WO2021225027A1 - 半導体基板の熱酸化膜形成方法 - Google Patents

半導体基板の熱酸化膜形成方法 Download PDF

Info

Publication number
WO2021225027A1
WO2021225027A1 PCT/JP2021/008931 JP2021008931W WO2021225027A1 WO 2021225027 A1 WO2021225027 A1 WO 2021225027A1 JP 2021008931 W JP2021008931 W JP 2021008931W WO 2021225027 A1 WO2021225027 A1 WO 2021225027A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
thermal
oxidation treatment
thermal oxide
semiconductor substrate
Prior art date
Application number
PCT/JP2021/008931
Other languages
English (en)
French (fr)
Inventor
剛 大槻
達夫 阿部
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP21800764.9A priority Critical patent/EP4148769A4/en
Priority to US17/920,227 priority patent/US20230170208A1/en
Priority to CN202180032465.3A priority patent/CN115485817A/zh
Priority to KR1020227037935A priority patent/KR20230008710A/ko
Publication of WO2021225027A1 publication Critical patent/WO2021225027A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a method for forming a thermal oxide film on a semiconductor substrate.
  • Patent Document 1 a surface having an OH group is required for a silicon wafer used in laminating silicon wafers, and the surface is cleaned with a normal SC1 cleaning solution to form a natural oxide film on the surface. It is stated that. Further, for example, Patent Document 2 discloses, as a method for improving the gate characteristics of a MOS transistor, a method of forming a gate insulating film after cleaning the silicon surface immediately before forming the gate oxide film and hydrogen-terminating the surface.
  • Japanese Unexamined Patent Publication No. 09-063910 Japanese Unexamined Patent Publication No. 2000-216156 Japanese Unexamined Patent Publication No. 2003-115516 JP-A-2002-270596
  • the present inventors actually conducted a survey and research, it was found that, for example, when the cleaning method of the semiconductor substrate was different, the thickness of the thermal oxide film after that was different. It was also found that this difference in the thickness of the thermal oxide film does not depend on the thickness of the natural oxide film before thermal oxidation and the thickness of the chemical oxide film. For this reason, until the semiconductor substrate is actually thermally oxidized and the thickness of the thermal oxide film is evaluated, the difference in the thickness of the actually formed thermal oxide film is not known, and the thermal oxidation process is controlled. Was becoming difficult.
  • the thickness of the oxide film is set to a predetermined thickness, for example, 5.1 nm. You may be asked to align with. Especially in such a region where the thickness of the oxide film is thin, if the oxide film is thinner than the target thickness, a tunnel current may be directly generated and GOI measurement may not be possible. Therefore, the adjustment of the thickness of the oxide film is very difficult. Is important to.
  • Patent Document 3 since the OH groups contained in the CVD oxide film (infrared spectroscopy is used to evaluate the OH groups in the CVD oxide film) are desorbed as water by heating, it is suitable for calibration and management of the moisture meter. It is proposed to use it. In the case of Patent Document 3, heat treatment is performed in advance at a low temperature such that the OH groups contained in the CVD oxide film become moisture and are desorbed, and the relationship with the growth of the thermal oxide film is discussed. Not. As described above, it is known that the OH group is contained in the oxide film or becomes a source of water, but the CVD oxide film is relatively thick and the OH group contained in the thin oxide film as thin as the natural oxide film. And the subsequent growth of the thermal oxide film was not discussed.
  • Patent Document 4 describes that the compositional intensities of Si 1+ , Si 2+ , and Si 3+ suboxides directly on a silicon substrate can be obtained from the Si2p spectrum measured by the X-ray photoelectron spectroscopy (XPS) method. ..
  • XPS X-ray photoelectron spectroscopy
  • the purpose is to obtain the interfacial roughness between silicon and the oxide film, and it is irrelevant to the technique according to the present invention for controlling the thickness of the thermal oxide film when the oxidative heat treatment is performed.
  • the present invention has been made to solve the above problems, and provides a method for forming a thermal oxide film of a semiconductor substrate capable of forming a thermal oxide film to a desired thin thickness with good reproducibility. The purpose.
  • the present invention has been made to achieve the above object, and is a method of forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, wherein the present invention is made.
  • a plurality of semiconductor substrates having different configurations of chemical oxide films are prepared, and the plurality of semiconductor substrates are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the composition of the chemical oxide film formed in the above is measured, and based on the obtained composition and the correlation, the thermal oxide film is formed under the same conditions as the thermal oxidation treatment condition in the correlation acquisition step.
  • the thermal oxidation treatment that determines the thermal oxidation treatment conditions based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness.
  • a forming method is provided.
  • the thermal oxide film can be formed to a desired thin thickness with good reproducibility. As a result, the thermal oxidation process can be easily managed.
  • the present invention is a method for forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and the amount of OH groups contained in the chemical oxide film.
  • a semiconductor substrate which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance
  • the amount of OH groups contained in the chemical oxide film Prepare a plurality of semiconductor substrates, which are different from each other, and thermally oxidize the plurality of semiconductor substrates under the same thermal oxidation treatment conditions to form a thermal oxide film, and obtain the amount of OH groups in the chemical oxide film and the thermal oxidation.
  • the amount of OH groups in the formed chemical oxide film is measured, and based on the amount of the OH groups obtained by the measurement and the correlation, under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step.
  • Thermal oxidation that estimates the thickness of the thermal oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed, assuming that the target semiconductor substrate on which the thermal oxide film is formed is thermally oxidized.
  • Thermal oxidation treatment conditions based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the film thickness estimation step and the thermal oxide film formed on the surface of the semiconductor substrate become a predetermined thickness.
  • It has a thermal oxidation treatment condition determining step for determining the above, and a thermal oxide film forming step for forming a thermal oxide film on the surface of the semiconductor substrate by performing thermal oxidation treatment under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determining step.
  • a method for forming a thermal oxide film of a semiconductor substrate is provided.
  • a thermal oxide film having a certain thickness can be formed with good reproducibility regardless of the type of chemical oxide film formed by cleaning. As a result, the thermal oxidation process can be easily managed.
  • the amount of the OH groups is preferably calculated from the absorbance of the OH groups in the vicinity of 3300 cm -1 by performing ATR-FT-IR measurement of the chemical oxide film using an ATR measuring prism.
  • ATR-FT-IR is more sensitive to OH groups existing on the surface than general transmitted FT-IR, it is possible to evaluate the amount of OH groups with higher accuracy.
  • the present invention is a method for forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and has a chemical quantitative ratio of constituent elements of the chemical oxide film.
  • a semiconductor substrate which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and has a chemical quantitative ratio of constituent elements of the chemical oxide film.
  • a correlation acquisition step for obtaining a correlation with the thickness of the thermal oxide film, a substrate cleaning step for cleaning the semiconductor substrate on which the thermal oxide film is formed, and the cleaning in the substrate cleaning step of the semiconductor substrate The thermal ratio of the constituent elements of the chemical oxide film formed on the surface is obtained, and the thermal in the correlation acquisition step is based on the obtained chemical ratio of the constituent elements of the chemical oxide film and the correlation.
  • the thermal oxide film formed on the surface of the semiconductor substrate to be formed with the thermal oxide film assuming that the semiconductor substrate to be formed with the thermal oxide film is thermally oxidized under the same conditions as the oxidation treatment conditions.
  • the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness estimation step of the thermal oxide film for estimating the thickness and the thickness of the thermal oxide film formed on the surface of the semiconductor substrate become a predetermined thickness.
  • the heat of forming a thermal oxide film on the surface of the semiconductor substrate by performing thermal oxidation treatment under the thermal oxidation treatment condition determination step of determining the thermal oxidation treatment conditions and the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step.
  • a method for forming a thermal oxide film of a semiconductor substrate having an oxide film forming step is provided.
  • the thermal oxide film can be formed to a desired thin thickness with good reproducibility.
  • the chemical quantitative ratio of the constituent elements of the chemical oxide film is such that among the constituent elements of the chemical oxide film, the substrate atom of the semiconductor substrate is not bonded to the oxygen atom and the substrate atom is the oxygen atom.
  • the peak intensity of the bond energy in the state of being bonded to be a suboxide and the peak intensity of the bond energy in the state of the substrate atom being completely bonded to the oxygen atom are measured by using XPS, respectively, and the measurement is performed. It can be the ratio of the peak intensity.
  • the XPS method is a method that can easily and accurately evaluate the information on the polar surface layer of the semiconductor substrate, whereby the thermal oxide film can be formed to the desired thin thickness with better reproducibility.
  • the present invention is a method for forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and the amount of hydrogen atoms contained in the chemical oxide film.
  • a semiconductor substrate which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and the amount of hydrogen atoms contained in the chemical oxide film.
  • Prepare a plurality of different semiconductor substrates thermally oxidize the plurality of semiconductor substrates under the same thermal oxidation treatment conditions to form a thermal oxide film, and determine the amount of hydrogen atoms in the chemical oxide film and the thermal oxidation.
  • a correlation acquisition step for obtaining a correlation with the thickness of the film, a substrate cleaning step for cleaning the semiconductor substrate to be formed with a thermal oxide film, and the cleaning in the substrate cleaning step on the surface of the semiconductor substrate.
  • the amount of hydrogen atoms in the formed chemical oxide film is measured, and based on the measured amount of the hydrogen atoms and the correlation, under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step.
  • Thermal oxidation that estimates the thickness of the thermal oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed, assuming that the target semiconductor substrate on which the thermal oxide film is formed is thermally oxidized.
  • Thermal oxidation treatment conditions based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the film thickness estimation step and the thermal oxide film formed on the surface of the semiconductor substrate become a predetermined thickness.
  • It has a thermal oxidation treatment condition determining step for determining the above, and a thermal oxide film forming step for forming a thermal oxide film on the surface of the semiconductor substrate by performing thermal oxidation treatment under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determining step.
  • a method for forming a thermal oxide film of a semiconductor substrate is provided.
  • the thermal oxide film can be formed to a desired thin thickness with good reproducibility. As a result, the thermal oxidation process can be easily managed.
  • the semiconductor substrate can be a silicon wafer and the thermal oxide film can be a silicon oxide film.
  • the method for forming a thermal oxide film of a semiconductor substrate according to the present invention is particularly suitable for a silicon oxide film formed on a silicon wafer.
  • the amount of the hydrogen atom can be calculated from the ratio of the hydrogen atom in the chemical oxide film obtained by performing the RBS measurement of the chemical oxide film.
  • the amount of the hydrogen atom can be calculated from the absorbance of three SiHs in the vicinity of 2130 cm-1 by performing ATR-FT-IR measurement of the chemical oxide film using an ATR measurement prism.
  • ATR-FT-IR is more sensitive to hydrogen atoms existing in the chemical oxide film than general permeated FT-IR, it is possible to evaluate the amount of hydrogen atoms with higher accuracy. ..
  • the predetermined thickness can be set to 1 to 10 nm.
  • the thickness of the thermal oxide film to be formed is within such a range, it is possible to form a thin thermal oxide film having a constant thickness with better reproducibility.
  • the thermal oxidation treatment time is correlated with the thermal oxidation treatment time in the thermal oxidation treatment condition determination step. If the time is determined to be shorter than the thermal oxidation treatment time of the thermal oxidation treatment conditions in the acquisition step and the estimated thickness of the thermal oxide film is thinner than the predetermined thickness, the thermal oxidation treatment is performed in the thermal oxidation treatment condition determination step.
  • the thermal oxidation treatment condition determination step can be determined to be the same as the thermal oxidation treatment time of the thermal oxidation treatment conditions in the correlation acquisition step.
  • the thermal oxidation treatment temperature is acquired in the correlation acquisition in the thermal oxidation treatment condition determination step. If the temperature is determined to be lower than the thermal oxidation treatment temperature of the thermal oxidation treatment conditions in the step and the estimated thickness of the thermal oxide film is thinner than the predetermined thickness, the thermal oxidation treatment temperature in the thermal oxidation treatment condition determination step. Is determined to be a temperature higher than the thermal oxidation treatment temperature of the thermal oxidation treatment conditions in the correlation acquisition step, and when the estimated thickness of the thermal oxide film is equal to the predetermined thickness, in the thermal oxidation treatment condition determination step. , The thermal oxidation treatment temperature can be determined to be the same as the thermal oxidation treatment temperature of the thermal oxidation treatment conditions in the correlation acquisition step.
  • the thermal oxide film is formed to the desired thin thickness with good reproducibility. can do. As a result, the thermal oxidation process can be easily managed.
  • O 3 concentration and the thermal oxide film is a diagram showing the relationship between the thickness. It is a figure which showed the relationship between the thickness of a chemical oxide film and the thickness of a thermal oxide film. It is a figure which showed the relationship between the surface roughness measured by AFM and the thickness of a thermal oxide film. It is a figure which showed the relationship between the ratio of the peak intensity of Si 0 to 3+, and the thickness of a thermal oxide film. It is a figure which showed the relationship between the ratio of the peak intensity of Si 4+ and the thickness of a thermal oxide film. It is a figure which showed an example of the X-ray photoelectron spectroscopy (XPS) measurement.
  • XPS X-ray photoelectron spectroscopy
  • the present inventors have obtained a method for forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and the above-mentioned chemicals.
  • a plurality of semiconductor substrates having different configurations of oxide films are prepared, and the plurality of semiconductor substrates are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the composition of the formed chemical oxide film is measured, and the thermal oxide film is formed under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step based on the obtained composition and the correlation.
  • a step of estimating the thickness of the thermal oxide film for estimating the thickness of the thermal oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed, assuming that the target semiconductor substrate is thermally oxidized.
  • Thermal oxidation treatment conditions for determining the thermal oxidation treatment conditions based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness.
  • the thermal oxide film could be formed to the desired thin thickness with good reproducibility, and as a result, the thermal oxidation process could be easily controlled, and the present invention was completed.
  • the present inventors are a method of forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and OH groups contained in the chemical oxide film.
  • a plurality of semiconductor substrates having different amounts of each are prepared, and the plurality of semiconductor substrates are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film, and the amount of OH groups in the chemical oxide film and the above
  • a correlation acquisition step for obtaining a correlation with the thickness of the thermal oxide film, a substrate cleaning step for cleaning the semiconductor substrate on which the thermal oxide film is formed, and the cleaning in the substrate cleaning step of the semiconductor substrate The amount of OH groups in the chemical oxide film formed on the surface is measured, and based on the amount of the OH groups obtained by the measurement and the correlation, the same as the thermal oxidation treatment conditions in the correlation acquisition step.
  • the target semiconductor substrate on which the thermal oxide film is formed is thermally oxidized, and the thickness of the thermal oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed is estimated.
  • Thermal oxidation is performed based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film is estimated to be a predetermined thickness in the thermal oxide film thickness estimation step and the surface of the semiconductor substrate.
  • thermal oxide film of a semiconductor substrate having the above, it is possible to form a thermal oxide film having a constant thickness with good reproducibility regardless of the type of chemical oxide film formed by cleaning, and as a result, thermal oxidation
  • the present invention has been completed by finding that the process control becomes easy.
  • the present inventors are a method of forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and the chemical amount of the constituent elements of the chemical oxide film.
  • a plurality of semiconductor substrates having different ratios are prepared, and the plurality of semiconductor substrates are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the chemical amount theory ratio of the constituent elements of the chemical oxide film formed on the surface of the substrate is obtained, and based on the obtained chemical amount theory ratio of the constituent elements of the chemical oxide film and the correlation, in the correlation acquisition step.
  • the target semiconductor substrate on which the thermal oxide film is formed is thermally oxidized under the same conditions as the thermal oxidation treatment conditions, the thermal oxidation formed on the surface of the semiconductor substrate on which the thermal oxide film is formed is formed.
  • the thermal oxidation in the correlation acquisition step so that the thickness estimation step of the thermal oxide film for estimating the film thickness and the thickness of the thermal oxide film formed on the surface of the semiconductor substrate become a predetermined thickness.
  • Thermal oxidation treatment is performed under the thermal oxidation treatment condition determination step of determining the thermal oxidation treatment conditions based on the treatment conditions and the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step to form a thermal oxide film on the surface of the semiconductor substrate.
  • the thermal oxide film forming method of the semiconductor substrate having the thermal oxide film forming step the thermal oxide film can be formed to the desired thin thickness with good reproducibility, and as a result, the thermal oxidation process can be easily managed.
  • the present invention was completed.
  • the present inventors are a method of forming a thermal oxide film on a semiconductor substrate, which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and hydrogen atoms contained in the chemical oxide film.
  • a semiconductor substrate which is a semiconductor substrate having a chemical oxide film formed by cleaning in advance, and hydrogen atoms contained in the chemical oxide film.
  • a plurality of semiconductor substrates having different amounts of each are prepared, and the plurality of semiconductor substrates are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • a correlation acquisition step for obtaining a correlation with the thickness of the thermal oxide film, a substrate cleaning step for cleaning the semiconductor substrate on which the thermal oxide film is formed, and the cleaning in the substrate cleaning step of the semiconductor substrate The amount of hydrogen atoms in the chemical oxide film formed on the surface is measured, and based on the measured amount of the hydrogen atoms and the correlation, the same as the thermal oxidation treatment conditions in the correlation acquisition step. Under the conditions, it is assumed that the target semiconductor substrate on which the thermal oxide film is formed is thermally oxidized, and the thickness of the thermal oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed is estimated.
  • Thermal oxidation is performed based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film is estimated to be a predetermined thickness in the thermal oxide film thickness estimation step and the surface of the semiconductor substrate.
  • a thermal oxidation treatment condition determination step for determining the treatment conditions, and a thermal oxide film formation step for forming a thermal oxide film on the surface of the semiconductor substrate by performing thermal oxidation treatment under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step. It was found that the thermal oxide film can be formed to the desired thin thickness with good reproducibility by the method of forming the thermal oxide film of the semiconductor substrate having the above, and as a result, the control of the thermal oxidation process becomes easy. Completed the invention.
  • the present inventors conducted an diligent investigation into the fact that the thickness of the thermal oxide film formed differs depending on the cleaning method of the semiconductor substrate. However, it was found that it has a great influence on the thermal oxidation treatment. Then, by adjusting the oxidation conditions in consideration of such a phenomenon, a thermal oxidation method capable of forming a thin thermal oxide film having a predetermined thickness with good reproducibility was completed.
  • the chemical oxide film is a silicon oxide film and can be expressed as SiO x (0 ⁇ x ⁇ 2).
  • the elements related to the composition of the chemical oxide film are silicon, oxygen, and hydrogen.
  • x of SiO x in the chemical oxide film is called an oxygen ratio.
  • the oxygen ratio (x) at the chemical oxide film and the silicon interface affects the oxidizing characteristics of the thermal oxide film to be formed, and the formation rate of the thermal oxide film changes. Fluctuations in the oxygen ratio mean that elements other than oxygen are present in different ratios.
  • Hydrogen exists in the form of Si—H or Si—OH. That is, when these H increases, the oxygen abundance ratio is affected and decreases. Although the ratio of H is smaller than that of other constituent elements such as oxygen and silicon, it affects the bonding state of silicon by terminating silicon as Si—H or existing in the back bond of silicon. It also exists as a functional group like an OH group and plays an important role in determining reactivity.
  • silicon and oxygen which are the main constituent elements, are called suboxides because the bonding ratio is different from that of SiO 2.
  • the suboxide serves as a precursor of the silicon oxide film and is an important composition that determines the characteristics of the formed thermal oxide film. In this way, by focusing on the oxygen ratio of the chemical oxide film and acquiring the correlation between the composition of the chemical oxide film and the thickness of the thermal oxide film, it becomes possible to control the thickness of the thermal oxide film. ..
  • the semiconductor substrate prepared for obtaining the correlation only needs to have a different composition of the chemical oxide film, but the composition includes the amount of OH groups, the chemical quantity ratio of the constituent elements, and hydrogen. Contains the amount of atoms.
  • the oxide film formed by cleaning the semiconductor substrate is defined as a chemical oxide film.
  • the cleaning method and conditions are not particularly limited. Includes an oxide film formed by cleaning with a chemical solution or pure water cleaning.
  • the composition of the chemical oxide film formed on the surface of the semiconductor substrate after cleaning is measured before the thermal oxidation treatment of the semiconductor substrate, and the chemical oxide film is formed.
