WO2021223733A1 - 一种天然气水蒸汽重整制氢的系统及其方法 - Google Patents

一种天然气水蒸汽重整制氢的系统及其方法 Download PDF

Info

Publication number
WO2021223733A1
WO2021223733A1 PCT/CN2021/092067 CN2021092067W WO2021223733A1 WO 2021223733 A1 WO2021223733 A1 WO 2021223733A1 CN 2021092067 W CN2021092067 W CN 2021092067W WO 2021223733 A1 WO2021223733 A1 WO 2021223733A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas
natural gas
oxide
reforming
Prior art date
Application number
PCT/CN2021/092067
Other languages
English (en)
French (fr)
Inventor
王鹏飞
夏国富
张荣俊
吴玉
徐润
孙霞
侯朝鹏
栾学斌
王大川
邹亮
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2021223733A1 publication Critical patent/WO2021223733A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/00862Dimensions of the reaction cavity itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a system and a method for producing hydrogen by steam reforming of natural gas.
  • Hydrogen is a clean energy carrier with zero carbon emissions, which can be easily converted into electrical energy, which can be used as a vehicle electric motor power or a small household power source.
  • Natural gas steam reforming is a mature industrial process, but it has the characteristics of large scale. In general, a single series of general industrial hydrogen production scale 100000Nm 3 / h, and a single amount of hydrogen used in the refueling station 50 to 1000Nm 3 / h, conventional natural gas reforming processes can not meet with a single hydrotreating station Hydrogen demand.
  • CN105680072B discloses a medium and small-scale distributed natural gas steam reforming hydrogen production system and method.
  • the main body of an integrated natural gas steam reforming hydrogen production reactor consists of a raw material water evaporator, a natural gas preheater, a combustion chamber, a reforming chamber, Reformed gas cooler, combustion flue gas waste heat cooler, reformed gas waste heat cooler, fuel burner, etc.
  • a natural gas reforming hydrogen production system comprising a hydrogenation reactor, a desulfurization tank, a reformer, a high-temperature converter and a pressure swing adsorption device connected in sequence through pipelines, and the hydrogenation reactor inlet is connected with a natural gas feed pipeline , The outlet of the pressure swing adsorption device is a directly supplied natural gas reforming hydrogen product pipeline.
  • the system also includes a HYCO synthesis gas separation and purification device.
  • the inlet of the HYCO synthesis gas separation and purification device is connected to the HYCO synthesis gas raw material pipeline, and the outlets are respectively
  • the hydrogen product pipeline for separation and purification of synthesis gas is connected with the CO product pipeline
  • the hydrogenation pipeline connected with the natural gas feedstock pipeline is provided on the natural gas reforming hydrogen product pipeline
  • the hydrogen product pipeline for separation and purification of synthesis gas is provided with The hydrogen introduction pipeline connected to the hydrogenation pipeline.
  • CN105174214A discloses a method and device for hydrogen production by natural gas steam reforming using a fluidized bed.
  • the hydrogen production system of natural gas steam reforming has problems such as difficulty in miniaturization, high energy consumption, and large installation area.
  • the purpose of the present invention is to provide a system and method for hydrogen production by steam reforming of natural gas, so as to solve the problem that the prior art cannot achieve high-efficiency hydrogen production efficiency in a small space and volume. More particularly, the object of the present invention is to provide a small (less than the hydrogen yield 10000Nm 3 / h, for example less than 5000Nm 3 / h, less than 2000Nm 3 / h, less than 1000Nm 3 / h, less than 500Nm 3 / h) gas steam
  • the system and method for reforming hydrogen production can solve the problem in the prior art that high-efficiency hydrogen production efficiency cannot be achieved in a small space and volume.
  • the system for hydrogen production by steam reforming of natural gas includes: natural gas compression and preheating unit, natural gas desulfurization unit, raw water purification unit, steam production unit, reforming unit, conversion unit, and pressure swing adsorption (PSA) unit,
  • the natural gas compression and preheating unit is a unit for boosting and preheating natural gas
  • the natural gas desulfurization unit is a unit that removes sulfur compounds in natural gas to obtain desulfurized natural gas, and the outlet of the natural gas compression and preheating unit is connected with the inlet of the natural gas desulfurization unit;
  • the raw material water purification unit is a unit that purifies the raw material water to obtain deionized water
  • the water-making steam unit is a unit that heats deionized water to generate steam to obtain deionized water vapor, and the outlet of the raw water purification unit is connected with the inlet of the water-making steam unit;
  • the reforming unit is a unit that reforms the desulfurized natural gas and deionized steam to produce reformed gas.
  • the outlet of the natural gas desulfurization unit and the outlet of the steam generating unit are connected with the inlet of the reforming unit;
  • the conversion unit is a unit that converts carbon monoxide in the reformed gas into hydrogen to obtain a conversion gas.
  • the conversion unit is equipped with at least one microchannel conversion reactor, and the microchannel conversion reactor is filled with a conversion catalyst. The outlet of the reforming unit and the inlet of the conversion unit Connected
  • the PSA unit is a unit that separates the shift gas to obtain desorption gas and product gas.
  • the product gas is hydrogen.
  • the outlet of the shift unit is connected to the inlet of the PSA unit.
  • the PSA unit is provided with a desorption gas outlet and a product gas outlet.
  • the raw natural gas used includes, but is not limited to, natural gas with methane as the main component from various sources and forms such as oil production wellhead natural gas, long-distance pipeline natural gas, civil pipeline natural gas, CNG, LNG, etc.
  • the inlet pressure of the natural gas compression unit is between 0.01 and 1.5MPa.
  • the natural gas preheating unit is selected from one or more methods of electric heating, heat transfer oil furnace heating, steam heating, or heat exchange with other materials; preferably, the waste gas of the reforming unit, the product of the reforming unit or the conversion The product of the unit exchanges heat with the normal temperature raw material natural gas.
  • the outlet pressure of the natural gas compression and preheating unit is 1.0 to 6.0 MPa, and the outlet temperature is 200 to 380°C.
  • the natural gas desulfurization unit is provided with a hydrodesulfurization reaction zone and an adsorption desulfurization reaction zone, the hydrodesulfurization reaction zone is filled with a hydrodesulfurization catalyst, and the adsorption desulfurization reaction zone is filled with an adsorption desulfurization catalyst ;
  • the hydrodesulfurization reaction zone and the adsorption desulfurization reaction zone are respectively arranged in two different reactors, or integrated in one reactor.
  • the hydrodesulfurization catalyst includes a carrier and a metal active component, and the metal active component is selected from one or more of metals of group VIB and/or group VIII, preferably selected from Co, Mo, Ni One or more of W and W; the carrier is one or more selected from heat-resistant inorganic oxides and molecular sieves, and the mass ratio of the metal active component to the carrier is between 0.01 and 0.5:1; preferably The heat-resistant inorganic oxide is selected from one or more of aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide, thorium oxide, beryllium oxide, boron oxide, and cadmium oxide.
  • the adsorption desulfurization catalyst is one or more metal oxides selected from Fe 2 O 3 , ZnO, MgO, CaO and Na 2 O, preferably ZnO and/or Fe 2 O 3 .
  • the mole fraction of total sulfur in the desulfurized natural gas is not more than 1.5 ⁇ 10 -8 .
  • the raw water purification unit uses one or more of ion exchange, reverse osmosis and electric desalination to remove ions in the water, and the conductivity of the obtained deionized water is less than 1.0 ⁇ S/ cm.
  • the raw water includes, but is not limited to, urban and rural tap water, groundwater, industrial circulating water, and the like.
  • one or more of electric heating, heat-conducting oil furnace heating, steam heating, and/or heat exchange with other materials are adopted in the water-making steam unit.
  • the waste flue gas of the reforming unit, the product of the reforming unit, or the product of the conversion unit is used for heat exchange.
  • the temperature of the deionized water vapor obtained by the water vapor production unit is between 150 and 250° C., and the pressure is between 0.5 and 4.0 MPa.
  • a tube-and-tube reforming reactor is provided in the reforming unit, the diameter of the tube is 8 to 200 mm, the number of tubes is 1 to 48, and the tube is filled with weight.
  • the metal active component of the reforming catalyst is one or more selected from the group VIB and/or group VIII metals, preferably Ni. It is further preferred that the carrier of the reforming catalyst is one or more of alumina, magnesia-aluminum spinel, calcium aluminate, and other metal oxides; the mass ratio of the metal active component to the carrier is between 0.1 and 1:1 .
  • a combustion furnace is provided in the reforming unit, and the combustion furnace is selected from the group consisting of a square box furnace, a drum furnace, a terrace furnace, a top-fired furnace, or a side-fired furnace.
  • the combustion furnace is provided with a fuel gas inlet.
  • the preheating method of desulfurized natural gas and deionized water vapor in the reforming unit is radiant heating, electric heating, heat-conducting oil furnace heating, steam heating and/or exchange with other materials.
  • One or more ways in heat the preheating of the desulfurized natural gas and deionized steam is carried out before the reforming unit, or in the reforming unit, or simultaneously before the reforming unit and in the reforming unit;
  • a preheating heat exchanger is arranged in or before the reforming furnace, the inlet of the preheating heat exchanger is connected with the desulfurized natural gas pipeline, the inlet of the preheating heat exchanger is connected with the deionized steam pipeline, and the outlet of the preheating heat exchanger is connected with The inlet of the tubular reforming reactor is connected; the present invention preferably uses the high-temperature flame radiation of the reforming furnace to heat the desulfurized natural gas and deionized water vapor. After heating, the temperature of
