first grid pattern, a second grid pattern, a third grid pattern, and a fourth grid pattern that are periodically arranged, and the shape of the first grid pattern is the same as that of the first grid pattern.
  • the shape of the sub-pixels can be the same, the shape of the second grid pattern and the shape of the second sub-pixel can be the same, the shape of the third grid pattern and the shape of the third sub-pixel can be the same, and the shape of the fourth grid pattern is the same as that of the first sub-pixel.
  • the shapes of the four sub-pixels can be the same, as shown in Figure 7-2.
  • Figure 7-2 shows 20 grid rows and 20 grid columns to form 20*20 grid patterns 801.
  • the 20*20 grid patterns 801 consist of multiple horizontal metal lines 802 and multiple vertical metal lines. 803 vertically cross structure.
  • 20*20 grid patterns may be referred to as one repeating unit.
  • FIG. 7-3 illustrates a schematic diagram of the touch structure layer 800 disposed on the display structure layer 700.
  • the 20*20 grid patterns 801 in the touch structure layer 800 correspond to the positions of the 20*20 sub-pixels 701 in the display structure layer 700.
  • the position of the first grid pattern corresponds to the position of the first sub-pixel
  • the position of the second grid pattern corresponds to the position of the second sub-pixel
  • the position of the third grid pattern corresponds to the position of the third sub-pixel.
  • the position is corresponding, and the position of the fourth grid pattern corresponds to the position of the fourth sub-pixel.
  • the multiple horizontal metal lines 802 in the touch structure layer 800 correspond to the positions of the multiple sub-pixel horizontal boundaries 702 in the display structure layer 700
  • the multiple vertical metal lines 803 in the touch structure layer 800 correspond to the multiple sub-pixels in the display structure layer 700.
  • the position of the vertical pixel boundary 703 corresponds to the position of the sub-pixel horizontal boundary 702 on the substrate.
  • the orthographic projection of the sub-pixel horizontal boundary 702 on the substrate includes the orthographic projection of the horizontal metal line 802 on the substrate.
  • the orthographic projection of the sub-pixel vertical boundary 703 on the substrate includes the vertical metal line. Orthographic projection of 803 on the substrate. In this way, the area enclosed by the orthographic projection of the metal wire on the substrate includes the orthographic projection of at least one sub-pixel on the substrate.
  • the orthographic projection of A includes the orthographic projection of B means that "the orthographic projection of B is within the range of the orthographic projection of A", which means that the boundary of the orthographic projection of B falls within the orthographic projection of A. Within the range, or the boundary of the orthographic projection of A is equal to the boundary of the orthographic projection of B.
  • the metal lines in the touch structure layer 800 are located in the non-luminous sub-pixel boundary area of the display structure layer 700, and the metal lines do not pass through the light-emitting area where light is emitted.
  • the shape of the grid pattern may be different from the shape of the sub-pixels, which is not limited in the present disclosure.
  • the multiple grid patterns of the touch structure layer 800 are provided with multiple cuts, and the multiple cuts break the metal lines of the grid pattern, so that the touch structure layer 800 forms a touch area and a boundary.
  • Area and connecting bridge area As shown in Figure 7-3, the grid pattern corresponding to the sub-pixel 701 in the position without color filling is the touch area, and the grid pattern corresponding to the sub-pixel 701 in the dark-filling position is the boundary area, and the boundary area is X shape, the overlapping area in the middle of the X shape is the connecting bridge area.
  • the touch area includes a first touch electrode and a second touch electrode.
  • the boundary area is arranged between the adjacent first touch electrode and the second touch electrode. There are multiple grid patterns in the boundary area.
  • the notch cuts off the metal wire of the grid pattern, so that the adjacent first touch electrode and the second touch electrode are insulated.
  • the upper touch area and the lower touch area may be the first touch electrode
  • the left touch area and the right touch area may be the second touch electrode
  • the upper touch area and the lower touch area may be second touch electrodes
  • the left touch area and the right touch area are first touch electrodes.
  • Figure 8-1 to Figure 8-4 are schematic diagrams of several touch areas, border areas and connecting bridge areas, which illustrate the shapes of touch areas, border areas and connecting bridge areas in a repeating unit.
  • the solid lines represent the border areas.
  • the dotted line indicates the connecting bridge area.
  • the shape of the touch area may be a triangle, and the shape of the boundary area is an X shape, as shown in FIG. 8-1.
  • the shape of the touch area can be a rectangle, and the shape of the boundary area is a # shape, as shown in Figure 8-2.
  • the shape of the touch area can be a rhombus, and the shape of the boundary area is a rhombus, as shown in Figure 8-3.
  • the shape of the touch area can be a hexagon, and the shape of the boundary area is a hexagon, as shown in Figure 8-4.
  • the shape of the touch area can be any one or more of triangles, squares, rectangles, rhombuses, trapezoids, parallelograms, pentagons, and hexagons
  • the shape of the boundary area can be It is any one or more of X-shape, #-shape, cross-shape, square, rectangle, rhombus, parallelogram, and hexagon, and the present disclosure does not specifically limit it here.
  • the touch structure layer metal grid is formed by splicing a plurality of repeating units.
  • the repeating unit is the basic unit constituting the touch structure layer metal grid.
  • the repeating unit is continuously arranged along a certain direction by repeating. , Can form a metal grid of the touch structure layer.
  • Each repeating unit includes a plurality of grid patterns, and the plurality of grid patterns are provided with a plurality of cuts.
  • the repeating unit may include 5*5 grid patterns to 25*35 grid patterns.
  • the repeating arrangement is used to design the repeating unit arrangement.
  • the repeating unit can include basic repeating units and mirrored repeats. Any one or more of the unit, the inverted repeating unit, and the rotating repeating unit are not limited in the present disclosure.
  • FIGs 9-1 to 9-2 are schematic diagrams of watermark defects in the touch area.
  • Figure 9-1 illustrates the arrangement of cuts in the 9*6 grid patterns in the touch area. The metal wires are cut through multiple cuts to isolate the corresponding area and form a virtual area in the touch area. However, this cutout arrangement makes the watermark defects in the touch area more obvious, which will be observed by the naked eye, as shown in Figure 9-2.
  • FIG. 10 is a schematic diagram of a repeating unit according to an exemplary embodiment of the present disclosure.
  • the repeating unit includes 9*6 hexagonal grid patterns.
  • the repeating unit in the horizontal direction and the vertical direction, has a first characteristic length S1 and a second characteristic length S2, respectively.
  • the first characteristic length S1 is greater than or equal to the second characteristic length S2
  • the first characteristic length S1 is called the maximum characteristic length S of the repeating unit, that is, the maximum characteristic length S is the first characteristic length S1 and the second characteristic length S1.
  • the maximum characteristic length S of the repeating unit is 0.2 mm to 1.2 mm, so that the spatial frequency within 1 degree of the viewer's eye is greater than or equal to 10.
  • FIG. 11 is a schematic diagram of the spatial frequency within 1 degree of the viewer's eye.
  • the spatial resolution ability (ie vision) of the eye is in units of the reciprocal of the distinguishable angle of view (degree).
  • the minimum distinguishable visual threshold of a normal human eye is about 0.5, and the maximum visual range is 200 degrees (width) x 135 degrees (height) .
  • the spatial frequency (Cycle/Degree, CPD) within 1 degree of the viewer's eye represents the number of cycles of black and white stripes that are swept by each degree of eye rotation.
  • the spatial frequency CPD within 1 degree of the viewer's eye is related to the distance L from the viewer's eye to the display screen and the fringe period h.
  • the calculation formula is:
  • the distance L from the viewer's eyes to the display screen is 100mm to 1000mm, CPD ⁇ 10, and the maximum characteristic length of the repeating unit is the maximum size of the repeating unit in a certain direction, 1/(57.3 *CPD) is the radian value.
  • the distance L from the viewer’s eyes to the display screen can be divided into two categories: close viewing distance and far viewing distance.
  • the close viewing distance is for small-size displays
  • the far viewing distance is for large-size displays.
  • the distance L from the viewer's eyes to the display screen may be 100 mm to 400 mm
  • the distance L from the viewer's eyes to the display screen may be 400 mm to 1000 mm.
  • the maximum characteristic length S of the repeating unit is set to 0.2 mm to 0.4 mm. In some possible implementations, the maximum characteristic length S of the repeating unit is set to be 0.25 mm to 0.35 mm.
  • the maximum characteristic length S of the repeating unit is set to 0.4 mm to 1.2 mm. In some possible implementations, the maximum characteristic length S of the repeating unit is set to be 0.5 mm to 1.0 mm.
  • the maximum characteristic length S of the repeating unit is set so that the spatial frequency CPD within 1 degree of the viewer's eye is greater than or equal to 30.
  • the metal grid of the touch structure layer is formed by repeatedly splicing multiple repeating units, and the multiple repeating units will form bright and dark stripes.
  • the exemplary embodiment of the present disclosure increases the viewer's eyes by setting the maximum characteristic length of the repeating unit.
  • the spatial frequency in the range of degrees reduces the viewer’s sensitivity to distinguish bright and dark stripes, can avoid watermarks under different azimuths, and reduce the visibility of watermarks.
  • Figure 12-1 to Figure 12-3 are schematic diagrams of several repeating unit shapes.
  • the repeating unit includes a plurality of grid patterns, and the grid pattern is a polygon formed by metal wires.
  • the shape of the repeating unit may be a square, which is continuously arranged along the horizontal direction, and the side length of the square is the maximum characteristic length S, as shown in FIG. 12-1.
  • the shape of the repeating unit may be a rectangle, which is continuously arranged along the horizontal direction, and the side length of the long side of the rectangle is the maximum characteristic length S, as shown in Fig. 12-2.
  • the shape of the repeating unit may be a hexagon, which is continuously arranged along the horizontal direction, and the maximum distance between the top corners of the hexagon in the horizontal direction is the maximum characteristic length S, as shown in Figure 12-3.
  • the shape of the repeating unit may include any one or more of triangles, squares, rectangles, rhombuses, trapezoids, pentagons, and hexagons, which are not limited in the present disclosure.
  • the incisions when incisions are provided in the touch area, the boundary area, and the connecting bridge area, according to the relative positions between the incisions, the incisions may include any one or more of isolated incisions, continuous incisions, and corner incisions.
  • the incision may include any one or more of the first direction incision, the second direction incision and the third direction incision.
  • the cutout may include any one or more of the first cutout, the second cutout, and the third cutout.
  • 13-1 to 13-2 are schematic diagrams of continuous incisions in exemplary embodiments of the present disclosure.
  • black blocks indicate incisions
  • incisions can be understood as imaginary lines for cutting metal wires
  • dotted lines indicate the direction of cutting the imaginary lines.
  • a polygonal grid pattern includes at least two first sides parallel to each other and two second sides parallel to each other, and the first side and the second side are not parallel.
  • Continuous incision means that at least one of the grid patterns continuously arranged in the first direction is provided with incisions on the two first sides of each grid pattern, and the first direction is the same as the first side of each grid pattern. The sides cross.
  • cuts are provided on two second sides of each grid pattern, and the second direction crosses the second side of each grid pattern.
  • a polygonal sub-pixel includes at least two parallel first sides, and the metal wires on the two parallel first sides are provided with cutouts, so the metal wires on the two first sides The cut is a continuous cut, and the sub-pixels have continuous cuts.
  • the metal line on the side of the sub-pixel refers to the metal line located in the area where the sub-pixel boundary is located, the sub-pixel refers to the light-emitting area, and the sub-pixel boundary refers to the non-light-emitting area around the sub-pixel.
  • isolated cuts means that a polygonal grid pattern has cuts on only one side, and the grid pattern has isolated cuts. Or, if only one metal wire on one side of a sub-pixel is provided with a cutout, the sub-pixel has an isolated cutout.
  • parallel refers to a state where the angle formed by two straight lines is -10° or more and 10° or less
  • perpendicular refers to a state where the angle formed by two straight lines is 80° or more and 100° or less.
  • a grid pattern can be used to illustrate continuous cuts and isolated cuts.
  • a cut is provided on the first side (metal wire) on the left side of the grid pattern, and a cut is provided on the first side (metal wire) on the right side of the grid pattern
  • the first side on the left side is parallel to the first side on the right side
  • the two incisions are continuous incisions
  • the number of incisions in the continuous incision is 2. If an adjacent grid pattern in the row direction also has continuous cuts, the number of cuts in the continuous cuts in the row direction is 3.
  • the incision belongs to Isolated incision.
  • sub-pixels can be used to illustrate continuous cuts and isolated cuts.
  • a cut is provided on the metal line in the sub-pixel boundary area on the left side of the B sub-pixel, and the sub-pixel boundary area on the right side is Another incision is provided on the inner metal line, and the left side and the right side are parallel to each other, the two incisions are continuous incisions, and the number of incisions in the continuous incision is 2. If both the left side and the right side of the metal wire of the G sub-pixel adjacent to the B sub-pixel in the left direction are provided with cuts, the number of cuts in the continuous cuts in this direction is 3.
  • a cut is provided on the metal line in the sub-pixel boundary area on the upper side of the G sub-pixel, and the sub-pixel boundary area on the lower side is Another incision is provided on the inner metal line, and the upper side and the lower side are parallel to each other, so the two incisions are continuous incisions, and the number of incisions in the continuous incision is 2. If both the upper side and the lower side of the metal wire of the B sub-pixel adjacent to the G sub-pixel in the lower direction are provided with cuts, the number of cuts in the continuous cuts in this direction is 3.
  • the B sub-pixels are only in the sub-pixel boundary area on the right side.
  • a cut is provided on the metal line, and only one cut is provided on the metal line in the sub-pixel boundary area on the left side of the G sub-pixel, and the cut between the B sub-pixel and the G sub-pixel is an isolated cut.
  • one continuous incision is in the horizontal direction
  • the number of incisions in the continuous incision is 3
  • the other two continuous incisions are in the oblique direction
  • the number of incisions in the continuous incision is 3.
  • the tilt direction includes the upper left direction and the upper right direction, or includes the lower right direction and the lower left direction.
  • corner cut when there are continuous cuts in the first direction or the second direction of the corner cuts, the number of cuts in the continuous cuts is less than or equal to two.
  • 14-1 to 14-2 are schematic diagrams of corner cuts in an exemplary embodiment of the present disclosure.
  • corner cut means that a polygonal grid pattern is provided with cuts on a first side and a second side, then the two cuts are corner cuts, and the grid pattern has corner cuts, which is equivalent to a mesh pattern. The direction of the cuts on the two sides of the grid pattern has been reversed.
  • a polygonal sub-pixel includes at least a first side and a second side that are not parallel, and the metal lines on the two non-parallel first and second sides are provided with cuts, then the two cuts It is a corner cut, which is equivalent to the direction of the cut on the two sides of the sub-pixel being reversed.
  • a grid pattern can be used to illustrate corner cuts.
  • a cut is provided on the first side in the left direction of the grid pattern, and another cut is provided on the second side in the lower direction. If one side is not parallel to the second side, the two incisions are corner incisions, and the directions of the corner incisions are the left side direction and the lower side direction respectively.
  • the grid pattern corresponding to the first grid row and the second grid column is a grid pattern adjacent to the first side.
  • the grid pattern has a continuous cut, and the left side of the corner cut includes a continuous cut, and the continuous cut
  • the number of incisions is two.
  • the grid pattern corresponding to the second grid row and the third grid column is the grid pattern adjacent to the first side.
  • the grid pattern has continuous cuts, and the corner cuts include continuous cuts in the lower side direction, and the continuous cuts The number of incisions is two.
  • sub-pixels can be used to illustrate corner cuts.
  • the metal line in the sub-pixel boundary area on the left side of the G sub-pixel is provided with a cut extending to the left, and the lower side Another incision extending downward is provided on the metal wire in the sub-pixel boundary area of the side.
  • the incision extending to the left and the incision extending downward form a corner incision.
  • the direction of the corner incision is the left Side direction and down side direction.
  • the B sub-pixel adjacent to the G sub-pixel in the left direction has continuous cuts
  • the left side of the corner cut includes continuous cuts
  • the number of cuts in the continuous cut is two.
  • the corner cut includes a continuous cut in the lower direction, and the number of cuts in the continuous cut is two.
  • a corner incision is in the left direction and the lower right direction. Both directions include continuous incisions. The number of incisions in the continuous incision is 2. The other corner cuts are in the right direction and the lower left direction. The lower left direction includes continuous cuts, and the number of cuts in the continuous cuts is 2.
  • Figures 15-1 to 15-2 are schematic diagrams of open graphics of an exemplary embodiment of the present disclosure.
  • a corner cut is formed at the G sub-pixels corresponding to the first grid row and the third grid column.
  • One end of the corner cut is the first grid row and the first grid column.
  • Another corner cut is formed at the G sub-pixels corresponding to the third grid row and the third grid column, and one end of the corner cut is the G sub-pixel corresponding to the third grid row and the first grid column.
  • a corner cut is formed at the G sub-pixels corresponding to the first grid row and the third grid column. One end of the corner cut is the first grid row and the first grid column corresponds to The G sub-pixel.
  • Another corner cut is formed at the B sub-pixels corresponding to the third grid row and the fourth grid column, and one end of the corner cut is the B sub-pixel corresponding to the third grid row and the sixth grid column. Since the ends of the two corner cuts do not overlap, the figure formed by the two corner cuts is an open figure.
  • the incisions can be arranged uniformly on the metal grid to the greatest extent, and the brightness difference caused by interference of multiple incisions in one direction or in one area can be avoided. Reducing the visibility of the cut can improve the watermark defect in the touch area.
  • the incision when incisions are provided in the touch area, the boundary area, and the connecting bridge area, according to the direction of the incision, the incision may include at least a first direction incision and a second direction incision.