  • the correlation between the composition of the oxide film and the thickness of the thermal oxide film when the semiconductor substrate is thermally oxidized is determined, and the composition of the chemical oxide film after cleaning the surface of the semiconductor substrate on which the thermal oxide film is formed is determined. Adjust the thermal oxidation conditions including the oxidation time. This makes it possible to form a thin thermal oxide film having a predetermined thickness with good reproducibility.
  • a method for forming a thermal oxide film on a semiconductor substrate according to the first embodiment of the present invention will be described.
  • a plurality of semiconductor substrates are prepared. It is preferable to use a silicon wafer as this semiconductor substrate.
  • the thermal oxide film formed is a silicon oxide film.
  • Silicon wafers are widely used as semiconductor substrates, and in particular, a thermal oxide film is formed in the device manufacturing process. Therefore, by forming a thermal oxide film and evaluating the silicon wafer itself, it is more accurate. Can be evaluated.
  • HF hydrofluoric acid
  • cleaning method which is performed after the HF cleaning is not particularly limited, for example, may SC1 cleaning, O 3 wash liquor can be cleaned using such, or be cleaned, such as pure water rinsing.
  • a chemical oxide film is formed on the prepared plurality of semiconductor substrates. At this time, the configurations of the chemical oxide films of the plurality of semiconductor substrates are made different from each other.
  • cleaning is performed by a method using a chemical solution, it is preferable to change the cleaning conditions because a semiconductor substrate having a different composition of chemical oxide films can be obtained. It is preferred to perform as many different cleaning types and / or cleaning conditions as possible for the cleaning process to obtain the correlation.
  • the composition of the chemical oxide film formed by washing is measured.
  • the measurement is not particularly limited as long as the measurement can clarify the difference in the composition of the chemical oxide film.
  • a plurality of semiconductor substrates having different configurations of chemical oxide films are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the conditions for forming the thermal oxide film are not particularly limited, and the thermal oxide film can be formed by a usual method.
  • the thickness of the formed thermal oxide film is measured. The measurement can be performed by, for example, spectroscopic ellipso.
  • the same cleaning treatment as the semiconductor substrate on which the thermal oxide film is formed, a monitor wafer subjected to the thermal oxidation treatment, etc. may be used, or the same treatment may be performed. It can also be performed by extracting a part of the semiconductor substrate.
  • a semiconductor substrate to be actually formed with a thermal oxide film is newly prepared and cleaned.
  • the cleaning method is not limited, and cleaning can be performed according to the purpose, such as removal of foreign substances, removal of metal contaminants, and formation of an oxide film for protection.
  • the composition of the chemical oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed is measured by the cleaning performed in the substrate cleaning step.
  • the test piece or the like is measured in advance to determine the composition of the chemical oxide film.
  • the semiconductor substrate to be formed with the thermal oxide film was thermally oxidized under the same conditions as the thermal oxidation treatment in the correlation acquisition step. Assuming that, the thickness of the thermal oxide film formed on the surface of the semiconductor substrate on which the thermal oxide film is formed is estimated.
  • the thermal oxidation treatment conditions are determined based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness. For example, if it can be estimated that the film is thicker when treated under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step, the actual thermal oxidation treatment conditions are based on the thermal oxidation treatment conditions in the correlation acquisition step. The condition is changed so that the thickness of the formed thermal oxide film becomes thinner.
  • the thermal oxide film thickness estimation step when the estimated thermal oxide film thickness is thicker than a predetermined thickness, in the thermal oxidation treatment condition determination step, the thermal oxidation treatment time is determined by the correlation acquisition step. It can be determined that the time is shorter than the thermal oxidation treatment time of the thermal oxidation treatment conditions in.
  • the thermal oxidation treatment time is longer than the thermal oxidation treatment time of the thermal oxidation treatment condition in the correlation acquisition step in the thermal oxidation treatment condition determination step. Can be determined.
  • the thermal oxidation treatment time in the thermal oxidation treatment condition determination step is the same as the thermal oxidation treatment time of the thermal oxidation treatment condition in the correlation acquisition step. Can be determined.
  • the thermal oxide film thickness estimation step when the estimated thermal oxide film thickness is thicker than a predetermined thickness, in the thermal oxidation treatment condition determination step, the thermal oxidation treatment temperature is subjected to the correlation acquisition step. It can be determined that the temperature is lower than the thermal oxidation treatment temperature of the thermal oxidation treatment conditions in.
  • the thermal oxidation treatment temperature in the thermal oxidation treatment condition determination step is higher than the thermal oxidation treatment temperature of the thermal oxidation treatment condition in the correlation acquisition step. Can be determined.
  • the thermal oxidation treatment temperature is set to the same temperature as the thermal oxidation treatment temperature of the thermal oxidation treatment condition in the correlation acquisition step in the thermal oxidation treatment condition determination step. Can be determined.
  • the oxygen content concentration of a component contributing to the oxidation of the semiconductor substrate is adjusted. It is also possible to control the thickness of the thermal oxide film to a predetermined thickness. Specifically, when the estimated thickness of the thermal oxide film is thicker than a predetermined thickness in the thermal oxide film thickness estimation step, the oxygen content concentration of the thermal oxidation treatment atmosphere is determined in the thermal oxidation treatment condition determination step. It can be determined that the concentration is lower than the oxygen content concentration of the thermal oxidation treatment atmosphere under the thermal oxidation treatment conditions in the correlation acquisition step.
  • the thermal oxidation treatment of the thermal oxidation treatment condition in the thermal oxidation treatment condition determination step determines the oxygen content concentration of the thermal oxidation treatment atmosphere in the correlation acquisition step. It can be determined that the concentration is higher than the oxygen content concentration of the atmosphere.
  • the thermal oxidation treatment of the thermal oxidation treatment condition in the thermal oxidation treatment condition determination step determines the oxygen content concentration of the thermal oxidation treatment atmosphere in the correlation acquisition step. The concentration can be determined to be the same as the oxygen content concentration of the atmosphere.
  • the method for forming the thermal oxide film is not limited to the above method and can be freely determined, but the above method is preferable because it is easy to adjust the thickness of the thermal oxide film.
  • Thermal oxidation treatment is performed under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step to form a thermal oxide film on the surface of the semiconductor substrate.
  • the present inventor conducted an earnest investigation into the fact that the thickness of the thermal oxide film formed differs depending on the cleaning method of the semiconductor substrate. As a result, the present inventor conducted an earnest investigation and found that OH in the chemical oxide film formed by cleaning the semiconductor substrate. It was found that the amount of groups has a great influence on the thermal oxidation treatment.
  • FIG. 1 is a diagram showing the relationship between the amount of OH groups (relative absorbance of 3300 cm -1 ) in the chemical oxide film on the surface of the silicon wafer and the thickness of the silicon thermal oxide film. It can be seen that the thickness of the thermal oxide film increases as the relative absorbance of 3300 cm -1 increases. This phenomenon is similar to the fact that the oxidation rate of Wet oxidation is higher than that of Dry oxidation in the case of thermal oxidation using gas, and the amount of OH groups contained in the chemical oxide film formed on the surface of the silicon wafer. It is considered that the thickness of the thermal oxide film after the thermal oxidation treatment differs depending on the difference.
  • the amount of OH groups contained in the chemical oxide film can be determined, for example, by examining the infrared absorption characteristics of the chemical oxide film. As a measurement of infrared absorption characteristics, for example, FT-IR measurement can be performed, and the amount of OH groups can be calculated from the relative absorbance in the vicinity of 3300 cm -1. In this case, the value of relative absorbance near 3300 cm -1 can be used as an index representing the amount of OH groups. In the following description, " relative absorbance near 3300 cm -1 " may be expressed as "amount of OH groups".
  • a method for forming a thermal oxide film on a semiconductor substrate according to a second embodiment of the present invention will be described.
  • Cleaning method which is performed after the HF cleaning is not particularly limited, for example, may SC1 cleaning, O 3 wash liquor can be cleaned using such, or be cleaned, such as pure water rinsing.
  • a chemical oxide film is formed on the prepared plurality of semiconductor substrates.
  • the amounts of OH groups contained in the chemical oxide films of the plurality of semiconductor substrates are made different from each other.
  • a chemical solution having a different concentration of OH groups because a semiconductor substrate having a different amount of OH groups can be easily obtained.
  • the higher the NH 4 OH concentration and the stronger the alkalinity the greater the absorbance at 3300 cm-1 (that is, a large amount of OH groups are contained), and by changing the NH 4 OH concentration, OH can be made more easily.
  • semiconductor substrates having different amounts of groups can be used. It is preferred to perform as many different cleaning types and / or cleaning conditions as possible for the cleaning process to obtain the correlation.
  • the amount of OH groups contained in the chemical oxide film formed by washing is measured.
  • the ATR-FT-IR measurement can be evaluated with sufficient sensitivity to the OH groups existing on the surface of the semiconductor substrate as compared with the general transmission FT-IR.
  • a plurality of semiconductor substrates having different amounts of OH groups contained in the chemical oxide film are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the conditions for forming the thermal oxide film are not particularly limited, and the thermal oxide film can be formed by a usual method. Then, the thickness of the formed thermal oxide film is measured. The measurement can be performed by, for example, spectroscopic ellipso.
  • the correlation between the amount of OH groups in the chemical oxide film obtained above and the thickness of the formed thermal oxide film is obtained.
  • the correlation shown in Fig. 1 is seen between the thickness of the thermal oxide film and the amount of OH groups in the chemical oxide film ( relative absorbance near 3300 cm -1 ), and the larger the amount of OH groups in the chemical oxide film, the more.
  • the thermal oxide film becomes thicker.
  • the surface condition by cleaning can be changed by adjusting the thermal oxidation treatment conditions such as the thermal oxidation time corresponding to the amount of each OH group in the chemical oxide film formed on the surface of the semiconductor substrate. Even if they are different, it is possible to form a thermal oxide film having a certain thickness.
  • the amount of OH groups in the chemical oxide film ( relative absorbance near 3300 cm -1 ) and the thickness of the thermal oxide film are measured by the same cleaning treatment and thermal oxidation treatment as the semiconductor substrate on which the thermal oxide film is formed. It is also possible to use the performed monitor wafer or the like, or to extract a part of the semiconductor substrate that has undergone the same processing.
  • a semiconductor substrate to be actually formed with a thermal oxide film is newly prepared and washed.
  • the cleaning method is not limited, and cleaning can be performed according to the purpose, such as removal of foreign substances, removal of metal contaminants, and formation of an oxide film for protection.
  • the amount of OH groups (relative absorbance in the vicinity of 3300 cm -1 ) in the chemical oxide film formed on the surface of the semiconductor substrate to be formed with the thermal oxide film by the cleaning performed in the substrate cleaning step is measured.
  • the relative absorbance near 3300 cm -1 of the test piece or the like is measured in advance by ATR-FT-IR, and the amount of OH groups in the chemical oxide film is calculated from the relative absorbance around 3300 cm -1. ,Ask.
  • the target semiconductor substrate on which the thermal oxide film is formed is formed under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step.
  • the thickness of the thermal oxide film formed on the surface of the semiconductor substrate on which the thermal oxide film is formed is estimated assuming that the thermal oxidation treatment is performed.
  • the OH concentration in the chemical oxide film after cleaning of the semiconductor substrate to which the thermal oxide film is actually formed is relative to 3300 cm -1.
  • the value of absorbance is determined to be "0.18"
  • the thermal oxidation treatment conditions are determined based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness. do.
  • the predetermined thickness of the thermal oxide film to be formed is 5.1 nm, it is formed thicker when treated under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step. Therefore, the actual thermal oxidation treatment conditions are determined by changing the conditions from the thermal oxidation treatment conditions in the correlation acquisition step in the direction of decreasing the thickness of the formed thermal oxide film.
  • the method of adjusting the thickness of the thermal oxide film formed on the surface of the semiconductor substrate so as to have a predetermined thickness is the same as that of the first embodiment.
  • the thermal oxidation treatment is performed under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step to form a thermal oxide film on the surface of the semiconductor substrate.
  • the present inventors conducted a diligent investigation into the fact that the thickness of the thermal oxide film formed differs depending on the cleaning method of the semiconductor substrate. It was found that the chemical ratio of elements has a great influence on the thermal oxidation treatment.
  • a method for forming a thermal oxide film on a semiconductor substrate according to a third embodiment of the present invention will be described.
  • Cleaning method which is performed after the HF cleaning is not particularly limited, for example, may SC1 cleaning, O 3 wash liquor can be cleaned using such, or be cleaned, such as pure water rinsing.
  • a chemical oxide film is formed on the prepared plurality of semiconductor substrates.
  • the stoichiometric ratios of the constituent elements of the chemical oxide films of the plurality of semiconductor substrates are made different from each other.
  • cleaning is performed by a method using a chemical solution
  • various types of chemical solutions having different concentrations because semiconductor substrates having different stoichiometric ratios of the constituent elements of the chemical oxide film can be easily obtained.
  • multiple cleaning methods and / or cleaning conditions are used to obtain the correlation. It is preferable to obtain the correlation between the cleaning conditions and the stoichiometric ratio.
  • the stoichiometric ratio of the constituent elements of the chemical oxide film formed by washing is obtained.
  • the method for measuring and evaluating the chemical ratio of the constituent elements of the chemical oxide film is not particularly limited, and any method can be used as long as the chemical ratio of the constituent elements of the chemical oxide film can be measured. good.
  • the XPS method is a method that can easily and accurately evaluate information on the polar surface layer of a semiconductor substrate, and can be suitably used for evaluating the stoichiometric ratio according to the present invention.
  • the peak intensity of the bond energy in a state where the atom is completely bonded to the oxygen atom can be measured using XPS and used as the ratio of the measured peak intensity.
  • the constituent elements of the chemical oxide film are Si and O.
  • the chemical quantity theory ratio is the ratio of the atomic bond state of Si atom and O atom in the chemical oxide film, that is, the Si—Si bond in the state of not being bonded to the oxygen atom and the oxygen atom. It can be the ratio of the so-called suboxide among the Si—O bonds (silicon oxides) in the state and the Si—O bonds that are completely bonded to the oxygen atom to form SiO 2.
  • the proportion of each bond present can be determined by measuring the peak intensity of the binding energy with XPS.
  • the sample surface (the surface of the silicon oxide film 3 formed on the silicon 4) is irradiated with X-rays from the X-ray source 1 and photoelectrons (emitted from the sample surface) are emitted from the sample surface.
  • This is a method of analyzing the composition and chemical bond state of the elements constituting the sample surface by detecting (from the outermost shell electron) with the detector 2 and measuring the kinetic energy.
  • the X-ray source to be irradiated at this time is not particularly limited, and any energy may be used as long as the stoichiometric ratio of the constituent elements of the target chemical oxide film can be measured.
  • the kinetic energy of the emitted photoelectrons is affected by the electronic state around the atom, such as the valence of the atom and the distance between the atoms. By observing the change in energy (chemical shift), the chemical bond state can be identified relatively easily.
  • the mean free path of photoelectrons is said to be 2.1 nm for silicon and 3.3 nm for a silicon oxide film, and is considered to be one of the methods particularly suitable for evaluating the outermost surface of a silicon substrate.
  • FIG. 13 shows an example of the XPS spectrum of a sample in which a thin silicon oxide film is present on a silicon substrate.
  • the energy range of the sp3 orbital in which the outermost electrons of silicon are present is illustrated.
  • the outermost electrons contribute to the reaction, and the inner shell electrons that do not contribute to the reaction are omitted.
  • the horizontal axis is the binding energy and the vertical axis is the count number of photoelectrons. Since the binding energy changes depending on the bonding state of Si and O, it is possible to evaluate the bonding state and the bonding atom. Further, the vertical axis is the count number of photoelectrons, which changes depending on the number of each coupling state.
  • the reason why the peak of the Si—Si bond of Si 0 is separated into two is due to the spin-orbit interaction.
  • one oxygen atom is bonded to the silicon atom, it is Si 1+
  • the state of SiO 2 in which four oxygen atoms are bonded to the silicon atom is Si 4+ .
  • the reason why there are four types of bonded states of silicon atoms and oxygen atoms is that the oxide film is thin and does not necessarily have a stoichiometric composition.
  • the peak intensity of Si 4+ which is a SiO 2 composition, and oxygen oxidize.
  • the peak intensities of each of Si 0 to Si 3 + that can be obtained were integrated. Spectral separation was performed for Si 1+ to 3+ without clear peaks. That is, all the Si components that may be oxidized are added up to obtain Si 0 to 3+ , which is separated from the Si 4+ component that has been oxidized and has become a complete stoichiometry, as shown in FIG.
  • the area of the peak intensity obtained in 1 was calculated and used as the ratio of the peak intensity.
  • a plurality of semiconductor substrates having different stoichiometric ratios of the constituent elements of the chemical oxide film are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the conditions for forming the thermal oxide film are not particularly limited, and the thermal oxide film can be formed by a usual method.
  • the thickness of the formed thermal oxide film is measured. The measurement can be performed by, for example, a spectroscopic ellipso method.
  • FIG. 10 is a diagram showing the relationship between the ratio of the peak intensity of Si 0 to 3+ and the thickness of the thermal oxide film
  • FIG. 11 shows the relationship between the ratio of the peak intensity of Si 4+ and the thickness of the thermal oxide film. It is a figure. Between the stoichiometric ratio constituent elements of thickness and chemical oxidation film of the thermal oxide film correlation was observed as shown in FIG. 10 and FIG. 11, in accordance with the ratio of Si 0 ⁇ 3 + peak intensity increases, the heat It can be seen that the thickness of the oxide film is thickened.
  • the thickness of the thermal oxide film increases as the ratio of the peak intensity of Si 4+ decreases.
  • thermal oxidation treatment such as thermal oxidation time corresponding to the ratio of the peak intensity of the bond between Si and O formed on the surface of the semiconductor substrate, that is, the chemical quantity theory ratio of the constituent elements of the chemical oxide film.
  • the same cleaning treatment and thermal oxidation treatment as the semiconductor substrate on which the thermal oxide film is formed are used.
  • a part of the semiconductor substrate that has undergone the same processing can be extracted.
  • a semiconductor substrate to be actually formed with a thermal oxide film is newly prepared and washed.
  • the cleaning method is not limited, and cleaning can be performed according to the purpose, such as removal of foreign substances, removal of metal contaminants, and formation of an oxide film for protection.
  • the chemical abundance ratio of the constituent elements of the chemical oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed by the cleaning performed in the substrate cleaning step is analyzed.
  • the bond energy is measured in advance for each type of bond between the substrate atom such as a test piece and the oxygen atom in the same manner as in the measurement in the correlation acquisition step, and the constituent elements of the chemical oxide film are measured.
  • the chemical quantity theory ratio can be calculated and obtained.
  • the object to be formed with the thermal oxide film under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition process is estimated, assuming that the semiconductor substrate of the above is subjected to thermal oxidation treatment.
  • the ratio of the peak intensity of the bond of Si 0 to 3+ after cleaning the semiconductor substrate to which the thermal oxide film is actually formed that is, chemistry
  • the chemical quantitative ratio of the constituent elements of the oxide film is determined to be "81.5%”
  • the heat is about 5.05 nm. It can be estimated that an oxide film is formed.
  • the thermal oxidation treatment conditions are determined based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness. do.
  • the predetermined thickness of the thermal oxide film to be formed is 5.10 nm, it may be formed thin when treated under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step. Since it has been estimated, the actual thermal oxidation treatment conditions are determined by changing the conditions from the thermal oxidation treatment conditions in the correlation acquisition step in the direction of increasing the thickness of the formed thermal oxide film.
  • the method of adjusting the thickness of the thermal oxide film formed on the surface of the semiconductor substrate so as to have a predetermined thickness is the same as that of the first embodiment.
  • the thermal oxidation treatment is performed under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step to form a thermal oxide film on the surface of the semiconductor substrate.
  • the present inventors conducted an diligent investigation into the fact that the thickness of the thermal oxide film formed differs depending on the cleaning method of the semiconductor substrate. It was found that the amount of hydrogen atoms has a great influence on the thermal oxidation treatment. Then, by adjusting the oxidation conditions in consideration of such a phenomenon, a thermal oxidation method capable of forming a thin thermal oxide film having a predetermined thickness with good reproducibility was completed.
  • a method for forming a thermal oxide film on a semiconductor substrate according to a fourth embodiment of the present invention will be described.
  • Cleaning method which is performed after the HF cleaning is not particularly limited, for example, may SC1 cleaning, O 3 wash liquor can be cleaned using such, or be cleaned, such as pure water rinsing.
  • a chemical oxide film is formed on the prepared plurality of semiconductor substrates.
  • the amounts of hydrogen atoms in the chemical oxide films of the plurality of semiconductor substrates are made different from each other.
  • SC1 cleaning the higher the NH 4 OH concentration and the stronger the alkalinity, the smaller the ratio of hydrogen atoms or the absorbance of 2130 cm -1 (that is, the smaller the amount of hydrogen atoms contained), and the NH 4 OH concentration changes. This is preferable because it is possible to more easily obtain semiconductor substrates having different amounts of hydrogen atoms.