  • the fuel gas inlet is in communication with the raw natural gas pipeline, and the desorption gas outlet is in communication with the fuel gas inlet.
  • the connection between a certain place and a certain place means that two places are connected by a pipe, so that the substance can be transferred between the two places.
  • a valve and other devices can be set on the connecting pipe to make the substance transfer one-way. , Two-way or multi-directional. Set up valves and other devices in a conventional manner, and this article will not go into details here.
  • the cooling of the reformed gas at the outlet of the reforming unit is water medium heat exchange, heat transfer oil heat exchange, heat exchange with the reaction material, etc.; preferably, the reforming unit outlet reforming
  • the gas exchanges heat with the deionized water of the water-making steam unit, and at the same time, the temperature of the deionized water of the water-making steam unit is raised to generate water vapor.
  • the temperature of the reformed gas at the outlet of the reforming unit is between 750 and 950°C, and the temperature of the reformed gas after cooling is between 200 and 380°C.
  • a reaction channel is provided in the microchannel shift reactor, and the reaction channel has a length of 10 to 1000 mm; the minimum side length of the reaction channel is 0.05 to 5 mm, preferably 0.1 to 3 mm; the minimum side length refers to the minimum height or width between the inner walls of a single channel cross section.
  • the diameter of the channel is between 0.3 and 5 mm; when the cross section of the reaction channel of the microchannel shift reactor is elliptical, the major axis of the ellipse is 0.3 to 5 mm.
  • the short axis is between 0.1 and 3 mm; when the cross section of the reaction channel of the microchannel transformation reactor is rectangular, the long side of the rectangle is between 0.3 and 5 mm, and the short side is between 0.1 and 3 mm.
  • the microchannel shift reactor has a heat transfer medium channel inside and/or outside the reactor; the length of the heat transfer medium channel is between 10 and 1000 mm, and the The minimum side length of the heat transfer medium channel is 0.05 to 5mm; the minimum side length refers to the minimum height or width between the inner walls of a single channel cross section.
  • the heat transfer medium in the heat transfer medium channel is raw natural gas or raw water.
  • the channel diameter is between 0.3 and 5 mm;
  • the cross section of the heat transfer medium channel of the microchannel shift reactor is elliptical, the major axis of the ellipse Between 0.3 and 5 mm, the short axis is between 0.1 and 3 mm;
  • the cross section of the heat transfer medium channel of the microchannel conversion reactor is rectangular, the long side of the rectangle is between 0.3 and 5 mm, and the short side is between 0.1 and 3 mm. between.
  • the particle diameter of the shift catalyst is 20 to 500 ⁇ m; the shift catalyst includes a carrier and a metal active component, and the carrier is one selected from the group consisting of heat-resistant inorganic oxides and molecular sieves. One or more; the mass ratio of the metal active component to the carrier is between 0.1 and 10:1.
  • the metal active component in the shift catalyst is a mixture of one or more selected from CoO, MoO, Fe 2 O 3 , Cr 2 O 3 and K 2 O;
  • the heat-resistant inorganic oxide is selected from alumina , Zinc oxide, copper oxide, silicon oxide, zirconium oxide, titanium oxide, magnesium oxide, thorium oxide, beryllium oxide, boron oxide, and cadmium oxide.
  • the shift catalyst is a raspberry-type microsphere cavity catalyst
  • the raspberry-type microsphere cavity catalyst is a hollow microsphere with a large pore on the surface, and the hollow microsphere has a hollow structure inside, and the large pores and The hollow structure penetrates to form a cavity with an opening at one end;
  • the particle size of the microspheres is 60 to 500 ⁇ m
  • the diameter of the hollow structure is 10 to 200 ⁇ m, preferably 20 to 150 ⁇ m
  • the pore diameter of the macropore is 5 to 100 ⁇ m.
  • the thickness of the shell layer of the raspberry-type microsphere cavity catalyst is 1 to 100 ⁇ m; the sphericity of the raspberry-type microsphere cavity catalyst is 0.50 to 0.99.
  • V p is the volume of the particle
  • S p is the surface area of the particle
  • the preparation method of the raspberry-type microsphere cavity catalyst is not limited, and any preparation method that can obtain the above-mentioned structure is applicable.
  • the raspberry-type microsphere cavity catalyst can be prepared by the following preparation method:
  • nitrate, peptizer, pore former, heat-resistant inorganic oxide and/or its precursor to the dispersing agent in sequence and stirring to obtain a dispersion slurry
  • the aging dispersion slurry is sent to a drying device, under the condition that the inlet air temperature is 400 to 1200°C, preferably 450 to 700°C; the outlet air temperature is 100 to 300°C, preferably 120 to 200°C, Drying and molding are performed to obtain the raspberry-type oxide microspheres, and after roasting, a raspberry-type microsphere cavity catalyst is obtained.
  • the nitrate is selected from one or more of aluminum nitrate, zirconium nitrate, lanthanum nitrate and yttrium nitrate.
  • the peptizer is selected from one or more of acids, bases and salts.
  • the pore former is selected from one or more of starch, synthetic cellulose, polymeric alcohol and surfactant.
  • the heat-resistant inorganic oxide and/or its precursor is selected from one or more of an aluminum source, a zinc source, a copper source, a silicon source, a zirconium source, and a titanium source, wherein the aluminum The source is selected from one or more of pseudo-boehmite, aluminum alkoxide, aluminum nitrate, aluminum sulfate, aluminum chloride and sodium metaaluminate, and the zinc source is selected from zinc chloride, zinc nitrate, zinc sulfate, high One or more of zinc chlorate and zinc borofluoride, the copper source is selected from one or more of copper chloride, cuprous chloride, copper nitrate, copper sulfate, and basic copper carbonate, so
  • the silicon source is selected from one or more of silicate, sodium silicate, water glass and silica sol
  • the zirconium source is selected from zirconium dioxide, zirconium tetrachloride, zirconium oxychloride, zircon
  • oxides such as chromium oxide, molybdenum oxide, iron oxide, cobalt oxide, potassium oxide, etc. are added at the same time, or precursors that can form these oxides are added.
  • the active metal (active metal refers to: one or more of chromium, molybdenum, iron, cobalt, and potassium, such as a soluble salt of active metal or its precursor , Active metal oxides or their precursors, active metal soluble complexes) are impregnated on the raspberry-type oxide microspheres, and the impregnation method used is a conventional impregnation method in the art. For example, it may be an excess liquid impregnation or a pore saturation impregnation method. Among them, by adjusting and controlling the concentration and amount of the impregnating solution containing the active metal component, or the amount of the carrier, a catalyst with a specified content can be prepared, which is easily understood and realized by those skilled in the art.
  • the dispersant is selected from one or more of water, alcohols, ketones and acids.
  • the mass ratio of the nitrate, the peptizer, the pore former, and the oxide and/or its precursor is (10-500): (1-10): (10 -500): (10-1000).
  • it further comprises adding a blasting agent to the dispersing agent, and the blasting agent is selected from picric acid, trinitrotoluene, mercury fulminate, digested glycerin, nitrocellulose, dana explosive, hexogen, One or more of lead azide and C4 plastic explosives.
  • a blasting agent is selected from picric acid, trinitrotoluene, mercury fulminate, digested glycerin, nitrocellulose, dana explosive, hexogen, One or more of lead azide and C4 plastic explosives.
  • the added amount of the blasting agent is 0 to 1% of the total dry basis weight of the nitrate, the peptizer, the pore former, and the oxide and/or its precursor .
  • the drying device is a flash drying device or a spray drying device.
  • the temperature of the aging treatment is 0 to 90°C, more preferably 20 to 60°C.
  • the firing temperature is 400 to 600°C.
  • the preferred raspberry microsphere cavity catalyst has the characteristics of high activity, good selectivity and strong stability.
  • the problems of uneven pressure difference and large pressure difference in the existing microchannel reactor are improved, and the overall reaction activity and selectivity are improved.
  • the volume fraction of CO in the shift gas obtained is 0.01% to 1%.
  • the adsorbent of the PSA unit contains one or more of silica gel, siliceous rock, zeolite, alumina, activated carbon, and molecular sieve.
  • the gas produced by the PSA unit includes desorption gas and product gas, and the volume fraction of hydrogen in the product gas is not less than 99.97%.
  • the present invention also provides a method for producing hydrogen by steam reforming of natural gas.
  • the method uses the system for producing hydrogen by steam reforming of natural gas of the present invention and includes:
  • the natural gas enters the natural gas compression and preheating unit for boosting and preheating;
  • the natural gas After pressurization and preheating, the natural gas enters the natural gas desulfurization unit, and the sulfur-containing compounds in the natural gas are removed to obtain desulfurized natural gas;
  • the raw water is purified in the raw water purification unit to obtain deionized water;
  • the obtained deionized water is heated in the steam production unit to generate deionized water vapor;
  • the obtained desulfurized natural gas and the obtained deionized steam undergo a reforming reaction in the reforming unit to generate reformed gas;
  • the obtained reformed gas enters the shift unit, contacts the shift catalyst in the microchannel shift reactor, and converts the carbon monoxide in the reformed gas into hydrogen to obtain shift gas;
  • the shift gas obtained is separated in the PSA unit to obtain desorption gas and product gas.
  • the natural gas desulfurization unit is equipped with a hydrodesulfurization reaction zone and an adsorption desulfurization reaction zone.
  • the process conditions of the hydrodesulfurization reaction zone are: reaction temperature 280 to 360°C, reaction pressure 0.1 to 6 MPa, gas space velocity 1000h to 50000h -1 , the volume fraction of hydrogen in the feed mixed gas is 1% to 15%;
