CN210419231U - 一种中小型天然气制氢装置 - Google Patents

一种中小型天然气制氢装置 Download PDF

Info

Publication number
CN210419231U
CN210419231U CN201921357539.7U CN201921357539U CN210419231U CN 210419231 U CN210419231 U CN 210419231U CN 201921357539 U CN201921357539 U CN 201921357539U CN 210419231 U CN210419231 U CN 210419231U
Authority
CN
China
Prior art keywords
unit
pipeline
furnace body
natural gas
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921357539.7U
Other languages
English (en)
Inventor
叶根银
王业勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Yalian Hydrogen Energy Technology Co ltd
Original Assignee
Ally Hi Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ally Hi Tech Co ltd filed Critical Ally Hi Tech Co ltd
Priority to CN201921357539.7U priority Critical patent/CN210419231U/zh
Application granted granted Critical
Publication of CN210419231U publication Critical patent/CN210419231U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

本实用提供一种中小型天然气制氢装置,包括炉体、燃烧器及静态混合器、第一换热器,炉体内沿烟气前进方向依次设有转化单元、蒸汽发生单元、脱硫单元及变换单元,转化单元的进口通过管路与静态混合器连通,转化单元的出口通过管路与变换单元的进口连通,蒸汽发生单元及脱硫单元的出口分别通过管路与静态混合器连通,蒸汽发生单元的进口通过管路与第一换热器的液相出口连通,变换单元的出口通过管路与第一换热器的气相进口连通。本装置将脱硫与变换高度集成在炉体内,有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资,同时在制氢过程中热损失小、系统能效高。