  • the amount of hydrogen atoms in the chemical oxide film formed by washing is determined.
  • the method for obtaining and evaluating the amount of hydrogen atoms in the chemical oxide film is not particularly limited, and any method may be used as long as the amount of hydrogen atoms in the chemical oxide film can be obtained. ..
  • it can be obtained by examining the infrared absorption characteristics of the chemical oxide film.
  • ATR-FT-IR measurement can be performed, and the amount of hydrogen atoms can be calculated from the absorbance in the vicinity of 2130 cm-1.
  • the absorbance in the vicinity of 2130 cm -1 is the value of relative absorbance corresponding to stretching vibration of SiH of SiH 3, can be used as an index representing the amount of hydrogen atoms.
  • another method for obtaining the amount of hydrogen atoms for example, Rutherford backward scattering analysis (RBS) can be performed to obtain and calculate the ratio of hydrogen atoms in the chemical oxide film.
  • the ratio of hydrogen atoms can be used as an index representing the amount of hydrogen atoms.
  • absorbance of 2130 cm -1 " and "ratio of hydrogen atoms" may be referred to as "amount of hydrogen atoms".
  • a plurality of semiconductor substrates having different amounts of hydrogen atoms in the chemical oxide film are thermally oxidized under the same thermal oxidation treatment conditions to form a thermal oxide film.
  • the conditions for forming the thermal oxide film are not particularly limited, and the thermal oxide film can be formed by a usual method. Then, the thickness of the formed thermal oxide film is measured. The measurement can be performed by, for example, a spectroscopic ellipso method.
  • FIG. 18 is a diagram showing the relationship between the amount of hydrogen atoms (ratio of hydrogen atoms in the chemical oxide film) obtained by RBS measurement and the thickness of the thermal oxide film
  • FIG. 19 is a diagram showing the relationship between ATR-FT-IR measurement. It is a figure which showed the relationship between the amount of a hydrogen atom ( absorptivity of 2130cm-1 ) and the thickness of a thermal oxide film obtained by the above. The correlations shown in FIGS.
  • Non-Patent Document 1 it is known that the surface of hydrogen-terminated silicon is stabilized and inactivated. It is considered that the oxidation rate differs depending on the amount of hydrogen atoms contained in the chemical oxide film formed on the surface by washing, and the film thickness after thermal oxidation differs even if thermal oxidation is performed under the same conditions. Using the results of FIGS.
  • cleaning is performed by adjusting thermal oxidation treatment conditions such as thermal oxidation time corresponding to the amount of hydrogen atoms in the chemical oxide film formed on the surface of the semiconductor substrate. It is possible to form a thin thermal oxide film having a certain thickness even if the surface condition is different.
  • the same cleaning treatment as the semiconductor substrate on which the thermal oxide film is formed a monitor wafer that has undergone thermal oxidation treatment, etc. may be used. It is also possible to remove a part of the semiconductor substrate that has undergone the same processing.
  • a semiconductor substrate to be actually formed with a thermal oxide film is newly prepared and washed.
  • the cleaning method is not limited, and cleaning can be performed according to the purpose, such as removal of foreign substances, removal of metal contaminants, and formation of an oxide film for protection.
  • the amount of hydrogen atoms in the chemical oxide film formed on the surface of the target semiconductor substrate on which the thermal oxide film is formed by the cleaning performed in the substrate cleaning step is analyzed.
  • the absorbance of 2130 cm -1 corresponding to the hydrogen atom contained in the chemical oxide film of the test piece or the like or the ratio of the hydrogen atom is measured in advance in the same manner as the measurement in the correlation acquisition step.
  • the amount of hydrogen atoms in the chemical oxide film can be calculated and obtained.
  • the semiconductor to be formed to form the thermal oxide film Based on the obtained amount of hydrogen atoms in the chemical oxide film and the correlation obtained in the correlation acquisition step, the semiconductor to be formed to form the thermal oxide film under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step.
  • the thickness of the thermal oxide film formed on the surface of the semiconductor substrate on which the thermal oxide film is formed is estimated assuming that the substrate is thermally oxidized.
  • the ratio of hydrogen atoms in the chemical oxide film after cleaning of the semiconductor substrate to be actually formed with the thermal oxide film is "10%". If this semiconductor substrate is treated under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step, it can be estimated that a thermal oxide film of about 5.15 nm is formed.
  • the thermal oxidation treatment conditions are determined based on the thermal oxidation treatment conditions in the correlation acquisition step so that the thickness of the thermal oxide film formed on the surface of the semiconductor substrate becomes a predetermined thickness. do.
  • the predetermined thickness of the thermal oxide film to be formed is 5.10 nm, it may be formed thicker when treated under the same conditions as the thermal oxidation treatment conditions in the correlation acquisition step. Since it has been estimated, the actual thermal oxidation treatment conditions are determined by changing the conditions from the thermal oxidation treatment conditions in the correlation acquisition step in the direction in which the thickness of the formed thermal oxide film becomes thinner.
  • the method of adjusting the thickness of the thermal oxide film formed on the surface of the semiconductor substrate so as to have a predetermined thickness is the same as that of the first embodiment.
  • the thermal oxidation treatment is performed under the thermal oxidation treatment conditions determined in the thermal oxidation treatment condition determination step to form a thermal oxide film on the surface of the semiconductor substrate.
  • thermal oxide film By forming a thermal oxide film on the semiconductor substrate through each of the steps of the first to fourth embodiments according to the present invention as described above, even a semiconductor substrate having a different chemical oxide film can be determined with good reproducibility. It is possible to form a thin thermal oxide film. Further, regardless of what kind of cleaning is performed, a thin thermal oxide film having a predetermined thickness can be formed with good reproducibility.
  • the thickness of the thermal oxide film formed on the surface of the semiconductor substrate is as thin as 1 to 10 nm, a more remarkable effect is exerted, so that the thermal oxide film in such a range is formed. It is suitable for.
  • Example 1 A silicon wafer having a diameter of 300 mm and having a normal resistivity of boron dope was prepared, and the surface of the silicon wafer was washed with 0.5% HF for initialization, and then SC1 was washed at 70 ° C. At this time, the NH 4 OH concentration was changed to 3, 0.3, 0.03, 0.001%. Further, O 3 cleaning another washing (24 ° C.), it was performed by shaking the O 3 concentration 3,20,40Ppm.
  • FIG. 2 is a diagram showing the relationship between the NH 4 OH concentration and the amount of OH groups ( relative absorbance near 3300 cm -1).
  • FIG. 3 is a diagram showing the relationship between the concentration of O 3 and the amount of OH groups ( relative absorbance near 3300 cm -1). As shown in FIG.
  • the difference is the amount (relative absorbance around 3300 cm -1) washing conditions OH group, SC1 case of washing is NH 4 OH concentration is high alkalinity is rich strong enough OH groups, in the case of O 3 cleaning, It is considered that the chemical solution is almost neutral and the amount of OH groups is small.
  • the surface roughness of the silicon wafer after cleaning was measured at 9 points in the plane by AFM (1 ⁇ m square). As a result, there was almost no variation in the plane, and the roughness was the same.
  • NH 4 OH concentration has become the larger surface roughness (Ra) is high, correlation was observed in NH 4 OH concentration and roughness. It is known that since NH 4 OH is alkaline, anisotropy exists in the etching of silicon, and as the NH 4 OH concentration increases, the amount of silicon etched increases, which is plane orientation dependent. It is probable that the surface roughness became large due to the strong appearance of. On the other hand, as shown in FIG. 5, a significant correlation as for the O 3 For cleaning SC1 cleaning was observed.
  • FIG. 6 is a diagram showing the relationship between the concentration of NH 4 OH and the thickness of the thermal oxide film.
  • Figure 7 is a graph showing the relationship between the thickness of the concentration and the thermal oxide film O 3.
  • Example 1 In the first embodiment, on the premise of performing electrical characteristic evaluation such as GOI measurement, the target film thickness of the thermal oxide film is set to 5.10 nm, and the film thickness of the thermal oxide film of the substrate having different cleaning conditions is set. The goal was to make it uniform to this value (5.10 nm). In the above electrical characteristic evaluation, it is known that variations in the oxide film thickness affect the measurement results. Especially in a thin region such as 1 to 10 nm, if the oxide film is thin, a tunnel current is directly generated, and GOI measurement can be performed. Adjusting the film thickness is very important because it may not be possible. In Examples 2 to 8 as well, on the premise of performing electrical characteristic evaluation such as GOI measurement, the goal was to make the film thickness of the thermal oxide film of the substrate having different cleaning conditions uniform to 5.10 nm.
  • the correlation between the amount of OH groups (relative absorbance near 3300 cm -1 ) and the thickness of the thermal oxide film was determined.
  • a plurality of silicon wafers having a diameter of 300 mm and having a normal resistance of boron dope were prepared, and after cleaning the surface with 0.5% HF for initialization, SC1 cleaning (70 ° C., NH 4 OH concentration: 3, 0) was performed, respectively. .3,0.03,0.001%) and O 3 cleaning (24 ° C., O 3 concentration: 3,20,40Ppm) performed, the amount of OH groups is to prepare a different wafers.
  • a test piece was cut out from each silicon wafer and ATR-FT-IR measurement was performed to measure the relative absorbance of 3300 cm -1.
  • a predetermined thermal oxidation treatment 900 ° C., oxygen 5%, 60 min
  • the thickness of the thermal oxide film is measured, and the amount of OH groups (relative absorbance in the vicinity of 3300 cm -1) is measured. )
  • the thickness of the thermal oxide film were determined.
  • the thickness of the thermal oxide film for which the correlation was obtained was set to around 5.1 nm. As a result, the correlation shown in FIG. 1 was obtained.
  • samples A and B Two types of wafers (samples A and B) that were washed under different conditions were prepared.
  • ATR-FT-IR measurement was performed in advance using the test pieces treated under the same conditions as the samples A and B, and the relative absorbance of 3300 cm -1 was measured.
  • the amounts of OH groups ( relative absorbance near 3300 cm -1 ) of Samples A and B were 0.12 and 0.18, respectively. From this result and the relationship between the amount of OH groups ( relative absorbance near 3300 cm -1 ) and the thickness of the oxide film obtained earlier, the same conditions as when the correlation was obtained (900 ° C, 5% oxygen, 60 min).
  • the thickness of the thermal oxide film formed during the thermal oxidation treatment was estimated to be 5.05 nm for sample A and 5.15 nm for sample B, respectively.
  • the oxidation time was adjusted so as to reach the target thickness of the thermal oxide film (5.1 nm), and the actual oxidation time was set to 63 min for sample A and 58 min for sample B.
  • Thermal oxidation treatment was performed.
  • the thickness of the thermal oxide film was 5.1 nm for both samples A and B, and it was possible to make the thickness the same as the target thickness. ..
  • Example 2 Except that the thermal oxidation temperature was adjusted using the relationship between the thermal oxidation temperature and the thickness of the thermal oxide film obtained in advance so that the target thickness of the thermal oxide film (5.1 nm) was obtained. , Samples A and B were subjected to thermal oxidation treatment in the same manner as in Example 1 to form a thermal oxide film. Specifically, the thermal oxidation temperature was adjusted to 910 ° C. for Sample A and 890 ° C. for Sample B. As a result, the thickness of the thermal oxide film could be 5.1 nm for both Samples A and B, and the thickness could be made the same as the target thickness.
  • Example 2 A silicon substrate having a diameter of 300 mm and having a normal resistivity of boron dope was prepared, and the surface of the silicon substrate was washed with 0.5% HF for initialization, and then SC1 was washed at 70 ° C. At this time, the NH 4 OH concentration was changed to 3, 0.3, 0.03, 0.01%. Further, O 3 cleaning another washing (24 ° C.), it was performed by shaking the O 3 concentration 3,20,40Ppm.
  • FIGS. 14 and 15 are diagram showing the relationship between the concentration of NH 4 OH and the ratio of the peak intensity of Si 0 to 3+.
  • FIG. 15 is a diagram showing the relationship between the concentration of NH 4 OH and the ratio of the peak intensity of Si 4+. Similarly, by measuring the peak intensities was performed with O 3 concentration, and Si 0 ⁇ 3 +, a comparison of the ratio of the peak intensity of Si 4+.
  • FIGS. 16 and 17 are diagram showing the relationship between the ratio of the concentration and Si 0 ⁇ 3 + peak intensity of O 3.
  • FIG. 17 is a diagram showing the relationship between the concentration of O 3 and the ratio of the peak intensity of Si 4+.
  • All such substrates are thermally oxidized (900 ° C., oxygen 5%, 60 min) with the aim of achieving a thermal oxide film thickness of 5.1 nm, and then the thermal oxide film thickness is measured by a spectroscopic ellipso method. It was measured.
  • FIGS. 10 and 11 From the results of the experiments conducted as described above, the correlations shown in FIGS. 10 and 11 were obtained. As shown in FIGS. 10 and 11, there is a correlation between the thickness of the thermal oxide film and the ratio of the peak intensities of Si 0 to 3+ and Si 4+, and the larger the ratio of the peak intensity of Si 0 to 3+, the larger the thermal oxide film. It was found that the thickness of the silicon oxide film tends to be thicker, and that the smaller the ratio of the peak intensity of Si 4+, the thicker the thermal oxide film tends to be. Further, from the correlation between the thickness of the thermal oxide film shown in FIGS. 10 and 11 and the ratio of the peak intensities of the constituent elements of the chemical oxide film, for example, a calibration line such as the dotted line in FIGS.
  • the thickness of the thermal oxide film formed is estimated from the ratio of the peak intensities of the constituent elements of the chemical oxide film of the target silicon substrate, and the conditions for actually forming the thermal oxide film are determined. It was found that a thermal oxide film close to the target thickness of the thermal oxide film can be formed. O 3 is dependent on the concentration of the stoichiometric ratio was not observed, but a good correlation was found between the stoichiometric ratio and the O 3 thickness of the thermal oxide film formed after washing.
  • Example 3 In the same manner as in Experimental Example 2 above, the correlation between the ratio of the peak intensities of Si 0 to 3+ and Si 4+ and the thickness of the thermal oxide film was determined. First, a plurality of silicon substrates having a diameter of 300 mm and having a boron-doped normal resistivity were prepared, and the surface of the silicon substrate was cleaned with 0.5% HF for initialization, and then SC1 cleaning (70 ° C., NH 4 OH concentration: 3) was performed. , 0.3,0.03,0.01%) and O 3 cleaning (24 ° C., O 3 concentration: 3,20,40Ppm) performing, Si 0 ⁇ 3 +, the ratio of the peak intensity of Si 4+ is different A substrate was prepared.
  • samples A and B Two types of substrates (samples A and B) that were washed under different conditions were prepared.
  • XPS measurement was performed in advance using the test pieces treated under the same conditions as the samples A and B, and the peak intensities of Si 0 to 3+ and Si 4+ were measured.
  • the peak intensity ratios of Samples A and B were 81.5% for Sample A, 84.5% for Sample B, and Si for the peak intensity ratios of Si 0 to 3+.
  • the ratio of the peak intensity of 4+ was 18.5% in sample A and 15.5% in sample B.
  • the oxidation time was adjusted so as to reach the target thickness of the thermal oxide film (5.10 nm), and the actual oxidation time was set to 63 min for sample A and 58 min for sample B.
  • Thermal oxidation treatment was performed.
  • the thickness of the thermal oxide film was 5.10 nm for both samples A and B, and it was possible to make the thickness the same as the target thickness. rice field.
  • Example 4 Except that the thermal oxidation temperature was adjusted using the relationship between the thermal oxidation temperature and the thickness of the thermal oxide film obtained in advance so that the target thickness of the thermal oxide film (5.10 nm) was obtained. , Samples A and B were subjected to thermal oxidation treatment in the same manner as in Example 3 to form a thermal oxide film. Specifically, the thermal oxidation temperature was adjusted to 910 ° C. for Sample A and 890 ° C. for Sample B. As a result, the thickness of the thermal oxide film could be set to 5.10 nm for both Samples A and B, and the thickness could be made the same as the target thickness.
  • thermal oxidation conditions As shown in Examples 3 and 4, by setting the thermal oxidation conditions according to the chemical quantity theory ratio of the constituent elements of the chemical oxide film after cleaning, it depends on the type of the chemical oxide film formed on the silicon substrate. It can be seen that the thermal oxide film can be formed with the same thickness. This means that the thickness of the thermal oxide film can be made uniform even if the substrates are washed under different cleaning methods and conditions. As a result, it was found that the control of the thermal oxidation process becomes easy.
  • a silicon wafer having a diameter of 300 mm and having a boron dope and a normal resistivity was prepared, and the surface of the silicon wafer was washed with 0.5% HF for initialization, and then SC1 was washed at 70 ° C. At this time, the NH 4 OH concentration was changed to 3, 0.3, 0.03, 0.001%.
  • FIG. 20 is a diagram showing the relationship between the NH 4 OH concentration and the ratio of hydrogen atoms in the chemical oxide film obtained by RBS measurement.
  • the proportion of hydrogen atoms decreased as the NH 4 OH concentration increased. It is considered that the ratio of hydrogen atoms differs depending on the cleaning conditions because, in the case of SC1 cleaning, the higher the NH 4 OH concentration and the stronger the alkalinity, the fewer hydrogen atoms.
  • FIG. 21 is a diagram showing the relationship between the NH 4 OH concentration and the absorbance of 2130 cm -1 determined by ATR-FT-IR measurement. As a result, it was found that as the NH 4 OH concentration increased, the absorbance near 2130 cm -1 decreased, and the amount of hydrogen atoms in the chemical oxide film after washing decreased.
  • Example 5 In the same manner as in Experimental Example 3 above, the correlation between the ratio of hydrogen atoms and the thickness of the thermal oxide film measured by RBS was determined. First, a plurality of silicon wafers having a diameter of 300 mm and having a normal resistance of boron dope were prepared, and the surface of the silicon wafers was washed with 0.5% HF for initialization, and then SC1 washing (70 ° C., NH 4 OH concentration: 3) was performed. , 0.3, 0.03, 0.001%) to prepare substrates having different proportions of hydrogen atoms. Next, a test piece was cut out from each silicon wafer and RBS measurement was performed to measure the ratio of hydrogen atoms.
  • a predetermined thermal oxidation treatment (900 ° C., oxygen 5%, 60 min) is performed for each substrate under each cleaning condition, the thickness of the thermal oxide film is measured, and the ratio of hydrogen atoms and the thickness of the thermal oxide film are determined. The correlation was found. At this time, the thickness of the thermal oxide film for which the correlation was obtained was set to around 5.10 nm. As a result, the correlation shown in FIG. 18 was obtained.
  • samples A and B Two types of substrates (samples A and B) that were washed under different conditions were prepared.
  • RBS measurement was performed in advance using the test pieces treated under the same conditions as the samples A and B, and the ratio of hydrogen atoms was measured.
  • the proportions of hydrogen atoms in each of Samples A and B were 10% in Sample A and 20% in Sample B.
  • the thickness of the thermal oxide film is proportional to the root (square root) of the oxidation time so that the target thickness of the thermal oxide film (5.10 nm) is obtained from the estimated thickness of the thermal oxide film.
  • the time was adjusted so that the oxidation time of sample A was 58 min and that of sample B was 60 min. ..
  • the thickness of the thermal oxide film was 5.10 nm for both samples A and B, and it was possible to make the thickness the same as the target thickness. rice field.
  • Example 6 Except that the thermal oxidation temperature was adjusted using the relationship between the thermal oxidation temperature and the thickness of the thermal oxide film obtained in advance so that the target thickness of the thermal oxide film (5.10 nm) was obtained. , Samples A and B were subjected to thermal oxidation treatment in the same manner as in Example 5 to form a thermal oxide film. Specifically, the thermal oxidation temperature was adjusted to 890 ° C. for Sample A and 900 ° C. for Sample B. The actual thermal oxidation treatment was performed with the heat treatment time and the heat treatment atmosphere set to 60 min, which is the same as the step of estimating the thickness of the thermal oxide film, and 5% oxygen. As a result, the thickness of the thermal oxide film could be set to 5.10 nm for both Samples A and B, and the thickness could be made the same as the target thickness.
  • Example 7 In the same manner as in Experimental Example 4 above, the correlation between the absorbance near 2130 cm -1 measured by ATR-FT-IR and the thickness of the thermal oxide film was determined. First, a plurality of silicon wafers having a diameter of 300 mm and having a normal absorbance of boron dope were prepared, and the surface of the silicon wafers was washed with 0.5% HF for initialization, and then SC1 washing (70 ° C., NH 4 OH concentration: 3) was performed. , 0.3, 0.03, 0.001%) to prepare substrates with different absorbances near 2130 cm-1.
  • a test piece was cut out from each silicon wafer and ATR-FT-IR measurement was performed to measure the absorbance in the vicinity of 2130 cm-1.
  • a predetermined thermal oxidation treatment 900 ° C., oxygen 5%, 60 min
  • the thickness of the thermal oxide film is measured, and the absorbance around 2130 cm -1 and the thickness of the thermal oxide film are measured.
  • the correlation between the two was found.
  • the thickness of the thermal oxide film for which the correlation was obtained was set to around 5.10 nm. As a result, the correlation shown in FIG. 19 was obtained.
  • samples A and B Two types of substrates (samples A and B) that were washed under different conditions were prepared.
  • ATR-FT-IR measurement was performed in advance using the test pieces treated under the same conditions as the samples A and B, and the absorbance in the vicinity of 2130 cm -1 was measured.
  • the ratio of hydrogen atoms in each of Samples A and B was 0.9 in Sample A and 1.0 in Sample B.
  • the thickness of the thermal oxide film is proportional to the root (square root) of the oxidation time so that the target thickness of the thermal oxide film (5.10 nm) is obtained from the estimated thickness of the thermal oxide film.
  • the time was adjusted so that the oxidation time of sample A was 58 min and that of sample B was 60 min. ..
  • the thickness of the thermal oxide film was 5.10 nm for both samples A and B, and it was possible to make the thickness the same as the target thickness. rice field.
  • Example 8 Except that the thermal oxidation temperature was adjusted using the relationship between the thermal oxidation temperature and the thickness of the thermal oxide film obtained in advance so that the target thickness of the thermal oxide film (5.10 nm) was obtained.
  • Samples A and B were subjected to thermal oxidation treatment in the same manner as in Example 7 to form a thermal oxide film. Specifically, the thermal oxidation temperature was adjusted to 890 ° C. for Sample A and 900 ° C. for Sample B.
  • the actual thermal oxidation treatment was performed with the heat treatment time and the heat treatment atmosphere set to 60 min, which is the same as the step of estimating the thickness of the thermal oxide film, and 5% oxygen. As a result, the thickness of the thermal oxide film could be set to 5.10 nm for both Samples A and B, and the thickness could be made the same as the target thickness.
  • thermal oxide film can be formed with the same thickness. This means that the thickness of the thermal oxide film can be made uniform even if the substrates are washed under different cleaning methods and conditions. As a result, it was found that the control of the thermal oxidation process becomes easy.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本発明は、予め、化学酸化膜の構成が異なる複数の半導体基板を準備し、同じ熱酸化処理条件で熱酸化膜を形成し、化学酸化膜の構成と熱酸化膜厚との相関関係を求めておく相関関係取得工程と、半導体基板の洗浄を行う基板洗浄工程と、基板洗浄工程における洗浄により半導体基板に形成された化学酸化膜の構成を求め、相関関係に基づいて相関関係取得工程における熱酸化処理条件で半導体基板を熱酸化処理したと仮定したときの熱酸化膜厚を推定する熱酸化膜の厚さ推定工程と、熱酸化膜厚が所定の厚さになるように相関関係取得工程における熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、熱酸化処理条件決定工程で決定した熱酸化処理条件で半導体基板に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法である。これにより、熱酸化膜を狙い通りの薄い膜厚に、再現性良く形成する。