  • the process conditions of the adsorption desulfurization reaction zone are: the reaction temperature is 280 to 360°C, the reaction pressure is 0.1 to 6 MPa, and the gas space velocity is 500 to 20000h -1 .
  • the temperature of the deionized water vapor obtained by the water vapor production unit is between 150 and 250° C., and the pressure is between 0.5 and 4.0 MPa.
  • the process conditions of the reforming unit are: the reaction pressure is between 0.1 and 6.0 MPa, the reaction temperature is between 550 and 950°C, and the gas space velocity is between 1,000 and 20,000 h -1 ; The molar ratio of water vapor to methane is between 2.0 and 4.0:1.
  • the reformed gas from the reforming unit enters the conversion unit after being cooled, the temperature of the reformed gas at the outlet of the reforming unit is between 750 and 950°C, and the temperature of the reformed gas after cooling is between 200 and 380°C. between.
  • the shift reaction of the shift unit is a single-stage isothermal reaction operation mode
  • the reaction temperature is between 200 and 380°C
  • the reaction pressure is between 0.1 and 6.0 MPa
  • the gas space velocity is between 500 and 20000 h -1 between.
  • the temperature difference between the inlet and outlet of the reaction material in the shift reactor is less than 20°C.
  • the desorbed gas obtained from the PSA unit includes methane, carbon dioxide, carbon monoxide and hydrogen; further preferably, the obtained desorbed gas is introduced into the combustion furnace of the reforming unit and used as fuel gas.
  • the volume fraction of hydrogen in the product gas obtained from the PSA unit is not less than 99.97%.
  • the present invention has the advantages of:
  • the system and method for hydrogen production by steam reforming of natural gas provided by the present invention have the characteristics of small equipment footprint, high methane conversion rate, and high energy utilization efficiency. No additional energy is required. Methane is used as a raw material for the reforming reaction. , And as a heat source for the reforming reaction, reducing the types of raw materials. In the method provided by the present invention, only three raw materials and energy sources, such as natural gas, electricity and tap water, are all raw materials for complete urban pipeline network infrastructure, which greatly reduces the application difficulty. Therefore, the method provided by the present invention has the characteristics of simple and convenient operation, small equipment footprint, high energy efficiency, and wide application prospects.
  • the conversion unit in the present invention is a one-step conversion reaction using a microchannel conversion reactor. Compared with the combination of low-temperature conversion reaction and high-temperature conversion reaction in the prior art, it saves a lot of equipment space and energy consumption, and The reaction efficiency is high.
  • the preferred shift catalyst of the present invention is a raspberry-type microsphere cavity catalyst, which improves the problems of uneven pressure difference and large pressure difference in the existing microchannel reactor, and significantly improves the overall reaction activity and selectivity.
  • Fig. 1 is a schematic flow chart of the method for producing hydrogen by steam reforming natural gas provided by the present invention.
  • a raw material natural gas b hydrogen; c raw water; d air; e product gas; f analytical gas; g heat transfer medium; 1 natural gas compressor; 2 preheater; 3 natural gas desulfurization unit; 4 raw water purification unit ; 5 steam production unit; 6 preheater; 7 reforming unit; 8 heat exchanger; 9 conversion unit; 10 PSA unit.
  • Fig. 2 is an SEM photograph of raspberry-type oxide microspheres in Example 2 of the present invention.
  • pressure refers to gauge pressure, unless indicated to the contrary.
  • the method for producing hydrogen by steam reforming natural gas includes the following steps:
  • the raw material natural gas a and hydrogen b are mixed and enter the natural gas compressor 1, pressurized to a certain pressure, and then enter the preheater 2 for preheating.
  • the pressurized and preheated mixed gas of natural gas and hydrogen enters the natural gas desulfurization unit 3, and sequentially enters the hydrodesulfurization reactor and the adsorption desulfurization reactor.
  • the raw material water c is purified in the raw water purification unit 4 to obtain deionized water; the obtained deionized water is heated in the water vapor production unit 5 to generate deionized water vapor.
  • the obtained desulfurized natural gas and the obtained deionized water vapor enter the reforming unit 7 after heat exchange through the heat exchanger 6, where a reforming reaction occurs in the reforming reactor to generate reformed gas.
  • the fuel gas used in the reformer is the raw material natural gas a and/or the desorbed gas f of the PSA unit, and the combustion-supporting agent used is air d.
  • the microchannel shift reactor adopts shift gas.
  • the heating medium g conducts heat transfer;
  • the shift gas obtained is separated in the PSA unit 10 to obtain desorption gas f and product gas e, and the product gas e obtained is high-purity hydrogen.
  • volume values of the gas and liquid used are all values at 25° C. and 1 standard atmospheric pressure.
  • the sulfur mole fraction in natural gas is 1 ⁇ 10 -4 and the pressure is 0.3 MPa.
  • the hydrodesulfurization reactor is filled with a hydrodesulfurization catalyst, the active components of the hydrodesulfurization catalyst are Co and Mo, and the mass ratio is 2:1; the carrier is alumina, and the ratio of the active component to the carrier is 0.2:1.
  • the reaction temperature in the hydrodesulfurization reactor is 320°C, the reaction pressure is 2 MPa, and the gas space velocity is 4000 h -1 .
  • the mole fraction of organic sulfur in the natural gas is not more than 2 ⁇ 10 -8 .
  • the natural gas after hydrodesulfurization continues to pass into the adsorption desulfurization reactor.
  • the adsorption desulfurization reactor is filled with an adsorption desulfurization catalyst, and the adsorption desulfurization catalyst is ZnO.
  • the reaction temperature in the adsorption desulfurization reactor is 320°C
  • the reaction pressure is 2 MPa
  • the gas space velocity is 4000 h -1 .
  • the molar fraction of total sulfur in the natural gas after adsorption desulfurization is not more than 1.5 ⁇ 10 -8 .
  • deionized water is obtained after removing cations, and deionized water vapor is generated after heating the deionized water.
  • the desulfurized natural gas and deionized water vapor are mixed and passed into the preheater, and the volume ratio of natural gas and water vapor is 1:3. After preheating, the temperature of natural gas and water vapor is 600°C.
  • the reforming unit uses a square box furnace, and the heating source is natural gas and PSA unit desorption gas combustion; the reforming reactor uses a tube reactor with 8 tubes and a diameter of 14mm; the reforming reactor is filled with catalyst ,
  • the active center of the catalyst is Ni, the carrier is alumina, the mass ratio of the active center and the carrier is 0.3:1; the pressure of the reforming reaction is 2.0MPa, the reaction inlet temperature is 600°C, the outlet temperature is 850°C, and the gas space velocity At 5000h -1 .
  • Table 1 The composition of reformed gas at the outlet of the reforming unit
  • the reformed gas in the reforming unit is cooled down to 220°C and enters the conversion unit.
  • the conversion unit uses a microchannel reactor, the reaction channel size is 0.5mm*5mm*300mm, the cross section is a rounded rectangle with 0.5mm*5mm, and the number of channels is 40.
  • the channel is filled with a shift catalyst (in a fixed bed catalyst packing method), the diameter of the shift catalyst is between 40 and 200 ⁇ m, and the shape of the catalyst is microsphere (solid); the active centers of the catalyst are CoO, MoO and K 2 O, weight ratio It is 1:1:1, the carrier is alumina, and the weight ratio of the active center to the carrier is 1:1; the reaction pressure of the shift reaction is 2MPa, the reaction temperature is 220°C, and the gas space velocity is 4000h -1 . After 2000 hours of reaction, the pressure difference of the microchannel shift reactor was 0.86 MPa. The dry basis volume fraction of CO in the outlet gas is 2.4%.
  • PSA unit adsorbents include molecular sieves, alumina and activated carbon.
  • the volume fraction of hydrogen in the product gas of the PSA unit is 99.999%.
  • the dispersion slurry was stirred and aged at 35°C for 1.5 hours.
  • the aging dispersion slurry is sent to a spray drying device for drying and forming to obtain raspberry-type oxide microspheres, wherein the atomization pressure of the spray drying is 0.3 to 3.0 MPa, and the pressure in the tower is -0.0010 to -0.0090 MPa; the initial drying air enters The temperature is 580°C, and the air outlet temperature at the end of drying is 160°C.
  • the obtained raspberry-type oxide microspheres are used as a carrier, and an impregnation solution of Co salt, Mo salt and K salt is prepared for impregnation, dried at a temperature of 120°C, and calcined at 420°C to obtain a raspberry-type microsphere cavity catalyst.
  • the active center of the catalyst is CoO, MoO and K 2 O, the weight ratio is 1:1:1, the support is alumina, and the weight ratio of the active center to the support is 1:1.
  • the average particle diameter of the raspberry-type microsphere cavity catalyst is 150 ⁇ m, the average diameter of the hollow structure is 45 ⁇ m, and the pore diameter of the macropores is 20 ⁇ m.
  • the conversion unit uses a microchannel reactor, the reaction channel size is 0.5mm*5mm*300mm, the cross section is a rounded rectangle with 0.5mm*5mm, and the number of channels is 40.
  • the channel is filled with the raspberry microsphere cavity catalyst obtained above; the reaction pressure of the shift reaction is 2MPa, the reaction temperature is 220°C, and the gas space velocity is 4000h -1 . After 2000 hours of reaction, the pressure difference of the microchannel shift reactor was 0.13 MPa. The dry basis volume fraction of CO in the outlet gas is 0.3%.
  • the shift gas obtained by using the raspberry-type microsphere cavity catalyst contains less CO, which can reduce the pressure swing adsorption unit
  • the volume is conducive to the miniaturization of the entire device.
  • PSA unit adsorbents include molecular sieves, alumina and activated carbon.
  • the volume fraction of hydrogen in the product gas of the PSA unit is 99.999%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