  • the grid pattern is a polygon formed by metal wires, the grid pattern includes at least a first side and a second side that are not parallel to each other.
  • Side cuts. 16-1 to 16-2 are schematic diagrams of directional cuts in an exemplary embodiment of the present disclosure. As shown in Figure 16-1, in the rectangular grid pattern, the cut that cuts off the vertical metal line (first side) is the first cut (horizontal cut), and the cut that cuts off the horizontal metal line (second side) is The second direction incision (vertical incision).
  • the cut that cuts the metal wire in the upper right direction is the first cut (upper left cut), and the cut of the metal wire in the upper left direction (second side) is cut off.
  • the incision is the second direction incision (upper right incision).
  • the first direction incision may be any one of a horizontal incision, a vertical incision, and an oblique incision
  • the second direction incision may be any one different from the first direction incision
  • the oblique incision includes an upper left incision And any one or more of the upper right incision.
  • the first direction incision is a horizontal incision
  • the second direction incision is a vertical incision
  • the third direction incision is an oblique incision.
  • the cut density refers to the ratio of the number of cuts in one repeating unit to the number of grid patterns in one repeating unit.
  • FIG. 18 is a schematic diagram of a repeating unit according to an exemplary embodiment of the present disclosure.
  • the repeating unit includes 12*12 grid patterns, and the grid pattern is rectangular.
  • the 12*12 grid pattern of the repeating unit has the same shape as the 12*12 sub-pixels on the display structure layer, and the positions are corresponding, and the 12*12 sub-pixels are periodically arranged in a GBRG square pattern.
  • the cuts of the repeating unit include a first horizontal cut 901, a second horizontal cut 902, a first vertical cut 903, and a second vertical cut 904.
  • the first horizontal cut 901 is arranged in the horizontal direction.
  • the second horizontal slit 902 is provided between the B sub-pixel and the G sub-pixel arranged in the horizontal direction
  • the first vertical slit 903 is provided between the R sub-pixel and the G sub-pixel arranged in the vertical direction.
  • the second vertical cut 904 is provided between the B sub-pixels and the G sub-pixels arranged in the vertical direction.
  • the ratio of the first horizontal slit density to the second horizontal slit density may be 0.7 to 1.3, and the ratio of the first vertical slit density to the second vertical slit density may be 0.7 To 1.3.
  • the first horizontal incision density can be equal to the second horizontal incision density
  • the first vertical incision density can be equal to the second vertical incision density.
  • the first horizontal cut density is the ratio of the number of first horizontal cuts 901 in the repeating unit to the number of grid patterns in the repeating unit
  • the second horizontal cut density is the ratio of the number of second horizontal cuts 902 in the repeating unit to the number of grids in the repeating unit.
  • the ratio of the number of patterns, the first vertical slit density is the ratio of the number of first vertical slits 903 in the repeating unit to the number of grid patterns in the repeating unit, and the second vertical slit density is the second vertical slit density in the repeating unit.
  • the number of second horizontal cuts 902 in the first, third, fifth, seventh, ninth, and eleventh grid rows They are 2, 4, 2, 2, 3, and 3, respectively, and the number of second horizontal cuts 902 in the repeating unit is 16.
  • the number of first horizontal cuts 901 are 3, 2, 4, 3, 2, 3, respectively, the first level in the repeating unit
  • the number of incisions 901 is 17, and the ratio of the density of the first horizontal incision to the density of the second horizontal incision is 1.06.
  • the first vertical cut 903 The numbers of are 3, 2, 2, 2, 3, 2, respectively, and the number of first vertical cuts 903 in the repeating unit is 14.
  • the numbers of the second vertical cuts 904 are 2, 3, 2, 3, 3, 3, respectively, and the second in the repeating unit
  • the number of vertical slits 904 is 16, and the ratio of the first vertical slit density to the second vertical slit density is 1.14.
  • first horizontal slit is arranged between the R sub-pixel and the G sub-pixel, it can be understood that one first horizontal slit corresponds to one R sub-pixel and one G sub-pixel. Therefore, when the number of first horizontal slits is 16, 16 The first horizontal cut will correspond to the R sub-pixel and G sub-pixel. Since the second horizontal slit is arranged between the B sub-pixel and the G sub-pixel, it can be understood that one second horizontal slit corresponds to one B sub-pixel and one G sub-pixel. Therefore, when the number of second horizontal slits is 17, 17 The second horizontal cut will correspond to the B sub-pixel and G sub-pixel.
  • the number of corresponding R sub-pixels is 16, the number of corresponding B sub-pixels is 17, the number of corresponding G sub-pixels is 33, and the number of corresponding R sub-pixels and corresponding B sub-pixels are similar.
  • the number of corresponding G sub-pixels is the same as the number of corresponding R sub-pixels and B sub-pixels.
  • the first horizontal slit is arranged between the R sub-pixel and the G sub-pixel, it can be understood that an R sub-pixel has an adjacent first horizontal slit, and a G sub-pixel has an adjacent first horizontal slit. Therefore, when the first horizontal slit When the number is 16, 16 R sub-pixels have adjacent first horizontal cutouts, and 16 G sub-pixels have adjacent first horizontal cutouts. Since the second horizontal slit is arranged between the B sub-pixel and the G sub-pixel, it can be understood that a B sub-pixel has an adjacent second horizontal slit, and a G sub-pixel has an adjacent second horizontal slit.
  • the second horizontal slit When the number is 17, 17 B sub-pixels have adjacent second horizontal cuts, and 17 G sub-pixels have adjacent second horizontal cuts.
  • the number of R sub-pixels adjacent to the horizontal slit is 16
  • the number of B sub-pixels adjacent to the horizontal slit is 17,
  • the number of G sub-pixels adjacent to the horizontal slit is 33.
  • the number of R sub-pixels adjacent to the horizontal cut and the number of B sub-pixels adjacent to the horizontal cut is similar, and the number of G sub-pixels adjacent to the horizontal cut is the same as the number of R sub-pixels and B sub-pixels adjacent to the horizontal cut.
  • the incision in the repeating unit can be divided into a first incision and a second incision.
  • the first incision is arranged between the R sub-pixel and the G sub-pixel, that is, the first incision includes a first horizontal incision and a first vertical incision
  • the second cut is disposed between the B sub-pixel and the G sub-pixel, that is, the second cut includes a second horizontal cut and a second vertical cut.
  • the ratio of the first notch density to the second notch density may be 0.7 to 1.3.
  • the cuts in the repeating unit may be divided into a first cut, a second cut, and a third cut, and the first cut is provided in the R sub-pixel and Between the G sub-pixels, the second slit is provided between the B sub-pixel and the G sub-pixel, and the third slit is provided between the R sub-pixel and the B sub-pixel.
  • the ratio of the first kerf density to the second kerf density can be 0.7 to 1.3
  • the ratio of the second kerf density to the third kerf density can be 0.7 to 1.3
  • the first kerf density and the third kerf density The density ratio can be 0.7 to 1.3.
  • the first incision, the second incision, and the third incision may each include any of a horizontal (first direction) incision, a vertical (second direction) incision, and an inclined (third direction) incision.
  • the oblique incision may include any one or more of the upper left incision and the upper right incision, and the present disclosure is not limited herein.
  • the ratio of the first kerf density to the second kerf density can be 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal kerf density to the second horizontal kerf density can be 0.7 to 1.3, the ratio of the first vertical notch density to the second vertical notch density may be 0.7 to 1.3, and the ratio of the first inclined notch density to the second inclined notch density may be 0.7 to 1.3.
  • the ratio of the second kerf density to the third kerf density can be 0.7 to 1.3, including any one or more of the following: the ratio of the second horizontal kerf density to the third horizontal kerf density can be 0.7 Up to 1.3, the ratio of the second vertical notch density to the third vertical notch density may be 0.7 to 1.3, and the ratio of the second inclined notch density to the third inclined notch density may be 0.7 to 1.3.
  • the ratio of the first kerf density to the third kerf density can be 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal kerf density to the third horizontal kerf density can be 0.7 to 1.3, the ratio of the first vertical notch density to the third vertical notch density may be 0.7 to 1.3, and the ratio of the first inclined notch density to the third inclined notch density may be 0.7 to 1.3.
  • FIG. 19 is a schematic diagram of another repeating unit according to an exemplary embodiment of the present disclosure.
  • the repeating unit includes 9*6 grid patterns, and the grid patterns are hexagons.
  • the number of first horizontal cuts is 4
  • the number of second horizontal cuts is 4
  • the number of third horizontal cuts is 4, then the density of the first horizontal cuts and the second horizontal cuts
  • the ratio of the density is 1, the ratio of the second horizontal incision density to the third horizontal incision density is 1, and the ratio of the first horizontal incision density to the third horizontal incision density is 1.
  • the number of the first upper left cut is 4, the number of the second upper left cut is 4, and the number of the third upper left cut is 4, then the density of the first upper left cut and the second upper left cut
  • the ratio of the density is 1, the ratio of the density of the second upper left incision to the density of the third upper left incision is 1, and the ratio of the density of the first upper left incision to the density of the third upper left incision is 1.
  • the number of the first upper right incision is 4, the number of the second upper right incision is 4, and the number of the third upper right incision is 4, then the density of the first upper right incision and the second upper right incision
  • the ratio of the density is 1, the ratio of the density of the second upper right incision to the density of the third upper right incision is 1, and the ratio of the density of the first right incision to the third upper right incision is 1.
  • the first slit density, the second slit density, and the third slit density are set to be equal or similar in the repeating unit, so that the number of sub-pixels of different colors corresponding to the slits is substantially the same, and the number of sub-pixels in different colors is substantially the same.
  • the number of cuts adjacent to the sub-pixels is basically the same, and the cuts are evenly distributed among the sub-pixels of different colors, which can reduce the visibility of the cuts, and can improve the watermark defects in the boundary area.
  • multiple cuts are provided in the touch area, the boundary area, and the connecting bridge area.
  • the multiple cuts in the touch area respectively form a virtual area and an electrode area in the touch area.
  • the two cuts realize the isolation between the first touch electrode and the second touch electrode, and the multiple cuts in the bridge area are connected to form a connection structure. Since there are bordering areas between the touch area, the border area and the connecting bridge area, the watermark defect of the connecting bridge area can be improved by setting the cut density of the bordering area.
  • the repeating unit that constitutes the metal grid of the touch structure layer can be divided into a first repeating unit C1 including a cutout in the touch area, a second repeating unit C2 including a cutout in the boundary area, and a second repeating unit C2 including a cutout in the boundary area.
  • the third repeating unit C3 cut in the bridge area.
  • the areas of the first repeating unit C1, the second repeating unit C2, and the third repeating unit C3 are the same.
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit may be 0.7 to 1.3
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit may be 0.7 To 1.3
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit may be 0.7 to 1.3.
  • the incisions in the first repeating unit, the second repeating unit, and the third repeating unit may each include any one of a first direction incision, a second direction incision, and a third direction incision Or multiple.
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit may be 0.7 to 1.3, including any one or more of the following: first direction notches in the first repeating unit
  • the ratio of the density to the first direction notch density in the second repeating unit may be 0.7 to 1.3
  • the ratio of the second direction notch density in the first repeating unit to the second direction notch density in the second repeating unit may be 0.7 to 1.3 1.3
  • the ratio of the third-directional notch density in the first repeating unit to the third-directional notch density in the second repeating unit may be 0.7 to 1.3.
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit may be 0.7 to 1.3, including any one or more of the following: first direction notches in the first repeating unit
  • the ratio of the density to the first direction notch density in the third repeating unit may be 0.7 to 1.3
  • the ratio of the second direction notch density in the first repeating unit to the second direction notch density in the third repeating unit may be 0.7 to 1.3 1.3
  • the ratio of the third-directional notch density in the first repeating unit to the third-directional notch density in the third repeating unit may be 0.7 to 1.3.
  • the ratio of the kerf density of the second repeating unit to the kerf density of the third repeating unit may be 0.7 to 1.3, including any one or more of the following: first direction notches in the second repeating unit
  • the ratio of the density to the first direction notch density in the third repeating unit may be 0.7 to 1.3
  • the ratio of the second direction notch density in the second repeating unit to the second direction notch density in the third repeating unit may be 0.7 to 1.3 1.3
  • the ratio of the third-directional notch density in the second repeating unit to the third-directional notch density in the third repeating unit may be 0.7 to 1.3.
  • a first area may be defined in the area where the touch area is located, and the area of the first area is equal to the area of the first repeating unit.
  • Multiple second regions may be defined in the region where the boundary region is located, and the area of each second region is equal to the area of the second repeating unit.
  • Multiple third regions may be defined in the region where the connecting bridge region is located, and the area of each third region is equal to the area of the third repeating unit.
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit may be 0.7 to 1.3, which can be expanded to: the notch density of a first region and the notch density of any second region The density ratio can be 0.7 to 1.3.
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit can be 0.7 to 1.3, which can be expanded to: the ratio of the notch density of a first region to the notch density of any third region can be 0.7 to 1.3 .
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit can be 0.7 to 1.3, which can be expanded to: the ratio of the notch density of a second region to the notch density of any third region can be 0.7 to 1.3 .
  • FIG. 20 is a schematic diagram of area setting of an exemplary embodiment of the present disclosure.
  • the area where the touch area is located can define multiple second areas, such as the second areas A1 to A5 located on the right side of the first area.
  • the second areas B1 to B5 in the lower right direction of one area are located in the second areas C1 to C5 in the lower right direction of the first area.
  • the second areas A1 to A5 may be defined at intervals, or may be defined by overlapping.
  • the ratio of the notch density of the first region to the notch density of any second region refers to the ratio of the notch density of the first region to the notch density of the second region A1, or the ratio of the notch density of the first region to the second region A2
  • the ratio of the notch density, or the ratio of the notch density in the first area to the notch density in the second area A3, or the ratio of the notch density in the first area to the notch density in the second area A4, or the ratio of the notch density in the first area The ratio of the notch density to the notch density of the second area A5.
  • Exemplary embodiments of the present disclosure reduce the difference in cut patterns between the touch area, the boundary area, and the connection bridge area by setting the cut density relationship between the touch area, the boundary area, and the connection bridge area, and reduce the touch area and the boundary area.
  • the difference in brightness between and the connecting bridge area can reduce the visibility of the cut and improve the watermark defect in the touch area.
  • the plurality of cuts in the first repeating unit, the second repeating unit, and the third repeating unit may each include a first cut, a second cut, and a third cut.
  • the first cut is arranged between the R sub-pixel and the G sub-pixel
  • the second cut is arranged between the B sub-pixel and the G sub-pixel
  • the third cut is arranged between the R sub-pixel and the B sub-pixel.
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit may be 0.7 to 1.3, including any one or more of the following: the first notch in the first repeating unit The ratio of the density to the first notch density in the second repeating unit may be 0.7 to 1.3, and the ratio of the second notch density in the first repeating unit to the second notch density in the second repeating unit may be 0.7 to 1.3, The ratio of the third notch density in the first repeating unit to the third notch density in the second repeating unit may be 0.7 to 1.3.
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit may be 0.7 to 1.3, including any one or more of the following: the first notch in the first repeating unit The ratio of the density to the first notch density in the third repeating unit may be 0.7 to 1.3, and the ratio of the second notch density in the first repeating unit to the second notch density in the third repeating unit may be 0.7 to 1.3, The ratio of the third notch density in the first repeating unit to the third notch density in the third repeating unit may be 0.7 to 1.3.
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit may be 0.7 to 1.3, including any one or more of the following: the first notch in the second repeating unit The ratio of the density to the first notch density in the third repeating unit may be 0.7 to 1.3, and the ratio of the second notch density in the second repeating unit to the second notch density in the third repeating unit may be 0.7 to 1.3, The ratio of the third notch density in the second repeating unit to the third notch density in the third repeating unit may be 0.7 to 1.3.
  • Exemplary embodiments of the present disclosure can make the number of sub-pixels of different colors corresponding to the cutouts in the touch area, the boundary area, and the connecting bridge area substantially the same, and the cuts are evenly distributed among the sub-pixels of different colors, which can reduce the visibility of the cuts. , Can improve the watermark defect in the touch area.
  • FIG. 21 to 24 are schematic diagrams of several repetitive units in an exemplary embodiment of the present disclosure
  • FIG. 25 is a schematic diagram of watermarking simulation of a repetitive unit in an exemplary embodiment of the present disclosure.
  • the repeating unit shown in FIG. 21 includes 10*10 grid patterns, and the grid pattern is square.
  • the repeating unit shown in Fig. 22 includes 12*12 grid patterns, and the grid pattern is square.
  • the repeating unit shown in FIG. 23 includes the 9*6 grid patterns, and the grid pattern is hexagonal.
  • the repeating unit shown in FIG. 24 includes the 18*12 grid patterns, and the grid pattern is hexagonal.
  • the notch settings of the above repeating unit all satisfy the notch density relationship of the touch area, the boundary area and the connecting bridge area, eliminating the difference between the metal patterns of the touch area, the boundary area and the connecting bridge area. It satisfies the ratio of the first incision density to the second incision density, the first incision density to the third incision density, and the second incision density to the second incision density to be 0.7 to 1.3, and the number of incisions in the continuous incision in one direction is satisfied. Less than or equal to 3. When there are continuous cuts in the first direction or the second direction of the corner cuts, the number of cuts in the continuous cuts is less than or equal to 2.