Description

一种中小型天然气制氢装置
技术领域
本实用新型属于天然气制氢技术领域,具体涉及一种中小型天然气制氢装置。
背景技术
国内外蒸汽转化制氢的净化工艺主要有两种,即化学净化法和变压吸附净化法(PSA净化法)。国内早期建设的制氢装置均采用化学净化法,但是由于近年PSA技术的进步(多床多次均压、吸附剂性能的改进等),使氢的回收率最高达95%,加之PSA技术的国产化,极大降低了PSA装置的投资以及其操作成本,使该技术在新建制氢装置中占主导地位。
变压吸附氢提纯装置中的吸附主要为物理吸附,物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附,其特点是:吸附过程中没有化学反应且进行得极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。
变压吸附提氢工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对含氢气源中杂质组分的优先吸附而实现氢提纯的目的;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续提氢的目的。
工业PSA装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。
采用PSA净化法的天然气水蒸汽制氢工艺流程如图1所示。在传统的天然气制氢装置模式中,脱硫及变换工段采用独立的设备完成,但对于中小型天然气制氢装置来说,势必会增加制氢装置设备及管线、仪电等部分的投资,且整个天然气制氢装置体积以及占地面积过大,造成对各种资源不必要的浪费。所以如何有效降低中小型天然气制氢装置占地面积,降低配套设备及管线等投资,做到物尽其用,成为中小型天然气水蒸汽制氢装置中亟待解决的瓶颈及核心问题。
发明内容
针对现有技术的不足,本实用新型的一个目的是提供一种中小型天然气制氢装置,该装置集成脱硫、变换工段于一体,能够有效降低装置的体积及占地面积,从而降低配套设备及管线等投资;本实用新型的另一个目的是提供一种通过中小型天然气制氢装置制取氢气的工艺方法,采用烟气多次折向的预热措施,简化传统的升温过程,缩减了装置的启动时间,热损失小,系统能效高,提高了装置的使用效率。
为实现上述目的,本实用新型提供了以下技术方案:
一种中小型天然气制氢装置,包括:
炉体;
燃烧器,安装在所述炉体的外顶部,以部分原料天然气与PSA尾气的混合气体为燃料,为所述炉体内的各个单元提供反应所需的热量;
静态混合器,位于所述炉体外,用于混合原料天然气和水蒸汽;
第一换热器,位于所述炉体外,用于给生成的中变气降温及锅炉给水升温;
其中,所述炉体沿烟气前进方向依次设有转化单元、蒸汽发生单元、脱硫单元及变换单元,所述转化单元的进口通过管路与所述静态混合器连通,所述转化单元的出口通过管路与所述变换单元的进口连通,所述蒸汽发生单元及脱硫单元的出口分别通过管路与所述静态混合器连通,所述蒸汽发生单元的进口通过管路与所述第一换热器的液相出口连通,所述变换单元的出口通过管路与所述第一换热器的气相进口连通。
进一步地,所述炉体内的顶部设有多个第一隔板、底部设有多个与所述第一隔板平行的第二隔板,所述第一隔板与所述炉体内的底部之间、所述第二隔板与所述炉体内的顶部之间均有间隙;所述第一隔板、第二隔板相互错开依次设于所述转化单元、蒸汽发生单元、脱硫单元及变换单元之间。
进一步地,所述转化单元直立并列设有多根转化炉管,每根所述的转化炉管依次通过管路连通。
进一步地,在每根所述的转化炉管后侧的炉体上沿烟气流向按照上下顺序依次设有第一隔板和第二隔板,所述第一隔板、第二隔板间隔设置形成多次折向的烟气通道。
进一步地,所述转化炉管数量为3根,且相互串联。
进一步地,所述每根所述的转化炉管净受热长度为2.5~3m。
进一步地,所述蒸汽发生单元包括:
过热蒸汽发生器,用于产生过热蒸汽;
蒸汽汽包,用于储存过热蒸汽;
其中,所述过热蒸汽发生器与蒸汽汽包通过管路连接,所述过热蒸汽发生器进口与所述第一换热器的液相出口通过管路连通,所述蒸汽汽包出口与所述静态混合器通过管路连通。
进一步地,所述脱硫单元为内部装有脱硫剂的脱硫槽,所述变换单元为CO中变反应器。
进一步地,在所述变换单元之后的炉体内还设有空气预热单元,所述空气预热单元为空气预热器,所述空气预热器通过所述第二隔板与所述变换单元隔开,所述空气预热器进口通过管路与位于所述炉体外的风机相连接、出口通过管路与所述燃烧器相连接。
进一步地,还包括位于所述炉体外且通过管路相互连通的第二换热器及气液分离器,所述第二换热器通过管路与所述第一换热器的气相出口连通,所述气液分离器通过管路与PSA工段连通。
本实用新型还提供了一种中小型天然气制氢方法,该方法包含下述步骤:
S1、部分原料天然气作为燃料经由燃烧器在炉体内燃烧,使得炉体内的转化单元、蒸汽发生单元、脱硫单元及变换单元升温并获得反应所需的热量;
S2、原料天然气经压缩机增压后进入脱硫单元,在脱硫槽完成预热和脱硫;同时,锅炉给水由增压计量泵增压后经第一换热器换热后进入蒸汽发生单元,制得过热蒸汽;
S3、脱硫后的原料天然气与过热蒸汽在静态混合器中按设定比例混合后进入转化单元的转化炉管内完成转化,得到转化气;
S4、转化气出转化炉管,进入变换单元,在CO中变反应器内发生CO变换反应,得到中变气;