一种天然气水蒸汽重整制氢的系统及其方法,所述系统包括天然气压缩及预热单元、天然气脱硫单元、原料水净化单元、制水蒸汽单元、重整单元、变换单元、PSA单元。含硫天然气经过压缩和预热,在天然气脱硫单元脱除绝大部分硫元素;水经过原料水净化单元脱除离子,加热发生蒸汽;脱硫天然气和水蒸汽混合预热后,进入重整单元中反应产生重整气;重整气降温后,在变换单元的微通道变换反应器中将大部分一氧化碳转化为氢气;变换气在PSA单元中分离出高纯氢气。本发明提供的天然气水蒸汽重整制氢的系统及其方法具有能耗低,氢气纯度高的优点。

Description

一种天然气水蒸汽重整制氢的系统及其方法 技术领域
本发明涉及一种天然气水蒸汽重整制氢的系统及其方法。
背景技术
氢气是一种碳排放为零的清洁能源载体,可以很方便的转化为电能,作为车用电动机动力或小型家用电源使用。天然气水蒸汽重整是成熟的工业过程,但是有着规模大的特点。一般的,一般工业上单系列的产氢气规模为100000Nm 3/h,而单个加氢站的用氢量在50至1000Nm 3/h,现有天然气重整工艺过程无法适应单个加氢站的用氢需求。
CN105680072B公开了一种中小规模分布式天然气水蒸汽重整制氢系统及方法,集成式天然气水蒸汽重整制氢反应器主体由原料水蒸发器、天然气预热器、燃烧腔、重整腔、重整气冷却器、燃烧烟气余热冷却器、重整气余热冷却器、燃料燃烧器等构成。
CN205151762U一种天然气重整制氢系统,包括通过管路顺序连通的加氢反应器、脱硫罐、转化炉、高温变换器及变压吸附装置,所述的加氢反应器入口与天然气原料管线连通,所述的变压吸附装置出口为可直接供应的天然气重整氢气产品管线,本系统还包括HYCO合成气分离净化装置,该HYCO合成气分离净化装置入口与HYCO合成气原料管线连通,出口分别与合成气分离净化氢气产品管线与CO产品管线连通,所述的天然气重整氢气产品管线上设有与天然气原料管线连通的加氢管线,所述的合成气分离净化氢气产品管线上设有与加氢管线连通的引氢管线。
CN105174214A公开了一种应用流化床的天然气水蒸汽重整制氢的方法及装置,包括燃烧室本体、置于燃烧室本体下方的燃烧器、装有催化剂的反应管、分别呈螺旋状缠绕在燃烧室本体外壁的天然气换热管和水换热管、呈螺旋状缠绕在燃烧室本体内壁的内换热盘管;通入天然气换热管的天然气以及通入水换热管的水,分别自下而上进入混合阀内混合,混合后再进入进料管,然后自上而下螺旋式经过内换热盘管,最后流入反应管内。
综上,现有技术中天然气水蒸汽重整制氢系统存在小型化困难、能耗高、装置占地大等问题。
发明内容
本发明的目的是提供一种天然气水蒸汽重整制氢的系统及其方法,以 解决现有技术中存在的无法在较小的空间和体积内实现高效的制氢效率的问题。更特别地,本发明的目的是提供一种小型(氢气产量小于10000Nm 3/h,例如小于5000Nm 3/h、小于2000Nm 3/h、小于1000Nm 3/h、小于500Nm 3/h)天然气水蒸汽重整制氢的系统及其方法,以解决现有技术中存在的无法在较小的空间和体积内实现高效的制氢效率的问题。
本发明提供的天然气水蒸汽重整制氢的系统,包括:天然气压缩及预热单元、天然气脱硫单元、原料水净化单元、制水蒸汽单元、重整单元、变换单元、变压吸附(PSA)单元,
所述天然气压缩及预热单元是将天然气进行升压和预热的单元;
所述天然气脱硫单元是将天然气中含硫化合物脱除,得到脱硫天然气的单元,天然气压缩及预热单元的出口与天然气脱硫单元的入口连通;
所述原料水净化单元是将原料水进行净化,得到去离子水的单元;
制水蒸汽单元是将去离子水加热发生蒸汽得到去离子水蒸汽的单元,原料水净化单元的出口与制水蒸汽单元的入口连通;
重整单元是将脱硫天然气和去离子水蒸汽发生重整反应产生重整气的单元,天然气脱硫单元的出口、制水蒸汽单元的出口与重整单元的入口连通;
变换单元是将重整气中一氧化碳转化为氢气得到变换气的单元,变换单元内设置至少一个微通道变换反应器,微通道变换反应器内装填变换催化剂,重整单元的出口与变换单元的入口连通;
PSA单元是将变换气分离得到解吸气和产品气的单元,产品气为氢气,变换单元的出口与PSA单元的入口连通,PSA单元设置解吸气出口和产品气出口。
在本发明中,采用的原料天然气包括但不限于采油采气井口天然气、长输管道天然气、民用管道天然气、CNG、LNG等各种来源和形态的以甲烷为主要成分的天然气。天然气压缩单元的进口压力在0.01至1.5MPa之间。天然气预热单元中选自电加热、导热油炉加热、蒸汽加热或者与其他物料换热中的一种或多种方式;优选地,使用重整单元废烟气、重整单元的产物或者变换单元的产物与常温原料天然气换热。
在本发明其中一种优选的实施方式中,天然气压缩及预热单元的出口压力为1.0至6.0MPa,出口温度为200至380℃。
在本发明其中一种优选的实施方式中,所述天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,加氢脱硫反应区内装填加氢脱硫催化剂,吸附脱硫反应区内装填吸附脱硫催化剂;加氢脱硫反应区和吸附脱硫反应区分别设置在两个不同的反应器内,或者集成在一个反应器内。
进一步优选,所述加氢脱硫催化剂包括载体和金属活性组分,所述金 属活性组分选自VIB族和/或VIII族金属中的一种或多种,优选为选自Co、Mo、Ni和W中的一种或多种;载体为选自耐热无机氧化物、分子筛中的一种或多种,所述金属活性组分与载体的质量比在0.01至0.5:1之间;优选耐热无机氧化物选自氧化铝、氧化硅、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中的一种或几种。
进一步优选,所述吸附脱硫催化剂为选自Fe 2O 3、ZnO、MgO、CaO和Na 2O中的一种或多种的金属氧化物,优选为ZnO和/或Fe 2O 3
在本发明中,优选脱硫天然气中总硫的摩尔分数不大于1.5×10 -8
在本发明其中一种优选的实施方式中,所述原料水净化单元中用离子交换、反渗透和电脱盐中一种或多种方式去除水中离子,所得去离子水的电导率小于1.0μS/cm。所述原料水包括但不限于城乡自来水、地下水和工业循环水等。
在本发明其中一种优选的实施方式中,制水蒸汽单元中采用电加热、导热油炉加热、蒸汽加热和/或与其他物料换热中的一种或多种方式。优选地,使用重整单元废烟气、重整单元的产物、或者变换单元的产物进行换热。制水蒸汽单元所得去离子水蒸汽的温度在150至250℃之间,压力在0.5至4.0MPa之间。
在本发明其中一种优选的实施方式中,所述重整单元内设置列管式重整反应器,列管的直径为8至200mm,列管的数量为1至48根,列管内装填重整催化剂;重整催化剂的金属活性组分为选自VIB族和/或VIII族金属中的一种或多种,优选为Ni。进一步优选重整催化剂的载体为氧化铝、镁铝尖晶石、铝酸钙、其它金属氧化物中的一种或多种;金属活性组分与载体的质量比在0.1至1:1之间。
在本发明其中一种优选的实施方式中,所述重整单元内设置燃烧炉,所述燃烧炉为选自方箱炉、圆桶炉、梯台炉、顶烧炉或侧烧炉中的一种;所述燃烧炉设置燃料气入口。
在本发明其中一种优选的实施方式中,所述重整单元内脱硫天然气和去离子水蒸汽的预热方式为辐射加热、电加热、导热油炉加热、蒸汽加热和/或与其他物料换热中的一种或多种方式;所述脱硫天然气和去离子水蒸汽的预热在重整单元前进行,或者在重整单元内进行,或者重整单元前和重整单元内同时进行;优选地,在重整炉内或前设置预热换热器,预热换热器入口与脱硫天然气管线连通,预热换热器入口与去离子水蒸汽管线连通,预热换热器出口与列管式重整反应器的入口连通;本发明优选使用重整炉的燃气高温火焰辐射对脱硫天然气和去离子水蒸汽进行加热,加热后,脱硫天然气和去离子水蒸汽的温度在350至750℃之间。
优选地,燃料气入口与原料天然气管线连通,解吸气出口与燃料气入 口连通。在本发明中,某处与某处连通是指两处通过管道连接,使得两处之间能够进行物质传递,然而需要指出的是,在连接管道上能够设置阀门等装置使得物质传递是单向、双向或多向的。按照常规方式设置阀门等装置,本文不就此进行赘述。