  • the control area and the boundary area are arranged uniformly to the maximum extent, which reduces the visibility of the cut, and can significantly improve the watermark defects of the connecting bridge area. The watermark is almost invisible to the naked eye, as shown in Figure 25.
  • Figure 26-1 to Figure 26-3 are schematic diagrams of the structure of a metal grid connecting the bridge area, which is an enlarged area of area B in Figure 3, and the grid pattern is a diamond shape.
  • the touch structure layer includes a bridge layer, an insulating layer, and a touch layer that are sequentially arranged along the direction away from the display structure layer.
  • the insulating layer is arranged between the touch layer and the bridge layer to achieve Insulation of the two.
  • the bridge layer includes a lower metal mesh
  • the touch layer includes an upper metal mesh.
  • the metal grid of the connection bridge area includes a lower metal grid on the bridge layer and an upper metal grid on the touch layer.
  • the lower metal grid serves as a connection bridge and is configured to connect the second touch electrodes 20 on the touch layer to each other ,
  • the upper metal grid is configured to connect the first touch electrodes 10 in the same layer to each other.
  • Fig. 26-1 is a schematic diagram of the structure of a lower metal mesh.
  • the lower metal mesh is arranged on the bridge layer as a connection bridge for establishing a connection between the second touch electrodes 20.
  • the second touch electrodes 20 are along the vertical direction. Interval settings.
  • the lower metal grid includes two connection grids 301 arranged symmetrically with respect to the vertical line.
  • Each connection grid 301 includes a plurality of connection bridges 302, and each connection bridge 302 includes a pad portion. 303 and the second connecting line 304.
  • the pad portions 303 are provided at both ends of the connecting bridge 302, and are configured to be connected to the second touch electrode 20 located on the touch layer through the via holes opened on the insulating layer.
  • the second connecting line 304 is provided with the pad portions 30 at both ends. Between them, they are arranged to connect the land portions 303 at both ends.
  • the second connection line 304 includes a second connection line connected to the land portion 303 on the first side of the connection bridge 302 and another second connection line connected to the land portion 303 on the second side of the connection bridge 302. From the land portion 303 on the first side to the land portion 303 on the second side, another second connecting line extends from the land portion 303 on the second side to the land portion 303 on the first side.
  • the connecting lines are connected to each other at the intersection.
  • each connecting grid 301 includes 2 to 5 connecting bridges 302 arranged in sequence, and connecting bridges 302 with the same shape are arranged in sequence from small to large.
  • each connection bridge may include a plurality of grid structures, and the plurality of grid structures are connected to each other.
  • the land portion 303 at the end of the connection bridge 302 includes 2 to 4 first land, and the plurality of first land is arranged in a line shape, a triangle shape, or a square shape.
  • the second connecting lines 304 in the shape of a broken line are respectively connected to the first pads in the pad portions 303 at both ends.
  • Fig. 26-2 is a schematic diagram of the structure of an upper metal grid, and the upper metal grid is disposed on the touch layer.
  • the upper metal grid includes a first touch electrode 10, a second touch electrode 20, a first connection unit 305, and a second connection unit 306.
  • the first touch electrodes 10 are arranged at intervals along the horizontal direction.
  • the first connecting unit 305 as the first connecting portion connects two adjacent first touch electrodes 10 together.
  • the second touch electrodes 20 are arranged at intervals in the vertical direction, and the second connecting unit 306 and the lower metal grid together serve as a second connecting portion to connect two adjacent second touch electrodes 20.
  • the first connecting unit 305 includes a plurality of interlaced wires, as shown by the thick lines in FIG.
  • the control electrode 10 and the first connection unit 305 form an integral structure connected to each other.
  • the actual line width of the interweaving line is the same as the line width of the metal line in the grid pattern.
  • the thick lines in Figure 26-2 are only used to clearly describe the interweaving line.
  • the second connection unit 306 includes a plurality of second pads. The positions of the plurality of second pads correspond to the positions of the plurality of first pads of the underlying metal grid. The lower metal mesh of the bridge layer is connected. A plurality of second pads are respectively located on both sides of the first connection unit 305, and the second pads on each side are connected to the second touch electrodes 20 on that side.
  • the positions of the multiple second pads of the upper metal grid correspond to the positions of the multiple first pads of the lower metal grid, and the multiple positions of the lower metal grid
  • a second connection line 304 is provided between the first pads, and the metal line corresponding to the second connection line 304 in the upper metal grid is removed to form a metal line-free area 307, as shown in FIG. 26-2.
  • Figure 26-3 is a schematic diagram of the structure of a metal grid connecting the bridge area.
  • the solid line represents the metal line of the upper metal grid
  • the dashed line represents the metal line of the lower metal grid.
  • the upper metal grid connecting the bridge area is not complete, and the connecting bridge area has both the reflection of the metal lines of the upper metal grid and the reflection of the metal lines of the lower metal grid, thus making the network connecting the bridge area
  • the grid pattern is quite different from the grid pattern of the touch area and the boundary area, resulting in dot, line or block watermark defects in the connecting bridge area.
  • FIG. 27-1 to FIG. 27-2 are schematic diagrams of the structure of the metal grid of the connecting bridge area in the exemplary embodiment of the present disclosure, and are the enlarged area of the area B in FIG. 3, and the grid pattern is a diamond shape.
  • the metal grid of the connection bridge area includes a lower metal grid on the bridge layer and an upper metal grid on the touch layer.
  • the lower metal grid serves as a connection bridge and is configured to connect the second touch electrodes 20 on the touch layer to each other
  • the upper metal grid is configured to connect the first touch electrodes 10 in the same layer to each other.
  • FIG. 27-1 is a schematic diagram of the structure of the upper metal mesh of an exemplary embodiment of the present disclosure, and the upper metal mesh is disposed on the touch layer.
  • the lower metal grid of the present disclosure may adopt the structure shown in FIG. 26-1.
  • the upper metal grid includes a first touch electrode 10, a second touch electrode 20, a first connection unit 305, a second connection unit 306, and a first connection line 308.
  • the first touch electrode 10 are arranged at intervals in the horizontal direction, and the first connecting unit 305 as the first connecting portion connects two adjacent first touch electrodes 10 together.
  • the second touch electrodes 20 are arranged at intervals in the vertical direction.
  • the second connecting unit 306 as the second connecting portion and the lower metal grid connect the two adjacent second touch electrodes 20 together.
  • the second connecting unit 306 and the first The connecting wires 308 are arranged at intervals and insulated from each other.
  • the structure of the first connection unit 305 is the same as the structure of the first connection unit 305 shown in FIG. 26-1, so that the two adjacent first touch electrodes 10 and the first connection unit 305 form an integral structure connected to each other.
  • the second connection unit 306 includes a plurality of second pads, and the positions of the plurality of second pads correspond to the positions of the plurality of first pads of the lower metal mesh, that is, the positions of the second connection unit 306 correspond to the positions of the lower metal mesh.
  • the positions of the pad portions of the grid correspond to each other, and the second connection unit 306 is configured to be connected to a plurality of first pads on the bridge layer through via holes opened in the insulating layer.
  • the positions of the first connecting lines 308 correspond to the positions of the second connecting lines 304 of the lower metal grid.
  • the first connecting lines 308 are configured to block the second connecting lines of the lower metal grid.
  • the first connecting lines 308 A plurality of cuts are provided on the surface, and the plurality of cuts cut off the first connection line 308 to ensure that the second pads of the upper metal grid are separated from the first touch electrode 10 and the first connection unit 305 respectively.
  • the thick line in Figure 27-1 indicates the first connection line.
  • the actual line width of the first connection line is the same as the line width of the metal line in the grid pattern.
  • FIG. 27-2 is a schematic diagram of the structure of the metal grid connecting the bridge area according to an exemplary embodiment of the present disclosure.
  • the lower metal mesh has the position of the metal wire
  • the upper metal mesh is provided with the first connection line
  • the upper metal mesh is the second
  • the orthographic projection of a connecting line on the substrate and the orthographic projection of the second connecting line of the underlying metal grid on the substrate substantially overlap.
  • “the orthographic projection of A on the substrate substantially overlaps the orthographic projection of B on the substrate” means that the overlap range of the orthographic projection of A and the orthographic projection of B is greater than 90%.
  • a plurality of cuts are provided on the first connecting line, and the orthographic projection of the first connecting line of the upper metal grid on the substrate is different from the orthographic projection of the second connecting line of the lower metal grid on the substrate.
  • the overlap range is greater than 95%.
  • the present disclosure also provides a touch control structure, including a bridge layer, an insulating layer, and a touch layer that are stacked, and the touch layer includes a plurality of first touch electrodes and a plurality of first touch electrodes arranged in sequence along a first extension direction A connecting portion, and a plurality of second touch electrodes arranged in sequence along a second extending direction, the first extending direction intersects the second extending direction; the plurality of first touch electrodes and the plurality of first The connecting parts are alternately arranged and connected in sequence, the plurality of second touch electrodes are arranged at intervals; the bridge layer includes connecting bridges, and the connecting bridges are connected to adjacent second touch electrodes;
  • the touch structure layer includes a plurality of repeating units repeatedly and continuously arranged, the repeating unit includes a plurality of grid patterns, the grid patterns are polygons formed by metal lines, and the plurality of grid patterns are provided with multiple repeating units.
  • a cut, the cut cuts off the metal wire of the grid pattern;
  • the maximum characteristic length of the repeating unit S L*tan(1/(57.3*CPD)); where L is the distance from the viewer’s eyes to the display screen, CPD is the spatial frequency within 1 degree of the viewer's eyes, L is 100mm to 1000mm, CPD is greater than or equal to 10, the maximum characteristic length of the repeating unit is the maximum size of the repeating unit in a certain direction, 1/(57.3* CPD) is the radian value.
  • the distance between the viewer’s eyes and the display screen is 100mm to 400mm, and the maximum characteristic length of the repeating unit is 0.2mm to 0.4mm; the distance between the viewer’s eyes and the display screen is 400mm to 1000mm. , The maximum characteristic length of the repeating unit is 0.4mm to 1.2mm.
  • the grid pattern includes at least two first sides parallel to each other and two second sides parallel to each other, and the first side and the second side are not parallel;
  • the incisions include continuous incisions, the number of incisions in the continuous incisions is less than or equal to 3, and the continuous incisions are two of each of the at least one grid pattern continuously arranged in the first direction. Cuts are provided on each of the first sides, and the first direction crosses the first side of each grid pattern, or the continuous cuts are each of at least one of the grid patterns continuously arranged in the second direction. Two second sides of each grid pattern are provided with cuts, and the second direction crosses the second side of each grid pattern.
  • the incision further includes a corner incision.
  • the corner incision has continuous incisions in the first direction or the second direction, the number of incisions in the continuous incision is less than or equal to 2;
  • the corner cuts are provided with cuts on a first side and a second side of the grid pattern.
  • the multiple corner cuts when there are multiple corner cuts, the multiple corner cuts constitute an open figure.
  • the touch structure layer includes a touch area, a boundary area, and a connecting bridge area
  • the touch area includes a first touch electrode and a second touch electrode
  • the connecting bridge area includes A first connecting portion and a second connecting portion; among the multiple repeating units that are repeatedly and continuously arranged to form the touch structure layer, the repeating unit is divided into a first repeating unit including a cutout in the touch area and a boundary The second repeating unit of the cut in the zone and the third repeating unit including the cut in the connecting bridge zone;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the second The ratio of the notch density of the repeating unit to the notch density of the third repeating unit is 0.7 to 1.3
  • the notch density is the ratio of the number of notches in the repeating unit to the number of grid patterns in the repeating unit.
  • the incision includes at least a first direction incision that cuts off the first side and a second direction incision that cuts off the second side;
  • the ratio of the notch density of the first repeating unit to the notch density of the second repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the second repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the second repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the first repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the first repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the first repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the ratio of the notch density of the second repeating unit to the notch density of the third repeating unit is 0.7 to 1.3, including any one or more of the following: the first direction notch density of the second repeating unit and the The ratio of the first-direction notch density of the third repeating unit is 0.7 to 1.3; the ratio of the second-direction notch density of the second repeating unit to the second-direction notch density of the third repeating unit is 0.7 to 1.3;
  • the cut density in the first direction is the ratio of the number of cuts in the first direction in the repeating unit to the number of grid patterns in the repeating unit
  • the cut density in the second direction is the number of cuts in the second direction in the repeating unit and the number of cuts in the repeating unit. The ratio of the number of grid patterns.
  • the multiple sub-pixels include a first sub-pixel emitting a first color, a second sub-pixel emitting a second color, and a third sub-pixel emitting a third color; in the first repeat Unit, the second repeating unit, and the third repeating unit, the cutout includes a first cutout located between the first sub-pixel and the second sub-pixel, and located between the second sub-pixel and the third sub-pixel A second incision between the first and third sub-pixels, and a third incision between the first sub-pixel and the third sub-pixel;
  • the ratio of the first notch density to the second notch density is 0.7 to 1.3, and the ratio of the first notch density to the third notch density is 0.7 To 1.3, the ratio of the second notch density to the third notch density is 0.7 to 1.3;
  • the first notch density is the ratio of the number of first notches in the repeating unit to the number of grid patterns in the repeating unit
  • the second notch density is the ratio of the number of second notches in the repeating unit to the number of grids in the repeating unit
  • the ratio of the number of patterns, the third cut density is the ratio of the number of third cuts in the repeating unit to the number of grid patterns in the repeating unit.
  • the ratio of the first incision density to the second incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal incision density to the second horizontal incision density is 0.7 to 1.3, and the first vertical incision density is 0.7 to 1.3.
  • the ratio of the density of the straight incision to the density of the second vertical incision is 0.7 to 1.3, and the ratio of the density of the first oblique incision to the density of the second oblique incision is 0.7 to 1.3;
  • the ratio of the second incision density to the third incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the second horizontal incision density to the third horizontal incision density is 0.7 to 1.3, and the second The ratio of the vertical incision density to the third vertical incision density is 0.7 to 1.3, and the ratio of the second oblique incision density to the third oblique incision density is 0.7 to 1.3;
  • the ratio of the first incision density to the third incision density is 0.7 to 1.3, including any one or more of the following: the ratio of the first horizontal incision density to the third horizontal incision density is 0.7 to 1.3, and the first vertical incision density is 0.7 to 1.3.
  • the ratio of the density of the straight incision to the density of the third vertical incision is 0.7 to 1.3, and the ratio of the density of the first oblique incision to the density of the third oblique incision is 0.7 to 1.3.
  • the ratio of the first notch density of the first repeating unit to the first notch density of the second repeating unit is 0.7 to 1.3; the second notch density of the first repeating unit is relative to the second repeating unit The ratio of the second notch density of the second repeating unit is 0.7 to 1.3; the ratio of the third notch density of the first repeating unit to the third notch density of the second repeating unit is 0.7 to 1.3;
  • the ratio of the first notch density of the first repeating unit to the first notch density of the third repeating unit is 0.7 to 1.3; the second notch density of the first repeating unit is relative to the third repeating unit The ratio of the second notch density of the first repeating unit is 0.7 to 1.3; the ratio of the third notch density of the first repeating unit to the third notch density of the third repeating unit is 0.7 to 1.3;
  • the ratio of the first notch density of the second repeating unit to the first notch density of the third repeating unit is 0.7 to 1.3; the second notch density of the second repeating unit is relative to the third repeating unit
  • the connecting bridge includes a pad portion and a second connecting wire, the pad portion is configured to be connected to an adjacent second touch electrode through a via on the insulating layer, and the second connecting wire is configured to connect to the Land part
  • the touch layer further includes a second connection unit and a first connection line.
  • the second connection unit and the first connection line are spaced apart and insulated from each other.
  • the position of the second connection unit and the pad of the bridge layer Corresponding to the position of the part, configured to be connected to the pad part through the via hole on the insulating layer, the orthographic projection of the first connecting line on the substrate and the second connecting line on the substrate
  • the orthographic projections basically overlap.
  • the present disclosure also provides a display device including the display panel of any one of the foregoing embodiments.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板、触控结构和显示装置。显示面板包括基底、显示结构层以及触控结构层;触控结构层包括叠设的桥接层、绝缘层和触控层,触控层包括沿第一延伸方向依次设置的多个第一触控电极和多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极;多个第一触控电极和多个第一连接部交替设置且依次连接,多个第二触控电极间隔设置;桥接层包括连接桥,连接桥与相邻的第二触控电极连接;触控结构层包括重复且连续设置的多个重复单元,重复单元的最大特征长度S=L*tan(1/(57.3*CPD)),L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率。

Description

显示面板、触控结构和显示装置 技术领域
本公开涉及但不限于显示技术领域,尤指一种显示面板、触控结构和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度等优点,随着显示技术的不断发展,以OLED为发光器件、由薄膜晶体管(Thin Film Transistor,简称TFT)进行信号控制的柔性显示装置(Flexible Display)已成为目前显示领域的主流产品。
受柔性折叠、窄边框等产品需求的限制,OLED的触控基板采用柔性多层覆盖表面式(Flexible Multi Layer On Cell,简称FMLOC)结构形式,柔性的触控基板设置在OLED背板的封装层上,具有轻薄、可折叠等优点。基于降低电阻、提高灵敏度等考虑,触控基板中的驱动电极(Tx)和感应电极(Rx)采用金属网格(Metal Mesh)形式。相对于采用透明导电材料(如Indium Tin Oxide,简称ITO)形成触控电极,金属网格具有电阻小、厚度小和反应速度快等优点。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开提供了一种显示面板,包括基底、设置在所述基底上的显示结构层以及设置在所述显示结构层上的触控结构层;所述显示结构层包括发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边界;所述触控结构层包括多个网格图案,所述网格图案是由金属线构成的多边形,所述金属线在所述 基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,所述子像素边界在所述基底上的正投影包含所述金属线在所述基底上的正投影;
所述触控结构层包括叠设的桥接层、绝缘层和触控层,所述触控层包括沿第一延伸方向依次设置的多个第一触控电极和多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极,所述第一延伸方向与所述第二延伸方向相交;所述多个第一触控电极和多个第一连接部交替设置且依次连接,所述多个第二触控电极间隔设置;所述桥接层包括连接桥,所述连接桥与相邻的第二触控电极连接;
所述触控结构层包括重复且连续设置由多个重复单元,所述重复单元的多个网格图案中设置有多个切口,所述切口截断网格图案的金属线;所述重复单元的最大特征长度S=L*tan(1/(57.3*CPD));其中,L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率,L为100mm到1000mm,CPD大于或等于10,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸。
在一些可能的实现方式中,对于观看者眼睛到显示屏的距离为100mm到400mm,所述重复单元的最大特征长度为0.2mm到0.4mm;对于观看者眼睛到显示屏的距离为400mm到1000mm,所述重复单元的最大特征长度为0.4mm到1.2mm。
在一些可能的实现方式中,所述网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,所述第一边与所述第二边不平行;
所述切口包括连续切口,所述连续切口中切口的个数小于或等于3个,所述连续切口为在第一方向上连续设置的至少一个所述网格图案中每个网格图案的两个第一边上均设置有切口,所述第一方向与每个网格图案的第一边交叉,或者所述连续切口为在第二方向上连续设置的至少一个所述网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。
在一些可能的实现方式中,所述切口还包括拐角切口,当所述拐角切口 在所述第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个;所述拐角切口为所述网格图案的一个第一边和一个第二边上设置有切口。
在一些可能的实现方式中,当所述拐角切口为多个时,多个拐角切口构成开放图形。
在一些可能的实现方式中,所述触控结构层包括触控区、边界区和连接桥区,所述触控区包括第一触控电极和第二触控电极,所述连接桥区包括第一连接部和第二连接部;重复且连续设置形成所述触控结构层的多个重复单元中,所述重复单元划分为包含有触控区内切口的第一重复单元、包含有边界区内切口的第二重复单元和包含有连接桥区内切口的第三重复单元;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3;所述切口密度是重复单元中切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,所述切口至少包括截断所述第一边的第一方向切口和截断所述第二边的第二方向切口;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第二重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第二重复单元的第二方向切口密度的比值为0.7到1.3;
所述第一重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
所述第二重复单元的切口密度与所述第三重复单元的切口密度的比值为 0.7到1.3,包括如下的任意一种或多种:所述第二重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第二重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
所述第一方向切口密度是重复单元中第一方向切口的数量与重复单元中网格图案的数量之比,所述第二方向切口密度是重复单元中第二方向切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,所述多个子像素包括出射第一颜色的第一子像素、出射第二颜色的第二子像素和出射第三颜色的第三子像素;在所述第一重复单元、第二重复单元和第三重复单元内,所述切口包括位于所述第一子像素与第二子像素之间的第一切口、位于所述第二子像素与第三子像素之间的第二切口和位于所述第一子像素与第三子像素之间的第三切口;
在所述第一重复单元、第二重复单元和第三重复单元内,第一切口密度与第二切口密度的比值为0.7到1.3,第二切口密度与第三切口密度的比值为0.7到1.3,第一切口密度与第三切口密度的比值为0.7到1.3;
所述第一切口密度是重复单元中第一切口的数量与重复单元中网格图案的数量之比,所述第二切口密度是重复单元中第二切口的数量与重复单元中网格图案的数量之比,所述第三切口密度是重复单元中第三切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,
所述第一切口密度与第二切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第二水平切口密度的比值为0.7到1.3,第一竖直切口密度与第二竖直切口密度的比值为0.7到1.3,第一倾斜切口密度与第二倾斜切口密度的比值为0.7到1.3;
所述第二切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第二水平切口密度与第三水平切口密度的比值为0.7到1.3,所述第二竖直切口密度与第三竖直切口密度的比值为0.7到1.3,所述第二倾斜切口密度与第三倾斜切口密度的比值为0.7到1.3;
所述第一切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第三水平切口密度的比值为0.7到1.3,第一竖直切口密度与第三竖直切口密度的比值为0.7到1.3,第一倾斜切口密度与第三倾斜切口密度的比值为0.7到1.3。
在一些可能的实现方式中,
所述第一重复单元的第一切口密度与所述第二重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第二重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第二重复单元的第三切口密度的比值为0.7到1.3;
所述第一重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3;
所述第二重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第二重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第二重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3。
在一些可能的实现方式中,
所述连接桥包括焊盘部和第二连接线,所述焊盘部配置为通过绝缘层上的过孔与相邻的第二触控电极连接,所述第二连接线配置为连接所述焊盘部;
所述触控层还包括第二连接单元和第一连接线,所述第二连接单元和第一连接线间隔设置且相互绝缘,所述第二连接单元的位置与所述桥接层的焊盘部的位置相对应,配置为通过绝缘层上的过孔与所述焊盘部连接,所述第一连接线在所述基底上的正投影与所述第二连接线在所述基底上的正投影基本重叠。
另一方面,本公开还提供了一种显示装置,包括前述的显示面板。
又一方面,本公开还提供了一种触控结构,包括叠设的桥接层、绝缘层和触控层,所述触控层包括沿第一延伸方向依次设置的多个第一触控电极和 多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极,所述第一延伸方向与所述第二延伸方向相交;所述多个第一触控电极和多个第一连接部交替设置且依次连接,所述多个第二触控电极间隔设置;所述桥接层包括连接桥,所述连接桥与相邻的第二触控电极连接;
所述触控结构层包括重复且连续设置由多个重复单元,所述重复单元包括多个网格图案,所述网格图案是由金属线构成的多边形,多个网格图案中设置有多个切口,所述切口截断网格图案的金属线;所述重复单元的最大特征长度S=L*tan(1/(57.3*CPD));其中,L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率,L为100mm到1000mm,CPD大于或等于10,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸。
在一些可能的实现方式中,对于观看者眼睛到显示屏的距离为100mm到400mm,所述重复单元的最大特征长度为0.2mm到0.4mm;对于观看者眼睛到显示屏的距离为400mm到1000mm,所述重复单元的最大特征长度为0.4mm到1.2mm。
在一些可能的实现方式中,所述网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,所述第一边与所述第二边不平行;
所述切口包括连续切口,所述连续切口中切口的个数小于或等于3个,所述连续切口为在第一方向上连续设置的至少一个所述网格图案中每个网格图案的两个第一边上均设置有切口,所述第一方向与每个网格图案的第一边交叉,或者为在第二方向上连续设置的至少一个所述网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。
在一些可能的实现方式中,所述切口还包括拐角切口,当所述拐角切口在所述第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个;所述拐角切口为所述网格图案的一个第一边和一个第二边上设置有切口,所述拐角切口一个方向上存在连续切口,为与所述第一边邻近的网格图案具有连续切口,或者与所述第二边邻近的网格图案具有连续切口。
在一些可能的实现方式中,当所述拐角切口为多个时,多个拐角切口构成开放图形。
在一些可能的实现方式中,所述触控结构层包括触控区、边界区和连接桥区,所述触控区包括第一触控电极和第二触控电极,所述连接桥区包括第一连接部和第二连接部;重复且连续设置形成所述触控结构层的多个重复单元中,所述重复单元划分为包含有触控区内切口的第一重复单元、包含有边界区内切口的第二重复单元和包含有连接桥区内切口的第三重复单元;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3;所述切口密度是重复单元中切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,所述切口至少包括截断所述第一边的第一方向切口和截断所述第二边的第二方向切口;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第二重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第二重复单元的第二方向切口密度的比值为0.7到1.3;
所述第一重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
所述第二重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第二重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第二重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比 值为0.7到1.3;
所述第一方向切口密度是重复单元中第一方向切口的数量与重复单元中网格图案的数量之比,所述第二方向切口密度是重复单元中第二方向切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,
所述连接桥包括焊盘部和第二连接线,所述焊盘部配置为通过绝缘层上的过孔与相邻的第二触控电极连接,所述第二连接线配置为连接所述焊盘部;
所述触控层还包括第二连接单元和第一连接线,所述第二连接单元和第一连接线间隔设置且相互绝缘,所述第二连接单元的位置与所述桥接层的焊盘部的位置相对应,配置为通过绝缘层上的过孔与所述焊盘部连接,所述第一连接线在所述基底上的正投影与所述第二连接线在所述基底上的正投影基本重叠。
在阅读理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为一种触控结构层的结构示意图;
图2-1到图2-5为金属网格的结构示意图;
图3为一种金属网格形式触控结构层的结构示意图;
图4为一种显示结构层的平面结构示意图;
图5-1到图5-3为像素单元的结构示意图;
图6为一种显示结构层的剖面结构示意图;
图7-1到图7-3为本公开示例性实施例显示面板的结构示意图;
图8-1到图8-4为触控区、边界区和连接桥区的示意图;
图9-1到图9-2为触控区水印缺陷的示意图;
图10为本公开示例性实施例一种重复单元的示意图;
图11为观看者眼睛1度范围内的空间频率的示意图;
图12-1到图12-3为重复单元形状的示意图;
图13-1到图13-2为本公开示例性实施例连续切口的示意图;
图14-1到图14-2为本公开示例性实施例拐角切口的示意图;
图15-1到图15-2为本公开示例性实施例开放图形的示意图;
图16-1到图16-2为本公开示例性实施例方向切口的示意图;
图17为本公开示例性实施例切口密度的示意图;
图18为本公开示例性实施例一种重复单元的示意图;
图19为本公开示例性实施例另一种重复单元的示意图;
图20为本公开示例性实施例区域设置的示意图;
图21到图24为本公开示例性实施例几种重复单元的示意图;
图25为本公开示例性实施例重复单元水印仿真的示意图;
图26-1到图26-3为一种连接桥区金属网格的结构示意图;
图27-1到图27-2为本公开示例性实施例连接桥区金属网格的结构示意图。
附图标记说明:
10—第一触控电极;      11—第一连接部;        20—第二触控电极;
21—第二连接部;        30—切口;              50—像素单元;
51—第一子像素;        52—第二子像素;        53—第三子像素;
54—第四子像素;        61—柔性基底;          62—驱动电路层;
63—发光结构层;        64—封装层;            100—触控区;
101—第一触控单元;     102—第一传输线;       103—第一焊盘电极;
200—边界区;           201—第二触控单元;     202—第二传输线;
203—第二焊盘电极;     300—连接桥区;         301—连接网格;
302—连接桥;           303—焊盘部;           304—第二连接线;
305—第一连接部;       306—第二连接部;       307—无金属线区域;
308—第一连接线;       700—显示结构层;       701—子像素;
702—子像素水平边界;   703—子像素竖直边界;   800—触控结构层;
801—网格图案;         802—水平金属线;       803—竖直金属线;
901—第一水平切口;     902—第二水平切口;     903—第一竖直切口;
904—第二竖直切口。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定 的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
本公开显示面板包括设置在基底上的显示结构层和设置在所述显示结构层上的触控结构层。显示结构层可以是液晶显示(LCD)结构层,或者可以是有机发光二极管(OLED)结构层,或者可以是等离子体显示面板(PDP)结构层,或者可以是电泳显示(EPD)结构层。在示例性实施方式中,显示结构层是OLED结构层,OLED结构层包括基底、设置在基底上的驱动电路层、设置在驱动电路层上的发光结构层以及设置在发光结构层上的封装层。触控结构层设置在显示结构层的封装层上,形成触控结构在薄膜封装上(Touch on Thin Film Encapsulation,简称Touch on TFE)的结构。
图1为一种触控结构层的结构示意图,如图1所示,触控结构层包括多个第一触控单元101和多个第二触控单元201,第一触控单元101具有沿第一延伸方向D1延伸的线形状,多个第一触控单元101沿第二延伸方向D2依次排列,第二触控单元201具有沿第二延伸方向D2延伸的线形状,多个第二触控单元201沿第一延伸方向D1依次排列,第一延伸方向D1与第二延伸方向D2交叉。
每个第一触控单元101包括沿第一延伸方向D1依次排列的多个第一触控电极10和第一连接部11,多个第一触控电极10和多个第一连接部11交替设置且依次连接。每个第二触控单元201包括沿第二延伸方向D2依次排列的多个第二触控电极20,多个第二触控电极20间隔设置,相邻的第二触控电极20通过第二连接部21彼此连接。第二连接部21所在的层不同于第一触控电极10和第二触控电极20所在的层。第一触控电极10和第二触控电极20在第三延伸方向D3上交替布置,第三方向D3与第一延伸方向D1和第二延伸方向D2交叉。