S5、中变气进入第一换热器中与锅炉给水完成换热,之后进入第二换热器中与循环冷却水换热降温,冷却后的中变气进入气液分离器,得到冷凝水和合成气,冷凝水回用,合成气进入PSA工段净化,得到产品氢气。
进一步地,该方法还包含下述步骤:
S6、外界空气通过风机经由空气预热器与炉体内的烟气换热后进入燃烧器协助燃烧。
由上述技术方案可知,本实用新型的大体工作原理是:
部分原料天然气作为燃料在炉体内燃烧后,产生的高温烟气在上、第二隔板的折流下,依次通过转化单元、蒸汽发生单元、脱硫单元、变换单元及空气预热器,为过热蒸汽的制取及原料天然气的脱硫、转化、变换反应提供所需的热量,而原料天然气经过脱硫与过热蒸汽混合再进行转化、变换得到中变气,中变气在第一换热器中与锅炉给水换热实现首次降温,同时使锅炉给水得到首次升温后再进入过热蒸汽发生器利于过热蒸汽的产生,之后进入第二换热器中与循环冷却水换热降温,冷却后的中变气进入气液分离器,得到冷凝水和合成气,冷凝水回用,合成气进入PSA工段净化,得到产品氢气;外界空气通过风机经由空气预热器与炉体内的烟气换热后进入燃烧器内参与原料天然气、解吸气的燃烧。
由上可知,本装置将脱硫与变换集成在炉体内,有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资,同时在制氢过程中,充分利用了烟气的热量,热损失小、系统能效高。
通过上述技术方案及本实用新型工作原理的结合启示可知,可归纳出本实用新型较为重要的几点有益效果:
1、本装置将脱硫与变换高度集成在炉体内,有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资,同时在制氢过程中热损失小、系统能效高;
2、实现了热备机的功能,在装置短时间停车阶段,可以通过燃烧器小负荷运行将装置的热工作设备温度控制在工作点温度附近,待下次启动时,直接进入原料天然气去脱硫单元,提高了装置的使用效率以及缩短了装置的启停时间;
3、通过炉体内设置的第一隔板及第二隔板,在转化单元升温的同时调节高温烟气多次折向经过脱硫单元及变换单元,使其温度达到工作温度,简化了传统的升温过程,同时大大缩减了装置的启动时间;
4、将转化炉管设置成多根直立并列的方式,降低了本装置的高度,同时炉体顶部无手工操作设备,无需高空作业,避免了安全隐患;
5、通过蒸汽发生单元的过热蒸汽发生器及蒸汽汽包,可以在装置启动达到设定温度后即可自行产生蒸汽,无需额外提供开工蒸汽,且无蒸汽外排,降低了能耗,减少了系统排放,同时采用这种非气包的气化方式,控制简单,进一步节约了装置的占用空间。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为采用PSA净化法的天然气水蒸汽制氢工艺流程简图;
图2为本实用新型的结构示意图。
附图标记说明如下:
100:炉体 110:转化单元 111:转化炉管
120:蒸汽发生单元 121:过热蒸汽发生器 122:蒸汽汽包
130:脱硫单元 131:脱硫槽 140:变换单元
141:CO中变反应器 150:第一隔板 160:第二隔板
170:空气预热单元 171:空气预热器 200:燃烧器
300:静态混合器 400:第一换热器 500:风机
600:第二换热器 700:气液分离器 800:增压计量泵。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本实用新型的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本实用新型的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
下面结合附图对本实用新型的实施例进行详细说明。
如图2所示,本实用新型提供了一种中小型天然气制氢装置,该装置集成脱硫、变换工段于一体,能够有效降低装置的体积及占地面积,从而降低配套设备及管线等投资,具体包括:
炉体100;
燃烧器200,安装在炉体100的外顶部,以部分原料天然气与PSA尾气的混合气体为燃料,为炉体100内的各个单元提供反应所需的热量;
静态混合器300,位于炉体100外,用于混合原料天然气和水蒸汽;
第一换热器400,位于炉体100外,用于给生成的中变气降温及锅炉给水升温;
其中,炉体100内沿烟气前进方向依次设有转化单元110、蒸汽发生单元120、脱硫单元130及变换单元140,转化单元110的进口通过管路与静态混合器300连通,转化单元110的出口通过管路与变换单元140的进口连通,蒸汽发生单元120及脱硫单元130的出口分别通过管路与静态混合器300连通,蒸汽发生单元120的进口通过管路与第一换热器400的液相出口连通,变换单元140的出口通过管路与第一换热器400的气相进口连通。本装置将脱硫与变换高度集成在炉体100内,有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资,同时在制氢过程中热损失小、系统能效高;另外,装置可以实现热备机的功能,在装置短时间停车阶段,可以通过燃烧器200小负荷运行将装置的热工作设备温度控制在工作点温度附近,待下次启动时,原料天然气直接进入脱硫单元130,提高了装置的使用效率以及缩短了装置的启停时间。