在本发明其中一种优选的实施方式中,所述重整单元出口重整气的冷却为水介质换热、导热油换热、与反应物料换热等;优选地,重整单元出口重整气与制水蒸汽单元的去离子水进行换热,同时使制水蒸汽单元的去离子水升温产生水蒸汽。重整单元出口重整气的温度在750至950℃之间,冷却后重整气的温度在200至380℃之间。
在本发明其中一种优选的实施方式中,所述微通道变换反应器内设置反应通道,所述反应通道长度为10至1000mm;所述的反应通道的最小边长为0.05至5mm,优选为0.1至3mm;所述最小边长是指单一通道横截面上内壁之间的最小的高度或宽度。
进一步优选,当微通道变换反应器的反应通道截面为圆形时,通道直径在0.3至5mm之间;当微通道变换反应器的反应通道截面为椭圆形时,椭圆的长轴在0.3至5mm之间,短轴在0.1至3mm之间;当微通道变换反应器的反应通道截面为矩形时,矩形的长边在0.3至5mm之间,短边在0.1至3mm之间。
在本发明其中一种优选的实施方式中,所述微通道变换反应器在反应器内部和/或外部具有移热介质通道;所述移热介质通道的长度在10至1000mm之间,所述的移热介质通道的最小边长为0.05至5mm;所述最小边长是指单一通道横截面上内壁之间的最小的高度或宽度。优选移热介质通道内的移热介质为原料天然气或原料水。
进一步优选,当微通道变换反应器的移热介质通道截面为圆形时,通道直径在0.3至5mm之间;当微通道变换反应器的移热介质通道截面为椭圆形时,椭圆的长轴在0.3至5mm之间,短轴在0.1至3mm之间;当微通道变换反应器的移热介质通道截面为矩形时,矩形的长边在0.3至5mm之间,短边在0.1至3mm之间。
在本发明其中一种优选的实施方式中,所述变换催化剂的颗粒直径为20至500μm;所述变换催化剂包括载体和金属活性组分,载体为选自耐热无机氧化物、分子筛中的一种或多种;所述金属活性组分与载体的质量比在0.1至10:1之间。
进一步优选,变换催化剂中金属活性组分为选自CoO、MoO、Fe 2O 3、Cr 2O 3和K 2O中一种或多种的混合物;所述耐热无机氧化物选自氧化铝、氧化锌、氧化铜、氧化硅、氧化锆、氧化钛、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中中的一种或几种。
进一步优选,变换催化剂为树莓型微球空腔催化剂,树莓型微球空腔催化剂为表面具有一个大孔的中空微球,所述中空微球内部具有一个中空结构,所述大孔与所述中空结构贯通形成一端开口的空腔;微球的粒径为60至500μm,中空结构的直径为10至200μm,优选为20至150μm;大孔的孔径为5至100μm。
进一步优选,树莓型微球空腔催化剂的壳层厚度为1至100μm;树莓型微球空腔催化剂的球形度为0.50至0.99。
Figure PCTCN2021092067-appb-000001
其中V p为颗粒体积,S p为颗粒表面积。
在本发明中并不限定树莓型微球空腔催化剂的制备方法,任何能得到上述结构的制备方法都适用。
本发明在其中一种优选的实施方式中,所述树莓型微球空腔催化剂可由下述制备方法制备得到:
将硝酸盐、胶溶剂、造孔剂、耐热无机氧化物和/或其前驱体依次加入到分散剂中并搅拌,得到分散浆液;
对所述分散浆液进行老化处理;以及
将老化后的所述分散浆液送入干燥装置中,在进风温度为400至1200℃,优选为450至700℃;出风温度为100至300℃,优选为120至200℃的条件下,进行干燥成型,得到所述树莓型氧化物微球,再经过焙烧后得到树莓型微球空腔催化剂。
在优选的情况下,所述硝酸盐选自硝酸铝、硝酸锆、硝酸镧和硝酸钇中的一种或多种。
在优选的情况下,所述胶溶剂选自酸类、碱类和盐类中的一种或多种。
在优选的情况下,所述造孔剂选自淀粉、合成纤维素、聚合醇和表面活性剂中的一种或多种。
在一些实施例中,所述耐热无机氧化物和/或其前驱体选自铝源、锌源、铜源、硅源、锆源和钛源中的一种或多种,其中所述铝源选自拟薄水铝石、醇铝、硝酸铝、硫酸铝、氯化铝和偏铝酸钠中的一种或多种,所述锌源选择氯化锌、硝酸锌、硫酸锌、高氯酸锌、硼氟酸锌中的一种或多种,所述铜源选自氯化铜、氯化亚铜、硝酸铜、硫酸铜、碱式碳酸铜中的一种或多种,所述硅源选自硅酸酯、硅酸钠、水玻璃和硅溶胶中的一种或多种,所述锆源选自二氧化锆、四氯化锆、氯氧化锆、氢氧化锆、硫酸锆、磷酸锆、硝酸氧锆、硝酸锆、碱式碳酸锆和四丁氧基锆中的一种或多种,所述钛源选自二氧化钛、偏钛酸、硝酸钛、硫酸氧钛、二氯化钛、三氯化钛、 四氯化钛、氯化铝钛、钛酸四乙酯,钛酸四丁酯、钛酸四正丙酯和钛酸四异丙酯中的一种或多种。
在本发明其中一种实施方式中,在制备浆液时,同时加入氧化铬、氧化钼、氧化铁、氧化钴、氧化钾等氧化物,或者加入可以形成这些氧化物的前驱体。
在本发明其中一种实施方式中,采用浸渍法将活性金属(活性金属是指:铬、钼、铁、钴和钾中的一种或多种,例如活性金属的可溶盐或其前驱体、活性金属的氧化物或其前驱体、活性金属的可溶性络合物)浸渍到树莓型氧化物微球上,采用的浸渍方法是本领域常规的浸渍方法。例如,可以是过量液浸渍、孔饱和法浸渍法。其中,通过对含活性金属组分的浸渍溶液的浓度、用量或载体用量的调节和控制,可以制备出指定含量的催化剂,这是本领域技术人员所容易理解和实现的。
在优选的情况下,所述分散剂选自水、醇类、酮类和酸类中的一种或多种。
在优选的情况下,所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的质量比为(10-500):(1-10):(10-500):(10-1000)。
在一些实施例中,还包括向所述分散剂中加入爆破剂,所述爆破剂选自苦味酸、三硝基甲苯、雷酸汞、消化甘油、硝化棉、达纳炸药、黑索金、叠氮化铅和C4塑胶炸药中的一种或多种。
在优选的情况下,所述爆破剂的加入量为所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的总干基重量的0至1%。
在优选的情况下,所述干燥装置为闪蒸干燥装置或喷雾干燥装置。
在优选的情况下,所述老化处理的温度为0至90℃,进一步优选为20至60℃。
在优选的情况下,所述焙烧的温度为400至600℃。
在本发明中,优选的树莓型微球空腔催化剂具有活性高、选择性好,稳定性强的特点。改善了现有微通道反应器内压差不均,压差大的问题,并提高了整体反应活性和选择性。
在本发明中,优选所得变换气中的CO的体积分数为0.01%至1%。
在本发明其中一种优选的实施方式中,PSA单元的吸附剂包含硅胶、硅质岩、沸石、氧化铝、活性炭、分子筛中的一种或多种。PSA单元产生的气体包括解吸气和产品气,其中产品气中氢气的体积分数不小于99.97%。
本发明还提供一种天然气水蒸汽重整制氢的方法,所述方法使用本发明的天然气水蒸汽重整制氢的系统并且包括:
天然气进入天然气压缩及预热单元进行升压和预热;
加压和预热后天然气进入天然气脱硫单元,将天然气中含硫化合物脱除得到脱硫天然气;
原料水在原料水净化单元进行净化得到去离子水;
所得去离子水在制水蒸汽单元加热发生为去离子水蒸汽;
所得脱硫天然气和所得去离子水蒸汽在重整单元发生重整反应生成重整气;
所得重整气进入变换单元,在微通道变换反应器内与变换催化剂接触,将重整气中一氧化碳转化为氢气得到变换气;
所得变换气在PSA单元分离得到解吸气和产品气。
在优选的情况下,天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,加氢脱硫反应区的工艺条件为:反应温度280至360℃,反应压力0.1至6MPa,气体空速1000h至50000h -1,进料混合气中的氢气体积分数为1%至15%;吸附脱硫反应区的工艺条件为:反应温度在280至360℃,反应压力0.1至6MPa,气体空速500至20000h -1
在优选的情况下,制水蒸汽单元所得去离子水蒸汽的温度在150至250℃之间,压力在0.5至4.0MPa之间。
在优选的情况下,重整单元的工艺条件为:反应压力在0.1至6.0MPa之间,反应温度在550至950℃之间,气体空速在1000至20000h -1之间;重整原料中水蒸汽和甲烷的摩尔比例在2.0至4.0:1之间。
在优选的情况下,重整单元的重整气经过冷却后进入变换单元,重整单元出口重整气的温度在750至950℃之间,冷却后重整气的温度在200至380℃之间。