Description

半導体基板の熱酸化膜形成方法
 本発明は、半導体基板の熱酸化膜形成方法に関する。
 半導体集積回路素子の多層化、薄型化に伴って、素子を構成する各種膜についてより一層の薄膜化が要求されている。例えば特許文献1には、シリコンウェーハの張り合わせにおいて、用いられるシリコンウェーハはOH基を持った表面が必要とされており、通常のSC1洗浄液を用いて洗浄して、表面に自然酸化膜を形成することが記載されている。また、例えば特許文献2には、MOSトランジスタのゲート特性向上の方法として、ゲート酸化膜形成直前にシリコン表面を洗浄し、水素終端したうえで、ゲート絶縁膜を形成する方法が開示されている。このように極薄のシリコン酸化膜を、面内であるいは基板間で均一にかつ再現性良く形成するためには、半導体基板に予め形成される自然酸化膜や化学酸化膜(半導体基板の洗浄工程で使用する洗浄液によって形成された酸化膜)の影響を無視することは不可能となっている。
特開平09-063910号公報 特開2000-216156号公報 特開2003-115516号公報 特開2002-270596号公報
高萩、真空、33(11)、854(1990)
 実際に本発明者らが調査・研究を行ったところ、例えば、半導体基板の洗浄方法が異なった場合、その後の熱酸化膜の厚さに違いがあることが分かった。この熱酸化膜の厚さの違いは、熱酸化前の自然酸化膜の厚さや化学酸化膜の厚さによらないことも分かった。このために、実際に半導体基板に熱酸化を行い、熱酸化膜の厚さを評価してみるまで、実際に形成された熱酸化膜の厚さの違いが分からずに、熱酸化工程の管理が困難になっていた。
 また、GOI(Gate Oxide Integrity)測定のような電気特性評価を行う際に、酸化膜の厚さがばらつくと測定結果に影響するため、酸化膜の厚さを所定の厚さ、例えば5.1nmに揃えるよう求められる場合がある。特にこのように酸化膜の厚さが薄い領域では、酸化膜が目標の厚さよりも薄いと直接トンネル電流が発生し、GOI測定ができなくなることがあるため、酸化膜の厚さの調整は非常に重要である。
 特許文献3では、CVD酸化膜中に含まれるOH基(CVD酸化膜中のOH基の評価として赤外分光を利用する)が加熱によって水分として脱離することから、水分計の較正・管理に利用することが提案されている。特許文献3の場合は、予めCVD酸化膜中に含有されているOH基が水分となって脱離する程度の低温での熱処理が行われており、熱酸化膜の成長との関係は議論されていない。このように、OH基が酸化膜に含まれたり水分のもとになったりすることは知られているが、CVD酸化膜は比較的厚く、自然酸化膜程度の薄い酸化膜に含まれるOH基と、それに続く熱酸化膜の成長について議論されたものではない。
 特許文献4には、X線光電子分光(XPS)法で測定したSi2pスペクトルより、シリコン基板直上のSi1+、Si2+、Si3+の各サブオキサイドの組成強度を求めることができることが記載されている。しかし、シリコンと酸化膜との間の界面ラフネスを求めることを目的としたもので、酸化熱処理を行ったとき熱酸化膜の厚さを制御する本発明に係る技術とは無関係のものである。
 本発明は、上記問題を解決するためになされたものであり、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる半導体基板の熱酸化膜形成方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成を測定し、該測定して得た前記構成と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法を提供する。
 このような半導体基板の熱酸化膜形成方法によれば、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる。その結果、熱酸化工程の管理が容易になる。
 また、本発明は、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれるOH基の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中のOH基の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中のOH基の量を測定し、該測定して得た前記OH基の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法を提供する。
 このような半導体基板の熱酸化膜形成方法によれば、洗浄により形成された化学酸化膜の種類によらず、一定の厚さの熱酸化膜を再現性良く形成することができる。その結果、熱酸化工程の管理が容易になる。
 このとき、前記OH基の量は、ATR測定用プリズムを用いて前記化学酸化膜のATR-FT-IR測定を行い、3300cm-1付近のOH基の吸光度から算出することが好ましい。
 ATR-FT-IRは、一般的な透過FT-IRと比較して表面に存在するOH基に対して感度が高いため、より精度の高いOH基の量の評価を行うことができる。
 また、本発明は、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成元素の化学量論比がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成元素の化学量論比と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成元素の化学量論比を求め、該求めた前記化学酸化膜の構成元素の化学量論比と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法を提供する。
 このような半導体基板の熱酸化膜形成方法によれば、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる。
 このとき、前記化学酸化膜の構成元素の化学量論比は、前記化学酸化膜の構成元素のうち、前記半導体基板の基板原子が酸素原子と結合していない状態と前記基板原子が酸素原子と結合してサブオキサイドとなっている状態の結合エネルギーのピーク強度、及び、前記基板原子が酸素原子と完全に結合している状態の結合エネルギーのピーク強度をXPSを用いてそれぞれ測定し、該測定したピーク強度の割合とすることができる。
 XPS法は半導体基板の極表層の情報を簡便に精度高く評価できる方法であり、これにより、熱酸化膜を狙い通りの薄い厚さに、より再現性良く形成することができる。
 また、本発明は、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれる水素原子の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中の水素原子の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中の水素原子の量を測定し、該測定して得た前記水素原子の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法を提供する。
 このような半導体基板の熱酸化膜形成方法によれば、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる。その結果、熱酸化工程の管理が容易になる。
 このとき、前記半導体基板をシリコンウエーハ、前記熱酸化膜をシリコン酸化膜とすることができる。
 本発明に係る半導体基板の熱酸化膜形成方法は、特にシリコンウエーハに形成されるシリコン酸化膜に対して好適である。
 このとき、前記水素原子の量は、前記化学酸化膜のRBS測定を行い、求めた前記化学酸化膜中の水素原子の割合から算出することができる。
 このような測定の方法によれば、より精度の高い水素原子の量の評価を行うことができる。
 このとき、前記水素原子の量は、ATR測定用プリズムを用いて前記化学酸化膜のATR-FT-IR測定を行い、2130cm-1付近のSiH基の吸光度から算出することができる。
 ATR-FT-IRは、一般的な透過FT-IRと比較して化学酸化膜中に存在する水素原子に対して感度が高いため、より精度の高い水素原子の量の評価を行うことができる。
 このとき、前記所定の厚さを1~10nmとすることができる。
 形成する熱酸化膜の厚さがこのような範囲であれば、より再現性良く一定の厚さの薄い熱酸化膜を形成することができる。
 このとき、前記熱酸化膜の厚さ推定工程において、前記推定される熱酸化膜の厚さが所定の厚さより厚い場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間より短い時間と決定し、前記推定される熱酸化膜の厚さが所定の厚さより薄い場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間より長い時間と決定し、前記推定される熱酸化膜の厚さが所定の厚さと等しい場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間と同じ時間と決定することができる。
 また、前記熱酸化膜の厚さ推定工程において、前記推定される熱酸化膜の厚さが所定の厚さより厚い場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度より低い温度と決定し、前記推定される熱酸化膜の厚さが所定の厚さより薄い場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度より高い温度と決定し、前記推定される熱酸化膜の厚さが所定の厚さと等しい場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度と同じ温度と決定することができる。
 これにより、洗浄による表面状態が異なっていても、より容易に安定して一定の厚さの熱酸化膜を形成することができる。
 以上のように、本発明の半導体基板の熱酸化膜形成方法によれば、異なる化学酸化膜を持った半導体基板であっても、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる。その結果、熱酸化工程の管理が容易になる。
OH基の量(3300cm-1の相対吸光度)と熱酸化膜の厚さの関係を示した図である。 NHOHの濃度とOH基の量(3300cm-1の相対吸光度)の関係を示した図である。 の濃度とOH基の量(3300cm-1の相対吸光度)の関係を示した図である。 NHOHの濃度とAFMにより測定した表面粗さの関係を示した図である。 の濃度とAFMにより測定した表面粗さの関係を示した図である。 NHOHの濃度と熱酸化膜の厚さの関係を示した図である。 の濃度と熱酸化膜の厚さの関係を示した図である。 化学酸化膜の厚さと熱酸化膜の厚さの関係を示した図である。 AFMにより測定した表面粗さと熱酸化膜の厚さの関係を示した図である。 Si0~3+のピーク強度の割合と熱酸化膜の厚さの関係を示した図である。 Si4+のピーク強度の割合と熱酸化膜の厚さの関係を示した図である。 X線光電子分光(XPS)測定の一例を示した図である。 シリコン基板上にシリコン酸化膜を有する試料のXPSスペクトルの一例を示した図である。 NHOHの濃度とSi0~3+のピーク強度の割合の関係を示した図である。 NHOHの濃度とSi4+のピーク強度の割合の関係を示した図である。 の濃度とSi0~3+のピーク強度の割合の関係を示した図である。 の濃度とSi4+のピーク強度の割合の関係を示した図である。 RBS測定により求めた水素原子の量(化学酸化膜中の水素原子の割合)と熱酸化膜の厚さの関係を示した図である。 ATR-FT-IR測定により求めた水素原子の量(2130cm-1の吸光度)と熱酸化膜の厚さの関係を示した図である。 NHOH濃度と水素原子の量(化学酸化膜中の水素原子の割合:RBS測定)の関係を示した図である。 NHOH濃度と水素原子の量(2130cm-1の吸光度:ATR-FT-IR測定)の関係を示した図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、構成が異なる化学酸化膜を持った半導体基板であっても、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができる半導体基板の熱酸化膜形成方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成を測定し、該測定して得た前記構成と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法により、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができ、その結果、熱酸化工程の管理が容易になることを見出し、本発明を完成した。
 また、本発明者らは、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれるOH基の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中のOH基の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中のOH基の量を測定し、該測定して得た前記OH基の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法により、洗浄により形成された化学酸化膜の種類によらず、再現性良く、一定の厚さの熱酸化膜を形成することができ、その結果、熱酸化工程の管理が容易になることを見出し、本発明を完成した。
 また、本発明者らは、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成元素の化学量論比がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成元素の化学量論比と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成元素の化学量論比を求め、該求めた前記化学酸化膜の構成元素の化学量論比と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法により、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができ、その結果、熱酸化工程の管理が容易になることを見出し、本発明を完成した。
 また、本発明者らは、半導体基板に熱酸化膜を形成する方法であって、予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれる水素原子の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中の水素原子の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中の水素原子の量を測定し、該測定して得た前記水素原子の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有する半導体基板の熱酸化膜形成方法により、熱酸化膜を狙い通りの薄い厚さに、再現性良く形成することができ、その結果、熱酸化工程の管理が容易になることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 本発明者らは、半導体基板の洗浄方法が異なると形成される熱酸化膜の厚さに違いが生じる点について、鋭意調査を行ったところ、半導体基板の洗浄により形成された化学酸化膜の構成が、熱酸化処理に大きな影響を及ぼすことを見出した。そして、このような現象を考慮に入れて酸化条件を調整することで、所定の厚さの薄い熱酸化膜を再現性良く形成することが可能となる熱酸化方法を完成した。
 例えば、半導体基板がシリコンウエーハであるとき、化学酸化膜はシリコン酸化膜であり、SiO(0<x≦2)と表すことができる。化学酸化膜の構成に関係する元素は、各種分析の結果、シリコンと酸素、そして水素である。ここで、化学酸化膜中のSiOのxを酸素比率と呼ぶ。化学酸化膜及びシリコン界面の酸素比率(x)によって、形成される熱酸化膜の酸化特性が影響を受け、熱酸化膜の形成速度が変化する。酸素比率が変動するということは、酸素以外の元素が異なった比率で存在するということである。
 水素はSi-Hあるいは、Si-OHの形で存在する。すなわち、これらHが多くなると酸素の存在比率は影響を受け、少なくなる。Hは、他の構成元素である酸素やシリコンと比べて比率は少ないが、Si-Hとしてシリコンを終端したり、シリコンのバックボンドに存在したりすることで、シリコンの結合状態に影響する。またOH基のように官能基として存在し、反応性を決める重要な役割を担う。
 また、主な構成元素であるシリコンと酸素は、SiOとは結合の比率が異なることでサブオキサイドと呼ばれる。サブオキサイドはシリコン酸化膜の前駆体としての役割があり、形成される熱酸化膜の特性を決める重要な構成である。このように、化学酸化膜の酸素比率に着目して、化学酸化膜の構成と熱酸化膜の厚さとの相関関係を取得することで、熱酸化膜の厚さを制御することが可能になる。
 本発明においては、相関関係を取得する上で準備する半導体基板は、化学酸化膜の構成が異なってさえいればよいが、その構成は、OH基の量、構成元素の化学量論比、水素原子の量を含む。
 なお、本明細書では、半導体基板を洗浄することにより形成された酸化膜を、化学酸化膜と定義する。ここで、洗浄の方法、条件は特に限定されない。薬液を使用した洗浄や、純水洗浄等により形成された酸化膜を含む。
 本発明に係る半導体基板の熱酸化膜形成方法を説明する。
 [第一の実施形態]
 本発明の第一の実施形態に係る半導体基板の熱酸化膜形成方法では、半導体基板の熱酸化処理前に、予め洗浄後の半導体基板表面に形成された化学酸化膜の構成を測定し、化学酸化膜の構成と、この半導体基板を熱酸化したときの熱酸化膜の厚さとの相関関係を求めておき、熱酸化膜を形成する対象の半導体基板表面の洗浄後の化学酸化膜の構成によって酸化時間を始めとする熱酸化条件を調整する。これにより、所定の厚さの薄い熱酸化膜を再現性良く形成することが可能になる。
 本発明の第一の実施形態に係る半導体基板の熱酸化膜形成方法を説明する。
 (相関関係取得工程)
 まず、半導体基板を複数枚準備する。この半導体基板として、シリコンウエーハを用いることが好ましい。この場合、形成される熱酸化膜はシリコン酸化膜である。シリコンウエーハは半導体基板として広く使用されているものであり、特に、デバイス作製工程では熱酸化膜が形成されたりするため、熱酸化膜を形成してシリコンウエーハ自体の評価を行うことで、より正確な評価を行うことができる。
 まず、準備した半導体基板の表面に酸化膜がない状態にするために、HF(フッ酸)で洗浄することが好ましい。HFで洗浄して酸化膜を除去した後に、さらに洗浄する。HF洗浄の後に行う洗浄方法は特に限定されないが、例えば、SC1洗浄、O洗浄などの薬液を用いた洗浄を行うことができ、あるいは純水リンスなどの洗浄を行うこともできる。HF洗浄の後に行う洗浄により、準備した複数の半導体基板には化学酸化膜が形成される。このとき、複数の半導体基板の化学酸化膜の構成が、それぞれ異なるものとなるようにする。薬液を用いた方法で洗浄を行う場合、洗浄条件を変更するなどすれば、化学酸化膜の構成が異なる半導体基板とすることができるため好ましい。相関関係を取得するための洗浄処理のため、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施することが好ましい。
 次に、洗浄によって形成された化学酸化膜の構成を測定する。このとき、化学酸化膜の構成の違いを明確にできる測定であれば、特に限定されない。
 次に、化学酸化膜の構成がそれぞれ異なる複数の半導体基板を、同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成する。熱酸化膜の形成条件は特に限定されず、通常の方法で行うことができる。そして、形成した熱酸化膜の厚さを測定する。測定は、例えば、分光エリプソなどで行うことができる。
 このようにして求めた化学酸化膜の構成と、形成した熱酸化膜の厚さとの相関関係を求める。
 なお、化学酸化膜の構成の測定や熱酸化膜の厚さの測定は、熱酸化膜を形成する半導体基板と同じ洗浄処理、熱酸化処理を行ったモニターウェーハなどを用いたり、同一の処理を行った半導体基板の一部を抜き取ったりして行うこともできる。
 (基板洗浄工程)
 次に、実際に熱酸化膜を形成する対象の半導体基板を新たに準備し、洗浄を行う。洗浄方法は限定されず、異物の除去、金属汚染物の除去、保護のための酸化膜の形成等、目的に応じた洗浄を行うことができる。
 (熱酸化膜の厚さ推定工程)
 まず、基板洗浄工程で行った洗浄により、熱酸化膜を形成する対象の半導体基板の表面に形成された化学酸化膜の構成を測定する。熱酸化処理を行う前に、予め試験片等の測定を行い、化学酸化膜の構成を求める。化学酸化膜の構成と、相関関係取得工程で得られた相関関係に基づいて、相関関係取得工程における熱酸化処理条件と同じ条件で、熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する。
 (熱酸化処理条件決定工程)
 半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、相関関係取得工程における熱酸化処理条件を基準として熱酸化処理条件を決定する。例えば、相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、厚く形成されることが推定できた場合には、実際の熱酸化処理条件は、相関関係取得工程における熱酸化処理条件から、形成される熱酸化膜の厚さが薄くなる方向に条件を変更して決定する。
 半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法として、例えば、酸化時間により調整することが可能である。この場合、酸化膜の厚さが酸化時間のルート(平方根)に比例する計算式を用いることができる。
 具体的には、熱酸化膜の厚さ推定工程において、推定される熱酸化膜の厚さが所定の厚さより厚い場合は、熱酸化処理条件決定工程において、熱酸化処理時間を相関関係取得工程における熱酸化処理条件の熱酸化処理時間より短い時間と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さより薄い場合は、熱酸化処理条件決定工程において、熱酸化処理時間を相関関係取得工程における熱酸化処理条件の熱酸化処理時間より長い時間と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さと等しい場合は、熱酸化処理条件決定工程において、熱酸化処理時間を相関関係取得工程における熱酸化処理条件の熱酸化処理時間と同じ時間と決定することができる。
 或いは、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法として、例えば、酸化温度により調整することが可能である。この場合、予め酸化温度と酸化膜の厚さの関係を取得しておき、その関係を用いることができる。
 具体的には、熱酸化膜の厚さ推定工程において、推定される熱酸化膜の厚さが所定の厚さより厚い場合は、熱酸化処理条件決定工程において、熱酸化処理温度を相関関係取得工程における熱酸化処理条件の熱酸化処理温度より低い温度と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さより薄い場合は、熱酸化処理条件決定工程において、熱酸化処理温度を相関関係取得工程における熱酸化処理条件の熱酸化処理温度より高い温度と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さと等しい場合は、熱酸化処理条件決定工程において、熱酸化処理温度を相関関係取得工程における熱酸化処理条件の熱酸化処理温度と同じ温度と決定することができる。
 或いは、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法として、半導体基板の酸化に寄与する成分、例えば、熱酸化処理雰囲気の酸素含有濃度を調整することで熱酸化膜の厚さを所定の厚さに制御することも可能である。
 具体的には、熱酸化膜の厚さ推定工程において、推定される熱酸化膜の厚さが所定の厚さより厚い場合は、熱酸化処理条件決定工程において、熱酸化処理雰囲気の酸素含有濃度を相関関係取得工程における熱酸化処理条件の熱酸化処理雰囲気の酸素含有濃度より低い濃度と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さより薄い場合は、熱酸化処理条件決定工程において、熱酸化処理雰囲気の酸素含有濃度を相関関係取得工程における熱酸化処理条件の熱酸化処理雰囲気の酸素含有濃度より高い濃度と決定することができる。