炉体100内的顶部设有多个第一隔板150、底部设有多个与第一隔板150平行的第二隔板160,第一隔板150与炉体100内的底部之间、第二隔板160与炉体100内的顶部之间均有间隙,方便烟气流通;第一隔板150、第二隔板160相互错开依次设于转化单元110、蒸汽发生单元120、脱硫单元130及变换单元140之间,将它们划分开以便燃烧器200产生的高温烟气多次折向后与它们依次发生热量交换使其得到反应所需的热量。通过设置的第一隔板150及第二隔板160,在转化单元110升温的同时调节高温烟气多次折向经过脱硫单元130及变换单元140,使其温度达到工作温度,简化了传统的升温过程,同时大大缩减了装置的启动时间。
转化单元110采用上支撑的形式吊装在炉体100内的顶部,在高温状态下工作时可以自由地向下膨胀,且转化单元110直立并列设有多根转化炉管111,每根转化炉管111依次通过管路连通;在每根转化炉管111后侧的炉体100上沿烟气流向按照上下顺序依次设有第一隔板150和第二隔板160,第一隔板150、第二隔板160间隔设置形成多次折向的烟气通道。在本实施例中,转化炉管111数量为3根,采用机械性能优良的耐高温连接管相互串联连接,根据炉体100内的热场分布,距离燃烧器200由近及远依次布置,分别代表原料天然气的进气部分、中间部分和转化气出口部分;每根转化炉管111净受热长度为2.5~3m。将转化炉管111设置成多根直立并列的方式,控制炉体100高度在4.5米以下,降低了本装置的高度,同时炉体100顶部无手工操作设备,无需高空作业,避免了安全隐患。
蒸汽发生单元120包括通过管路连接的过热蒸汽发生器121及蒸汽汽包122,过热蒸汽发生器121进口与第一换热器400的液相出口通过管路连通,蒸汽汽包122出口与静态混合器300通过管路连通。通过蒸汽发生单元120的过热蒸汽发生器121及蒸汽汽包122,可以在装置启动达到设定温度后即可自行产生蒸汽,无需额外提供开工蒸汽,且无蒸汽外排,降低了能耗,减少了系统排放,同时采用这种非气包的气化方式,控制简单,进一步节约了装置的占用空间。
脱硫单元130为内部装有脱硫剂的脱硫槽131,变换单元140为CO中变反应器141,脱硫槽131与CO中变反应器141均采用上支撑的形式吊装在炉体100内的顶部。
在变换单元140之后的炉体100内还设有空气预热单元170,空气预热单元170为空气预热器171,空气预热器171通过第二隔板160与变换单元140隔开,空气预热器171进口通过管路与位于炉体100外的风机500相连接、出口通过管路与燃烧器200相连接。通过风机500引入外界冷空气,经空气预热器171预热后、进入燃烧器200协助原料混合气体燃烧,并使炉体100内处于正压状态,工艺简单,控制方便。
上述的制氢装置还包括位于炉体100外且通过管路相互连通的第二换热器600及气液分离器700,第二换热器600通过管路与第一换热器400的气相出口连通,气液分离器700通过管路与PSA工段连通。
利用上述装置制取氢气的方法具体步骤如下:
S1、部分原料天然气作为燃料经由燃烧器200在炉体100内燃烧,使得炉体100内的转化单元110、蒸汽发生单元120、脱硫单元130及变换单元140升温并获得反应所需的热量。炉体100为内衬耐火层的钢结构框架,燃烧产生的高温烟气(约为500~600℃)依次通过上述单元后由远离燃烧器200的炉体100侧面开设的烟气出口排至炉体100外。
S2、原料天然气经压缩机(图中未示出)增压后进入脱硫单元130,在脱硫槽131完成预热和脱硫;同时,锅炉给水由增压计量泵800增压后经过第一换热器400换热后进入蒸汽发生单元120,制得过热蒸汽。原料天然气增压至~3.0MPa(G)进入脱硫槽131同时完成预热和脱硫,预热温度可达到250~300℃,脱硫槽131中装填高效脱硫剂,可将原料天然气中的有机硫、H2S脱至0.1PPM以下,以满足蒸汽转化催化剂对硫含量的要求。增压后的锅炉给水(在本实施例中为脱盐水)经过第一换热器400换热后进入过热蒸汽发生器121与炉体100内的高温烟气发生热交换而制得约300℃左右的过热蒸汽,然后汇集在蒸汽汽包122中。
S3、脱硫后的原料天然气与过热蒸汽在静态混合器300中按设定比例混合后进入转化单元110的转化炉管111内完成转化,得到转化气。原料天然气的蒸汽转化是以水蒸汽为氧化剂,在转化炉管111内部镍催化剂的作用下将烃类物质转化,得到制取氢气的转化气;这一过程为吸热过程,故需要外供热量,转化所需的热量由原料天然气燃烧提供。在镍催化剂作用下其主要反应如下:
CH4+H2O→CO+3H2–Q(吸热)
S4、转化气出转化炉管111,进入变换单元140,在CO中变反应器141内发生CO变换反应,得到中变气。转化气出转化炉管111的残余甲烷含量约1.5~5%,温度范围在330~360℃,进入CO中变反应器141,在高变催化剂的作用下,CO与水蒸汽发生如下反应:
CO+H2O→CO2+H2+Q(放热)
CO变换反应为放热反应,低温对变换平衡有利,可得到较高的CO变换率,进而可提高单位原料的产氢量。