在优选的情况下,变换单元的变换反应为单段等温反应的操作模式,反应温度在200至380℃之间,反应压力在0.1至6.0MPa之间,气体空速在500至20000h -1之间。
进一步优选,变换反应器内反应物料的进出口温差小于20℃。
在优选的情况下,PSA单元所得解吸气包括甲烷、二氧化碳、一氧化碳和氢气;进一步优选所得解吸气引入重整单元的燃烧炉中,作为燃料气使用。PSA单元所得产品气中氢气的体积分数不小于99.97%。
本发明与现有技术相比,优点在于:
(1)本发明提供的天然气水蒸汽重整制氢的系统和方法具有设备占地小,甲烷转化率高,能量利用效率高的特点,不需要额外提供能源,甲烷既作为重整反应的原料,又作为重整反应的供热热源,减少了原料种类。本发明提供的方法中,仅天然气、电力和自来水等三种原料和能源,且都是城市管网基础设施完备的原料,大大降低了应用难度。因此,本发明提供的方法具有简便易行、设备占地小、能量效率高的特点,应用前景广泛。
(2)本发明中的变换单元是采用微通道变换反应器的一步法变换反应,与现有技术中低温法变换反应和高温法变换反应结合相比,节省了大量设备空间和能耗,并且反应效率高。
(3)本发明优选的变换催化剂为树莓型微球空腔催化剂,改善了现有微通道反应器内压差不均,压差大的问题,并明显提高了整体反应活性和选择性。
附图说明
图1是本发明提供的天然气水蒸汽重整制氢方法的流程简图。
图例说明:a原料天然气;b氢气;c原料水;d空气;e产品气;f解析气;g移热介质;1天然气压缩机;2预热器;3天然气脱硫单元;4原料水净化单元;5制水蒸汽单元;6预热器;7重整单元;8换热器;9变换单元;10PSA单元。
图2是本发明实施例2中树莓型氧化物微球的SEM照片。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
下面结合附图对本发明所提供的天然气水蒸汽重整制氢的系统和方法予以进一步的说明,但本发明并不因此受到任何限制。图中省略了许多天然气水蒸汽重整制氢的辅助设备,但这对本领域普通技术人员是公知的。
在本文中,压力是指表压,除非相反指出。
如图1所示,本发明提供的天然气水蒸气重整制氢的方法,包括以下步骤:
原料天然气a和氢气b混合后进入天然气压缩机1,增压到一定压力,然后进入预热器2预热。
加压和预热后的天然气和氢气的混合气进入天然气脱硫单元3,依次进入加氢脱硫反应器和吸附脱硫反应器。
原料水c在原料水净化单元4进行净化得到去离子水;所得去离子水在制水蒸汽单元5加热发生为去离子水蒸汽。
所得脱硫天然气和所得去离子水蒸汽经换热器6换热后进入重整单元7,在重整反应炉内发生重整反应生成重整气。重整炉所用燃料气为原料天然气a和/或PSA单元的解吸气f,所用助燃剂为空气d。
所得重整气经过换热器8换热后,进入变换单元9,在微通道变换反应器内与变换催化剂接触,将重整气中一氧化碳转化为氢气得到变换气, 微通道变换反应器采用移热介质g进行传热;
所得变换气在PSA单元10分离得到解吸气f和产品气e,所得产品气e为高纯氢气。
以下结合具体的实施例进一步对本发明的具体特征和使用效果进行说明,但并不因此而限制本发明。
下面结合实施例对本发明的系统和方法予以进一步地说明,但本发明并不因此而限制。
在本发明中,在未作相反说明的情况下,使用的气体和液体的体积数值均为25℃和1个标准大气压下的数值。
实施例1
使用城市管道天然气作为原料气,天然气中的硫摩尔分数在1×10 -4,压力在0.3MPa。
使用气体压缩机将天然气压缩至2.0MPa;使用电加热将天然气预热至320℃,加入10%体积分数的氢气,然后通入加氢脱硫反应器。
加氢脱硫反应器中装填加氢脱硫催化剂,加氢脱硫催化剂的活性组分为Co和Mo,质量比例为2:1;载体为氧化铝,活性组分与载体的比例为0.2:1。加氢脱硫反应器中反应温度为320℃,反应压力为2MPa,气体空速为4000h -1。天然气经过加氢脱硫反应器后,天然气中的有机硫的摩尔分数不大于2×10 -8。加氢脱硫后的天然气继续通入吸附脱硫反应器。
吸附脱硫反应器中装填吸附脱硫催化剂,吸附脱硫催化剂为ZnO。吸附脱硫反应器中反应温度为320℃,反应压力为2MPa,气体空速为4000h -1。天然气经过吸附脱硫反应器后,吸附脱硫后天然气中总硫的摩尔分数不大于1.5×10 -8
使用城市自来水作为原料,脱除阳离子后,得到去离子水,去离子水加热后生成去离子水蒸汽。脱硫后的天然气与去离子水蒸汽混合通入预热器,天然气和水蒸汽的体积比例为1:3。预热后天然气和水蒸汽的温度在600℃。
重整单元使用方箱炉,供热热源为天然气和PSA单元解吸气燃烧;重整反应器使用列管反应器,列管的数量在8根,直径在14mm;重整反应器内装填催化剂,催化剂的活性中心为Ni,载体为氧化铝,活性中心和载体的质量比为0.3:1;重整反应的压力为2.0MPa,反应入口温度为600℃,出口温度为850℃,气体空速在5000h -1
重整单元出口重整气(不列出水蒸气)的组成见表1。
表1重整单元出口重整气体组成
气体组成 体积分数/%
CH 4 2.5
H 2 77.3
CO 9.4
CO 2 10.8
重整单元的重整气经冷却降温至220℃,进入变换单元。
变换单元使用微通道反应器,反应通道尺寸为0.5mm*5mm*300mm,截面为0.5mm*5mm的圆角矩形,通道数目为40个。通道内装填变换催化剂(以固定床催化剂的装填方式),变换催化剂直径在40至200μm之间,催化剂的外形为微球状(实心);催化剂的活性中心为CoO、MoO和K 2O,重量比例为1:1:1,载体为氧化铝,活性中心和载体的重量比例为1:1;变换反应的反应压力在2MPa,反应温度在220℃,气体空速在4000h -1。反应2000小时后,微通道变换反应器的压差为0.86MPa。出口气中CO的干基体积分数为2.4%。
变换单元出口变换气(不列出水蒸气)的组成见表2。
表2变换单元出口变换气组成
气体组成 体积分数/%
CH 4 2.3
H 2 76.3
CO 2.4
CO 2 19.0
变换单元出口气降温至40℃后,通入PSA单元。
PSA单元吸附剂包括分子筛、氧化铝和活性炭。
PSA单元产品气中氢气的体积分数为99.999%。
实施例2
本实施例采用的微通道变换催化剂的制备方法如下:
在反应釜中加入水20kg,向其中加入硝酸铝1.2kg,之后加入浓硝酸200g,再加入2.3kg的PEG4000,最后加入拟薄水铝石粉4kg,搅拌均匀并研磨得到分散浆液。
将分散浆液在35℃搅拌老化1.5个小时。
将老化后的分散浆液送入喷雾干燥装置中干燥成型得到树莓型氧化物微球,其中喷雾干燥的雾化压力为0.3至3.0MPa,塔内压力-0.0010至-0.0090MPa;干燥初始入风温度为580℃,干燥终止出风温度为160℃。
树莓型氧化物微球的SEM照片如图2所示。
将所得树莓型氧化物微球作为载体,配置Co盐、Mo盐和K盐的浸渍液进行浸渍,经过120℃温度干燥,420℃焙烧后,得到树莓型微球空腔催化剂。该催化剂的活性中心为CoO、MoO和K 2O,重量比例为1:1:1,载体为氧化铝,活性中心和载体的重量比例为1:1。树莓型微球空腔催化 剂平均粒径150μm,中空结构的平均直径为45μm,大孔的孔径为20μm。
变换单元使用微通道反应器,反应通道尺寸为0.5mm*5mm*300mm,截面为0.5mm*5mm的圆角矩形,通道数目为40个。通道内装填上述所得树莓型微球空腔催化剂;变换反应的反应压力在2MPa,反应温度在220℃,气体空速在4000h -1。反应2000小时后,微通道变换反应器的压差为0.13MPa。出口气中CO的干基体积分数为0.3%。
变换单元出口变换气(不列出水蒸气)的组成见表2。
表3变换单元出口变换气组成
气体组成 体积分数/%
CH 4 2.1
H 2 75.9
CO 0.3
CO 2 21.7
由表3的结果可见,相比于实施例1中使用的实心微球状变换催化剂,使用树莓型微球空腔催化剂所获得的变换气中含有更少的CO,从而能够降低变压吸附单元的体积,有利于整套装置的小型化。
变换单元出口气降温至40℃后,通入PSA单元。
PSA单元吸附剂包括分子筛、氧化铝和活性炭。
PSA单元产品气中氢气的体积分数为99.999%。