 また、推定される熱酸化膜の厚さが所定の厚さと等しい場合は、熱酸化処理条件決定工程において、熱酸化処理雰囲気の酸素含有濃度を相関関係取得工程における熱酸化処理条件の熱酸化処理雰囲気の酸素含有濃度と同じ濃度と決定することができる。
 熱酸化膜を形成する方法は上記の方法に限定されず、自由に決定することができるが、上記のような方法であれば熱酸化膜の厚さを調整するのが容易であるため好ましい。
 (熱酸化膜形成工程)
 熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、半導体基板表面に熱酸化膜を形成する。
 [第二の実施形態]
 本発明の第二の実施形態に係る半導体基板の熱酸化膜形成方法では、化学酸化膜中に含まれるOH基の量の違いに着目し、半導体基板の熱酸化処理前に、予め洗浄後の半導体基板表面に形成された化学酸化膜のOH基の量と、この半導体基板を熱酸化したときの熱酸化膜の厚さに相関関係を求めておき、OH基の量によって酸化時間を始めとする熱酸化処理条件を調整する。これにより、所定の厚さの酸化膜を再現性よく形成することが可能になる。
 本発明者は、半導体基板の洗浄方法が異なると形成される熱酸化膜の厚さに違いが生じる点について、鋭意調査を行ったところ、半導体基板の洗浄により形成された化学酸化膜中のOH基の量が、熱酸化処理に大きな影響を及ぼすことを見出した。
 図1は、シリコンウエーハ表面の化学酸化膜中のOH基の量(3300cm-1の相対吸光度)とシリコン熱酸化膜の厚さの関係を示した図である。3300cm-1の相対吸光度が大きくなるにしたがって、熱酸化膜の厚さが厚くなっていることが分かる。この現象は、ガスを使用した熱酸化の場合にWet酸化の酸化速度がDry酸化よりも大きくなることと同様であり、シリコンウエーハ表面に形成された化学酸化膜中に含まれるOH基の量の違いによって熱酸化処理後の熱酸化膜の厚さが異なると考えられる。
 なお、化学酸化膜中に含まれるOH基の量は、例えば、化学酸化膜の赤外線吸収特性を調べることで求めることができる。赤外線吸収特性の測定として、例えば、FT-IR測定を行い、3300cm-1付近の相対吸光度からOH基の量を算出することができる。この場合、3300cm-1付近の相対吸光度の値を、OH基の量を表す指標とすることができる。以下の説明では、「3300cm-1付近の相対吸光度」を「OH基の量」と表現することもある。
 本発明の第二の実施形態に係る半導体基板の熱酸化膜形成方法を説明する。
 (相関関係取得工程)
 まず、第一の実施形態と同様に半導体基板を複数枚準備する。
 次に、準備した半導体基板の表面に酸化膜がない状態にするために、HF(フッ酸)で洗浄することが好ましい。HFで洗浄して酸化膜を除去した後に、さらに洗浄する。HF洗浄の後に行う洗浄方法は特に限定されないが、例えば、SC1洗浄、O洗浄などの薬液を用いた洗浄を行うことができ、あるいは純水リンスなどの洗浄を行うこともできる。HF洗浄の後に行う洗浄により、準備した複数の半導体基板には化学酸化膜が形成される。このとき、複数の半導体基板の化学酸化膜中に含まれるOH基の量は、それぞれ異なるものとなるようにする。薬液を用いた方法で洗浄を行う場合、OH基の濃度が異なる薬液を用いることで、簡便にOH基の量が異なる半導体基板とすることができるため好ましい。さらに、SC1洗浄であれば、NHOH濃度が高くアルカリ性が強いほど、3300cm-1の吸光度も大きくなり(すなわちOH基が多く含まれ)、NHOH濃度を変化させることでより簡便にOH基の量が異なる半導体基板とすることができるため好ましい。相関関係を取得するための洗浄処理のため、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施することが好ましい。
 次に、洗浄によって形成された化学酸化膜中に含まれるOH基の量を測定する。このとき、ATR測定用プリズムを用いて化学酸化膜のATR―FT-IR測定を行うことが好ましい。ATR―FT-IR測定は一般的な透過FT-IRに比べて、半導体基板表面に存在するOH基に対して十分な感度で評価することができる。
 次に、化学酸化膜中に含まれるOH基の量がそれぞれ異なる複数の半導体基板を、同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成する。熱酸化膜の形成条件は特に限定されず、通常の方法で行うことができる。そして、形成した熱酸化膜の厚さを測定する。測定は、例えば、分光エリプソなどで行うことができる。
 上記で求めた化学酸化膜中のOH基の量と、形成した熱酸化膜の厚さとの相関関係を求める。熱酸化膜の厚さと化学酸化膜中のOH基の量(3300cm-1付近の相対吸光度)の間には図1のような相関が見られ、化学酸化膜中のOH基の量が多いほど熱酸化膜の厚さが厚くなる傾向が見られる。この結果を利用して、半導体基板の表面に形成された化学酸化膜中のそれぞれのOH基の量に対応した、熱酸化時間等の熱酸化処理条件を調整することで、洗浄による表面状態が異なっても、一定の厚さの熱酸化膜を形成することが可能になる。
 なお、化学酸化膜中のOH基の量(3300cm-1付近の相対吸光度)の測定や熱酸化膜の厚さの測定は、熱酸化膜を形成する半導体基板と同じ洗浄処理、熱酸化処理を行ったモニターウェーハなどを用いたり、同一の処理を行った半導体基板の一部を抜き取ったりして行うこともできる。
 (基板洗浄工程)
 次に、第一の実施形態と同様に、実際に熱酸化膜を形成する対象の半導体基板を新たに準備し、洗浄を行う。洗浄方法は限定されず、異物の除去、金属汚染物の除去、保護のための酸化膜の形成等、目的に応じた洗浄を行うことができる。
 (熱酸化膜の厚さ推定工程)
 まず、基板洗浄工程で行った洗浄により、熱酸化膜を形成する対象の半導体基板の表面に形成された化学酸化膜中のOH基の量(3300cm-1付近の相対吸光度)を測定する。熱酸化処理を行う前に、予め試験片等の3300cm-1付近の相対吸光度をATR-FT-IR測定し、化学酸化膜中のOH基の量を、3300cm-1付近の相対吸光度から算出し、求める。測定して得たOH基の量と、相関関係取得工程で得られた相関関係に基づいて、相関関係取得工程における熱酸化処理条件と同じ条件で、熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する。
 具体例で説明すると、図1のような相関関係が取得できた場合に、実際に熱酸化膜を形成する対象の半導体基板の洗浄後の化学酸化膜中のOH濃度が、3300cm-1の相対吸光度の数値として「0.18」と求められた場合、この半導体基板を相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、5.15nm程度の熱酸化膜が形成されると推定できる。
 (熱酸化処理条件決定工程)
 第一の実施形態と同様に、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、相関関係取得工程における熱酸化処理条件を基準として熱酸化処理条件を決定する。例えば、上記の具体例では、形成すべき熱酸化膜の所定の厚さが5.1nmであった場合、相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、厚めに形成されることが推定できているため、実際の熱酸化処理条件は、相関関係取得工程における熱酸化処理条件から、形成される熱酸化膜の厚さが減少する方向に条件を変更して決定する。
 なお、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法は、第一の実施形態と同様である。
 (熱酸化膜形成工程)
 最後に、第一の実施形態と同様に、熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、半導体基板表面に熱酸化膜を形成する。
 [第三の実施形態]
 また、本発明の第三の実施形態に係る半導体基板の熱酸化膜形成方法では、化学酸化膜の構成元素の化学量論比の違いに着目し、半導体基板の熱酸化処理前に、予め洗浄後の半導体基板表面に形成された化学酸化膜の構成元素の化学量論比を求め、化学酸化膜の構成元素の化学量論比と、この半導体基板を熱酸化したときの熱酸化膜の厚さとの相関関係を求めておき、熱酸化膜を形成する対象の半導体基板表面の洗浄後の化学酸化膜の構成元素の化学量論比によって酸化時間を始めとする熱酸化条件を調整する。これにより、所定の厚さの酸化膜を再現性良く形成することが可能になる。
 本発明者らは、半導体基板の洗浄方法が異なると形成される熱酸化膜の厚さに違いが生じる点について、鋭意調査を行ったところ、半導体基板の洗浄により形成された化学酸化膜の構成元素の化学量論比が、熱酸化処理に大きな影響を及ぼすことを見出した。
 本発明の第三の実施形態に係る半導体基板の熱酸化膜形成方法を説明する。
 (相関関係取得工程)
 まず、第一の実施形態と同様に半導体基板を複数枚準備する。
 次に、準備した半導体基板の表面に酸化膜がない状態にするために、HF(フッ酸)で洗浄することが好ましい。HFで洗浄して酸化膜を除去した後に、さらに洗浄する。HF洗浄の後に行う洗浄方法は特に限定されないが、例えば、SC1洗浄、O洗浄などの薬液を用いた洗浄を行うことができ、あるいは純水リンスなどの洗浄を行うこともできる。HF洗浄の後に行う洗浄により、準備した複数の半導体基板には化学酸化膜が形成される。このとき、複数の半導体基板の化学酸化膜の構成元素の化学量論比は、それぞれ異なるものとなるようにする。薬液を用いた方法で洗浄を行う場合、濃度が異なる様々な種類の薬液を用いることで、簡便に化学酸化膜の構成元素の化学量論比が異なる半導体基板とすることができるため好ましい。相関関係を取得するための洗浄処理のため、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施することが好ましい。また、洗浄方法によって薬液の濃度と化学量論比の相関が得られる範囲はそれぞれ異なるため、相関関係を取得する上で、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施して、複数の洗浄条件と化学量論比の相関関係を得ておくことが好ましい。
 次に、洗浄によって形成された化学酸化膜の構成元素の化学量論比を求める。
 なお、化学酸化膜の構成元素の化学量論比の測定、評価方法は特に限定されず、化学酸化膜の構成元素の化学量論比が測定できる方法であればどのような方法であってもよい。例えば、XPS法は半導体基板の極表層の情報を簡便に精度高く評価できる方法であり、本発明に係る化学量論比の評価に好適に用いることができる。化学酸化膜の構成元素のうち、半導体基板の基板原子が酸素原子と結合していない状態と基板原子が酸素原子と結合してサブオキサイドとなっている状態の結合エネルギーのピーク強度、及び、基板原子が酸素原子と完全に結合している状態の結合エネルギーのピーク強度を、XPSを用いてそれぞれ測定し、測定したピーク強度の割合とすることができる。
 半導体基板がシリコン基板、形成される酸化膜がシリコン酸化膜であるとき、化学酸化膜の構成元素はSiとOである。このとき化学量論比は、化学酸化膜中のSi原子とO原子の原子結合状態の割合、すなわち、酸素原子と結合していない状態のSi-Si結合のものと酸素原子と結合している状態のSi-O結合(シリコン酸化物)のうちいわゆるサブオキサイドのもの、及び、Si-O結合のうち酸素原子と完全に結合してSiOとなっているものの割合とすることができる。それぞれの結合の存在する割合は、XPSにより結合エネルギーのピーク強度を測定することで求めることができる。
 XPS法は、図12に一例を示すように、試料表面(シリコン4上に形成されたシリコン酸化膜3の表面)にX線源1よりX線を照射して試料表面から放出される光電子(最外殻電子から)を検出器2で検出し、運動エネルギーを計測して、試料表面を構成する元素の組成や化学結合状態を分析する手法である。このとき照射するX線源は特に限定されず、目的とする化学酸化膜の構成元素の化学量論比が測定できるものであれば、どのようなエネルギーのものでも良い。さらに、放出された光電子の運動エネルギーは、原子の価電荷(価数)や原子間の距離などの、原子周囲の電子状態から影響を受ける。エネルギーの変化(化学シフト)を観察することで化学結合状態を比較的容易に識別できる。光電子の平均自由工程はシリコンで2.1nm、シリコン酸化膜で3.3nmと言われており、特に、シリコン基板の最表面の評価に適した手法の一つであると考えられる。
 図13に、シリコン基板に薄いシリコン酸化膜が存在するサンプルのXPSスペクトルの一例を示す。シリコンの最外殻電子が存在するsp3軌道のエネルギー範囲について図示している。反応に寄与するのは最外殻電子であり、反応に寄与しない内殻電子は割愛した。横軸が結合エネルギーで縦軸が光電子のカウント数である。結合エネルギーはSiとOの結合状態によって変化するため、結合状態や結合原子を評価することが可能になる。また、縦軸は光電子のカウント数であり、それぞれの結合状態ごとの数によって変化する。
 化学酸化膜がシリコン酸化膜であるとき、99~100eVのSi-Si結合に起因する結合状態(Si)と、101~105eVのシリコン原子が酸素原子と結合した状態に相当する結合状態(Si1+~4+)に分けることができる。ここで、SiのSi-Si結合のピークが2つに分離しているのはスピン軌道相互作用によるものである。また、シリコン原子に酸素原子が1個結合するとSi1+であり、シリコン原子に酸素原子が4個結合しているSiOの状態がSi4+である。ここで、シリコン原子と酸素原子の結合状態が4種存在するのは、酸化膜が薄く、必ずしも化学量論的な組成になっていないためである。
 Si-O結合でもスピン軌道相互作用は存在するが、通常のXPSではエネルギー分解能の問題で観察されない。また、サブオキサイドに相当するSi1+からSi3+の結合エネルギーは強度が低く明確には見られていないが、過去の知見から存在エネルギーが分かっており、各ピークの強度についてスペクトル分離を行い、強度を求めている。
 シリコン基板上のシリコン酸化膜の構成元素の化学量論比、すなわちSiとOの結合エネルギーのピーク強度の割合を求めるにあたって、SiO組成となっているSi4+のピーク強度と、酸素によって酸化することができるSiからSi3+それぞれのピーク強度を積算した。明確なピークがないSi1+~3+についてはスペクトル分離を行った。すなわち、酸化される可能性のあるSi成分であるものをすべて合算してSi0~3+とし、酸化が進行し完全な化学量論となっているSi4+の成分と分離し、図13のように求めたピーク強度の面積を求めてピーク強度の割合とした。
 以上のようにして得られたSi0~3+のピーク強度とSi4+のピーク強度の割合を全て合算し、Si0~3+とSi4+それぞれの割合(百分率)をピーク強度の割合として求めることができる。このピーク強度の割合と熱酸化膜の厚さの相関関係を取得する。
 次に、化学酸化膜の構成元素の化学量論比がそれぞれ異なる複数の半導体基板を、同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成する。熱酸化膜の形成条件は特に限定されず、通常の方法で行うことができる。そして、形成した熱酸化膜の厚さを測定する。測定は、例えば、分光エリプソ法などで行うことができる。
 上記で求めた化学酸化膜の構成元素の化学量論比と、形成した熱酸化膜の厚さとの相関関係を求める。図10はSi0~3+のピーク強度の割合と熱酸化膜の厚さの関係を示した図であり、図11はSi4+のピーク強度の割合と熱酸化膜の厚さの関係を示した図である。熱酸化膜の厚さと化学酸化膜の構成元素の化学量論比の間には図10や図11のような相関が見られ、Si0~3+のピーク強度の割合が大きくなるにしたがって、熱酸化膜の厚さが厚くなっていることが分かる。また、Si4+のピーク強度の割合が小さくなるにしたがって、熱酸化膜の厚さが厚くなっていることが分かる。この結果を利用して、半導体基板の表面に形成されたSiとOの結合のピーク強度の割合、すなわち化学酸化膜の構成元素の化学量論比に対応した、熱酸化時間等の熱酸化処理条件を調整することで、洗浄による表面状態が異なっても、一定の厚さの熱酸化膜を形成することが可能になる。
 なお、化学酸化膜の構成元素の化学量論比の分析や熱酸化膜の厚さの測定は、熱酸化膜を形成する半導体基板と同じ洗浄処理、熱酸化処理を行ったモニターウェーハなどを用いたり、同一の処理を行った半導体基板の一部を抜き取ったりして行うこともできる。
 (基板洗浄工程)
 次に、第一の実施形態と同様に、実際に熱酸化膜を形成する対象の半導体基板を新たに準備し、洗浄を行う。洗浄方法は限定されず、異物の除去、金属汚染物の除去、保護のための酸化膜の形成等、目的に応じた洗浄を行うことができる。
 (熱酸化膜の厚さ推定工程)
 まず、基板洗浄工程で行った洗浄により熱酸化膜を形成する対象の半導体基板の表面に形成された、化学酸化膜の構成元素の化学量論比を分析する。熱酸化処理を行う前に、相関関係取得工程での測定と同様にして、予め試験片等の基板原子と酸素原子との結合の種類ごとに結合エネルギーを測定し、化学酸化膜の構成元素の化学量論比を算出し、求めることができる。求めた化学酸化膜の構成元素の化学量論比と、相関関係取得工程で得られた相関関係に基づいて、相関関係取得工程における熱酸化処理条件と同じ条件で、熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する。
 具体例で説明すると、図10のような相関関係が取得できた場合に、実際に熱酸化膜を形成する対象の半導体基板の洗浄後のSi0~3+の結合のピーク強度の割合、すなわち化学酸化膜の構成元素の化学量論比が、「81.5%」と求められた場合、この半導体基板を相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、5.05nm程度の熱酸化膜が形成されると推定できる。
 (熱酸化処理条件決定工程)
 第一の実施形態と同様に、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、相関関係取得工程における熱酸化処理条件を基準として熱酸化処理条件を決定する。例えば、上記の具体例では、形成すべき熱酸化膜の所定の厚さが5.10nmであった場合、相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、薄く形成されることが推定できているため、実際の熱酸化処理条件は、相関関係取得工程における熱酸化処理条件から、形成される熱酸化膜の厚さが厚くなる方向に条件を変更して決定する。
 なお、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法は、第一の実施形態と同様である。
 (熱酸化膜形成工程)
 最後に、第一の実施形態と同様に、熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、半導体基板表面に熱酸化膜を形成する。
 [第四の実施形態]
 また、本発明の第四の実施形態に係る半導体基板の熱酸化膜形成方法では、化学酸化膜中に含まれる水素原子の量に着目し、半導体基板の熱酸化処理前に、予め洗浄後の半導体基板表面に形成された化学酸化膜中の水素原子の量を測定し、水素原子の量と、この半導体基板を熱酸化したときの熱酸化膜の厚さとの相関関係を求めておき、熱酸化膜を形成する対象の半導体基板表面の洗浄後の化学酸化膜中の水素原子の量によって酸化時間を始めとする熱酸化条件を調整する。これにより、所定の厚さの薄い熱酸化膜を再現性良く形成することが可能になる。
 本発明者らは、半導体基板の洗浄方法が異なると形成される熱酸化膜の厚さに違いが生じる点について、鋭意調査を行ったところ、半導体基板の洗浄により形成された化学酸化膜中の水素原子の量が、熱酸化処理に大きな影響を及ぼすことを見出した。そして、このような現象を考慮に入れて酸化条件を調整することで、所定の厚さの薄い熱酸化膜を再現性良く形成することが可能となる熱酸化方法を完成した。
 本発明の第四の実施形態に係る半導体基板の熱酸化膜形成方法を説明する。
 (相関関係取得工程)
 まず、第一の実施形態と同様に半導体基板を複数枚準備する。
 次に、準備した半導体基板の表面に酸化膜がない状態にするために、HF(フッ酸)で洗浄することが好ましい。HFで洗浄して酸化膜を除去した後に、さらに洗浄する。HF洗浄の後に行う洗浄方法は特に限定されないが、例えば、SC1洗浄、O洗浄などの薬液を用いた洗浄を行うことができ、あるいは純水リンスなどの洗浄を行うこともできる。HF洗浄の後に行う洗浄により、準備した複数の半導体基板には化学酸化膜が形成される。このとき、複数の半導体基板の化学酸化膜中の水素原子の量は、それぞれ異なるものとなるようにする。薬液を用いた方法で洗浄を行う場合、濃度が異なる様々な種類の薬液を用いることで、簡便に化学酸化膜中の水素原子の量が異なる半導体基板とすることができるため好ましい。さらに、SC1洗浄であれば、NHOH濃度が高くアルカリ性が強いほど、水素原子の割合あるいは2130cm-1の吸光度は小さく(すなわち水素原子が含まれる量は少なく)なり、NHOH濃度を変化させることでより簡便に水素原子の量が異なる半導体基板とすることができるため好ましい。相関関係を取得するための洗浄処理のため、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施することが好ましい。また、洗浄方法によって薬液の濃度と水素原子の量の相関が得られる範囲はそれぞれ異なるため、相関関係を取得する上で、できるだけ多くの異なる洗浄の種類及び/又は洗浄条件で実施して、複数の洗浄条件と水素原子の量の相関関係を得ておくことが好ましい。
 次に、洗浄によって形成された化学酸化膜中の水素原子の量を求める。
 なお、化学酸化膜中の水素原子の量の求め方、評価方法は特に限定されず、化学酸化膜中の水素原子の量を求めることができる方法であればどのような方法であってもよい。例えば、化学酸化膜の赤外線吸収特性を調べることで求めることができる。赤外線吸収特性の測定として、例えば、ATR-FT-IR測定を行い、2130cm-1付近の吸光度から水素原子の量を算出することができる。この場合、2130cm-1付近の吸光度は、SiHのSi-Hの伸縮振動に該当する相対吸光度の値であり、水素原子の量を表す指標とすることができる。また、別の水素原子の量の求め方として、例えば、ラザフォード後方散乱分析(RBS)を行って化学酸化膜中の水素原子の割合を求め、算出することもできる。この場合、水素原子の割合を水素原子の量を表す指標とすることができる。以下では、「2130cm-1の吸光度」や「水素原子の割合」を、「水素原子の量」と言うことがある。
 次に、化学酸化膜中の水素原子の量がそれぞれ異なる複数の半導体基板を、同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成する。熱酸化膜の形成条件は特に限定されず、通常の方法で行うことができる。そして、形成した熱酸化膜の厚さを測定する。測定は、例えば、分光エリプソ法などで行うことができる。
 上記で求めた化学酸化膜中の水素原子の量と、形成した熱酸化膜の厚さとの相関関係を求める。図18は、RBS測定により求めた水素原子の量(化学酸化膜中の水素原子の割合)と熱酸化膜の厚さの関係を示した図であり、図19は、ATR-FT-IR測定により求めた水素原子の量(2130cm-1の吸光度)と熱酸化膜の厚さの関係を示した図である。熱酸化膜の厚さと化学酸化膜中の水素原子の量の間には図18や図19のような相関が見られ、水素原子の量が多いほど熱酸化膜の厚さが薄くなる傾向が見られた。このような傾向が見られた要因として、例えば非特許文献1に示されているように、水素で終端されたシリコンは表面が安定化して不活性化するということが知られており、このことから洗浄により表面に形成された化学酸化膜中に含まれる水素原子の量の違いによって酸化速度が異なり、同じ条件で熱酸化しても熱酸化後の膜厚が異なると考えられる。この図18や図19の結果を利用して、半導体基板の表面に形成された化学酸化膜中の水素原子の量に対応した、熱酸化時間等の熱酸化処理条件を調整することで、洗浄による表面状態が異なっても、一定の厚さの薄い熱酸化膜を形成することが可能になる。
 なお、化学酸化膜中の水素原子の量の分析や熱酸化膜の厚さの測定は、熱酸化膜を形成する半導体基板と同じ洗浄処理、熱酸化処理を行ったモニターウエーハなどを用いたり、同一の処理を行った半導体基板の一部を抜き取ったりして行うこともできる。
 (基板洗浄工程)
 次に、第一の実施形態と同様に、実際に熱酸化膜を形成する対象の半導体基板を新たに準備し、洗浄を行う。洗浄方法は限定されず、異物の除去、金属汚染物の除去、保護のための酸化膜の形成等、目的に応じた洗浄を行うことができる。
 (熱酸化膜の厚さ推定工程)