S5、中变气进入第一换热器400中与锅炉给水完成换热,之后进入第二换热器600中与循环冷却水换热降温,冷却后的中变气进入气液分离器700,得到冷凝水和合成气,冷凝水回用,合成气进入PSA工段净化,得到产品氢气。在本实施例中,PSA工段采用多塔工艺,每个吸附塔在一次循环中均需经历吸附、均压降、顺放、逆放、冲洗、均压升以及终充等多个步骤。合成气由吸附塔入口端进入,在出口端获得需要纯度的氢气。经过上述步骤后吸附塔便完成了一个完整的“吸附-再生”循环,又为下一次吸附做好了准备。多个吸附塔在执行程序的安排上相互错开,构成一个闭路循环,以保证合成气的连续输入和产品氢气的不断输出。而吸附塔变压吸附的解吸气作为装置尾气与原料天然气混合后进入燃烧器200燃烧为转化、脱硫及变换等工序提供所需的热量。
还包括以下步骤:
S6、外界空气通过风机500经由空气预热器171与炉体100内的烟气换热后进入燃烧器200协助燃烧。外界空气经过换热后升温到一定温度进入燃烧器200内协助原料天然气、解吸气的燃烧,使烟气的热量得到充分利用,热损失小、系统能效高。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种中小型天然气制氢装置,其特征在于,包括:
炉体(100);
燃烧器(200),安装在所述炉体(100)的外顶部,以部分原料天然气与PSA尾气的混合气体为燃料,为所述炉体(100)内的各个单元提供反应所需的热量;
静态混合器(300),位于所述炉体(100)外,用于混合原料天然气和水蒸汽;
第一换热器(400),位于所述炉体(100)外,用于给生成的中变气降温及锅炉给水升温;
其中,所述炉体(100)沿烟气前进方向依次设有转化单元(110)、蒸汽发生单元(120)、脱硫单元(130)及变换单元(140),所述转化单元(110)的进口通过管路与所述静态混合器(300)连通,所述转化单元(110)的出口通过管路与所述变换单元(140)的进口连通,所述蒸汽发生单元(120)及脱硫单元(130)的出口分别通过管路与所述静态混合器(300)连通,所述蒸汽发生单元(120)的进口通过管路与所述第一换热器(400)的液相出口连通,所述变换单元(140)的出口通过管路与所述第一换热器(400)的气相进口连通。
2.根据权利要求1所述的中小型天然气制氢装置,其特征在于,所述炉体(100)内的顶部设有多个第一隔板(150)、底部设有多个与所述第一隔板(150)平行的第二隔板(160),所述第一隔板(150)与所述炉体(100)内的底部之间、所述第二隔板(160)与所述炉体(100)内的顶部之间均有间隙;所述第一隔板(150)、第二隔板(160)相互错开依次设于所述转化单元(110)、蒸汽发生单元(120)、脱硫单元(130)及变换单元(140)之间。
3.根据权利要求2所述的中小型天然气制氢装置,其特征在于,所述转化单元(110)直立并列设有多根转化炉管(111),每根所述的转化炉管(111)依次通过管路连通。
4.根据权利要求3所述的中小型天然气制氢装置,其特征在于,在每根所述的转化炉管(111)后侧的炉体(100)上沿烟气流向按照上下顺序依次设有第一隔板(150)和第二隔板(160),所述第一隔板(150)、第二隔板(160)间隔设置形成多次折向的烟气通道。
5.根据权利要求3或4所述的中小型天然气制氢装置,其特征在于,所述转化炉管(111)数量为3根,且相互串联。
6.根据权利要求5所述的中小型天然气制氢装置,其特征在于,所述每根所述的转化炉管(111)净受热长度为2.5~3m。
7.根据权利要求1或2所述的中小型天然气制氢装置,其特征在于,所述蒸汽发生单元(120)包括:
过热蒸汽发生器(121),用于产生过热蒸汽;
蒸汽汽包(122),用于储存过热蒸汽;
其中,所述过热蒸汽发生器(121)与蒸汽汽包(122)通过管路连接,所述过热蒸汽发生器(121)进口与所述第一换热器(400)的液相出口通过管路连通,所述蒸汽汽包(122)出口与所述静态混合器(300)通过管路连通。
8.根据权利要求1或2所述的中小型天然气制氢装置,其特征在于,所述脱硫单元(130)为内部装有脱硫剂的脱硫槽(131),所述变换单元(140)为CO中变反应器(141)。
9.根据权利要求2所述的中小型天然气制氢装置,其特征在于,在所述变换单元(140)之后的炉体(100)内还设有空气预热单元(170),所述空气预热单元(170)为空气预热器(171),所述空气预热器(171)通过所述第二隔板(160)与所述变换单元(140)隔开,所述空气预热器(171)进口通过管路与位于所述炉体(100)外的风机(500)相连接、出口通过管路与所述燃烧器(200)相连接。
10.根据权利要求1所述的中小型天然气制氢装置,其特征在于,还包括位于所述炉体(100)外且通过管路相互连通的第二换热器(600)及气液分离器(700),所述第二换热器(600)通过管路与所述第一换热器(400)的气相出口连通,所述气液分离器(700)通过管路与PSA工段连通。
CN201921357539.7U 2019-08-20 2019-08-20 一种中小型天然气制氢装置 Active CN210419231U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921357539.7U CN210419231U (zh) 2019-08-20 2019-08-20 一种中小型天然气制氢装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921357539.7U CN210419231U (zh) 2019-08-20 2019-08-20 一种中小型天然气制氢装置