Claims (30)

  1. 一种天然气水蒸汽重整制氢的系统,其包括:天然气压缩及预热单元、天然气脱硫单元、原料水净化单元、制水蒸汽单元、重整单元、变换单元、PSA单元,其中,
    变换单元是将重整气中一氧化碳转化为氢气得到变换气的单元,变换单元内设置至少一个微通道变换反应器,微通道变换反应器内装填变换催化剂,重整单元的出口与变换单元的入口连通。
  2. 按照前述权利要求中任一项所述的系统,其特征在于,
    所述天然气压缩及预热单元是将天然气进行升压和预热的单元;
    所述天然气脱硫单元是将天然气中含硫化合物脱除,得到脱硫天然气的单元,天然气压缩及预热单元的出口与天然气脱硫单元的入口连通;
    所述原料水净化单元是将原料水进行净化,得到去离子水的单元;
    制水蒸汽单元是将去离子水加热发生蒸汽得到去离子水蒸汽的单元,原料水净化单元的出口与制水蒸汽单元的入口连通;
    重整单元是将脱硫天然气和去离子水蒸汽发生重整反应产生重整气的单元,天然气脱硫单元的出口、制水蒸汽单元的出口与重整单元的入口连通;
    PSA单元是将变换气分离得到解吸气和产品气的单元,产品气为氢气,变换单元的出口与PSA单元的入口连通,PSA单元设置解吸气出口和产品气出口。
  3. 按照前述权利要求中任一项所述的系统,其特征在于,天然气压缩及预热单元的出口压力为1.0至6.0MPa,出口温度为250至380℃。
  4. 按照前述权利要求中任一项所述的系统,其特征在于,所述天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,加氢脱硫反应区内装填加氢脱硫催化剂,吸附脱硫反应区内装填吸附脱硫催化剂;加氢脱硫反应区和吸附脱硫反应区分别设置在两个不同的反应器内,或者集成在一个反应器内。
  5. 按照权利要求4所述的系统,其特征在于,所述加氢脱硫催化剂包括载体和金属活性组分,所述金属活性组分选自VIB族和/或VIII族金属中的一种或多种,优选为选自Co、Mo、Ni和W中的一种或多种;载体为选自耐热无机氧化物、分子筛中的一种或多种,所述金属活性组分与载体的质量比在0.01至0.5:1之间;优选耐热无机氧化物选自氧化铝、氧化硅、氧化锆、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中的一种或几种。
  6. 按照权利要求4所述的系统,其特征在于,所述吸附脱硫催化剂 为选自Fe 2O 3、ZnO、MgO、CaO和Na 2O中的一种或多种的金属氧化物,优选为ZnO和/或Fe 2O 3
  7. 按照前述权利要求中任一项所述的系统,其特征在于,所述原料水净化单元中用离子交换、反渗透和电脱盐中一种或多种方式去除水中离子,所得去离子水的电导率小于1.0μS/cm。
  8. 按照前述权利要求中任一项所述的系统,其特征在于,所述重整单元内设置列管式重整反应器,列管的直径为8至200mm,列管的数量为1至48根,列管内装填重整催化剂;重整催化剂的金属活性组分为选自VIB族和/或VIII族金属中的一种或多种,优选为Ni。
  9. 按照权利要求8所述的系统,其特征在于,所述重整单元内设置燃烧炉,所述燃烧炉为选自方箱炉、圆桶炉、梯台炉、顶烧炉或侧烧炉中的一种;所述燃烧炉设置燃料气入口;所述脱硫天然气和去离子水蒸汽的预热在重整单元前进行,或者在重整单元内进行,或者重整单元前和重整单元内同时进行;优选在重整单元内或前设置预热换热器,预热换热器入口分别与来自所述天然气脱硫单元的脱硫天然气管线和来自所述制水蒸汽单元的去离子水蒸汽管线连通,换热器出口与列管式重整反应器的入口连通。
  10. 按照权利要求9所述的系统,其特征在于,燃料气入口与原料天然气管线连通,解吸气出口与燃料气入口连通。
  11. 按照前述权利要求中任一项所述的系统,其特征在于,所述微通道变换反应器内设置反应通道,所述反应通道长度为10至1000mm;所述的反应通道的最小边长为0.05至5mm,优选为0.1至3mm;所述最小边长是指单一通道横截面上内壁之间的最小的高度或宽度。
  12. 按照权利要求11所述的系统,其特征在于,当微通道变换反应器的反应通道截面为圆形时,通道直径在0.3至5mm之间;当微通道变换反应器的反应通道截面为椭圆形时,椭圆的长轴在0.3至5mm之间,短轴在0.1至3mm之间;当微通道变换反应器的反应通道截面为矩形时,矩形的长边在0.3至5mm之间,短边在0.1至3mm之间。
  13. 按照权利要求11所述的系统,其特征在于,所述微通道变换反应器在反应器内部和/或外部具有移热介质通道;所述移热介质通道的长度在10至1000mm之间,所述的移热介质通道的最小边长为0.05至5mm;优选移热介质通道内的移热介质为原料天然气或原料水。
  14. 按照前述权利要求中任一项所述的系统,其特征在于,所述变换催化剂的颗粒直径为20至500μm;所述变换催化剂包括载体和金属活性组分,载体为选自耐热无机氧化物、分子筛中的一种或多种;所述金属活性组分与载体的质量比在0.1至10:1之间。
  15. 按照权利要求14所述的系统,其特征在于,变换催化剂中金属活性组分为选自CoO、MoO、Fe 2O 3、Cr 2O 3和K 2O中一种或多种的混合物;所述耐热无机氧化物选自氧化铝、氧化锌、氧化铜、氧化硅、氧化锆、氧化钛、氧化镁、氧化钍、氧化铍、氧化硼和氧化镉中的一种或几种。
  16. 按照权利要求14或15所述的系统,其特征在于,变换催化剂为树莓型微球空腔催化剂,树莓型微球空腔催化剂为表面具有一个大孔的中空微球,所述中空微球内部具有一个中空结构,所述大孔与所述中空结构贯通形成一端开口的空腔;微球的粒径为60至500μm,中空结构的直径为10至200μm,优选为20至150μm;大孔的孔径为5至100μm。
  17. 按照权利要求16所述的系统,其特征在于,树莓型微球空腔催化剂的壳层厚度为1至100μm;树莓型微球空腔催化剂的球形度为0.50至0.99。
  18. 按照权利要求16或17所述的系统,其特征在于,树莓型微球空腔催化剂是通过下述方法制备的:
    (1)将硝酸盐、胶溶剂、造孔剂、耐热无机氧化物和/或其前驱体依次加入到分散剂中并搅拌,得到分散浆液;
    (2)对所述分散浆液进行老化处理;以及
    (3)将老化后的所述分散浆液送入干燥装置中,在进风温度为400至1200℃,优选为450至700℃;出风温度为100至300℃,优选为120至200℃的条件下,进行干燥成型,得到所述树莓型氧化物微球,再经过焙烧后得到树莓型微球空腔催化剂;
    其中,
    所述硝酸盐选自硝酸铝、硝酸锆、硝酸镧和硝酸钇中的一种或多种;
    所述胶溶剂选自酸类、碱类和盐类中的一种或多种;
    所述造孔剂选自淀粉、合成纤维素、聚合醇和表面活性剂中的一种或多种;
    所述耐热无机氧化物和/或其前驱体选自铝源、锌源、铜源、硅源、锆源和钛源中的一种或多种,其中
    所述铝源选自拟薄水铝石、醇铝、硝酸铝、硫酸铝、氯化铝和偏铝酸钠中的一种或多种,
    所述锌源选择氯化锌、硝酸锌、硫酸锌、高氯酸锌、硼氟酸锌中的一种或多种,
    所述铜源选自氯化铜、氯化亚铜、硝酸铜、硫酸铜、碱式碳酸铜中的一种或多种,
    所述硅源选自硅酸酯、硅酸钠、水玻璃和硅溶胶中的一种或多种,
    所述锆源选自二氧化锆、四氯化锆、氯氧化锆、氢氧化锆、硫酸锆、 磷酸锆、硝酸氧锆、硝酸锆、碱式碳酸锆和四丁氧基锆中的一种或多种,
    所述钛源选自二氧化钛、偏钛酸、硝酸钛、硫酸氧钛、二氯化钛、三氯化钛、四氯化钛、氯化铝钛、钛酸四乙酯,钛酸四丁酯、钛酸四正丙酯和钛酸四异丙酯中的一种或多种,
    所述分散剂选自水、醇类、酮类和酸类中的一种或多种;
    优选地,在(1)制备浆液时,同时加入氧化铬、氧化钼、氧化铁、氧化钴、氧化钾等氧化物,或者加入可以形成这些氧化物的前驱体;或者采用浸渍法将活性金属浸渍到树莓型氧化物微球上(浸渍发生在干燥成型之后并且在焙烧之前);
    优选地,所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的质量比为(10-500):(1-10):(10-500):(10-1000)。
    优选地,还包括向所述分散剂中加入爆破剂,所述爆破剂选自苦味酸、三硝基甲苯、雷酸汞、消化甘油、硝化棉、达纳炸药、黑索金、叠氮化铅和C4塑胶炸药中的一种或多种,优选地,所述爆破剂的加入量为所述硝酸盐、所述胶溶剂、所述造孔剂以及所述氧化物和/或其前驱体的总干基重量的0至1%;
    优选地,所述干燥装置为闪蒸干燥装置或喷雾干燥装置;
    优选地,所述老化处理的温度为0至90℃,进一步优选为20至60℃;
    优选地,所述焙烧的温度为400至600℃。
  19. 按照前述权利要求中任一项所述的系统,其特征在于,变换气中的CO的体积分数为0.01%至1%;产品气中氢气的体积分数不小于99.97%。
  20. 按照前述权利要求中任一项所述的系统,其特征在于,所述系统的氢气产量为小于10000Nm 3/h,例如小于5000Nm 3/h、小于2000Nm 3/h、小于1000Nm 3/h、小于500Nm 3/h。
  21. 按照前述权利要求中任一项所述的系统,其特征在于,微通道变换反应器内装填的变换催化剂是微球状催化剂,优选树莓型微球空腔催化剂;催化剂的装填方式是微球状催化剂以固定床催化剂的装填方式或近似固定床催化剂的装填方式直接装填于微通道反应器的通道内;装填方法采用单孔逐个装填,或者采用自然流动装填或气力输送装填等装填方法。
  22. 按照前述权利要求中任一项所述的系统,其特征在于,微通道变换反应器内反应通道的数目是1-400个。
  23. 一种天然气水蒸汽重整制氢的方法,所述方法使用前述权利要求中任一项所述的系统并且包括:
    天然气进入天然气压缩及预热单元进行升压和预热;
    加压和预热后天然气进入天然气脱硫单元,将天然气中含硫化合物脱 除得到脱硫天然气;
    原料水在原料水净化单元进行净化得到去离子水;
    所得去离子水在制水蒸汽单元加热发生为去离子水蒸汽;
    所得脱硫天然气和所得去离子水蒸汽在重整单元发生重整反应生成重整气;
    所得重整气进入变换单元,在微通道变换反应器内与变换催化剂接触,将重整气中一氧化碳转化为氢气得到变换气;
    所得变换气在PSA单元分离得到解吸气和产品气。
  24. 按照前述权利要求中任一项所述的方法,其特征在于,天然气脱硫单元设置加氢脱硫反应区和吸附脱硫反应区,
    加氢脱硫反应区的工艺条件为:反应温度280至360℃,反应压力0.1至6MPa,气体空速1000h -1至50000h -1,进料混合气中的氢气体积分数为1%至15%;
    吸附脱硫反应区的工艺条件为:反应温度在280至360℃,反应压力0.1至6MPa,气体空速500至20000h -1
  25. 按照前述权利要求中任一项所述的方法,其特征在于,制水蒸汽单元所得去离子水蒸汽的温度在150至250℃之间,压力在0.5至4.0MPa之间。
  26. 按照前述权利要求中任一项所述的方法,其特征在于,重整单元的工艺条件为:反应压力在0.1至6.0MPa之间,反应温度在550至950℃之间,气体空速在1000至20000h -1之间;重整原料中水蒸汽和甲烷的摩尔比例在2.0至4.0:1之间。
  27. 按照前述权利要求中任一项所述的方法,其特征在于,重整单元的重整气经过冷却后进入变换单元,重整单元出口重整气的温度在750至950℃之间,冷却后重整气的温度在200至380℃之间。
  28. 按照前述权利要求中任一项所述的方法,其特征在于,变换单元的变换反应为单段等温反应的操作模式,反应温度在200至380℃之间,反应压力在0.1至6.0MPa之间,气体空速在500至20000h -1之间。
  29. 按照前述权利要求中任一项所述的方法,其特征在于,变换反应器内反应物料的进出口温差小于20℃。
  30. 按照前述权利要求中任一项所述的方法,其特征在于,PSA单元所得解吸气包括甲烷、二氧化碳、一氧化碳和氢气;优选所得解吸气引入重整单元的燃烧炉中,作为燃料气使用。
PCT/CN2021/092067 2020-05-07 2021-05-07 一种天然气水蒸汽重整制氢的系统及其方法 WO2021223733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010377794.9A CN113620244B (zh) 2020-05-07 2020-05-07 一种天然气水蒸汽重整制氢的系统及其方法
CN202010377794.9 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021223733A1 true WO2021223733A1 (zh) 2021-11-11

Family

ID=78376855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092067 WO2021223733A1 (zh) 2020-05-07 2021-05-07 一种天然气水蒸汽重整制氢的系统及其方法

Country Status (3)

Country Link
CN (1) CN113620244B (zh)
TW (1) TW202142483A (zh)
WO (1) WO2021223733A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968573A (zh) * 2021-11-29 2022-01-25 大连理工大学盘锦产业技术研究院 一种多种类制氢装置含氢尾气协同处理的方法和系统
CN115634558A (zh) * 2021-12-31 2023-01-24 山东庚辰环保新材料有限公司 脱硫装置、工艺及应用
CN116621117A (zh) * 2023-05-24 2023-08-22 上海汉兴化工科技有限公司 一种燃料电池用高纯氢的制备方法
CN116768157A (zh) * 2023-06-14 2023-09-19 中国科学院工程热物理研究所 天然气重整制氢系统及方法
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
CN116768157B (zh) * 2023-06-14 2024-06-07 中国科学院工程热物理研究所 天然气重整制氢系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117361442A (zh) * 2023-10-08 2024-01-09 成都岷山绿氢能源有限公司 一种利用超重力反应器进行天然气部分氧化制氢的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460395A (zh) * 2006-05-29 2009-06-17 Lg化学株式会社 微通道反应器系统
CN102173381A (zh) * 2011-02-28 2011-09-07 四川亚联高科技股份有限公司 一种以天然气为原料制备氢气的方法
CN104627961A (zh) * 2015-02-13 2015-05-20 中国石油大学(北京) 氢燃料电池汽车上使用压缩天然气原位制氢的方法和系统
CN105680072A (zh) * 2014-12-03 2016-06-15 中国科学院大连化学物理研究所 一种中小规模分布式天然气水蒸汽重整制氢系统及方法
CN108439337A (zh) * 2018-03-16 2018-08-24 新地能源工程技术有限公司 一种天然气转化制氢的方法
CN208361885U (zh) * 2018-06-13 2019-01-11 北京安珂罗工程技术有限公司 一种由液化天然气制备液氢的系统
CN109310971A (zh) * 2016-06-14 2019-02-05 乔治洛德方法研究和开发液化空气有限公司 通过蒸汽重整产生合成气的反应器
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
KR102094646B1 (ko) * 2019-10-14 2020-03-30 주식회사 트리신 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
CN110950304A (zh) * 2019-12-16 2020-04-03 简阳绿杉新能源设备有限公司 一种利用天然气制备高纯度氢气的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148249B (zh) * 2006-09-22 2010-09-29 比亚迪股份有限公司 一种现场制氢方法和现场制氢装置
CN101450790A (zh) * 2007-12-07 2009-06-10 上海焦化有限公司 一种天然气-二氧化碳重整制备合成气的方法和装置
CN102849680A (zh) * 2012-08-30 2013-01-02 苏州金宏气体股份有限公司 从天然气中合成及纯化氢气的方法
CN204198706U (zh) * 2014-11-05 2015-03-11 中国华能集团清洁能源技术研究院有限公司 一种煤制合成气制天然气的甲烷化装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460395A (zh) * 2006-05-29 2009-06-17 Lg化学株式会社 微通道反应器系统
CN102173381A (zh) * 2011-02-28 2011-09-07 四川亚联高科技股份有限公司 一种以天然气为原料制备氢气的方法
CN105680072A (zh) * 2014-12-03 2016-06-15 中国科学院大连化学物理研究所 一种中小规模分布式天然气水蒸汽重整制氢系统及方法
CN104627961A (zh) * 2015-02-13 2015-05-20 中国石油大学(北京) 氢燃料电池汽车上使用压缩天然气原位制氢的方法和系统
CN109310971A (zh) * 2016-06-14 2019-02-05 乔治洛德方法研究和开发液化空气有限公司 通过蒸汽重整产生合成气的反应器
CN108439337A (zh) * 2018-03-16 2018-08-24 新地能源工程技术有限公司 一种天然气转化制氢的方法
CN208361885U (zh) * 2018-06-13 2019-01-11 北京安珂罗工程技术有限公司 一种由液化天然气制备液氢的系统
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
KR102094646B1 (ko) * 2019-10-14 2020-03-30 주식회사 트리신 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
CN110950304A (zh) * 2019-12-16 2020-04-03 简阳绿杉新能源设备有限公司 一种利用天然气制备高纯度氢气的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process
CN113968573A (zh) * 2021-11-29 2022-01-25 大连理工大学盘锦产业技术研究院 一种多种类制氢装置含氢尾气协同处理的方法和系统
CN115634558A (zh) * 2021-12-31 2023-01-24 山东庚辰环保新材料有限公司 脱硫装置、工艺及应用
CN115634558B (zh) * 2021-12-31 2023-08-25 山东庚辰环保新材料有限公司 脱硫装置、工艺及应用
CN116621117A (zh) * 2023-05-24 2023-08-22 上海汉兴化工科技有限公司 一种燃料电池用高纯氢的制备方法
CN116621117B (zh) * 2023-05-24 2024-02-02 上海汉兴化工科技有限公司 一种燃料电池用高纯氢的制备方法
CN116768157A (zh) * 2023-06-14 2023-09-19 中国科学院工程热物理研究所 天然气重整制氢系统及方法
CN116768157B (zh) * 2023-06-14 2024-06-07 中国科学院工程热物理研究所 天然气重整制氢系统及方法

Also Published As

Publication number Publication date
TW202142483A (zh) 2021-11-16
CN113620244A (zh) 2021-11-09
CN113620244B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021223733A1 (zh) 一种天然气水蒸汽重整制氢的系统及其方法
JP6977082B2 (ja) アンモニア分解装置及びシステム並びに水素製造方法
CN104401942B (zh) 制备含氢气体和纳米碳产品的系统和方法以及该系统的用途和加油站设备
CN112607705B (zh) 一种水蒸气甲烷重整制氢装置及工艺
CN101222975B (zh) 紧凑型重整反应器
CN113423502B (zh) 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法
CN110407172B (zh) 一种中小型天然气制氢装置
EP3061799A1 (en) Method for preparing a thermochemical energy storage material
US20080227626A1 (en) Method of regenerating absorbent
GB2085314A (en) Hydrocarbon cracking process and catalyst
CN115007197A (zh) 兼具微孔和介孔的多级孔ZSM-5分子筛封装Ni金属催化剂及其制备方法和应用
CN102070125A (zh) 一种吸附增强甲烷水蒸气重整制氢反应装置及方法
CN112604611B (zh) 一种利用电石渣进行化学储/放能的装置及方法
Yan et al. Catalytic oxidation of sulfur dioxide over α-Fe 2 O 3/SiO 2 catalyst promoted with Co and Ce oxides
CN205115038U (zh) 一种甲烷化学链重整制合成反应装置
CN114408860B (zh) 一种高效节能的氨裂解制氢方法
CN213231512U (zh) 一种天然气制氢中温变换系统
CN102452641B (zh) 一种费托合成工艺弛放气的回收方法
JP2023544675A (ja) 水素化方法
KR20160057133A (ko) 중형기공성 니켈-철-알루미나 제로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소 가스 제조 방법
CN213326722U (zh) 一种天然气制氢蒸汽发生系统
KR101460348B1 (ko) 중형기공성 니켈-인-알루미나 에어로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소 가스 제조 방법
AU2013201704B2 (en) Apparatus and method for hydrogen production and use of same
CN116351418A (zh) 一种用于非热等离子体制氨的催化剂及其制备方法和应用
CN117619390A (zh) 一种氨分解制氢催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800124

Country of ref document: EP

Kind code of ref document: A1