 まず、基板洗浄工程で行った洗浄により熱酸化膜を形成する対象の半導体基板の表面に形成された、化学酸化膜中の水素原子の量を分析する。熱酸化処理を行う前に、相関関係取得工程での測定と同様にして、予め試験片等の化学酸化膜中に含まれる水素原子に相当する2130cm-1の吸光度あるいは水素原子の割合を測定し、化学酸化膜中の水素原子の量を算出し、求めることができる。求めた化学酸化膜中の水素原子の量と、相関関係取得工程で得られた相関関係に基づいて、相関関係取得工程における熱酸化処理条件と同じ条件で、熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する。
 具体例で説明すると、図18のような相関関係が取得できた場合に、実際に熱酸化膜を形成する対象の半導体基板の洗浄後の化学酸化膜中の水素原子の割合が、「10%」と求められた場合、この半導体基板を相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、5.15nm程度の熱酸化膜が形成されると推定できる。
 (熱酸化処理条件決定工程)
 第一の実施形態と同様に、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、相関関係取得工程における熱酸化処理条件を基準として熱酸化処理条件を決定する。例えば、上記の具体例では、形成すべき熱酸化膜の所定の厚さが5.10nmであった場合、相関関係取得工程における熱酸化処理条件と同じ条件で処理すると、厚く形成されることが推定できているため、実際の熱酸化処理条件は、相関関係取得工程における熱酸化処理条件から、形成される熱酸化膜の厚さが薄くなる方向に条件を変更して決定する。
 なお、半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように調整する方法は、第一の実施形態と同様である。
 (熱酸化膜形成工程)
 最後に、第一の実施形態と同様に、熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、半導体基板表面に熱酸化膜を形成する。
 以上のような本発明に係る第一~第四の実施形態の各工程を経て半導体基板に熱酸化膜を形成することで、異なる化学酸化膜を有する半導体基板であっても、再現性良く所定の厚さの薄い熱酸化膜を形成することができる。また、どのような種類の洗浄を行ったかにかかわらず、再現性良く所定の厚さの薄い熱酸化膜を形成することができる。
 なお、本発明においては、半導体基板表面に形成される熱酸化膜の厚さが1~10nmの範囲と薄い場合に、より顕著な効果を奏するため、このような範囲の熱酸化膜を形成するのに好適である。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 (実験例1)
 直径300mmボロンドープの通常抵抗率のシリコンウエーハを準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後に、70℃でSC1洗浄を行った。このときに、NHOH濃度を3、0.3、0.03、0.001%と変化させた。また、別の洗浄としてO洗浄(24℃)を、O濃度を3、20、40ppmと振って行った。
 この後、予めシリコンウエーハから試験片を切り出してATR-FT-IR測定を行い、3300cm-1の相対吸光度を測定し、NHOH濃度、O濃度と、化学酸化膜中のOH基の量(3300cm-1付近の相対吸光度)の比較を行った。その結果を、図2、図3に示す。図2は、NHOH濃度とOH基の量(3300cm-1付近の相対吸光度)の関係を示した図である。図3は、Oの濃度とOH基の量(3300cm-1付近の相対吸光度)の関係を示した図である。図2に示すように、NHOH濃度が高くなるに従い、OH基の量(3300cm-1付近の相対吸光度)も大きくなり、OH基が多く含まれていることがわかる。一方、図3に示すように、Oの場合は、O濃度のOH基の量(3300cm-1付近の相対吸光度)に対する依存性は見られなかった。
 OH基の量(3300cm-1付近の相対吸光度)が洗浄条件により異なるのは、SC1洗浄の場合、NHOH濃度が高くアルカリ性が強いほどOH基が多く含まれるが、O洗浄の場合、薬液がほぼ中性でありOH基の量が少ないためと考えられる。
 さらに、洗浄後のシリコンウエーハの表面粗さ(化学酸化膜の表面粗さ)を、AFM(1μm角)で面内9点の測定を行った。その結果、面内ではほとんどばらつきがなく、同じような粗さであった。なお、図4に示すように、NHOH濃度が高くなると表面粗さ(Ra)が大きくなっており、NHOH濃度と粗さに相関が見られた。これは、NHOHはアルカリ性であるためにシリコンのエッチングにおいて異方性が存在することが知られており、NHOH濃度が大きくなることでシリコンのエッチング量が多くなり、面方位依存性が強く出たために面粗さが大きくなったためと考えられる。一方、図5に示すように、O洗浄の場合はSC1洗浄の場合ほどの顕著な相関はみられなかった。
 このようなウエーハを、熱酸化膜の厚さが5.1nmとなるよう狙って熱酸化(900℃、酸素5%、60min)した後に、熱酸化膜の厚さを分光エリプソにて測定した。その結果を、図6、7に示す。図6は、NHOHの濃度と熱酸化膜の厚さの関係を示した図である。図7は、Oの濃度と熱酸化膜の厚さの関係を示した図である。
 上述のようにして行った実験の結果をもとに、得られた化学酸化膜の特性値と熱酸化膜の厚さの関係を調査したところ、図8、9に示すように、化学酸化膜の厚さや表面粗さと、熱酸化膜の厚さには相関が見られなかった。一方、図1に示すように、熱酸化膜の厚さと3300cm-1付近の相対吸光度には相関が見られ、OH基の量が多いほど熱酸化膜の厚さが厚くなる傾向があることがわかった。図1に示す熱酸化膜の厚さとOH基の量(3300cm-1付近の相対吸光度)の相関関係を利用し、実際に熱酸化膜を形成するときの条件を決定すると、狙った熱酸化膜の厚さに近い熱酸化膜を形成することができることがわかった。
 (実施例1)
 本実施例1では、GOI測定のような電気特性評価を行うことを前提として、目標とする熱酸化膜の膜厚を5.10nmとし、洗浄条件の異なる基板の熱酸化膜の膜厚を、この値(5.10nm)に揃えることを目標とした。上記電気特性評価では、酸化膜厚がばらつくと測定結果に影響することが知られており、特に1~10nmのような薄い領域では、酸化膜が薄いと直接トンネル電流が発生し、GOI測定ができなくなることがあるので、膜厚の調整は非常に重要である。尚、実施例2~8においてもGOI測定のような電気特性評価を行うことを前提として、洗浄条件の異なる基板の熱酸化膜の膜厚を、5.10nmに揃えることを目標とした。
 上記実験例1と同様にして、OH基の量(3300cm-1付近の相対吸光度)と熱酸化膜の厚さの相関関係を求めた。まず、直径300mmボロンドープの通常抵抗率のシリコンウエーハを複数枚準備し、表面を初期化のために0.5%HFで洗浄後に、それぞれ、SC1洗浄(70℃、NHOH濃度:3、0.3、0.03、0.001%)とO洗浄(24℃、O濃度:3、20、40ppm)を行って、OH基の量が異なるウエーハを作製した。次に、それぞれのシリコンウエーハから試験片を切り出してATR-FT-IR測定を行い、3300cm-1の相対吸光度を測定しておいた。その後、所定の熱酸化処理(900℃、酸素5%、60min)を各洗浄条件のウエーハごとに行い、熱酸化膜の厚さを測定して、OH基の量(3300cm-1付近の相対吸光度)と熱酸化膜の厚さの相関関係を求めた。このとき、相関関係を取得する熱酸化膜の厚さは、5.1nm付近とした。これにより、図1に示す相関関係が得られた。
 その後、異なる条件で洗浄を行った2種類のウエーハ(サンプルA、Bとする)を準備した。熱酸化処理を行う前に、予め、サンプルA、Bと同じ条件で処理した試験片を用いてATR-FT-IR測定を行い、3300cm-1の相対吸光度を測定した。サンプルA、BのそれぞれのOH基の量(3300cm-1付近の相対吸光度)は、0.12と0.18であった。この結果と、先に求めたOH基の量(3300cm-1付近の相対吸光度)と酸化膜の厚さの関係から、相関関係を取得したときと同じ条件(900℃、酸素5%、60min)で熱酸化処理する場合に形成される熱酸化膜の厚さは、それぞれ、サンプルAが5.05nm、サンプルBが5.15nmと推定した。
 推定した熱酸化膜の厚さから、目標とする熱酸化膜の厚さ(5.1nm)になるように、酸化時間を調整し、サンプルAでは酸化時間を63min、サンプルBでは58minとして実際の熱酸化処理を行った。熱酸化処理後に分光エリプソで熱酸化膜の厚さを測定した結果、熱酸化膜の厚さはサンプルA、Bともに、5.1nmとなり、目標とする厚さと同じ厚さに揃えることができた。
 (実施例2)
 目標とする熱酸化膜の厚さ(5.1nm)になるように、予め取得しておいた熱酸化温度と熱酸化膜の厚さの関係を用いて、熱酸化温度を調整したこと以外は、実施例1と同様にして、サンプルA、Bの熱酸化処理を行い、熱酸化膜を形成した。具体的には、熱酸化温度を、サンプルAでは910℃、サンプルBでは890℃に調整した。その結果、サンプルA、Bともに、熱酸化膜の厚さを5.1nmとすることができ、目標とする厚さと同じ厚さに揃えることができた。
 実施例1、2に示すように、洗浄後の化学酸化膜中のOH基の量に応じて、熱酸化条件を設定することで、シリコンウェーハに形成された化学酸化膜の種類によらず、同じ厚さの熱酸化膜を形成できることがわかる。このことは、異なる洗浄方法、洗浄条件で洗浄を行ったウェーハであっても、熱酸化膜の厚さを同じ厚さに揃えることができることを意味している。その結果、熱酸化工程の管理が容易になることがわかった。
 (実験例2)
 直径300mmボロンドープの通常抵抗率のシリコン基板を準備し、シリコン基板表面を初期化のために0.5%HFで洗浄後に、70℃でSC1洗浄を行った。このときに、NHOH濃度を3、0.3、0.03、0.01%と変化させた。また、別の洗浄としてO洗浄(24℃)を、O濃度を3、20、40ppmと振って行った。
 この後、予めシリコン基板から試験片を切り出してXPS測定を行い、Si0~3+と、Si4+のピーク強度を測定し、NHOH濃度と、Si0~3+と、Si4+のピーク強度の割合の比較を行った。その結果を、図14、図15に示す。図14は、NHOHの濃度とSi0~3+のピーク強度の割合の関係を示した図である。図15は、NHOHの濃度とSi4+のピーク強度の割合の関係を示した図である。また、同様にピーク強度を測定し、O濃度と、Si0~3+と、Si4+のピーク強度の割合の比較を行った。その結果を、図16、図17に示す。図16は、Oの濃度とSi0~3+のピーク強度の割合の関係を示した図である。図17は、Oの濃度とSi4+のピーク強度の割合の関係を示した図である。その結果、NHOH濃度が高くなるに従い、Si0~3+のピーク強度の割合が大きくなるが、Si4+のピーク強度の割合は逆に小さくなる傾向になる。一方で、Oの場合は、O濃度の化学酸化膜の構成元素のピーク強度の割合に対する依存性は見られなかった。
 このような基板をすべて、熱酸化膜の厚さが5.1nmとなるように狙って熱酸化(900℃、酸素5%、60min)した後に、熱酸化膜の厚さを分光エリプソ法にて測定した。
 上述のようにして行った実験の結果から、図10、図11に示すような相関関係が得られた。図10、図11に示すように、熱酸化膜の厚さとSi0~3+、Si4+のピーク強度の割合には相関が見られ、Si0~3+のピーク強度の割合が大きいほど熱酸化膜の厚さが厚くなる傾向があること、Si4+のピーク強度の割合が小さいほど熱酸化膜の厚さが厚くなる傾向があることがわかった。また、図10、図11に示す熱酸化膜の厚さと化学酸化膜の構成元素のピーク強度の割合の相関関係から、例えば、図10、図11の点線のような検量線を引き、この検量線を用いて、対象のシリコン基板の化学酸化膜の構成元素のピーク強度の割合から形成される熱酸化膜の厚さを推定し、実際に熱酸化膜を形成するときの条件を決定すると、狙った熱酸化膜の厚さに近い熱酸化膜を形成することができることがわかった。O濃度の化学量論比に対する依存性は見られなかったが、化学量論比とO洗浄後に形成した熱酸化膜の厚さの間には良い相関が見られた。
 (実施例3)
 上記実験例2と同様にして、Si0~3+、Si4+のそれぞれのピーク強度の割合と熱酸化膜の厚さの相関関係を求めた。まず、直径300mmボロンドープの通常抵抗率のシリコン基板を複数枚準備し、シリコン基板表面を初期化のために0.5%HFで洗浄後に、それぞれ、SC1洗浄(70℃、NHOH濃度:3、0.3、0.03、0.01%)とO洗浄(24℃、O濃度:3、20、40ppm)を行って、Si0~3+、Si4+のピーク強度の割合が異なる基板を作製した。次に、それぞれのシリコン基板から試験片を切り出してXPS測定を行い、Si0~3+とSi4+のピーク強度を測定しておいた。その後、所定の熱酸化処理(900℃、酸素5%、60min)を各洗浄条件の基板ごとに行い、熱酸化膜の厚さを測定して、Si0~3+と、Si4+のピーク強度の割合と熱酸化膜の厚さの相関関係を求めた。このとき、相関関係を取得する熱酸化膜の厚さは、5.1nm付近とした。これにより、図10、図11に示す相関関係が得られた。図10、図11中の点線が検量線である。それぞれの検量線の式は下記の通りである。
 (酸化膜厚nm)=0.0342×(Si0~3+のピーク強度の割合)+2.26
 (酸化膜厚nm)=-0.0342×(Si4+のピーク強度の割合)+5.68
 その後、異なる条件で洗浄を行った2種類の基板(サンプルA、Bとする)を準備した。熱酸化処理を行う前に、予め、サンプルA、Bと同じ条件で処理した試験片を用いてXPS測定を行い、Si0~3+とSi4+のピーク強度を測定した。その結果、表1に示すように、サンプルA、Bのそれぞれのピーク強度の割合は、Si0~3+のピーク強度の割合がサンプルAで81.5%、サンプルBで84.5%、Si4+のピーク強度の割合がサンプルAで18.5%、サンプルBで15.5%であった。
Figure JPOXMLDOC01-appb-T000001
 この結果と、先に求めたSi0~3+と、Si4+のピーク強度の割合と熱酸化膜の厚さの関係から、相関関係を取得したときと同じ条件(900℃、酸素5%、60min)で熱酸化処理する場合に形成される熱酸化膜の厚さは、それぞれ、サンプルAでは、Si0~3+、Si4+ともに5.05nmで、サンプルBでは、Si0~3+、Si4+ともに5.15nmと推定した。
 推定した熱酸化膜の厚さから、目標とする熱酸化膜の厚さ(5.10nm)になるように、酸化時間を調整し、サンプルAでは酸化時間を63min、サンプルBでは58minとして実際の熱酸化処理を行った。熱酸化処理後に分光エリプソ法で熱酸化膜の厚さを測定した結果、熱酸化膜の厚さはサンプルA、Bともに、5.10nmとなり、目標とする厚さと同じ厚さに揃えることができた。
 (実施例4)
 目標とする熱酸化膜の厚さ(5.10nm)になるように、予め取得しておいた熱酸化温度と熱酸化膜の厚さの関係を用いて、熱酸化温度を調整したこと以外は、実施例3と同様にして、サンプルA、Bの熱酸化処理を行い、熱酸化膜を形成した。具体的には、熱酸化温度を、サンプルAでは910℃、サンプルBでは890℃に調整した。その結果、サンプルA、Bともに、熱酸化膜の厚さを5.10nmとすることができ、目標とする厚さと同じ厚さに揃えることができた。
 実施例3、4に示すように、洗浄後の化学酸化膜の構成元素の化学量論比に応じて、熱酸化条件を設定することで、シリコン基板に形成された化学酸化膜の種類によらず、同じ厚さに揃えて熱酸化膜を形成できることがわかる。このことは、異なる洗浄方法、洗浄条件で洗浄を行った基板であっても、熱酸化膜の厚さを同じ厚さに揃えることができることを意味している。その結果、熱酸化工程の管理が容易になることがわかった。
 (実験例3)
 RBS測定により熱酸化膜の厚さを目標の厚さになるように熱酸化処理条件を調整する方法を説明する。
 まず、直径300mmボロンドープの通常抵抗率のシリコンウエーハを準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後に、70℃でSC1洗浄を行った。このときに、NHOH濃度を3、0.3、0.03、0.001%と変化させた。
 この後、予めシリコンウエーハから試験片を切り出してRBS測定を行い、水素原子の割合を測定し、NHOH濃度と、水素原子の割合の比較を行った。その結果を、図20に示した。図20は、NHOH濃度とRBS測定により求めた化学酸化膜中の水素原子の割合の関係を示した図である。その結果、図20に示したように、NHOH濃度が高くなるに従い、水素原子の割合が小さくなることが分かった。水素原子の割合が洗浄条件により異なるのは、SC1洗浄の場合、NHOH濃度が高くアルカリ性が強いほど水素原子が少ないためと考えられる。
 このようなウエーハをすべて、熱酸化膜の厚さが5.10nmとなるように狙って熱酸化(900℃、酸素5%、60min)した後に、熱酸化膜の厚さを分光エリプソ法にて測定した。
 上述のようにして行った実験の結果から、図18に示したような相関関係が得られた。図18に示したように、熱酸化膜の厚さと洗浄後の化学酸化膜中の水素原子の割合には相関が見られ、洗浄後の化学酸化膜中の水素原子の割合が大きいほど膜厚が薄くなる傾向が見られた。この結果を利用して、熱酸化時間等を調整することで、洗浄による表面状態が異なっても、所定の厚さの薄い熱酸化膜を形成することが可能になる。
 (実験例4)
 さらに、別の方法として、ATR-FT-IR測定により熱酸化膜の厚さを目標の厚さになるように熱酸化処理条件を調整する方法を説明する。
 まず、実験例3で準備したシリコンウエーハと同じシリコンウエーハを準備した後、シリコンウエーハから試験片を切り出してATR-FT-IR測定を行い、2130cm-1付近の吸光度を測定し、NHOH濃度と、2130cm-1付近の吸光度との比較を行った。その結果を、図21に示した。図21は、NHOH濃度とATR-FT-IR測定により求めた2130cm-1の吸光度の関係を示した図である。その結果、NHOH濃度が高くなるに従い、2130cm-1付近の吸光度は小さくなり、洗浄後の化学酸化膜中の水素原子の量が少なくなることがわかった。
 このようなウエーハをすべて、実験例3と同じように熱酸化処理したところ、図19に示したような相関関係が得られた。図19に示したように、熱酸化膜の厚さと洗浄後の化学酸化膜中の2130cm-1付近の吸光度には相関が見られ、洗浄後の化学酸化膜中の2130cm-1付近の吸光度が大きいほど膜厚が薄くなる傾向が見られた。この結果を利用して、熱酸化時間等を調整することで、洗浄による表面状態が異なっても、所定の厚さの薄い熱酸化膜を形成することが可能になる。
 (実施例5)
 上記実験例3と同様にして、RBS測定による水素原子の割合と熱酸化膜の厚さの相関関係を求めた。まず、直径300mmボロンドープの通常抵抗率のシリコンウエーハを複数枚準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後に、それぞれ、SC1洗浄(70℃、NHOH濃度:3、0.3、0.03、0.001%)を行って、水素原子の割合が異なる基板を作製した。次に、それぞれのシリコンウエーハから試験片を切り出してRBS測定を行い、水素原子の割合を測定しておいた。その後、所定の熱酸化処理(900℃、酸素5%、60min)を各洗浄条件の基板ごとに行い、熱酸化膜の厚さを測定して、水素原子の割合と熱酸化膜の厚さの相関関係を求めた。このとき、相関関係を取得する熱酸化膜の厚さは、5.10nm付近とした。これにより、図18に示した相関関係が得られた。
 その後、異なる条件で洗浄を行った2種類の基板(サンプルA、Bとする)を準備した。熱酸化処理を行う前に、予め、サンプルA、Bと同じ条件で処理した試験片を用いてRBS測定を行い、水素原子の割合を測定した。その結果、サンプルA、Bのそれぞれの水素原子の割合は、サンプルAで10%、サンプルBで20%であった。
 この結果と、先に求めた水素原子の割合と熱酸化膜の厚さの関係から、相関関係を取得したときと同じ条件(900℃、酸素5%、60min)で熱酸化処理する場合に形成される熱酸化膜の厚さは、それぞれ、サンプルAでは5.15nmで、サンプルBでは5.10nmと推定した。
 推定した熱酸化膜の厚さから、目標とする熱酸化膜の厚さ(5.10nm)になるように、熱酸化膜の厚さが酸化時間のルート(平方根)に比例することから、酸化時間を調整し、サンプルAでは酸化時間を58min、サンプルBでは60minとし、熱処理温度と熱処理雰囲気は熱酸化膜の厚さ推定工程と同じ900℃、酸素5%として実際の熱酸化処理を行った。熱酸化処理後に分光エリプソ法で熱酸化膜の厚さを測定した結果、熱酸化膜の厚さはサンプルA、Bともに、5.10nmとなり、目標とする厚さと同じ厚さに揃えることができた。
 (実施例6)
 目標とする熱酸化膜の厚さ(5.10nm)になるように、予め取得しておいた熱酸化温度と熱酸化膜の厚さの関係を用いて、熱酸化温度を調整したこと以外は、実施例5と同様にして、サンプルA、Bの熱酸化処理を行い、熱酸化膜を形成した。具体的には、熱酸化温度を、サンプルAでは890℃、サンプルBでは900℃に調整した。熱処理時間と熱処理雰囲気は熱酸化膜の厚さ推定工程と同じ60min、酸素5%として、実際の熱酸化処理を行った。その結果、サンプルA、Bともに、熱酸化膜の厚さを5.10nmとすることができ、目標とする厚さと同じ厚さに揃えることができた。
 (実施例7)
 上記実験例4と同様にして、ATR-FT-IR測定による2130cm-1付近の吸光度と熱酸化膜の厚さの相関関係を求めた。まず、直径300mmボロンドープの通常抵抗率のシリコンウエーハを複数枚準備し、シリコンウエーハ表面を初期化のために0.5%HFで洗浄後に、それぞれ、SC1洗浄(70℃、NHOH濃度:3、0.3、0.03、0.001%)を行って、2130cm-1付近の吸光度が異なる基板を作製した。次に、それぞれのシリコンウエーハから試験片を切り出してATR-FT-IR測定を行い、2130cm-1付近の吸光度を測定しておいた。その後、所定の熱酸化処理(900℃、酸素5%、60min)を各洗浄条件の基板ごとに行い、熱酸化膜の厚さを測定して、2130cm-1付近の吸光度と熱酸化膜の厚さの相関関係を求めた。このとき、相関関係を取得する熱酸化膜の厚さは、5.10nm付近とした。これにより、図19に示した相関関係が得られた。
 その後、異なる条件で洗浄を行った2種類の基板(サンプルA、Bとする)を準備した。熱酸化処理を行う前に、予め、サンプルA、Bと同じ条件で処理した試験片を用いてATR-FT-IR測定を行い、2130cm-1付近の吸光度を測定した。その結果、サンプルA、Bのそれぞれの水素原子の割合は、サンプルAで0.9、サンプルBで1.0であった。
 この結果と、先に求めた2130cm-1付近の吸光度と熱酸化膜の厚さの関係から、相関関係を取得したときと同じ条件(900℃、酸素5%、60min)で熱酸化処理する場合に形成される熱酸化膜の厚さは、それぞれ、サンプルAでは5.15nmで、サンプルBでは5.10nmと推定した。
 推定した熱酸化膜の厚さから、目標とする熱酸化膜の厚さ(5.10nm)になるように、熱酸化膜の厚さが酸化時間のルート(平方根)に比例することから、酸化時間を調整し、サンプルAでは酸化時間を58min、サンプルBでは60minとし、熱処理温度と熱処理雰囲気は熱酸化膜の厚さ推定工程と同じ900℃、酸素5%として実際の熱酸化処理を行った。熱酸化処理後に分光エリプソ法で熱酸化膜の厚さを測定した結果、熱酸化膜の厚さはサンプルA、Bともに、5.10nmとなり、目標とする厚さと同じ厚さに揃えることができた。
 (実施例8)
 目標とする熱酸化膜の厚さ(5.10nm)になるように、予め取得しておいた熱酸化温度と熱酸化膜の厚さの関係を用いて、熱酸化温度を調整したこと以外は、実施例7と同様にして、サンプルA、Bの熱酸化処理を行い、熱酸化膜を形成した。具体的には、熱酸化温度を、サンプルAでは890℃、サンプルBでは900℃に調整した。熱処理時間と熱処理雰囲気は熱酸化膜の厚さ推定工程と同じ60min、酸素5%として、実際の熱酸化処理を行った。その結果、サンプルA、Bともに、熱酸化膜の厚さを5.10nmとすることができ、目標とする厚さと同じ厚さに揃えることができた。
 実施例5~8に示すように、洗浄後の化学酸化膜中の水素原子の量に応じて、熱酸化条件を設定することで、シリコンウエーハに形成された化学酸化膜の種類によらず、同じ厚さに揃えて熱酸化膜を形成できることがわかる。このことは、異なる洗浄方法、洗浄条件で洗浄を行った基板であっても、熱酸化膜の厚さを同じ厚さに揃えることができることを意味している。その結果、熱酸化工程の管理が容易になることがわかった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (13)