Publications (1)

Publication Number Publication Date
CN210419231U true CN210419231U (zh) 2020-04-28

Family

ID=70363556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921357539.7U Active CN210419231U (zh) 2019-08-20 2019-08-20 一种中小型天然气制氢装置

Country Status (1)

Country Link
CN (1) CN210419231U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
WO2021031894A1 (zh) * 2019-08-20 2021-02-25 四川亚联高科技股份有限公司 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺
CN110407172B (zh) * 2019-08-20 2024-04-26 四川亚联氢能科技股份有限公司 一种中小型天然气制氢装置

Similar Documents

Publication Publication Date Title
CN110407172B (zh) 一种中小型天然气制氢装置
JP5796672B2 (ja) 高炉又は製鉄所の操業方法
RU2479484C2 (ru) Способ получения синтез-газа для синтеза аммиака
CN107352509B (zh) 一种适用于小微型家庭的燃气制氢集成反应装置及方法
WO2011108546A1 (ja) 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法
CN112607705B (zh) 一种水蒸气甲烷重整制氢装置及工艺
WO2015024287A1 (zh) 一种高co高变换率等温变换反应器及其工艺
KR101308405B1 (ko) 바이오메탄을 이용한 합성 연료 생산 장치 및 방법
CN102381717B (zh) 一种天然气转化生产氨的方法
CA3178048A1 (en) Process for producing hydrogen
CN102746870B (zh) 一种费托合成工艺
CN101302139B (zh) 一种利用煤层气制备甲醇的方法
CN210419231U (zh) 一种中小型天然气制氢装置
WO2023173768A1 (zh) 一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺
CN108408689B (zh) 一种无水制氢系统
CN108557764B (zh) 一种无水制氢工艺
CN208200371U (zh) 一种甲醇裂解制氢生产联线
JP4256013B2 (ja) 環境調和型水素製造方法
CN102452641B (zh) 一种费托合成工艺弛放气的回收方法
WO2022242598A1 (zh) 一种基于新能源消纳的天然气制备含氢产品的装置及方法
CN213231512U (zh) 一种天然气制氢中温变换系统
CN212237215U (zh) 自热净化炉和变换反应及热回收装置
Barelli et al. Study of the carbonation–calcination reaction applied to the hydrogen production from syngas
CN103992198B (zh) 一种以焦炉煤气为原料生产苯的工艺
KR101315676B1 (ko) 피셔-트롭쉬 합성 반응기와 연료전지를 이용한 합성석유와 전기의 동시 생산 장치 및 방법

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 5, gaon Boulevard, high tech Zone, Chengdu, Sichuan Province

Patentee after: Sichuan Yalian Hydrogen Energy Technology Co.,Ltd.

Address before: 610093 No. 5, Gaopeng Avenue, high tech Zone, Chengdu, Sichuan

Patentee before: ALLY HI-TECH Co.,Ltd.

CP03 Change of name, title or address