每个第一触控单元101通过第一传输线102连接到第一焊盘电极103,每个第二触控单元201通过第二传输线202连接到第二焊盘电极203。在示例性实施方式中,第一触控电极10通过第一焊盘电极103连接到显示面板的驱动器,第二触控电极20通过第二焊盘电极203连接到驱动器,驱动器将驱动信号施加到第二触控电极20上,并且接收来自第一触控电极10的输出信 号,或者,驱动器可以将驱动信号施加到第一触控电极10,并且接收来自第二触控电极20的输出信号。驱动器通过检测不同电极发射触控信号时多个电极中产生的感应信号,即可确定出触摸发生的位置。
在示例性实施方式中,多个第一触控电极10、多个第二触控电极20和多个第一连接部11可以同层设置在触控层,并且可以通过同一次构图工艺形成,第一触控电极10和第一连接部11可以为相互连接的一体结构。第二连接部21可以设置在桥接层,通过过孔使相邻的第二触控电极20相互连接,触控层与桥接层之间设置有绝缘层。在一些可能的实现方式中,多个第一触控电极10、多个第二触控电极20和多个第二连接部21可以同层设置在触控层,第二触控电极20和第二连接部21可以为相互连接的一体结构,第一连接部11可以设置在桥接层,通过过孔使相邻的第一触控电极10相互连接。在示例性实施方式中,第一触控电极可以是驱动电极(Tx),第二触控电极可以是感应电极(Rx),或者,第一触控电极可以是感应电极(Rx),第二触控电极可以是驱动电极(Tx)。
在示例性实施方式中,第一触控电极10和第二触控电极20可以具有菱形状,例如可以是正菱形,或者是横长的菱形,或者是纵长的菱形。在一些可能的实现方式中,第一触控电极10和第二触控电极20可以具有三角形、正方形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,本公开在此不做限定。
在示例性实施方式中,第一触控电极10和第二触控电极20可以是金属网格形式,金属网格由多条金属线交织形成,金属网格包括多个网格图案,网格图案是由多条金属线构成的多边形。所形成的金属网格式的第一触控电极10和第二触控电极20具有电阻小、厚度小和反应速度快等优点。在示例性实施方式中,一个网格图案中金属线所围成的区域包含显示结构层中子像素的区域,金属线所在位置位于相邻子像素之间。例如,当显示结构层为OLED显示结构层时,子像素的区域可以是发光结构层中像素界定层限定的发光区域,金属线所围成的区域包含发光区域,金属线位于像素界定层的对应位置,即位于非发光区域中。
图2-1到图2-5为几种金属网格的结构示意图。如图2所示,金属网格 包括多个网格图案,网格图案是由金属线构成的多边形。或者说,金属网格是由网格图案重复且连续设置拼接而成。在示例性实施方式中,金属线围成的网格图案的形状可以为菱形,如图2-1所示。或者,金属线围成的网格图案的形状可以为三角形,如图2-2所示。或者,金属线围成的网格图案的形状可以为矩形,如图2-3所示。或者,金属线围成的网格图案的形状可以为六边形,如图2-4所示。或者,金属线围成的网格图案的形状可以为多种形状的组合,如五边形和六边形的组合,如图2-5所示。或者,金属线围成的网格图案的形状可以包括三角形、正方形、矩形、菱形、梯形、五边形和六边形中的任意一种或多种。在一些可能的实现方式中,金属线围成的网格图案可以为规则的形状,或者为不规则的形状,网格图案的边可以为直线,或者可以为曲线,本公开在此不做限定。在一些可能的实现方式中,金属线的线宽≤5μm。
图3为一种金属网格形式触控结构层的结构示意图,为图1中A区域的放大区,网格图案为菱形状。如图3所示,为了使第一触控电极10和第二触控电极20相互绝缘,金属网格上设置有多个切口30,多个切口30断开网格图案的金属线,实现第一触控电极10的网格图案与第二触控电极20的网格图案的隔离。图3中采用黑色块表示切口30,切口30可以理解为切割金属线的假想线。在示例性实施方式中,多个切口30使金属网格形成触控(Bulk)区100、边界(Boundary)区200和连接桥(Bridge)区300。位于边界区200的每一个网格图案中设置有切口,切口截断网格图案的金属线,使每一个网格图案分为两部分,一部分属于第一触控电极10,另一部分属于第二触控电极20,或者一部分属于第二触控电极20,另一部分属于第一触控电极10。在示例性实施方式中,连接桥区300包括第一连接部和第二连接部,第一连接部用于实现两个第一触控电极10之间连接,第二连接部用于实现两个第二触控电极20之间连接。
在示例性实施方式中,触控区100也设置有多个切口(未示出),多个切口在触控区内分别形成一个或多个虚拟(Dummy)区,位于边界区一侧的触控区包括第一触控电极和虚拟区,位于边界区另一侧的触控区包括第二触控电极和虚拟区。在示例性实施方式中,连接桥区300也设置有多个切口(未 示出),多个切口实现相关网格图案的隔离和连接。
图4为一种显示结构层的平面结构示意图。在平行于显示结构层的平面上,显示结构层包括规则排布的多个像素单元。在示例性实施方式中,每个像素单元可以包括3个子像素,或者可以包括4个子像素,或者可以包括多个子像素。当像素单元包括3个子像素时,3个子像素包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素和出射第三颜色光线的第三子像素。当像素单元包括4个子像素时,4个子像素包括出射第一颜色光线的第一子像素、出射第二颜色光线的第二子像素、出射第三颜色光线的第三子像素和出射第四颜色光线的第四子像素。作为一种示例性说明,图4所示像素单元50包括4个子像素,分别为第一子像素51、第二子像素52第三子像素53和第四子像素54,4个子像素的形状均为正方形,采用正方形(Square)方式排列。在示例性实施方式中,第一子像素51和第四子像素54为出射绿色(G)光线的绿色子像素,第二子像素52为出射红色(R)光线的红色子像素,第三子像素53为出射蓝色(B)光线的蓝色子像素,形成RGGB正方形排列的像素单元50。在一些可能的实现方式中,第一子像素51可以是绿色子像素,第二子像素52可以是红色子像素,第三子像素53可以是蓝色子像素,第四子像素54可以是白色(W)子像素,形成RGBW正方形排列的像素单元50。在一些可能的实现方式中,像素单元可以包括红色子像素、绿色子像素、蓝色子像素、青色子像素、品红色子像素、黄色子像素和白色子像素。
在示例性实施方式中,像素单元50所包括的4个子像素可以采用多种形状,以多种方式进行排列。图5-1至5-3为几种像素单元的结构示意图。4个子像素可以采用矩形状,以并列方式排列,从左到右分别为:R子像素、G子像素、B子像素和G子像素,如图5-1所示。或者,4个子像素可以分别采用五边形和六边形状,以并列方式排列,2个五边形的G子像素位于像素单元的中部,六边形的R子像素和六边形的B子像素分别位于G子像素的两侧,如图5-2所示。在示例性实施方式中,当像素单元50包括3个子像素时,3个矩形状的子像素可以以水平方向并列方式排列,或者可以以竖直方向并列方式排列,如图5-3所示。在一些可能的实现方式中,子像素的形 状可以是三角形、正方形、矩形、菱形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,排列方式可以是X形、十字形或品字形等,本公开在此不做限定。
图6为一种显示结构层的剖面结构示意图,示意了OLED显示时两个子像素的结构。如图6所示,在垂直于显示结构层的平面上,显示结构层包括设置在柔性基底61上的驱动电路层62、设置在驱动电路层62上的发光结构层63以及设置在发光结构层63上的封装层64。在形成显示面板时,将触控结构层设置在封装层64上。在一些可能的实现方式中,显示结构层可以包括其它膜层,触控结构层与封装层之间可以设置其它膜层,本公开在此不做限定。
在示例性实施方式中,柔性基底61可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在示例性实施方式中,驱动电路层62可以包括构成像素驱动电路的晶体管和存储电容,图6中以每个子像素包括一个晶体管和一个存储电容为例进行示意。在一些可能的实现方式中,每个子像素的驱动电路层62可以包括:设置在柔性基底上的第一绝缘层,设置在第一绝缘层上的有源层,覆盖有源层的第二绝缘层,设置在第二绝缘层上的栅电极和第一电容电极,覆盖栅电极和第一电容电极的第三绝缘层,设置在第三绝缘层上的第二电容电极,覆盖第二电容电极的第四绝缘层,第四绝缘层上开设有过孔,过孔暴露出有源层,设置在第四绝缘层上的源电极和漏电极,源电极和漏电极分别通过过孔与有源层连接,覆盖前述结构的平坦层。有源层、栅电极、源电极和漏电极组成晶体管,第一电容电极和第二电容电极组成存储电容。在一些可能的实现方式中,第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一绝缘层可称之为缓冲(Buffer)层, 用于提高基底的抗水氧能力,第二绝缘层和第三绝缘层可称之为栅绝缘(GI)层,第四绝缘层可称之为层间绝缘(ILD)层。第一金属薄膜、第二金属薄膜和第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩或聚噻吩等材料,即本公开适用于基于氧化物(Oxide)技术、硅技术或有机物技术制造的晶体管。
在示例性实施方式中,发光结构层63可以包括阳极、像素定义层、有机发光层和阴极,阳极设置在平坦层上,通过平坦层上开设的过孔与漏电极连接,像素定义层设置在阳极和平坦层上,其上设置有像素开口,像素开口暴露出阳极,有机发光层设置在像素开口内,阴极设置在有机发光层上,有机发光层在阳极和阴极施加电压的作用下出射相应颜色的光线。
在示例性实施方式中,封装层64可以包括叠设的第一封装层、第二封装层和第三封装层,第一封装层和第三封装层可采用无机材料,第二封装层可采用有机材料,第二封装层设置在第一封装层和第三封装层之间,可以保证外界水汽无法进入发光结构层63。
在示例性实施方式中,显示结构层包括发光区域和非发光区域。如图6所示,由于有机发光层是在像素定义层所限定的像素开口区域出射光线,因而像素开口区域为发光区域P1,像素开口以外区域为非发光区域P2,非发光区域P2位于发光区域P1的外围。本公开示例性实施例中,将每个发光区域P1称为子像素(sub pixel),如红色子像素、蓝色子像素或绿色子像素,每个不发光区域P2称为子像素边界,如红色子像素与绿色子像素之间的红绿子像素边界、蓝色子像素与绿色子像素之间的蓝绿子像素边界。这样,显示结构层的发光区域包括周期性排布的多个子像素,显示结构层的非发光区域包括位于相邻子像素之间的子像素边界。
图7-1到图7-3为本公开示例性实施例显示面板的结构示意图。显示面板包括在基底上叠设的显示结构层700和触控结构层800。在本示例中,显 示结构层700包括周期性排布的第一子像素、第二子像素、第三子像素和第四子像素,4个正方形状的子像素以正方形方式排列,如图7-1所示。图7-1示意了20个子像素行和20个子像素列,形成20*20个子像素701,位于相邻子像素行之间的多条子像素水平边界702,以及位于相邻子像素列之间的多条子像素竖直边界703,子像素水平边界702沿着水平方向延伸,子像素竖直边界703沿着竖直方向延伸。在本示例中,触控结构层800包括周期性排布的第一网格图案、第二网格图案、第三网格图案和第四网格图案,第一网格图案的形状与第一子像素的形状可以相同,第二网格图案的形状与第二子像素的形状可以相同,第三网格图案的形状与第三子像素的形状可以相同,第四网格图案的形状与第四子像素的形状可以相同,如图7-2所示。图7-2示意了20个网格行和20个网格列,形成20*20个网格图案801,20*20个网格图案801由多条水平金属线802和多条竖直金属线803垂直交叉构成。在示例性实施方式中,20*20个网格图案可以称为一个重复单元。图7-3示意了触控结构层800设置在显示结构层700上的示意图。如图7-3所述,将触控结构层设置在显示结构层上后,触控结构层800中20*20个网格图案801与显示结构层700中20*20个子像素701的位置相对应,即第一网格图案的位置与第一子像素的位置相对应,第二网格图案的位置与第二子像素的位置相对应,第三网格图案的位置与第三子像素的位置相对应,第四网格图案的位置与第四子像素的位置相对应。触控结构层800中多条水平金属线802与显示结构层700中多条子像素水平边界702的位置相对应,触控结构层800中多条竖直金属线803与显示结构层700中多条子像素竖直边界703的位置相对应,子像素水平边界702在基底上的正投影包含水平金属线802在基底上的正投影,子像素竖直边界703在基底上的正投影包含竖直金属线803在基底上的正投影。这样,金属线在基底上的正投影所围成的区域包含至少一个子像素在基底上的正投影。本公开示例性实施例中,“A的正投影包含B的正投影”即是“B的正投影位于A的正投影的范围内”,是指B的正投影的边界落入A的正投影范围内,或者A的正投影的边界等于B的正投影的边界。这样形成的显示面板中,触控结构层800中的金属线均位于显示结构层700中不发光的子像素边界区域,金属线没有穿越出射光线的发光区域,当显示面板在显示暗画面或者在外部环境光线强烈时,金属网格不会被肉眼观 察到,不会影响显示效果。在一些可能的实现方式中,网格图案的形状可以不同于子像素的形状,本公开在此不做限定。
在示例性实施方式中,触控结构层800的多个网格图案上设置有多个切口,多个切口将网格图案的金属线断开,使触控结构层800形成触控区、边界区和连接桥区。如图7-3所示,图中无颜色填充位置的子像素701所对应的网格图案为触控区,深色填充位置的子像素701所对应的网格图案为边界区,边界区为X形状,X形状中部的重叠区域为连接桥区。触控区包括第一触控电极和第二触控电极,边界区设置在相邻的第一触控电极与第二触控电极之间,边界区的多个网格图案中设置有多个切口,切口截断网格图案的金属线,使得相邻的第一触控电极和第二触控电极绝缘。被X形状边界区隔开的四个触控区中,上触控区和下触控区可以是第一触控电极,左触控区和右触控区是第二触控电极,或者,上触控区和下触控区可以是第二触控电极,左触控区和右触控区是第一触控电极。
图8-1到图8-4为几种触控区、边界区和连接桥区的示意图,示意了一个重复单元内触控区、边界区和连接桥区的形状,实线表示边界区,虚线表示连接桥区。在示例性实施方式中,触控区的形状可以是三角形,边界区的形状为X形,如图8-1所示。或者,触控区的形状可以是矩形,边界区的形状为#形,如图8-2所示。或者,触控区的形状可以是菱形,边界区的形状为菱形,如图8-3所示。或者,触控区的形状可以是六边形,边界区的形状为六边形,如图8-4所示。在一些可能的实现方式中,触控区的形状可以是三角形、正方形、矩形、菱形、梯形、平行四边形、五边形和六边形中的任意一种或更多种,边界区的形状可以是X形、#形、十字形、正方形、矩形、菱形、平行四边形和六边形中的任意一种或更多种,本公开在此不做具体的限定。
在示例性实施方式中,触控结构层金属网格由多个重复单元拼接而成,重复单元是构成触控结构层金属网格的基本单元,通过重复且沿着某一方向连续设置重复单元,可以构成触控结构层金属网格。每个重复单元包括多个网格图案,多个网格图案上设置有多个切口。在示例性实施方式中,重复单元可以包括5*5个网格图案到25*35个网格图案。在一些可能的实现方式中, 考虑到设计过程中设计人员的设计便捷性及变更灵活性,采用重复排列方式进行重复单元排列设计中,重复排列的重复单元可以包括基本的重复单元、镜像的重复单元、反转的重复单元、旋转的重复单元中的任意一种或多种,本公开在此不做限定。
当触控结构层和显示结构层叠合后,触控结构层的触控区会出现水印(mura)缺陷,水印缺陷具体表现为暗态下的点状、线状或块状印记,亮态下的不同方位角的亮度衰减差异。图9-1到图9-2为触控区水印缺陷的示意图。图9-1示意了触控区内9*6个网格图案中切口的设置情况,通过多个切口将金属线切断,隔离出相应的区域,在触控区内形成虚拟区。但这种切口设置使得触控区的水印缺陷比较明显,会被肉眼观察到,如图9-2所示。
图10为本公开示例性实施例一种重复单元的示意图,重复单元包括9*6个六边形的网格图案。如图10所述,在水平方向和竖直方向,重复单元分别具有第一特征长度S1和第二特征长度S2。在示例性实施方式中,第一特征长度S1大于或等于第二特征长度S2,第一特征长度S1称为重复单元的最大特征长度S,即最大特征长度S是第一特征长度S1和第二特征长度S2中的最大值。在示例性实施方式中,重复单元的最大特征长度S为0.2mm到1.2mm,以使得观看者眼睛1度范围内的空间频率大于或等于10。
图11为观看者眼睛1度范围内的空间频率的示意图。通常,眼睛的空间分辨能力(即视力)用可分辨视角(degree)的倒数为单位,正常人眼睛的最小可辨视觉阀值约0.5,最大视觉范围200度(宽)×135度(高)。观看者眼睛1度范围内的空间频率(Cycle/Degree,简称CPD),表示眼球每转动一度扫过的黑白条纹周期数。如图11所示,观看者眼睛1度范围内的空间频率CPD与观看者眼睛到显示屏的距离L和条纹周期h有关,计算公式为:
CPD=1/(57.3*arctan(h/L))
对给定的条纹周期h,观看者眼睛到显示屏的距离L越大,观看者眼睛1度范围内的空间频率CPD越大。对于给定的观看者眼睛到显示屏的距离L,条纹周期h越小,观看者眼睛1度范围内的空间频率CPD越大。研究表明,对于由多个重复单元重复拼接而成的触控结构层,多个重复单元会形成明暗条纹,明暗条纹的条纹周期h即是重复单元的最大特征长度S,因而观看者 眼睛1度范围内的空间频率CPD=1/(57.3*arctan(S/L)),则有:
S=L*tan(1/(57.3*CPD))
在示例性实施方式中,观看者眼睛到显示屏的距离L为100mm到1000mm,CPD≥10,,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸,1/(57.3*CPD)为弧度值。
在观看者观看触控结构层时,观看者眼睛到显示屏的距离L可以分为近观看距离和远观看距离两类,近观看距离是针对小尺寸显示屏,远观看距离是针对大尺寸显示屏。在示例性实施方式中,近观看距离中,观看者眼睛到显示屏的距离L可以为100mm到400mm,远观看距离中,观看者眼睛到显示屏的距离L可以为400mm到1000mm。
在示例性实施方式中,针对近观看距离,设置重复单元的最大特征长度S为0.2mm到0.4mm。在一些可能的实现方式中,设置重复单元的最大特征长度S为0.25mm到0.35mm。
在示例性实施方式中,针对远观看距离,设置重复单元的最大特征长度S为0.4mm到1.2mm。在一些可能的实现方式中,设置重复单元的最大特征长度S为0.5mm到1.0mm。
在一些可能的实现方式中,设置重复单元的最大特征长度S使得观看者眼睛1度范围内的空间频率CPD大于或等于30。
触控结构层的金属网格是由多个重复单元重复拼接而成,多个重复单元会形成明暗条纹,本公开示例性实施例通过设置重复单元的最大特征长度,增大了观看者眼睛1度范围内的空间频率,降低了观看者分辨明暗条纹的敏感度,能够规避不同方位角下的水印,降低水印的可见性。
图12-1到图12-3为几种重复单元形状的示意图。重复单元包括多个网格图案,网格图案是由金属线构成的多边形。在示例性实施方式中,重复单元的形状可以为正方形,沿着水平方向连续设置,正方形的边长为最大特征长度S,如图12-1所示。或者,重复单元的形状可以为长方形,沿着水平方向连续设置,长方形长边的边长为最大特征长度S,如图12-2所示。或者,重复单元的形状可以为六边形,沿着水平方向连续设置,六边形水平方向顶 角间的最大距离为最大特征长度S,如图12-3所示。在一些可能的实现方式中,重复单元的形状可以包括三角形、正方形、矩形、菱形、梯形、五边形和六边形中的任意一种或多种,本公开在此不做限定。