  1.  半導体基板に熱酸化膜を形成する方法であって、
     予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、
     熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、
     該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成を測定し、該測定して得た前記構成と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、
     前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、
     該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有することを特徴とする半導体基板の熱酸化膜形成方法。
  2.  半導体基板に熱酸化膜を形成する方法であって、
     予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれるOH基の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中のOH基の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、
     熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、
     該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中のOH基の量を測定し、該測定して得た前記OH基の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、
     前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、
     該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有することを特徴とする半導体基板の熱酸化膜形成方法。
  3.  前記OH基の量は、ATR測定用プリズムを用いて前記化学酸化膜のATR-FT-IR測定を行い、3300cm-1付近のOH基の吸光度から算出することを特徴とする請求項2に記載の半導体基板の熱酸化膜形成方法。
  4.  半導体基板に熱酸化膜を形成する方法であって、
     予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜の構成元素の化学量論比がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜の構成元素の化学量論比と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、
     熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、
     該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜の構成元素の化学量論比を求め、該求めた前記化学酸化膜の構成元素の化学量論比と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、
     前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、
     該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有することを特徴とする半導体基板の熱酸化膜形成方法。
  5.  前記化学酸化膜の構成元素の化学量論比は、前記化学酸化膜の構成元素のうち、前記半導体基板の基板原子が酸素原子と結合していない状態と前記基板原子が酸素原子と結合してサブオキサイドとなっている状態の結合エネルギーのピーク強度、及び、前記基板原子が酸素原子と完全に結合している状態の結合エネルギーのピーク強度をXPSを用いてそれぞれ測定し、該測定したピーク強度の割合とすることを特徴とする請求項4に記載の半導体基板の熱酸化膜形成方法。
  6.  前記半導体基板をシリコンウエーハ、前記熱酸化膜をシリコン酸化膜とすることを特徴とする請求項1から請求項5のいずれか一項に記載の半導体基板の熱酸化膜形成方法。
  7.  半導体基板に熱酸化膜を形成する方法であって、
     予め、洗浄により形成された化学酸化膜を有する半導体基板であって、前記化学酸化膜中に含まれる水素原子の量がそれぞれ異なる複数の半導体基板を準備し、前記複数の半導体基板を同じ熱酸化処理条件で熱酸化処理して熱酸化膜を形成し、前記化学酸化膜中の水素原子の量と、前記熱酸化膜の厚さとの相関関係を求めておく相関関係取得工程と、
     熱酸化膜を形成する対象の半導体基板の洗浄を行う基板洗浄工程と、
     該基板洗浄工程における前記洗浄により前記半導体基板の表面に形成された化学酸化膜中の水素原子の量を測定し、該測定して得た前記水素原子の量と前記相関関係に基づいて、前記相関関係取得工程における前記熱酸化処理条件と同じ条件で、前記熱酸化膜を形成する対象の半導体基板を熱酸化処理したと仮定したときの、前記熱酸化膜を形成する対象の半導体基板表面に形成される熱酸化膜の厚さを推定する熱酸化膜の厚さ推定工程と、
     前記半導体基板表面に形成される熱酸化膜の厚さが所定の厚さになるように、前記相関関係取得工程における前記熱酸化処理条件を基準として熱酸化処理条件を決定する熱酸化処理条件決定工程と、
     該熱酸化処理条件決定工程で決定した熱酸化処理条件で熱酸化処理し、前記半導体基板表面に熱酸化膜を形成する熱酸化膜形成工程とを有することを特徴とする半導体基板の熱酸化膜形成方法。
  8.  前記半導体基板をシリコンウエーハ、前記熱酸化膜をシリコン酸化膜とすることを特徴とする請求項7に記載の半導体基板の熱酸化膜形成方法。
  9.  前記水素原子の量は、前記化学酸化膜のRBS測定を行い、求めた前記化学酸化膜中の水素原子の割合から算出することを特徴とする請求項7又は請求項8に記載の半導体基板の熱酸化膜形成方法。
  10.  前記水素原子の量は、ATR測定用プリズムを用いて前記化学酸化膜のATR-FT-IR測定を行い、2130cm-1付近のSiH基の吸光度から算出することを特徴とする請求項8に記載の半導体基板の熱酸化膜形成方法。
  11.  前記所定の厚さを1~10nmとすることを特徴とする請求項1から請求項10のいずれか一項に記載の半導体基板の熱酸化膜形成方法。
  12.  前記熱酸化膜の厚さ推定工程において、
     前記推定される熱酸化膜の厚さが所定の厚さより厚い場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間より短い時間と決定し、
     前記推定される熱酸化膜の厚さが所定の厚さより薄い場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間より長い時間と決定し、
     前記推定される熱酸化膜の厚さが所定の厚さと等しい場合は、前記熱酸化処理条件決定工程において、熱酸化処理時間を前記相関関係取得工程における熱酸化処理条件の熱酸化処理時間と同じ時間と決定することを特徴とする請求項1から請求項11のいずれか一項に記載の半導体基板の熱酸化膜形成方法。
  13.  前記熱酸化膜の厚さ推定工程において、
     前記推定される熱酸化膜の厚さが所定の厚さより厚い場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度より低い温度と決定し、
     前記推定される熱酸化膜の厚さが所定の厚さより薄い場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度より高い温度と決定し、
     前記推定される熱酸化膜の厚さが所定の厚さと等しい場合は、前記熱酸化処理条件決定工程において、熱酸化処理温度を前記相関関係取得工程における熱酸化処理条件の熱酸化処理温度と同じ温度と決定することを特徴とする請求項1から請求項11のいずれか一項に記載の半導体基板の熱酸化膜形成方法。
PCT/JP2021/008931 2020-05-08 2021-03-08 半導体基板の熱酸化膜形成方法 WO2021225027A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21800764.9A EP4148769A4 (en) 2020-05-08 2021-03-08 METHOD FOR FORMING THERMAL OXIDE FILM OF SEMICONDUCTOR SUBSTRATE
US17/920,227 US20230170208A1 (en) 2020-05-08 2021-03-08 Method for forming thermal oxide film on semiconductor substrate
CN202180032465.3A CN115485817A (zh) 2020-05-08 2021-03-08 半导体基板的热氧化膜形成方法
KR1020227037935A KR20230008710A (ko) 2020-05-08 2021-03-08 반도체기판의 열산화막 형성방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-082715 2020-05-08
JP2020082715 2020-05-08
JP2020106903 2020-06-22
JP2020-106903 2020-06-22
JP2020109669 2020-06-25
JP2020-109669 2020-06-25
JP2020139978A JP6791453B1 (ja) 2020-05-08 2020-08-21 半導体基板の熱酸化膜形成方法
JP2020-139978 2020-08-21

