WO2021227233A1 - 盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法 - Google Patents

盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法 Download PDF

Info

Publication number
WO2021227233A1
WO2021227233A1 PCT/CN2020/101229 CN2020101229W WO2021227233A1 WO 2021227233 A1 WO2021227233 A1 WO 2021227233A1 CN 2020101229 W CN2020101229 W CN 2020101229W WO 2021227233 A1 WO2021227233 A1 WO 2021227233A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile phase
photodegradable
impurities
impurity
moxifloxacin hydrochloride
Prior art date
Application number
PCT/CN2020/101229
Other languages
English (en)
French (fr)
Inventor
王朋
王娜
廖信信
宋彩香
于黎鑫
吕伟刚
黄祝刚
孙滨滨
王艳敏
王杉
Original Assignee
山东齐都药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东齐都药业有限公司 filed Critical 山东齐都药业有限公司
Publication of WO2021227233A1 publication Critical patent/WO2021227233A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/047Standards external

Definitions

  • the invention relates to the field of drug quality detection, in particular to a method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations.
  • Moxifloxacin hydrochloride is a fourth-generation fluoroquinolone drug with a broad-spectrum antibacterial effect. It acts by blocking bacterial DNA replication by inhibiting bacterial topoisomerase II and topoisomerase IV. Its structural formula is:
  • the chemical name is 1-cyclopropyl-7- ⁇ (S,S)-2,8-diazo-bicyclo[4.3.0]non-8-yl ⁇ -6-fluoro-8-methoxy-1, 4-dihydro-4-oxo-3-quinolinecarboxylic acid hydrochloride.
  • Moxifloxacin hydrochloride is sensitive to light, and may produce photodegradation impurity 1 and photodegradation impurity 2 under light conditions.
  • the structural formulas of photodegradation impurity 1 and photodegradation impurity 2 are:
  • the purpose of the present invention is to provide a method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations, which can simultaneously detect the content of impurity 1 and impurity 2 in moxifloxacin hydrochloride raw materials and preparations, thereby ensuring
  • the drug quality of moxifloxacin hydrochloride raw materials and preparations has the characteristics of strong specificity, accurate quantification, high sensitivity and stable method.
  • the method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations of the present invention includes the following steps:
  • photodegradation impurity 1 Take photodegradation impurity 1, photodegradation impurity 2 reference substance, add methanol to dissolve and dilute with a solvent to make a constant volume, prepare a solution containing 0.8 ⁇ g per 1 mL as a reference solution, wherein the solvent is 0.1% phosphoric acid aqueous solution;
  • Mobile phase a mixture of mobile phase A and mobile phase B, mobile phase A is 0.1% phosphoric acid aqueous solution, mobile phase B is methanol;
  • Chromatographic column C18 column
  • the gradient elution conditions are as follows:
  • the volume percentage of mobile phase B in 0 ⁇ 10min uniformly increases from 33% ⁇ 37% at 0min to 50% at 10min; the volume percentage of mobile phase B at 10 ⁇ 20min maintains 50%; the volume percentage of mobile phase B at 20 ⁇ 20.01min From 50% at 20min to 60% at 20.01min; the volume percentage of mobile phase B at 20.01 ⁇ 30min maintains 60%; the volume percentage of mobile phase B at 30 ⁇ 30.01min decreases from 60% at 30min to 60% at 30.01min 33% ⁇ 37%; 30.01 ⁇ 40min mobile phase B volume percentage maintains 33% ⁇ 37%.
  • the C18 column is a Philomena Titank C18 column with a size of 4.6 mm ⁇ 250 mm, 5 ⁇ m or a column with equivalent column efficiency.
  • the column temperature is 45°C.
  • the flow rate is 1.0 mL/min.
  • the volume percentage of mobile phase A and mobile phase B is 67:33 to 63:37, preferably 65:35.
  • the high performance liquid chromatograph is: Shimadzu LC-20AT, SPD-20A.
  • Other brands and models of high performance liquid chromatographs can also be used.
  • the present invention relates to a method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations.
  • the two photodegradable impurities in moxifloxacin hydrochloride are separated by high performance liquid chromatography, and octadecylsilane-bonded silica gel is used as
  • the chromatographic column with packing material uses 0.1% phosphoric acid aqueous solution as mobile phase A and methanol as mobile phase B for gradient elution.
  • the method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations of the present invention has the characteristics of strong specificity, accurate quantification, high sensitivity, and stable method, which are specifically as follows:
  • the lowest detection concentration of photodegradable impurity 1 and photodegradable impurity 2 in the moxifloxacin hydrochloride raw materials and preparations of the present invention are 0.024 ⁇ g/mL and 0.032 ⁇ g/mL, respectively, and a small amount of photodegradable impurity 1 and photodegradation Impurity 2 can be detected, and the detection sensitivity is high, thereby increasing the controllability of the drug quality.
  • Figure 1 is an HPLC diagram of the test solution in Example 1 of the present invention.
  • Figure 2 is an HPLC chart of the reference substance solution of Example 1 of the present invention.
  • Figure 3 is an HPLC chart of the reference solution of Example 2 of the present invention.
  • the method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations consists of the following steps:
  • test solution Take 10 ⁇ L each of the test solution and the reference solution and inject into the high performance liquid chromatograph for gradient elution.
  • the test solution is shown in Figure 1, and the reference solution is shown in Figure 2. Repeat the preparation of 6 test sample solutions. And the reference solution, sample injection test.
  • the high performance liquid chromatograph is: Shimadzu 20A;
  • Chromatographic column C18 (Filoman Titank C18 column, 4.6mm ⁇ 250mm, 5 ⁇ m or equivalent column efficiency);
  • Mobile phase a mixture of mobile phase A and mobile phase B, mobile phase A is 0.1% phosphoric acid aqueous solution, mobile phase B is methanol, in the initial mobile phase, the volume percentage of mobile phase A and mobile phase B is 65:35;
  • Gradient elution The volume percentage of mobile phase B in 0 ⁇ 10min uniformly increases from 35% at 0min to 50% at 10min; the volume percentage of mobile phase B at 10 ⁇ 20min maintains 50%; the volume of mobile phase B at 20 ⁇ 20.01min The percentage decreases from 50% at 20min to 60% at 20.01min; the volume percentage of mobile phase B at 20.01 ⁇ 30min maintains 60%; the volume percentage of mobile phase B at 30 ⁇ 30.01min decreases from 60% at 30min to 30.01min The volume percentage of mobile phase B is maintained at 35% from 30.01 to 40 minutes.
  • FIG. 1 The 3.998min peak in the test solution is the peak of photodegradation impurity 1, in Figure 1, the peak at 9.494min is the peak of moxifloxacin, and the peak at 16.839min is the peak of photodegradation impurity 2. It can be seen that moxifloxacin is under the chromatographic conditions. The main peak is separated from the photodegradation impurity 1 and photodegradation impurity 2.
  • the 4.003 min peak in the reference solution in Fig. 2 is the photodegradation impurity 1 peak, and the 16.855 min peak in Fig. 2 is the photodegradation impurity 2 peak.
  • the method for detecting two photodegradable impurities in moxifloxacin hydrochloride raw materials and preparations consists of the following steps:
  • photodegradable impurity 1 Take photodegradable impurity 1, photodegradable impurity 2 reference substance, add methanol to dissolve and dilute with solvent (0.1% phosphoric acid aqueous solution) to make the volume, prepare each 1mL containing photodegradable impurity 1 at a concentration of 0.024 ⁇ g/mL and photodegradable impurities 2 A solution with a concentration of 0.032 ⁇ g/mL as a reference solution;
  • the peak at 3.998 min is the peak of photodegradation impurity 1
  • the peak at 16.841 min in Figure 3 is the peak of photodegradation impurity 2. It can be seen that the peak of photodegradation impurity 1 and photodegradation impurity 2 are at extremely low concentrations under this chromatographic condition. It can be accurately detected by pressing, confirming the high sensitivity of this method.

Landscapes

  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

药品质量检测领域中一种盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法。光降解杂质为光降解杂质1和光降解杂质2,检测方法包括以下步骤:(1)供试品溶液的制备;(2)对照品溶液的制备;(3)检测:取供试品溶液与对照品溶液各10μL分别注入高效液相色谱仪,进行梯度洗脱;其中,色谱条件如下:流动相:流动相A与流动相B的混合物,流动相A是0.1%磷酸水溶液,流动相B是甲醇;流速:0.95~1.05mL/min;柱温:43~47℃;色谱柱:C18柱;检测波长:250nm;盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法具有专属性强、定量准确、灵敏度高、方法稳定的特点,对药品质量的检测限度提高到很高的标准。

Description

盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法 技术领域
本发明涉及药品质量检测领域,具体涉及一种盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法。
背景技术
盐酸莫西沙星为第四代氟喹诺酮类药,具有广谱抗菌作用,通过对细菌的拓扑异构酶Ⅱ和拓扑异构酶Ⅳ的抑制作用阻断细菌DNA复制而发挥作用,其结构式为:
Figure PCTCN2020101229-appb-000001
化学名为1-环丙基-7-{(S,S)-2,8-重氮-二环[4.3.0]壬-8-基}-6-氟-8-甲氧-1,4-二氢-4-氧-3-喹啉羧酸盐酸盐。盐酸莫西沙星对光敏感,在光照条件下可能产生光降解杂质1和光降解杂质2。光降解杂质1和光降解杂质2的结构式为:
Figure PCTCN2020101229-appb-000002
对于可能存在的光降解杂质1和光降解杂质2,原料和制剂都需要进行质量控制。因此,实现盐酸莫西沙星及光降解杂质1、2的分离在原料与制剂的质量控制方法具有重要的现实意义。
在已有技术中,未有方法能够同时控制光降解杂质1与光降解杂质2且其他杂质不干扰光降解杂质1与光降解杂质2的检测。
发明内容
针对以上不足,本发明的目的是提供一种盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,能够同时检测盐酸莫西沙星原料及制剂中杂质1和杂质2的含量,从而保证盐酸莫西沙星原料及制剂的药品质量,具有专属性强、定量准确、灵敏度高、方法稳定的特点。
本发明所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,包括如下步骤:
(1)供试品溶液的制备:
取盐酸莫西沙星原料或制剂,用溶剂溶解并稀释定容,配制每1mL中含莫西沙星0.8mg的溶液,作为供试品溶液,其中,所述的溶剂为0.1%磷酸水溶液;
(2)对照品溶液的制备:
取光降解杂质1、光降解杂质2对照品,加甲醇溶解并用溶剂稀释定容,配制每1mL中含0.8μg的溶液,作为对照品溶液,其中,所述的溶剂为0.1%磷酸水溶液;
(3)检测:
取供试品溶液与对照品溶液各10μL分别注入高效液相色谱仪,进行梯度洗脱;
其中,所述的高效液相色谱仪的色谱条件如下:
流动相:流动相A与流动相B的混合物,流动相A是0.1%磷酸水溶液,流动相B是甲醇;
流速:0.95~1.05mL/min;
柱温:43~47℃;
色谱柱:C18柱;
检测波长:250nm;
所述的梯度洗脱条件具体如下:
0~10min流动相B的体积百分比由0min时的33%~37%均匀增加至10min时的50%;10~20min流动相B的体积百分比维持50%;20~20.01min流动相B的体积百分比由20min时的50%降低为20.01min时的60%;20.01~30min流动相B的体积百分比维持60%;30~30.01min流动相B的体积百分比由30min时的60%降低为30.01min时的33%~37%;30.01~40min流动相B的体积百分比维持33%~37%。
优选地,所述的C18柱为菲罗门Titank C18柱,尺寸为4.6mm×250mm,5μm或柱效相当色谱柱。
优选地,所述的柱温为45℃。
优选地,所述的流速为1.0mL/min。
所述的初始流动相中,流动相A与流动相B的体积百分比为67:33~63:37,优选65:35。
优选地,所述的高效液相色谱仪为:日本岛津LC-20AT,SPD-20A。其他品牌及型号的高效液相色谱仪也可以使用。
本发明涉及的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,是采用高效液相色谱法分离盐酸莫西沙星中2个光降解杂质,以十八烷基硅烷键合硅胶为填充剂的色谱柱,以0.1%磷酸水溶液为流动相A,以甲醇为流动相B,进行梯度洗脱。根据对照品溶液和供试品溶液中的出峰时间确定光降解杂质1及光降解杂质2的存在,根据光降解杂质1及光降解 杂质2的出峰面积,确定供试品溶液中光降解杂质1与光降解杂质2的含量。
与现有技术相比,本发明的有益效果如下:
本发明所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法具有专属性强、定量准确、灵敏度高、方法稳定的特点,具体如下:
(1)专属性强:在现有技术中,对盐酸莫西沙星原料及制剂中2个光降解杂质是采用单独的检测方法,在专属性试验中排除了盐酸莫西沙星合成过程中的工艺杂质及其他降解杂质的干扰。本发明是针对光降解杂质1及光降解杂质2的检测,检测过程中无其它杂质的干扰,保证了检测结果的准确性,该方法的专属性高;
(2)灵敏度高:本发明盐酸莫西沙星原料及制剂中光降解杂质1及光降解杂质2的最低检测浓度分别为0.024μg/mL及0.032μg/mL,微量的光降解杂质1及光降解杂质2即可被检测出,检测的灵敏度高,从而增加了药品质量的可控制性。
附图说明
图1为本发明实施例1供试品溶液的HPLC图;
图2为本发明实施例1对照品溶液的HPLC图;
图3为本发明实施例2对照品溶液的HPLC图。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例1
所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,由如下步骤组成:
(1)取盐酸莫西沙星原料或制剂,用溶剂(0.1%磷酸水溶液)溶解并稀释定容,配制每1mL中含莫西沙星0.8mg的溶液,作为供试品溶液;
(2)取光降解杂质1、光降解杂质2对照品,加甲醇溶解并用溶剂(0.1%磷酸水溶液)稀释定容,配制每1mL中含0.8μg的溶液,作为对照品溶液;
(3)取供试品溶液与对照品溶液各10μL分别注入高效液相色谱仪,进行梯度洗脱,供试品溶液见图1,对照品溶液见图2;重复配制6份供试品溶液及对照品溶液,进样测试。
其中,所述的高效液相色谱仪的色谱条件如下:
所述的高效液相色谱仪为:岛津20A;
色谱柱:C18(菲罗门Titank C18柱,4.6mm×250mm,5μm或柱效相当色谱柱);
柱温:45℃;
流动相流速:1.0mL/min;
检测波长:250nm;
流动相:流动相A与流动相B的混合物,流动相A是0.1%磷酸水溶液,流动相B是甲醇,初始流动相中,流动相A与流动相B的体积百分比为65:35;
梯度洗脱:0~10min流动相B的体积百分比由0min时的35%均匀增加至10min时的50%;10~20min流动相B的体积百分比维持50%;20~20.01min流动相B的体积百分比由20min时的50%降低为20.01min时的60%;20.01~30min流动相B的体积百分比维持60%;30~30.01min流动相B的体积百分比由30min时的60%降低为30.01min时的35%;30.01~40min流动相B的体积百分比维持35%。
图1供试品溶液中3.998min峰为光降解杂质1峰,图1中9.494min峰为莫西沙星峰,16.839min峰为光降解杂质2峰,可以看出在该色谱条件下莫西沙星主峰与光降解杂质1及光降解杂质2分离开来,图2对照品溶液中4.003min峰为光降解杂质1峰,图2中16.855min峰为光降解杂质2峰。根据对照品溶液和供试品溶液中的出峰时间确定光降解杂质1及光降解杂质2存在,根据光降解杂质1及光降解杂质2的出峰面积,确定供试品溶液中光降解杂质1及光降解杂质2的含量。
重复测定的6次结果如表1所示。
表1重复测定的6次结果
序号 杂质1(μg/ml) 杂质2(μg/ml)
1 0.844 0.841
2 0.844 0.834
3 0.844 0.831
4 0.851 0.835
5 0.847 0.829
6 0.848 0.827
RSD(%) 0.33 0.61
从以上数据可以看出,6次测定结果基本无明显差异,该方法能够有效测定样品中杂质1及杂质2。
实施例2
所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,由如下步骤组成:
(1)取光降解杂质1、光降解杂质2对照品,加甲醇溶解并用溶剂(0.1%磷酸水溶液)稀释定容,配制每1mL中含光降解杂质1浓度为0.024μg/mL及光降解杂质2浓度为0.032μg/mL的溶液,作为对照品溶液;
(2)取对照品溶液10μL注入高效液相色谱仪,进行梯度洗脱,对照品溶液见图3;
其中,所述的高效液相色谱仪的色谱条件同实施例1。
图3中3.998min峰为光降解杂质1峰,图3中16.841min峰为光降解杂质2峰,可以看出在该色谱条件下光降解杂质1峰、光降解杂质2峰在极低的浓度下即可被准确检出,证实该方法的灵敏度高。

Claims (6)

  1. 一种盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特征在于:所述的光降解杂质是指:光降解杂质1和光降解杂质2,光降解杂质1的结构式为:
    Figure PCTCN2020101229-appb-100001
    光降解杂质2的结构式为:
    Figure PCTCN2020101229-appb-100002
    所述的检测方法,包括如下步骤:
    (1)供试品溶液的制备:
    取盐酸莫西沙星原料或制剂,用溶剂溶解并稀释定容,配制每1mL中含莫西沙星0.8mg的溶液,作为供试品溶液,其中,所述的溶剂为0.1%磷酸水溶液;
    (2)对照品溶液的制备:
    取光降解杂质1、光降解杂质2对照品,加甲醇溶解并用溶剂稀释定容,配制每1mL中含0.8μg的溶液,作为对照品溶液,其中,所述的溶剂为0.1%磷酸水溶液;
    (3)检测:
    取供试品溶液与对照品溶液各10μL分别注入高效液相色谱仪,进行梯度洗脱;
    其中,所述的高效液相色谱仪的色谱条件如下:
    流动相:流动相A与流动相B的混合物,流动相A是0.1%磷酸水溶液,流动相B是甲醇;
    流速:0.95~1.05mL/min;
    柱温:43~47℃;
    色谱柱:C18柱;
    检测波长:250nm;
    所述的梯度洗脱条件具体如下:
    0~10min流动相B的体积百分比由0min时的33%~37%均匀增加至10min时的50%;10~20min流动相B的体积百分比维持50%;20~20.01min流动相B的体积百分比由20min时的50%降低为20.01min时的60%;20.01~30min流动相B的体积百分比维持60%;30~30.01min流动相B的体积百分比由30min时的60%降低为30.01min时的33%~37%;30.01~40min流动相B的体积百分比维持33%~37%。
  2. 根据权利要求1所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特征在于:所述的C18柱为菲罗门Titank C18柱,尺寸为4.6mm×250mm。
  3. 根据权利要求1所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特 征在于:所述的柱温为45℃。
  4. 根据权利要求1所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特征在于:所述的流速为1.0mL/min。
  5. 根据权利要求1所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特征在于:所述的流动相,初始流动相中,流动相A与流动相B的体积百分比为67:33~63:37。
  6. 根据权利要求5所述的盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法,其特征在于:所述的流动相,初始流动相中,流动相A与流动相B的体积百分比为65:35。
PCT/CN2020/101229 2020-05-15 2020-07-10 盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法 WO2021227233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010413571.3 2020-05-15
CN202010413571.3A CN111537639A (zh) 2020-05-15 2020-05-15 盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法

Publications (1)

Publication Number Publication Date
WO2021227233A1 true WO2021227233A1 (zh) 2021-11-18

Family

ID=71977743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101229 WO2021227233A1 (zh) 2020-05-15 2020-07-10 盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法

Country Status (2)

Country Link
CN (1) CN111537639A (zh)
WO (1) WO2021227233A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324659A (zh) * 2021-12-29 2022-04-12 江苏海悦康医药科技有限公司 一种伽马环糊精中有机杂质的检测方法
CN114460205A (zh) * 2022-02-17 2022-05-10 南京嘉晨医药科技有限公司 一种用于检测盐酸伐地那非口崩片溶出曲线的方法
CN115290800A (zh) * 2022-10-08 2022-11-04 江西省药品检验检测研究院 一种手性固定相法拆分安妥沙星对映体的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992626A1 (en) * 2007-05-10 2008-11-19 Sandoz AG Process for the preparation of moxifloxacin hydrochloride
CN104292158A (zh) * 2014-09-05 2015-01-21 南京正大天晴制药有限公司 一种盐酸莫西沙星杂质的制备方法、检测方法和用途
CN109280047A (zh) * 2017-12-12 2019-01-29 中国药科大学 一种盐酸莫西沙星光降解产物及其制备方法和检测方法
CN109942543A (zh) * 2019-04-16 2019-06-28 山东齐都药业有限公司 一种盐酸莫西沙星光降解杂质的合成方法
CN110627768A (zh) * 2018-06-22 2019-12-31 扬子江药业集团有限公司 一种莫西沙星降解杂质j的制备方法
CN110684024A (zh) * 2018-07-04 2020-01-14 扬子江药业集团有限公司 一种莫西沙星降解杂质的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992626A1 (en) * 2007-05-10 2008-11-19 Sandoz AG Process for the preparation of moxifloxacin hydrochloride
CN104292158A (zh) * 2014-09-05 2015-01-21 南京正大天晴制药有限公司 一种盐酸莫西沙星杂质的制备方法、检测方法和用途
CN109280047A (zh) * 2017-12-12 2019-01-29 中国药科大学 一种盐酸莫西沙星光降解产物及其制备方法和检测方法
CN110627768A (zh) * 2018-06-22 2019-12-31 扬子江药业集团有限公司 一种莫西沙星降解杂质j的制备方法
CN110684024A (zh) * 2018-07-04 2020-01-14 扬子江药业集团有限公司 一种莫西沙星降解杂质的合成方法
CN109942543A (zh) * 2019-04-16 2019-06-28 山东齐都药业有限公司 一种盐酸莫西沙星光降解杂质的合成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324659A (zh) * 2021-12-29 2022-04-12 江苏海悦康医药科技有限公司 一种伽马环糊精中有机杂质的检测方法
CN114460205A (zh) * 2022-02-17 2022-05-10 南京嘉晨医药科技有限公司 一种用于检测盐酸伐地那非口崩片溶出曲线的方法
CN115290800A (zh) * 2022-10-08 2022-11-04 江西省药品检验检测研究院 一种手性固定相法拆分安妥沙星对映体的方法
CN115290800B (zh) * 2022-10-08 2023-01-13 江西省药品检验检测研究院 一种手性固定相法拆分安妥沙星对映体的方法

Also Published As

Publication number Publication date
CN111537639A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021227233A1 (zh) 盐酸莫西沙星原料及制剂中2个光降解杂质的检测方法
CN110940745B (zh) S-2-氨基-2-(2-氯苯基)乙酸甲酯或其盐中有关物质的检测方法
CN112198260B (zh) 一种盐酸丙卡特罗药物制剂中工艺杂质含量的检测方法
CN115453012B (zh) 一种同时测定氢溴酸伏硫西汀中多个位置异构体的反相hplc方法
CN113504320A (zh) 一种高效液相色谱梯度法同时测定盐酸丙卡特罗及其有关物质的方法
CN109580825B (zh) 消旋卡多曲中对甲苯磺酸酯类物质的检测方法
CN113390983B (zh) 一种同时测定富马酸伏诺拉生中3种杂质的检测方法
CN109307716B (zh) 一种依匹哌唑有关物质的检测方法
CN113125583B (zh) 一种注射用泮托拉唑钠中基因毒性杂质含量的检测方法
CN107271592B (zh) 一种盐酸替吡拉西与其相关杂质完全分离的液相色谱纯度检测方法
CN108072710B (zh) 一种依达拉奉氯化钠注射液有关物质检测方法
Elgendy et al. Rapid HPLC determination of ciprofloxacin, ofloxacin, and marbofloxacin alone or in a mixture
CN117147726A (zh) 同时定性与定量检测雷贝拉唑钠中间体缩合物及八种杂质的反相高效液相色谱方法
CN102507796B (zh) 盐酸托烷司琼原料及制剂中杂质3-吲哚甲酸的检测方法
CN113820417B (zh) 一种分离测定吡罗昔康及其杂质的方法
Gabani et al. Validated LC-MS/MS method for simultaneous quantitation of three PI3K inhibitors, copanlisib, duvelisib and idelalisib in mouse plasma: Application to a pharmacokinetic study in mice
CN113984929B (zh) 一种阿维巴坦钠类物质分析方法
CN110824059B (zh) 一种非布司他中甲酰基杂质的检测方法
CN104237394B (zh) 一种盐酸戊乙奎醚注射液中杂质的检测方法
CN112816586B (zh) 一种苯磷硫胺中间体及其有关物质的检测方法
CN112611819B (zh) 一种苯磷硫胺原料及其制剂中有关物质的测定方法
CN114200050B (zh) 一种对溴苯甲醚中的有关物质含量的hplc检测方法
CN114740124B (zh) 一种测定中药复方制剂中对氨基酚的方法及应用
CN118150720A (zh) 4,5,6,7-四氢-5-甲基-噻唑并[5,4-c]吡啶-2-羧酸盐酸盐及其杂质的测定方法
Zaky et al. Rapid HPLC Determination of Ciprofloxacin, Ofloxacin, and, Marbofloxacin Alone or in a Mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935881

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20935881

Country of ref document: EP

Kind code of ref document: A1