在示例性实施方式中,在触控区、边界区和连接桥区设置切口时,按照切口之间的相对位置,切口可以包括孤立切口、连续切口和拐角切口中的任意一种或多种。按照切口方向,切口可以包括第一方向切口、第二方向切口和第三方向切口中的任意一种或多种。按照切口与子像素的位置关系,切口可以包括第一切口、第二切口和第三切口中的任意一种或多种。
在示例性实施方式中,当一个方向上存在多个切口连续设置时,一个方向上连续切口中切口的个数小于或等于3个。图13-1到图13-2为本公开示例性实施例连续切口的示意图,图中黑色块表示切口,切口可以理解为切割金属线的假想线,虚线表示切割假想线的方向。本文中,一个多边形的网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,第一边与第二边不平行。“连续切口”是指,在第一方向上连续设置的至少一个网格图案中每个网格图案的两个第一边上均设置有切口,第一方向与每个网格图案的第一边交叉。或者,在第二方向上连续设置的至少一个网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。或者说,一个多边形的子像素至少包括两个相互平行的第一侧边,两个相互平行的第一侧边上的金属线均设置有切口,则两个第一侧边上的金属线的切口是连续切口,子像素具有连续切口。子像素侧边上的金属线是指位于子像素边界所在区域的金属线,子像素是指发光区域,子像素边界是指子像素周围的非发光区域。“孤立切口”是指,一个多边形的网格图案只有一条边上设置有切口,则网格图案具有孤立切口。或者,一个子像素只有一个侧边上的金属线设置有切口,则子像素具有孤立切口。本文中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态。
如图13-1所示,可以采用网格图案来说明连续切口和孤立切口。对于第一网格行、第二网格列对应的网格图案,该网格图案左侧的第一边(金属线)上设置有一个切口,右侧的第一边(金属线)上设置有另一个切口,左侧的 第一边和右侧的第一边平行,则两个切口属于连续切口,且连续切口中切口的个数为2。如果行方向上一个邻近的网格图案也具有连续切口,则行方向上连续切口中切口的个数为3。对于第三网格行、第二网格列对应的网格图案以及第三网格行、第三网格列对应的网格图案,网格图案只有一个边上设置有切口,则该切口属于孤立切口。
如图13-1所示,可以采用子像素来说明连续切口和孤立切口。对于第一网格行、第二网格列对应的B子像素,该B子像素左侧侧边的子像素边界区域内的金属线上设置有一个切口,右侧侧边的子像素边界区域内的金属线上设置有另一个切口,左侧侧边和右侧侧边相互平行,则两个切口属于连续切口,且连续切口中切口的个数为2。如果左侧方向上与B子像素邻近的G子像素的左侧侧边和右侧侧边的金属线上均设置有切口,则该方向上连续切口中切口的个数为3。对于第二网格行、第六网格列对应的G子像素,该G子像素上侧侧边的子像素边界区域内的金属线上设置有一个切口,下侧侧边的子像素边界区域内的金属线上设置有另一个切口,上侧侧边和下侧侧边相互平行,则两个切口属于连续切口,且连续切口中切口的个数为2。如果下侧方向上与G子像素邻近的B子像素的上侧侧边和下侧侧边的金属线上均设置有切口,则该方向上连续切口中切口的个数为3。对于第三网格行、第二网格列对应的B子像素以及第三网格行、第三网格列对应的G子像素,B子像素只有右侧侧边的子像素边界区域内的金属线上设置有一个切口,G子像素只有左侧侧边的子像素边界区域内的金属线上设置有一个切口,则B子像素与G子像素之间的切口属于孤立切口。
如图13-2所示,一个连续切口是水平方向,连续切口中切口的个数为3,另二个连续切口是倾斜方向,连续切口中切口的个数为3。倾斜方向包括左上方向和右上方向,或者包括右下方向和左下方向。
在示例性实施方式中,对于拐角切口,当拐角切口在第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个。图14-1到图14-2为本公开示例性实施例拐角切口的示意图。本文中,“拐角切口”是指,一个多边形的网格图案的一个第一边和一个第二边均设置有切口,则该两个切口是拐角切口,网格图案具有拐角切口,相当于网格图案两个边的切口方 向发生了折转。或者说,一个多边形的子像素至少包括不平行的第一侧边和第二侧边,两个不平行的第一侧边和第二侧边上的金属线均设置有切口,则两个切口是拐角切口,相当于子像素两个侧边的切口方向发生了折转。
如图14-1所示,可以采用网格图案来说明拐角切口。对于第一网格行、第三网格列对应的网格图案,该网格图案左侧方向的第一边上设置有一个切口,下侧方向的第二边上设置有另一个切口,第一边与第二边不平行,则该两个切口是拐角切口,拐角切口的方向分别是左侧方向和下侧方向。第一网格行、第二网格列对应的网格图案是与第一边邻近的网格图案,该网格图案具有连续切口,则拐角切口左侧方向上包括连续切口,且连续切口中切口的个数为2个。第二网格行、第三网格列对应的网格图案是与第一边邻近的网格图案,该网格图案具有连续切口,则拐角切口下侧方向上包括连续切口,且连续切口中切口的个数为2个。
如图14-1所示,可以采用子像素来说明拐角切口。对于第一网格行、第三网格列对应的G子像素,该G子像素左侧侧边的子像素边界区域内的金属线上设置有向左侧方向延伸的一个切口,下侧侧边的子像素边界区域内的金属线上设置有向下侧方向延伸的另一个切口,则向左侧方向延伸的切口和向下侧方向延伸的切口形成拐角切口,拐角切口的方向分别是左侧方向和下侧方向。当左侧方向与该G子像素邻近的B子像素具有连续切口时,则拐角切口左侧方向上包括连续切口,且连续切口中切口的个数为2个。当下侧方向与该G子像素邻近的R子像素具有连续切口时,则拐角切口下侧方向上包括连续切口,且连续切口中切口的个数为2个。
如图14-2所示,一个拐角切口分别是左侧方向和右下侧方向,两个方向均包括连续切口,连续切口中切口的个数为2。另一个拐角切口分别是右侧方向和左下侧方向,左下侧方向包括连续切口,连续切口中切口的个数为2。
在示例性实施方式中,当多个拐角切口连续设置时,多个拐角构成开放图形。图15-1到图15-2为本公开示例性实施例开放图形的示意图。如图15-1所示,第一网格行、第三网格列对应的G子像素处形成一个拐角切口,该拐角切口的一个端部是第一网格行、第一网格列对应的G子像素。第三网格行、第三网格列对应的G子像素处形成另一个拐角切口,该拐角切口的一个端部 是第三网格行、第一网格列对应的G子像素。由于两个拐角切口的端部没有重叠,因而两个拐角切口所形成的图形是开放图形,两个拐角切口中所有切口没有形成闭合回路。如图15-2所示,第一网格行、第三网格列对应的G子像素处形成一个拐角切口,该拐角切口的一个端部是第一网格行、第一网格列对应的G子像素。第三网格行、第四网格列对应的B子像素处形成另一个拐角切口,该拐角切口的一个端部是第三网格行、第六网格列对应的B子像素。由于两个拐角切口的端部没有重叠,因而两个拐角切口所形成的图形是开放图形。
本公开示例性实施例通过设置切口之间的相对位置关系,可以使得切口在金属网格上最大限度地均匀设置,可以避免在一个方向上或一个区域内多个切口因干涉产生亮度差异,可以降低切口的可见性,能够改善触控区的水印缺陷。
在示例性实施方式中,在触控区、边界区和连接桥区设置切口时,按照切口的方向,切口可以至少包括第一方向切口和第二方向切口。由于网格图案是由金属线构成的多边形,因此网格图案至少包括相互不平行的第一边和第二边,第一方向切口是截断第一边的切口,第二方向切口是截断第二边的切口。图16-1到图16-2为本公开示例性实施例方向切口的示意图。如图16-1所示,矩形的网格图案中,截断竖直方向金属线(第一边)的切口为第一方向切口(水平切口),截断水平金属线(第二边)的切口为第二方向切口(竖直切口)。如图16-2所示,六边形的网格图案中,截断右上方向金属线(第一边)的切口为第一方向切口(左上切口),截断左上方向金属线(第二边)的切口为第二方向切口(右上切口)。在示例性实施方式中,第一方向切口可以是水平切口、竖直切口和倾斜切口中的任意一种,第二方向切口可以是不同于第一方向切口的任意一种,倾斜切口包括左上切口和右上切口中的任意一种或多种。以下实施例中,以第一方向切口是水平切口、第二方向切口是竖直切口、第三方向切口是切斜切口为例进行说明。
在示例性实施方式中,切口密度是指一个重复单元内切口的数量与一个重复单元内网格图案的数量之比。图17为本公开示例性实施例切口密度的示意图。如图17所示,在一个重复单元内,如12*12个矩形网格图案,网格图 案的数量为144个,当重复单元内设置有58个切口时,则切口密度为58/144=0.403。58个切口中,水平切口的数量是31,竖直切口的数量是27,则水平切口密度为31/144=0.215,竖直切口密度为27/144=0.188。在示例性实施方式中,一个重复单元内切口密度可以为10%到90%。
图18为本公开示例性实施例一种重复单元的示意图,重复单元包括12*12个网格图案,网格图案为矩形。重复单元的12*12个网格图案与显示结构层上12*12个子像素的形状相同,且位置相对应,12*12个子像素以GBRG正方形方式周期性排布。如图18所示,重复单元的切口包括第一水平切口901、第二水平切口902、第一竖直切口903和第二竖直切口904,第一水平切口901设置在水平方向排列的R子像素与G子像素之间,第二水平切口902设置在水平方向排列的B子像素与G子像素之间,第一竖直切口903设置在竖直方向排列的R子像素与G子像素之间,第二竖直切口904设置在竖直方向排列的B子像素与G子像素之间。
在示例性实施方式中,在一重复单元内,第一水平切口密度与第二水平切口密度的比值可以为0.7到1.3,第一竖直切口密度与第二竖直切口密度的比值可以为0.7到1.3。在一些可能的实现方式中,第一水平切口密度可以等于第二水平切口密度,第一竖直切口密度可以等于第二竖直切口密度。第一水平切口密度是重复单元中第一水平切口901的数量与重复单元中网格图案的数量之比,第二水平切口密度是重复单元中第二水平切口902的数量与重复单元中网格图案的数量之比,第一竖直切口密度是重复单元中第一竖直切口903的数量与重复单元中网格图案的数量之比,第二竖直切口密度是重复单元中第二竖直切口904的数量与重复单元中网格图案的数量之比。
例如,对于图18所示的12*12个网格图案的重复单元内,第一、第三、第五、第七、第九、第十一网格行中,第二水平切口902的数量分别是2、4、2、2、3、3,重复单元内第二水平切口902的数量为16。第二、第四、第六、第八、第十、第十二网格行中,第一水平切口901的数量分别是3、2、4、3、2、3,重复单元内第一水平切口901的数量为17,第一水平切口密度与第二水平切口密度的比值为1.06。又如,对于图18所示的12*12个网格图案的重复单元内,第一、第三、第五、第七、第九、第十一网格列中,第一竖直切 口903的数量分别是3、2、2、2、3、2,重复单元内第一竖直切口903的数量为14。第二、第四、第六、第八、第十、第十二网格列中,第二竖直切口904的数量分别是2、3、2、3、3、3,重复单元内第二竖直切口904的数量为16,第一竖直切口密度与第二竖直切口密度的比值为1.14。
由于第一水平切口设置在R子像素与G子像素之间,可以理解为一个第一水平切口对应一个R子像素和一个G子像素,因而当第一水平切口的数量为16时,16个第一水平切口将对应R子像素和G子像素。由于第二水平切口设置在B子像素与G子像素之间,可以理解为一个第二水平切口对应一个B子像素和一个G子像素,因而当第二水平切口的数量为17时,17个第二水平切口将对应B子像素和G子像素。这样,所有的水平切口中,对应R子像素的数量为16个,对应B子像素的数量为17个,对应G子像素的数量为33个,对应R子像素和对应B子像素的数量相近,对应G子像素的数量与对应R子像素和B子像素的数量相同。
由于第一水平切口设置在R子像素与G子像素之间,可以理解为一个R子像素有邻近的第一水平切口,一个G子像素有邻近的第一水平切口,因而当第一水平切口的数量为16时,16个R子像素有邻近的第一水平切口,16个G子像素有邻近的第一水平切口。由于第二水平切口设置在B子像素与G子像素之间,可以理解为一个B子像素有邻近的第二水平切口,一个G子像素有邻近的第二水平切口,因而当第二水平切口的数量为17时,17个B子像素有邻近的第二水平切口,17个G子像素有邻近的第二水平切口。这样,所有的子像素中,邻近有水平切口的R子像素的数量为16个,邻近有水平切口的B子像素的数量为17个,邻近有水平切口的G子像素的数量为33个,邻近有水平切口的R子像素和邻近有水平切口的B子像素的数量相近,邻近有水平切口的G子像素的数量与邻近有水平切口的R子像素和B子像素的数量相同。
重复单元内的切口可以划分为第一切口和第二切口,第一切口设置在R子像素与G子像素之间,即第一切口包括第一水平切口和第一竖直切口,第二切口设置在B子像素与G子像素之间,即第二切口包括第二水平切口和第二竖直切口。在示例性实施方式中,在重复单元内,第一切口密度与第二切 口密度的比值可以为0.7到1.3。
在示例性实施方式中,当子像素以其它方式周期性排布时,重复单元内的切口可以划分为第一切口、第二切口和第三切口,第一切口设置在R子像素与G子像素之间,第二切口设置在B子像素与G子像素之间,第三切口设置在R子像素与B子像素之间。在一重复单元内,第一切口密度与第二切口密度的比值可以为0.7到1.3,第二切口密度与第三切口密度的比值可以为0.7到1.3,第一切口密度与第三切口密度的比值可以为0.7到1.3。在一些可能的实现方式中,第一切口、第二切口和第三切口可以均包括水平(第一方向)切口、竖直(第二方向)切口和倾斜(第三方向)切口中的任意一种或多种,倾斜切口可以包括左上切口和右上切口中的任意一种或多种,本公开在此不做限定。
在一些可能的实现方式中,第一切口密度与第二切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一水平切口密度与第二水平切口密度的比值可以为0.7到1.3,第一竖直切口密度与第二竖直切口密度的比值可以为0.7到1.3,第一倾斜切口密度与第二倾斜切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第二切口密度与第三切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第二水平切口密度与第三水平切口密度的比值可以为0.7到1.3,所述第二竖直切口密度与第三竖直切口密度的比值可以为0.7到1.3,所述第二倾斜切口密度与第三倾斜切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第一切口密度与第三切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一水平切口密度与第三水平切口密度的比值可以为0.7到1.3,第一竖直切口密度与第三竖直切口密度的比值可以为0.7到1.3,第一倾斜切口密度与第三倾斜切口密度的比值可以为0.7到1.3。
图19为本公开示例性实施例另一种重复单元的示意图,重复单元包括9*6个网格图案,网格图案为六边形。如图19所示,在该重复单元中,第一水平切口的数量为4,第二水平切口的数量为4,第三水平切口的数量为4, 则第一水平切口密度与第二水平切口密度的比值为1,第二水平切口密度与第三水平切口密度的比值为1,第一水平切口密度与第三水平切口密度的比值为1。如图19所示,在该重复单元中,第一左上切口的数量为4,第二左上切口的数量为4,第三左上切口的数量为4,则第一左上切口密度与第二左上切口密度的比值为1,第二左上切口密度与第三左上切口密度的比值为1,第一左上切口密度与第三左上切口密度的比值为1。如图19所示,在该重复单元中,第一右上切口的数量为4,第二右上切口的数量为4,第三右上切口的数量为4,则第一右上切口密度与第二右上切口密度的比值为1,第二右上切口密度与第三右上切口密度的比值为1,第一右上切口密度与第三右上切口密度的比值为1。
本公开示例性实施例通过在重复单元内将第一切口密度、第二切口密度和第三切口密度设置成相等或相近,使得切口所对应的不同颜色子像素的数量基本上相同,不同颜色子像素邻近有切口的数量基本上相同,切口在不同颜色子像素之间均匀分布,可以降低切口的可见性,能够改善边界区的水印缺陷。
在示例性实施方式中,触控区、边界区和连接桥区均设置有多个切口,触控区中的多个切口在触控区内分别形成虚拟区和电极区,边界区中的多个切口实现第一触控电极与第二触控电极的隔离,连接桥区中的多个切口形成连接结构。由于触控区、边界区以及连接桥区之间均存在接壤区域,因而可以通过设置接壤区域的切口密度来改善连接桥区的水印缺陷。
如图3所示,构成触控结构层金属网格的重复单元可以划分为包含有触控区内切口的第一重复单元C1、包含有边界区内切口的第二重复单元C2和包含有连接桥区内切口的第三重复单元C3。在示例性实施方式中,第一重复单元C1、第二重复单元C2和第三重复单元C3的面积相同。在示例性实施方式中,第一重复单元的切口密度与第二重复单元的切口密度的比值可以为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3。
在示例性实施方式中,按照切口方向,第一重复单元、第二重复单元和 第三重复单元中的切口可以均包括第一方向切口、第二方向切口和第三方向切口中的任意一种或多种。
在一些可能的实现方式中,第一重复单元的切口密度与第二重复单元的切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一重复单元中的第一方向切口密度与第二重复单元中的第一方向切口密度的比值可以为0.7到1.3,第一重复单元中的第二方向切口密度与第二重复单元中的第二方向切口密度的比值可以为0.7到1.3,第一重复单元中的第三方向切口密度与第二重复单元中的第三方向切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第一重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一重复单元中的第一方向切口密度与第三重复单元中的第一方向切口密度的比值可以为0.7到1.3,第一重复单元中的第二方向切口密度与第三重复单元中的第二方向切口密度的比值可以为0.7到1.3,第一重复单元中的第三方向切口密度与第三重复单元中的第三方向切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第二重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第二重复单元中的第一方向切口密度与第三重复单元中的第一方向切口密度的比值可以为0.7到1.3,第二重复单元中的第二方向切口密度与第三重复单元中的第二方向切口密度的比值可以为0.7到1.3,第二重复单元中的第三方向切口密度与第三重复单元中的第三方向切口密度的比值可以为0.7到1.3。
在示例性实施方式中,可以在触控区所在区域定义一个第一区域,该第一区域的面积等于第一重复单元的面积。可以在边界区所在区域定义多个第二区域,每个第二区域的面积等于第二重复单元的面积。可以在连接桥区所在区域定义多个第三区域,每个第三区域的面积等于第三重复单元的面积。本公开示例性实施例中,第一重复单元的切口密度与第二重复单元的切口密度的比值可以为0.7到1.3,可以扩展为:一个第一区域的切口密度与任意一个第二区域的切口密度的比值可以为0.7到1.3。第一重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3,可以扩展为:一个第一区域的切口密度与任意一个第三区域的切口密度的比值可以为0.7到1.3。第二 重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3,可以扩展为:一个第二区域的切口密度与任意一个第三区域的切口密度的比值可以为0.7到1.3。
图20为本公开示例性实施例区域设置的示意图。如图20所示,相对于连接桥区所在区域定义的第一区域,触控区所在区域可以定义多个第二区域,如位于第一区域右侧方向的第二区域A1到A5,位于第一区域右下侧方向的第二区域B1到B5,位于第一区域下侧方向的第二区域C1到C5。以右侧方向的第二区域为例,第二区域A1到A5之间可以是间隔定义的,或者可以是重叠定义的。第一区域的切口密度与任意一个第二区域的切口密度的比值是指,第一区域的切口密度与第二区域A1的切口密度的比值,或者,第一区域的切口密度与第二区域A2的切口密度的比值,或者,第一区域的切口密度与第二区域A3的切口密度的比值,或者,第一区域的切口密度与第二区域A4的切口密度的比值,或者,第一区域的切口密度与第二区域A5的切口密度的比值。
本公开示例性实施例通过设置触控区、边界区和连接桥区的切口密度关系,减少了触控区、边界区和连接桥区之间切口图案的差别,降低了触控区、边界区和连接桥区的亮度差异,可以降低切口的可见性,能够改善触控区的水印缺陷。
在示例性实施方式中,按照切口与子像素的位置关系,第一重复单元、第二重复单元和第三重复单元中的多个切口可以均包括第一切口、第二切口和第三切口,第一切口设置在R子像素与G子像素之间,第二切口设置在B子像素与G子像素之间,第三切口设置在R子像素与B子像素之间。
在一些可能的实现方式中,第一重复单元的切口密度与第二重复单元的切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一重复单元中的第一切口密度与第二重复单元中的第一切口密度的比值可以为0.7到1.3,第一重复单元中的第二切口密度与第二重复单元中的第二切口密度的比值可以为0.7到1.3,第一重复单元中的第三切口密度与第二重复单元中的第三切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第一重复单元的切口密度与第三重复单元的 切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第一重复单元中的第一切口密度与第三重复单元中的第一切口密度的比值可以为0.7到1.3,第一重复单元中的第二切口密度与第三重复单元中的第二切口密度的比值可以为0.7到1.3,第一重复单元中的第三切口密度与第三重复单元中的第三切口密度的比值可以为0.7到1.3。
在一些可能的实现方式中,第二重复单元的切口密度与第三重复单元的切口密度的比值可以为0.7到1.3包括如下的任意一种或多种:第二重复单元中的第一切口密度与第三重复单元中的第一切口密度的比值可以为0.7到1.3,第二重复单元中的第二切口密度与第三重复单元中的第二切口密度的比值可以为0.7到1.3,第二重复单元中的第三切口密度与第三重复单元中的第三切口密度的比值可以为0.7到1.3。
本公开示例性实施例可以使得触控区、边界区和连接桥区中切口所对应的不同颜色子像素的数量基本上相同,切口在不同颜色子像素之间均匀分布,可以降低切口的可见性,能够改善触控区的水印缺陷。
图21到图24为本公开示例性实施例几种重复单元的示意图,图25为本公开示例性实施例重复单元水印仿真的示意图。图21所示重复单元包括10*10个网格图案,网格图案为正方形。图22所示重复单元包括12*12个网格图案,网格图案为正方形。图23所示重复单元包括所述9*6个网格图案,网格图案为六边形。图24所示重复单元包括所述18*12个网格图案,网格图案为六边形。如图21到图24所示,上述重复单元的切口设置均满足触控区、边界区和连接桥区的切口密度关系,消除了触控区、边界区和连接桥区的金属图案的区别,满足第一切口密度与第二切口密度、第一切口密度与第三切口密度和第二切口密度与第二切口密度的比值为0.7到1.3,满足一个方向上连续切口中切口的个数小于等于3个,当拐角切口在第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个,多个拐角构成开放图形,使得切口在连接桥区、触控区和边界区内最大限度地均匀设置,降低了切口的可见性,能够明显改善连接桥区的水印缺陷,水印几乎不会被肉眼观察到,如图25所示。
图26-1到图26-3为一种连接桥区金属网格的结构示意图,为图3中B 区域的放大区,网格图案为菱形状。在垂直于触控结构层的方向上,触控结构层包括沿着远离显示结构层方向依次设置的桥接层、绝缘层和触控层,绝缘层设置在触控层和桥接层之间,实现两者的绝缘。在示例性实施方式中,桥接层包括下层金属网格,触控层包括上层金属网格。连接桥区金属网格包括位于桥接层的下层金属网格和位于触控层的上层金属网格,下层金属网格作为连接桥,配置为使位于触控层的第二触控电极20相互连接,上层金属网格配置为使位于同层的第一触控电极10相互连接。
图26-1为一种下层金属网格的结构示意图,下层金属网格设置在桥接层,作为在第二触控电极20之间建立连接的连接桥,第二触控电极20沿竖直方向间隔设置。如图26-1所示,下层金属网格包括相对于竖直线对称设置的两个连接网格301,每个连接网格301包括多个连接桥302,每个连接桥302包括焊盘部303和第二连接线304。焊盘部303设置在连接桥302的两端,配置为通过绝缘层上开设的过孔与位于触控层的第二触控电极20连接,第二连接线304设置两端的焊盘部30之间,配置为连接两端的焊盘部303。第二连接线304包括与连接桥302第一侧的焊盘部303连接的一条第二连接线和与连接桥302第二侧的焊盘部303连接的另一条第二连接线,一条第二从第一侧的焊盘部303向第二侧的焊盘部303延伸,另一条第二连接线从第二侧的焊盘部303向第一侧的焊盘部303延伸,两条第二连接线在交叉处相互连接。在示例性实施方式中,每个连接网格301包括2个到5个依次设置的连接桥302,形状相同的连接桥302从小到大依次套设。在示例性实施方式中,每个连接桥可以包括多个网格结构,多个网格结构相互连接。在示例性实施方式中,位于连接桥302端部的焊盘部303包括2个到4个第一焊盘,多个第一焊盘形成线形状、三角形状或正方形状排布。在示例性实施方式中,折线状的第二连接线304分别与两端的焊盘部303中的第一焊盘连接。
图26-2为一种上层金属网格的结构示意图,上层金属网格设置在触控层。如图26-2所示,上层金属网格包括第一触控电极10、第二触控电极20、第一连接单元305和第二连接单元306,第一触控电极10沿水平方向间隔设置,作为第一连接部的第一连接单元305将邻近的两个第一触控电极10连接起来。第二触控电极20沿竖直方向间隔设置,第二连接单元306和下层金属 网格一起作为第二连接部,连接邻近的两个第二触控电极20。第一连接单元305包括多条交织线,如图26-2中粗线所示,多条交织线相互交叉并分别向着两个第一触控电极10方向延伸,使邻近的两个第一触控电极10和第一连接单元305形成相互连接的一体结构。实际的交织线的线宽与网格图案中金属线的线宽相同,图26-2中用粗线标识只是为了清楚地描述交织线。第二连接单元306包括多个第二焊盘,多个第二焊盘的位置与下层金属网格的多个第一焊盘的位置相对应,配置为通过绝缘层上开设的过孔与位于桥接层的下层金属网格连接。多个第二焊盘分别位于第一连接单元305的两侧,每侧的第二焊盘与该侧的第二触控电极20连接。
一种连接桥区金属网格的设计中,上层金属网格的多个第二焊盘的位置与下层金属网格的多个第一焊盘的位置一一对应,下层金属网格的多个第一焊盘之间设置有第二连接线304,而上层金属网格中与第二连接线304相对应位置的金属线被去除,形成无金属线区域307,如图26-2所示。
图26-3为一种连接桥区金属网格的结构示意图,实线表示上层金属网格的金属线,虚线表示下层金属网格的金属线。上层金属网格和下层金属网格形成连接桥区后,下层金属网格有金属线的位置,上层金属网格没有金属线,上层金属网格有金属线的位置,下层金属网格没有金属线,如图26-3所示。研究表明,由于连接桥区的上层金属网格不完整,且连接桥区既有上层金属网格的金属线的反射,又有下层金属网格的金属线的反射,因而使得连接桥区的网格图案与触控区和边界区的网格图案差别较大,导致连接桥区出现点状、线状或块状的水印缺陷。
图27-1到图27-2为本公开示例性实施例连接桥区金属网格的结构示意图,为图3中B区域的放大区,网格图案为菱形状。连接桥区金属网格包括位于桥接层的下层金属网格和位于触控层的上层金属网格,下层金属网格作为连接桥,配置为使位于触控层的第二触控电极20相互连接,上层金属网格配置为使位于同层的第一触控电极10相互连接。
图27-1为本公开示例性实施例上层金属网格的结构示意图,上层金属网格设置在触控层。在示例性实施方式中,本公开下层金属网格可以采用图26-1所示结构。如图27-1所示,上层金属网格包括第一触控电极10、第二 触控电极20、第一连接单元305、第二连接单元306和第一连接线308,第一触控电极10沿水平方向间隔设置,作为第一连接部的第一连接单元305将邻近的两个第一触控电极10连接起来。第二触控电极20沿竖直方向间隔设置,作为第二连接部的第二连接单元306和下层金属网格一起连接邻近的两个第二触控电极20,第二连接单元306和第一连接线308间隔设置且相互绝缘。第一连接单元305的结构与图26-1所示的第一连接单元305的结构相同,使邻近的两个第一触控电极10和第一连接单元305形成相互连接的一体结构。第二连接单元306包括多个第二焊盘,多个第二焊盘的位置与下层金属网格的多个第一焊盘的位置相对应,即第二连接单元306的位置与下层金属网格的焊盘部的位置相对应,第二连接单元306配置为通过绝缘层上开设的过孔与位于桥接层的多个第一焊盘连接。多条第一连接线308的位置与下层金属网格的多条第二连接线304的位置相对应,第一连接线308配置为遮挡下层金属网格的第二连接线,第一连接线308上设置有多个切口,多个切口将第一连接线308截断,保证了上层金属网格的第二焊盘分别与第一触控电极10和第一连接单元305隔离。图27-1中粗线示意了第一连接线,实际的第一连接线的线宽与网格图案中金属线的线宽相同,图27-1中用粗线标识只是为了清楚地描述第一连接线。
图27-2为本公开示例性实施例连接桥区金属网格的结构示意图。如图27-2所示,上层金属网格和下层金属网格形成连接桥区后,下层金属网格有金属线的位置,上层金属网格设置有第一连接线,上层金属网格的第一连接线在基底上的正投影与下层金属网格的第二连接线在基底上的正投影基本重叠。本公开示例性实施例中,“A在基底上的正投影与B在基底上的正投影基本重叠”,是指A的正投影与B的正投影的重叠范围大于90%。在示例性实施方式中,第一连接线上设置有多个切口,上层金属网格的第一连接线在基底上的正投影与下层金属网格的第二连接线在基底上的正投影的重叠范围大于95%。这样,保证了连接桥区的上层金属网格的完整,连接桥区下层金属网格的金属线的反射被上层金属网格设置的第一连接线遮挡,连接桥区中金属线的反射主要来自于上层金属网格的金属线,因而使得连接桥区的网格图案与触控区和边界区的网格图案差别很小,有效避免了连接桥区出现点状、线状或块状的水印缺陷。
本公开还提供了一种触控结构,包括叠设的桥接层、绝缘层和触控层,所述触控层包括沿第一延伸方向依次设置的多个第一触控电极和多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极,所述第一延伸方向与所述第二延伸方向相交;所述多个第一触控电极和多个第一连接部交替设置且依次连接,所述多个第二触控电极间隔设置;所述桥接层包括连接桥,所述连接桥与相邻的第二触控电极连接;
所述触控结构层包括重复且连续设置由多个重复单元,所述重复单元包括多个网格图案,所述网格图案是由金属线构成的多边形,多个网格图案中设置有多个切口,所述切口截断网格图案的金属线;所述重复单元的最大特征长度S=L*tan(1/(57.3*CPD));其中,L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率,L为100mm到1000mm,CPD大于或等于10,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸,1/(57.3*CPD)为弧度值。
在一些可能的实现方式中,对于观看者眼睛到显示屏的距离为100mm到400mm,所述重复单元的最大特征长度为0.2mm到0.4mm;对于观看者眼睛到显示屏的距离为400mm到1000mm,所述重复单元的最大特征长度为0.4mm到1.2mm。
在一些可能的实现方式中,所述网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,所述第一边与所述第二边不平行;
所述切口包括连续切口,所述连续切口中切口的个数小于或等于3个,所述连续切口为在第一方向上连续设置的至少一个所述网格图案中每个网格图案的两个第一边上均设置有切口,所述第一方向与每个网格图案的第一边交叉,或者所述连续切口为在第二方向上连续设置的至少一个所述网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。
在一些可能的实现方式中,所述切口还包括拐角切口,当所述拐角切口在所述第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个;所述拐角切口为所述网格图案的一个第一边和一个第二边上设置有切口。
在一些可能的实现方式中,当所述拐角切口为多个时,多个拐角切口构成开放图形。
在一些可能的实现方式中,所述触控结构层包括触控区、边界区和连接桥区,所述触控区包括第一触控电极和第二触控电极,所述连接桥区包括第一连接部和第二连接部;重复且连续设置形成所述触控结构层的多个重复单元中,所述重复单元划分为包含有触控区内切口的第一重复单元、包含有边界区内切口的第二重复单元和包含有连接桥区内切口的第三重复单元;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3;所述切口密度是重复单元中切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,所述切口至少包括截断所述第一边的第一方向切口和截断所述第二边的第二方向切口;
所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第二重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第二重复单元的第二方向切口密度的比值为0.7到1.3;
所述第一重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
所述第二重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第二重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第二重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比 值为0.7到1.3;
所述第一方向切口密度是重复单元中第一方向切口的数量与重复单元中网格图案的数量之比,所述第二方向切口密度是重复单元中第二方向切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,所述多个子像素包括出射第一颜色的第一子像素、出射第二颜色的第二子像素和出射第三颜色的第三子像素;在所述第一重复单元、第二重复单元和第三重复单元内,所述切口包括位于所述第一子像素与第二子像素之间的第一切口、位于所述第二子像素与第三子像素之间的第二切口和位于所述第一子像素与第三子像素之间的第三切口;
在所述第一重复单元、第二重复单元和第三重复单元内,第一切口密度与第二切口密度的比值为0.7到1.3,第一切口密度与第三切口密度的比值为0.7到1.3,第二切口密度与第三切口密度的比值为0.7到1.3;
所述第一切口密度是重复单元中第一切口的数量与重复单元中网格图案的数量之比,所述第二切口密度是重复单元中第二切口的数量与重复单元中网格图案的数量之比,所述第三切口密度是重复单元中第三切口的数量与重复单元中网格图案的数量之比。
在一些可能的实现方式中,
所述第一切口密度与第二切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第二水平切口密度的比值为0.7到1.3,第一竖直切口密度与第二竖直切口密度的比值为0.7到1.3,第一倾斜切口密度与第二倾斜切口密度的比值为0.7到1.3;
所述第二切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第二水平切口密度与第三水平切口密度的比值为0.7到1.3,所述第二竖直切口密度与第三竖直切口密度的比值为0.7到1.3,所述第二倾斜切口密度与第三倾斜切口密度的比值为0.7到1.3;
所述第一切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第三水平切口密度的比值为0.7到1.3,第一竖直切口密度与第三竖直切口密度的比值为0.7到1.3,第一倾斜切口密度 与第三倾斜切口密度的比值为0.7到1.3。
在一些可能的实现方式中,
所述第一重复单元的第一切口密度与所述第二重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第二重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第二重复单元的第三切口密度的比值为0.7到1.3;
所述第一重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3;
所述第二重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第二重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第二重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3。
在一些可能的实现方式中,
所述连接桥包括焊盘部和第二连接线,所述焊盘部配置为通过绝缘层上的过孔与相邻的第二触控电极连接,所述第二连接线配置为连接所述焊盘部;
所述触控层还包括第二连接单元和第一连接线,所述第二连接单元和第一连接线间隔设置且相互绝缘,所述第二连接单元的位置与所述桥接层的焊盘部的位置相对应,配置为通过绝缘层上的过孔与所述焊盘部连接,所述第一连接线在所述基底上的正投影与所述第二连接线在所述基底上的正投影基本重叠。
本公开还提供了一种显示装置,包括前述任一实施例的显示面板。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本申请中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例即实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本申请的权利要求的范围当中。

Claims (20)

  1. 一种显示面板,包括基底、设置在所述基底上的显示结构层以及设置在所述显示结构层上的触控结构层;所述显示结构层包括发光区域和非发光区域,所述发光区域包括周期性排布的多个子像素,所述非发光区域包括位于相邻子像素之间的子像素边界;所述触控结构层包括多个网格图案,所述网格图案是由金属线构成的多边形,所述金属线在所述基底上的正投影所围成的区域内包含至少一个子像素在所述基底上的正投影,所述子像素边界在所述基底上的正投影包含所述金属线在所述基底上的正投影;
    所述触控结构层包括叠设的桥接层、绝缘层和触控层,所述触控层包括沿第一延伸方向依次设置的多个第一触控电极和多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极,所述第一延伸方向与所述第二延伸方向相交;所述多个第一触控电极和多个第一连接部交替设置且依次连接,所述多个第二触控电极间隔设置;所述桥接层包括连接桥,所述连接桥与相邻的第二触控电极连接;
    所述触控结构层包括触控区,所述触控区包括重复且连续设置由多个重复单元,所述重复单元的多个网格图案中设置有多个切口,所述切口截断网格图案的金属线;所述重复单元的最大特征长度S=L*tan(1/(57.3*CPD));其中,L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率,L为100mm到1000mm,CPD大于或等于10,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸。
  2. 根据权利要求1所述的显示面板,其中,对于观看者眼睛到显示屏的距离为100mm到400mm,所述重复单元的最大特征长度为0.2mm到0.4mm;对于观看者眼睛到显示屏的距离为400mm到1000mm,所述重复单元的最大特征长度为0.4mm到1.2mm。
  3. 根据权利要求1或2所述的显示面板,其中,所述网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,所述第一边与所述第二边不平行;
    所述切口包括连续切口,所述连续切口中切口的个数小于或等于3个, 所述连续切口为在第一方向上连续设置的至少一个所述网格图案中每个网格图案的两个第一边上均设置有切口,所述第一方向与每个网格图案的第一边交叉,或者所述连续切口为在第二方向上连续设置的至少一个所述网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。
  4. 根据权利要求3所述的显示面板,其中,所述切口还包括拐角切口,当所述拐角切口在所述第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个;所述拐角切口为所述网格图案的一个第一边和一个第二边上设置有切口。
  5. 根据权利要求4所述的显示面板,其中,当所述拐角切口为多个时,多个拐角切口构成开放图形。
  6. 根据权利要求3所述的显示面板,其中,所述触控结构层包括触控区、边界区和连接桥区,所述触控区包括第一触控电极和第二触控电极,所述连接桥区包括第一连接部和第二连接部;重复且连续设置形成所述触控结构层的多个重复单元中,所述重复单元划分为包含有触控区内切口的第一重复单元、包含有边界区内切口的第二重复单元和包含有连接桥区内切口的第三重复单元;
    所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3;所述切口密度是重复单元中切口的数量与重复单元中网格图案的数量之比。
  7. 根据权利要求6所述的显示面板,其中,所述切口至少包括截断所述第一边的第一方向切口和截断所述第二边的第二方向切口;
    所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第二重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第二重复单元的第二方向切口密度的比 值为0.7到1.3;
    所述第一重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
    所述第二重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第二重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第二重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
    所述第一方向切口密度是重复单元中第一方向切口的数量与重复单元中网格图案的数量之比,所述第二方向切口密度是重复单元中第二方向切口的数量与重复单元中网格图案的数量之比。
  8. 根据权利要求6所述的显示面板,其中,所述多个子像素包括出射第一颜色的第一子像素、出射第二颜色的第二子像素和出射第三颜色的第三子像素;在所述第一重复单元、第二重复单元和第三重复单元内,所述切口包括位于所述第一子像素与第二子像素之间的第一切口、位于所述第二子像素与第三子像素之间的第二切口和位于所述第一子像素与第三子像素之间的第三切口;
    在所述第一重复单元、第二重复单元和第三重复单元内,第一切口密度与第二切口密度的比值为0.7到1.3,第二切口密度与第三切口密度的比值为0.7到1.3,第一切口密度与第三切口密度的比值为0.7到1.3;
    所述第一切口密度是重复单元中第一切口的数量与重复单元中网格图案的数量之比,所述第二切口密度是重复单元中第二切口的数量与重复单元中网格图案的数量之比,所述第三切口密度是重复单元中第三切口的数量与重复单元中网格图案的数量之比。
  9. 根据权利要求8所述的显示面板,其中,
    所述第一切口密度与第二切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第二水平切口密度的比值为0.7到1.3,第一竖直切口密度与第二竖直切口密度的比值为0.7到1.3,第一倾斜切口密度与第二倾斜切口密度的比值为0.7到1.3;
    所述第二切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第二水平切口密度与第三水平切口密度的比值为0.7到1.3,所述第二竖直切口密度与第三竖直切口密度的比值为0.7到1.3,所述第二倾斜切口密度与第三倾斜切口密度的比值为0.7到1.3;
    所述第一切口密度与第三切口密度的比值为0.7到1.3,包括如下的任意一种或多种:第一水平切口密度与第三水平切口密度的比值为0.7到1.3,第一竖直切口密度与第三竖直切口密度的比值为0.7到1.3,第一倾斜切口密度与第三倾斜切口密度的比值为0.7到1.3。
  10. 根据权利要求8所述的显示面板,其中,
    所述第一重复单元的第一切口密度与所述第二重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第二重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第二重复单元的第三切口密度的比值为0.7到1.3;
    所述第一重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第一重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第一重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3;
    所述第二重复单元的第一切口密度与所述第三重复单元的第一切口密度的比值为0.7到1.3;所述第二重复单元的第二切口密度与所述第三重复单元的第二切口密度的比值为0.7到1.3;所述第二重复单元的第三切口密度与所述第三重复单元的第三切口密度的比值为0.7到1.3。
  11. 根据权利要求1或2所述的显示面板,其中,
    所述连接桥包括焊盘部和第二连接线,所述焊盘部配置为通过绝缘层上的过孔与相邻的第二触控电极连接,所述第二连接线配置为连接所述焊盘部;
    所述触控层还包括第二连接单元和第一连接线,所述第二连接单元和第一连接线间隔设置且相互绝缘,所述第二连接单元的位置与所述桥接层的焊盘部的位置相对应,配置为通过绝缘层上的过孔与所述焊盘部连接,所述第一连接线在所述基底上的正投影与所述第二连接线在所述基底上的正投影基本重叠。
  12. 一种显示装置,包括如权利要求1到11任一项所述的显示面板。
  13. 一种触控结构,包括叠设的桥接层、绝缘层和触控层,所述触控层包括沿第一延伸方向依次设置的多个第一触控电极和多个第一连接部,以及沿第二延伸方向依次设置的多个第二触控电极,所述第一延伸方向与所述第二延伸方向相交;所述多个第一触控电极和多个第一连接部交替设置且依次连接,所述多个第二触控电极间隔设置;所述桥接层包括连接桥,所述连接桥与相邻的第二触控电极连接;
    所述触控结构层包括重复且连续设置由多个重复单元,所述重复单元包括多个网格图案,所述网格图案是由金属线构成的多边形,多个网格图案中设置有多个切口,所述切口截断网格图案的金属线;所述重复单元的最大特征长度S=L*tan(1/(57.3*CPD));其中,L为观看者眼睛到显示屏的距离,CPD为观看者眼睛1度范围内的空间频率,L为100mm到1000mm,CPD大于或等于10,所述重复单元的最大特征长度为所述重复单元某一方向的最大尺寸。
  14. 根据权利要求13所述的触控结构,其中,对于观看者眼睛到显示屏的距离为100mm到400mm,所述重复单元的最大特征长度为0.2mm到0.4mm;对于观看者眼睛到显示屏的距离为400mm到1000mm,所述重复单元的最大特征长度为0.4mm到1.2mm。
  15. 根据权利要求13或14所述的触控结构,其中,所述网格图案至少包括两个相互平行的第一边和两个相互平行的第二边,所述第一边与所述第二边不平行;
    所述切口包括连续切口,所述连续切口中切口的个数小于或等于3个,所述连续切口为在第一方向上连续设置的至少一个所述网格图案中每个网格 图案的两个第一边上均设置有切口,所述第一方向与每个网格图案的第一边交叉,或者所述连续切口为在第二方向上连续设置的至少一个所述网格图案中每个网格图案的两个第二边上均设置有切口,所述第二方向与每个网格图案的第二边交叉。
  16. 根据权利要求15所述的触控结构,其中,所述切口还包括拐角切口,当所述拐角切口在所述第一方向或第二方向上存在连续切口时,连续切口中切口的个数小于或等于2个;所述拐角切口为所述网格图案的一个第一边和一个第二边上设置有切口。
  17. 根据权利要求16所述的触控结构,其中,当所述拐角切口为多个时,多个拐角切口构成开放图形。
  18. 根据权利要求15所述的触控结构,其中,所述触控结构层包括触控区、边界区和连接桥区,所述触控区包括第一触控电极和第二触控电极,所述连接桥区包括第一连接部和第二连接部;重复且连续设置形成所述触控结构层的多个重复单元中,所述重复单元划分为包含有触控区内切口的第一重复单元、包含有边界区内切口的第二重复单元和包含有连接桥区内切口的第三重复单元;
    所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,第一重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3,第二重复单元的切口密度与第三重复单元的切口密度的比值为0.7到1.3;所述切口密度是重复单元中切口的数量与重复单元中网格图案的数量之比。
  19. 根据权利要求18所述的触控结构,其中,所述切口至少包括截断所述第一边的第一方向切口和截断所述第二边的第二方向切口;
    所述第一重复单元的切口密度与所述第二重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第二重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第二重复单元的第二方向切口密度的比值为0.7到1.3;
    所述第一重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第一重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第一重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
    所述第二重复单元的切口密度与所述第三重复单元的切口密度的比值为0.7到1.3,包括如下的任意一种或多种:所述第二重复单元的第一方向切口密度与所述第三重复单元的第一方向切口密度的比值为0.7到1.3;所述第二重复单元的第二方向切口密度与所述第三重复单元的第二方向切口密度的比值为0.7到1.3;
    所述第一方向切口密度是重复单元中第一方向切口的数量与重复单元中网格图案的数量之比,所述第二方向切口密度是重复单元中第二方向切口的数量与重复单元中网格图案的数量之比。
  20. 根据权利要求13或14所述的触控结构,其中,
    所述连接桥包括焊盘部和第二连接线,所述焊盘部配置为通过绝缘层上的过孔与相邻的第二触控电极连接,所述第二连接线配置为连接所述焊盘部;
    所述触控层还包括第二连接单元和第一连接线,所述第二连接单元和第一连接线间隔设置且相互绝缘,所述第二连接单元的位置与所述桥接层的焊盘部的位置相对应,配置为通过绝缘层上的过孔与所述焊盘部连接,所述第一连接线在所述基底上的正投影与所述第二连接线在所述基底上的正投影基本重叠。
PCT/CN2020/093478 2020-05-29 2020-05-29 显示面板、触控结构和显示装置 WO2021237720A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080000868.5A CN114072919A (zh) 2020-05-29 2020-05-29 显示面板、触控结构和显示装置
US17/271,582 US11460940B2 (en) 2020-05-29 2020-05-29 Display panel, touch control structure and display device
EP20904256.3A EP3993056A4 (en) 2020-05-29 2020-05-29 DISPLAY PANEL, TOUCH CONTROL STRUCTURE AND DISPLAY DEVICE
PCT/CN2020/093478 WO2021237720A1 (zh) 2020-05-29 2020-05-29 显示面板、触控结构和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093478 WO2021237720A1 (zh) 2020-05-29 2020-05-29 显示面板、触控结构和显示装置

Publications (1)

Publication Number Publication Date
WO2021237720A1 true WO2021237720A1 (zh) 2021-12-02

Family

ID=78745333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093478 WO2021237720A1 (zh) 2020-05-29 2020-05-29 显示面板、触控结构和显示装置

Country Status (4)

Country Link
US (1) US11460940B2 (zh)
EP (1) EP3993056A4 (zh)
CN (1) CN114072919A (zh)
WO (1) WO2021237720A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220118081A (ko) * 2021-02-18 2022-08-25 동우 화인켐 주식회사 터치 센서
CN113126822B (zh) * 2021-04-12 2022-09-09 武汉华星光电半导体显示技术有限公司 触控显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340363A1 (en) * 2013-05-20 2014-11-20 Semiconductor Energy Laboratory Co., Ltd. Imaging panel and imaging device
CN107946346A (zh) * 2017-11-24 2018-04-20 武汉华星光电半导体显示技术有限公司 一种全屏指纹识别触控显示屏
CN108110033A (zh) * 2017-12-13 2018-06-01 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN108762571A (zh) * 2018-05-31 2018-11-06 上海天马微电子有限公司 触控显示面板和触控显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059771A (ja) 2009-09-07 2011-03-24 Hitachi Chem Co Ltd 網目状導電性パターン、導体層パターン付き基材及びタッチパネル部材
WO2014104028A1 (ja) * 2012-12-28 2014-07-03 シャープ株式会社 タッチパネル基板、タッチパネル基板の製造方法、及び電子機器
US20160085339A1 (en) 2013-05-16 2016-03-24 Sharp Kabushiki Kaisha Touch panel substrate and electronic apparatus
US20170269728A1 (en) * 2016-03-15 2017-09-21 Microsoft Technology Licensing, Llc Rhombic mesh electrode matrix having periodic electrodes
KR102348106B1 (ko) 2017-05-26 2022-01-10 삼성디스플레이 주식회사 전자 장치 및 이의 제조방법
CN108054193B (zh) * 2018-02-09 2020-11-06 武汉华星光电半导体显示技术有限公司 柔性显示面板及柔性显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340363A1 (en) * 2013-05-20 2014-11-20 Semiconductor Energy Laboratory Co., Ltd. Imaging panel and imaging device
CN107946346A (zh) * 2017-11-24 2018-04-20 武汉华星光电半导体显示技术有限公司 一种全屏指纹识别触控显示屏
CN108110033A (zh) * 2017-12-13 2018-06-01 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN108762571A (zh) * 2018-05-31 2018-11-06 上海天马微电子有限公司 触控显示面板和触控显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993056A4 *

Also Published As

Publication number Publication date
CN114072919A (zh) 2022-02-18
EP3993056A1 (en) 2022-05-04
EP3993056A4 (en) 2022-08-03
US11460940B2 (en) 2022-10-04
US20220197418A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US11362146B2 (en) Display panel, display screen, and display terminal with plurality of film layer and multiple optical lengths
KR102142481B1 (ko) 유기전계 발광소자
CN111736726B (zh) 一种触控基板及触控显示装置
KR101421288B1 (ko) 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판
WO2021237720A1 (zh) 显示面板、触控结构和显示装置
JP2011186025A (ja) 電気光学表示装置
WO2021237723A1 (zh) 显示面板、触控结构和显示装置
US20230409153A1 (en) Touch substrate and display device
WO2021237722A1 (zh) 显示面板、触控结构和显示装置
WO2023142358A1 (zh) 触控结构、触控显示面板及显示装置
WO2023071097A1 (zh) 一种触控结构、显示基板及显示面板
KR20180009010A (ko) 표시 기판 및 이의 제조 방법
KR20110105893A (ko) 더블 레이트 드라이브 타입 액정표시장치용 어레이 기판
WO2023035188A1 (zh) 触控面板、触控显示面板和触控显示装置
CN219999921U (zh) 显示基板
US20240184411A1 (en) Touch Control Panel, Touch Control Display Panel, and Touch Control Display Apparatus
WO2023246378A1 (zh) 触控显示结构及显示装置
WO2023185630A9 (zh) 显示基板
US20230411576A1 (en) Display device, method of manufacturing the same, and tiled display device including the same
WO2023184402A1 (zh) 显示基板及其制作方法、显示面板
KR20220164844A (ko) 표시 장치
CN115268131A (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020904256

Country of ref document: EP

Effective date: 20220131

NENP Non-entry into the national phase

Ref country code: DE