Publications (1)

Publication Number Publication Date
WO2021225027A1 true WO2021225027A1 (ja) 2021-11-11

Family

ID=73452938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008931 WO2021225027A1 (ja) 2020-05-08 2021-03-08 半導体基板の熱酸化膜形成方法

Country Status (7)

Country Link
US (1) US20230170208A1 (ja)
EP (1) EP4148769A4 (ja)
JP (1) JP6791453B1 (ja)
KR (1) KR20230008710A (ja)
CN (1) CN115485817A (ja)
TW (1) TW202205359A (ja)
WO (1) WO2021225027A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022190999A (ja) 2021-06-15 2022-12-27 信越半導体株式会社 半導体基板の熱酸化膜形成方法及び半導体装置の製造方法
JP2023069889A (ja) * 2021-11-08 2023-05-18 信越半導体株式会社 酸化膜の膜厚評価方法及び酸化膜付きシリコン基板の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104870A (en) * 1976-03-01 1977-09-02 Hitachi Ltd Manufacture for semiconductor device
JPH04113620A (ja) * 1990-09-03 1992-04-15 Seiko Epson Corp 半導体基板の洗浄方法
JPH04355921A (ja) * 1990-08-24 1992-12-09 Seiko Epson Corp 半導体装置の製造方法
JPH0963910A (ja) 1995-08-29 1997-03-07 Mitsubishi Materials Shilicon Corp 張り合わせウェーハおよびその製造方法
JP2000216156A (ja) 1999-01-21 2000-08-04 Sony Corp シリコン窒化酸化膜の形成方法及びp形半導体素子の製造方法
JP2002270596A (ja) 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd 半導体装置の製造装置
JP2003115516A (ja) 2001-07-30 2003-04-18 Shin Etsu Handotai Co Ltd 水分測定用ウェーハ、水分計の較正方法および熱処理炉の状態評価方法
JP2004342805A (ja) * 2003-05-15 2004-12-02 Fasl Japan 株式会社 熱酸化膜の形成方法及び熱酸化装置
JP2008098214A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 熱処理温度の補正方法及び熱処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104870A (en) * 1976-03-01 1977-09-02 Hitachi Ltd Manufacture for semiconductor device
JPH04355921A (ja) * 1990-08-24 1992-12-09 Seiko Epson Corp 半導体装置の製造方法
JPH04113620A (ja) * 1990-09-03 1992-04-15 Seiko Epson Corp 半導体基板の洗浄方法
JPH0963910A (ja) 1995-08-29 1997-03-07 Mitsubishi Materials Shilicon Corp 張り合わせウェーハおよびその製造方法
JP2000216156A (ja) 1999-01-21 2000-08-04 Sony Corp シリコン窒化酸化膜の形成方法及びp形半導体素子の製造方法
JP2002270596A (ja) 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd 半導体装置の製造装置
JP2003115516A (ja) 2001-07-30 2003-04-18 Shin Etsu Handotai Co Ltd 水分測定用ウェーハ、水分計の較正方法および熱処理炉の状態評価方法
JP2004342805A (ja) * 2003-05-15 2004-12-02 Fasl Japan 株式会社 熱酸化膜の形成方法及び熱酸化装置
JP2008098214A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 熱処理温度の補正方法及び熱処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148769A4
TAKAHAGI, SHINKUU, vol. 33, no. 11, 1990, pages 854

Also Published As

Publication number Publication date
KR20230008710A (ko) 2023-01-16
CN115485817A (zh) 2022-12-16
JP2022002285A (ja) 2022-01-06
TW202205359A (zh) 2022-02-01
EP4148769A1 (en) 2023-03-15
US20230170208A1 (en) 2023-06-01
JP6791453B1 (ja) 2020-11-25
EP4148769A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2021225027A1 (ja) 半導体基板の熱酸化膜形成方法
Hymes et al. Growth and materials characterization of native germanium oxynitride thin films on germanium
EP0488149B1 (en) Method of analyzing metal impurities in surface oxide film of semiconductor substrate
WO2021240948A1 (ja) 半導体基板の熱酸化膜形成方法
Jonak-Auer et al. Determination of the hydrogen concentration of silicon nitride layers by Fourier transform infrared spectroscopy
Lee et al. Evaluating the impact of thermal annealing on c-Si/Al2O3 interface: Correlating electronic properties to infrared absorption
Chou et al. Study of TiO2 thin films for ion sensitive field effect transistor application with rf sputtering deposition
WO2021229898A1 (ja) 半導体基板のドライエッチング方法及びシリコン酸化膜のドライエッチング方法
Driemeier et al. Oxygen species in HfO2 films: An in situ x-ray photoelectron spectroscopy study
Hellin et al. Grazing Incidence-X-ray Fluorescence Spectrometry for the Compositional Analysis of Nanometer-Thin High-κDielectric HfO2 Layers
EP4358118A1 (en) Method for forming thermally oxidized film of semiconductor substrate and method for manufacturing semiconductor device
US6933235B2 (en) Method for removing contaminants on a substrate
Oszinda et al. Improved characterization of Fourier transform infrared spectra analysis for post-etched ultra-low-κ SiOCH dielectric using chemometric methods
JP4192410B2 (ja) 酸化膜厚測定方法
KR100238203B1 (ko) 열산화를 이용한 질화막의 질소 농도 측정방법
JP2024034416A (ja) シリコン基板の評価方法およびシリコン基板の製造工程の管理方法
JP2023069889A (ja) 酸化膜の膜厚評価方法及び酸化膜付きシリコン基板の製造方法
Conard et al. Influence of pre and post process conditions on the composition of thin Si3N4 thin films (3 nm) studied by XPS and TOFSIMS
Renault et al. Investigating Electronic and Chemical Properties of Ge/GeOxNy/HfO2 Gate Stacks: High-Resolution Photoelectron Spectroscopy Using Synchrotron Radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800764

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE