WO2021031894A1 - 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺 - Google Patents

一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺 Download PDF

Info

Publication number
WO2021031894A1
WO2021031894A1 PCT/CN2020/108090 CN2020108090W WO2021031894A1 WO 2021031894 A1 WO2021031894 A1 WO 2021031894A1 CN 2020108090 W CN2020108090 W CN 2020108090W WO 2021031894 A1 WO2021031894 A1 WO 2021031894A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
conversion
natural gas
gas
heat exchange
Prior art date
Application number
PCT/CN2020/108090
Other languages
English (en)
French (fr)
Inventor
叶根银
王业勤
Original Assignee
四川亚联高科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川亚联高科技股份有限公司 filed Critical 四川亚联高科技股份有限公司
Publication of WO2021031894A1 publication Critical patent/WO2021031894A1/zh
Priority to US17/336,287 priority Critical patent/US20210309516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/388Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the heat being generated by superheated steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of hydrogen production, and in particular relates to an integrated small and medium-sized natural gas steam reforming reactor and a method for hydrogen production using the reactor for reforming reaction.
  • Natural gas hydrogen production equipment includes: natural gas compression unit, natural gas purification and desulfurization unit, steam generation unit, steam reforming unit, medium temperature conversion unit, heat recovery unit, and gas purification unit.
  • the current mature natural gas hydrogen production process is basically improved from the traditional synthetic ammonia process technology; each unit of hydrogen production is installed separately, and for large-scale hydrogen production devices, each unit is installed separately, which is convenient for equipment processing and maintenance.
  • German WS company is a company specializing in combustor research.
  • the company has developed a compact steam reforming reactor based on its special combustor.
  • the reforming reactor integrates a steam generator, flue gas heat exchanger and reformer.
  • the whole reactor is integrated and the equipment design is compact.
  • the compact steam reforming reactor does not desulfurize natural gas, and the shift reaction is integrated together.
  • the exhaust gas temperature is greater than 300°C, which is not conducive to the improvement of the energy efficiency of the system.
  • an object of the present invention is to provide an integrated small and medium-sized natural gas steam reforming reactor, and a process method for reforming reaction using the reforming reactor.
  • the present invention provides an integrated small and medium-sized natural gas steam reforming reactor, which includes:
  • a combustion module 8 the combustion module 8 is located outside the furnace body 1, and the combustion module 8 supplies combustion flue gas to the inside of the furnace body 1;
  • the interior of the furnace body 1 is divided into a plurality of flue cavities by a plurality of high-temperature partitions.
  • the adjacent flue cavities are connected with the gap between the high-temperature partitions and the inner wall of the furnace.
  • the plurality of flue cavities are respectively provided with a conversion reaction module 2, a steam generation and overheating module 3, a medium transformation module 4, and a desulfurization module 5, thereby forming a conversion unit and a steam generation unit arranged in sequence along the advancing direction of the combustion flue gas , Conversion unit, desulfurization unit.
  • the conversion reaction module 2 includes a primary conversion module 2-1, a secondary conversion module 2-2, and a heat exchange conversion module 2- 3;
  • the conversion unit is further separated by a high-temperature partition to form a first secondary flue cavity 1-1 containing the primary conversion module 2-1, and a second secondary flue cavity 1- containing the secondary conversion module 2-2. 2.
  • the third secondary flue cavity 1-3 containing the heat exchange conversion module 2-3, the first secondary flue cavity 1-1, the second secondary flue cavity 1-2, and the third The flue cavities 1-3 are connected to form a flue gas channel with multiple turns.
  • the heat exchange conversion module 2-3 has a conversion cavity 31 and a heat exchange cavity 32;
  • the desulfurization module 5, the steam generation and superheating module 3 are respectively directly or indirectly connected to the conversion chamber 31 of the heat exchange conversion module 2-3, and the conversion chamber 31,
  • the first-level conversion module 2-1, the second-level conversion module 2-2, the heat exchange cavity 32 of the heat exchange conversion module 2-3, and the intermediate conversion module 4 are connected in sequence by pipelines.
  • the first-stage conversion module 2-1 is composed of 1 to 6 first-stage conversion tubes, and the first-stage conversion tubes are arranged in the Around or on one side of the burner of the combustion module 8; when the number of primary conversion tubes exceeds one, multiple primary conversion tubes are connected in parallel or series.
  • the secondary conversion module 2-2 is composed of 1 to 6 secondary conversion tubes; when the number of the secondary conversion tubes exceeds When there is one, multiple secondary conversion tubes are connected in parallel or in series.
  • the flow direction of the combustion flue gas in the second secondary flue cavity 1-2 is the same as that of the reaction gas in the secondary reforming tube.
  • the flow direction is opposite.
  • the structure of the first-stage reforming tube and/or the second-stage reforming tube is a reforming tube with a central tube, and the tube wall of the reforming tube
  • the cavity between the outer wall of the center tube and the center tube is filled with catalyst, and the reaction gas enters the cavity filled with catalyst from the upper part of the conversion tube, and then flows into the center tube at the bottom of the conversion tube, and then is led out of the conversion tube.
  • the conversion chamber 31 is filled with a catalyst
  • the gas flowing in the heat exchange cavity 32 comes from the outlet gas of the secondary conversion module 2-2, and the heat exchange cavity 32 uses the outlet gas from the secondary conversion module 2-2 and the third secondary smoke.
  • the combustion flue gas in the cavities 1-3 provides heat for the reaction gas flowing in the conversion cavity 31.
  • the structure of the intermediate transformation module 4 is an intermediate transformation reaction tube, which comes from the heat exchange cavity 32 of the heat exchange conversion module 2-3
  • the gas enters the middle-shift reaction tube, and the shift reaction takes place under the action of the middle-shift catalyst to generate middle-shift gas; the middle-shift gas exits from the bottom of the middle-shift reaction tube, or the middle-shift center tube is set inside the middle-shift reaction tube and passes through the middle-shift reaction tube.
  • the central tube will collect and export the intermediate gas.
  • the conversion unit further includes a first additional heat exchanger 44; the first additional heat exchanger 44 is provided in the medium conversion module 4 is located in the flue cavity, or the first additional heat exchanger is arranged inside the intermediate transformation module 4; the fluid in the first additional heat exchanger 44 is the reaction raw material natural gas or the reforming reaction raw material Water is preferably natural gas as the raw material for the reaction.
  • the steam generation and superheating module 3 is composed of heat exchange tubes, and the heat exchange tubes are in the form of fins or smooth tubes, preferably fins .
  • the catalyst filled in the desulfurization module 5 is a Co-Mo series, Mn series or ZnO series catalyst.
  • the positions of the desulfurization unit and the conversion unit are exchanged, so that the furnace body 1 has at least successive combustion flue gas Arranged conversion unit, steam generation unit, desulfurization unit, conversion unit.
  • the desulfurization module 5 is eliminated, or the desulfurization module 5 is moved to the outside of the furnace body 1.
  • the high-temperature partition between the intermediate transformation module 4 and the desulfurization module 5 is eliminated, so that the intermediate transformation module 4 and the The desulfurization module 5 is located in the same flue cavity.
  • the integrated small and medium-sized natural gas steam reforming reactor further includes a mixer 7 located outside the furnace body 1, and the desulfurization The module 5, the steam generation and superheating module 3 are respectively connected to the mixer 7, and the mixer 7 is further connected to the conversion chamber 31 of the heat exchange conversion module 2-3.
  • a second additional heat exchanger is provided outside the flue cavity where the heat exchange conversion module 2-3 is located, and the second The additional heat exchanger allows the outlet gas of the heat exchange cavity 32 of the heat exchange conversion module 2-3 to exchange heat with the reaction gas flowing in the mixer 7.
  • the integrated small and medium-sized natural gas steam reforming reactor of the present disclosure further includes a flue gas heat exchange module 6; the flue gas heat exchange module 6 is arranged in the furnace body 1 at the end of the combustion flue gas stream In the flue cavity, the flue gas heat exchange module 6 and the flue cavity in which it is located together form a flue gas heat exchange unit;
  • the structure of the flue gas heat exchange module 6 is a fin heat exchanger, a bare tube heat exchanger, or a flat heat exchanger.
  • the present disclosure also provides a process for reforming reaction using an integrated small and medium-sized natural gas steam reforming reactor, which includes the following steps:
  • the reformed gas is transported to the conversion unit, and the CO shift reaction is carried out in the conversion unit to obtain the middle-level conversion gas containing hydrogen;
  • the intermediate gas is exported from the integrated small and medium-sized natural gas steam reforming reaction device, and transported to a downstream section.
  • This device highly integrates desulfurization and transformation modules in the furnace body, effectively reducing the volume and floor space of the device, thereby reducing the investment in supporting equipment and pipelines;
  • the heat exchange mode between the modules is cleverly set, so that the temperature of each module is compatible with its function, the heat loss in the reaction process is small, the system energy efficiency is high, and the reforming reaction conversion rate is high;
  • the integrated small and medium-sized natural gas steam reforming reaction device of the present disclosure realizes the function of a hot backup machine.
  • the temperature of the device can be maintained by the small load operation of the burner, and it can quickly enter work when it is restarted. State, improve the use efficiency of the device and shorten the start and stop time of the device;
  • the flue gas channel in the integrated small and medium-sized natural gas steam reforming reaction device of the present disclosure can guide the high-temperature combustion flue gas to flow in multiple directions, greatly simplifying the heating process of the device;
  • the steam generation and overheating modules are integrated in the reforming reaction device. After the reforming reaction device starts to reach the set temperature, steam can be generated by itself. No additional start-up steam is required, and no steam is discharged, which reduces energy consumption and controls simple.
  • Figure 1 is an exemplary structural diagram of an integrated small and medium-sized natural gas steam reforming reactor
  • Figure 2 is a schematic structural diagram of an exemplary heat exchange conversion module
  • Figure 3 is a schematic structural diagram of an exemplary primary conversion module
  • Fig. 4 is a schematic diagram of the structure of an exemplary medium variable module and desulfurization module.
  • the terms “installed”, “connected”, “connected”, and other terms should be understood in a broad sense.
  • it may be a fixed connection, a detachable connection, or a Integral; it can be a mechanical connection, it can be an electrical connection, it can also be communication; it can be directly connected, or indirectly connected through an intermediate medium (such as a pipeline), it can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium such as a pipeline
  • the invention provides an integrated medium and small natural gas steam reforming reactor.
  • the device integrates a plurality of functional sections in one body, which can effectively reduce the volume and floor space of the device, thereby reducing the investment in supporting equipment and pipelines.
  • the integrated small and medium-sized natural gas steam reforming reactor of the present invention includes:
  • the combustion module 8 is installed on the outer top of the furnace body 1.
  • the module supplies high-temperature combustion flue gas into the furnace body 1 through the combustion of fuel natural gas;
  • high-temperature partitions inside the furnace body 1, some of which are connected to the top plate of the furnace body 1 and there is a gap between the bottom plate of the furnace body 1 (such high-temperature partitions are called upper partitions), and The adjacent high-temperature partitions of the partitions are connected to the bottom plate of the furnace body 1 and there is a gap between the top plates of the furnace body 1 (such high-temperature partitions are called lower partitions), so that multiple high-temperature partitions are in the furnace body.
  • a plurality of flue cavities are separated from the inside of 1, and the plurality of flue cavities form flue gas passages that are folded multiple times.
  • Each of the separated flue cavities is provided with specific functional modules. Together with the functional modules contained in the flue cavity, each flue cavity forms a conversion unit and steam generator arranged in sequence along the advancing direction of the combustion flue gas.
  • Unit, conversion unit, desulfurization unit; preferably, along the advancing direction of the combustion flue gas, downstream of the desulfurization unit, that is, at the tail of the combustion flue gas flow, a flue gas heat exchange unit may be further provided.
  • a flue gas outlet 10 is provided on the side of the furnace body 1 away from the combustion module 8 for the combustion flue gas to be discharged from the furnace body 1.
  • the raw material natural gas enters the system from the raw material natural gas inlet 11 and is divided into two branches, which are respectively used as the reaction raw material natural gas for the reforming reaction application and the fuel natural gas for the combustion module combustion.
  • the reaction raw material natural gas enters the desulfurization unit for desulfurization treatment; the raw material water enters the system from the raw water inlet 13 and is converted into superheated steam in the steam generating unit; the desulfurized reaction raw material natural gas and superheated steam are used as the reforming reaction raw material gas and flow through the conversion in turn
  • the unit and the conversion unit undergo corresponding reactions, and then flow out from the conversion unit, and are transported to the downstream section of the reforming reaction device through the synthesis gas outlet 14.
  • the flue gas channel can guide the high-temperature combustion flue gas to flow in multiple directions to supply heat to each unit inside the furnace body, so that each unit reaches its appropriate working temperature.
  • the heating process is greatly simplified compared with the traditional reforming reaction device , While greatly reducing the startup time of the device.
  • the material of the furnace body 1 can be appropriately selected according to actual needs, and it is usually a steel structure furnace body.
  • the furnace body is usually lined with a refractory layer.
  • the combustion module 8 is installed on the outer top of the furnace body 1.
  • the combustion module injects fuel natural gas and air into the furnace body for combustion, and the high-temperature combustion flue gas generated by the combustion flows along the flue gas passages that are folded multiple times inside the furnace body to provide the equipment in the furnace body with the heat required for reaction .
  • the desulfurized reaction raw material natural gas and superheated steam can be used as reforming reaction raw material gas to directly enter the conversion unit.
  • a mixer 7 may be further provided outside the furnace body 1 to remove the desulfurized The reaction raw material natural gas is mixed with superheated steam, and then the mixed reforming reaction raw material gas is sent to the conversion unit.
  • the conversion unit is located inside the furnace body close to the combustion module.
  • the conversion unit is provided with a conversion reaction module.
  • the conversion reaction module may include a primary conversion module 2-1, a secondary conversion module 2-2, and a heat exchange conversion module 2-3 arranged along the forward direction of the flue gas.
  • the first-level conversion module 2-1, the second-level conversion module 2-2, and the heat-exchange conversion module 2-3 are further separated by an upper partition and a lower partition.
  • the heat exchange conversion module 2-3 has a conversion chamber 31 and a heat exchange chamber 32.
  • the reforming reaction feed gas enters the conversion chamber 31 of the heat exchange conversion module 2-3, and then flows through the first-stage conversion modules 2-1 and The stage conversion module 2-2 then enters the heat exchange cavity 32 of the heat exchange conversion module 2-3, and finally flows out from the heat exchange cavity 32 of the heat exchange conversion module 2-3 and flows to the subsequent conversion unit.
  • the main reaction of the reaction gas is the conversion reaction:
  • the heat exchange conversion module 2-3 has a conversion cavity 31 and a heat exchange cavity 32.
  • the heat exchange cavity 32 is located inside the heat exchange conversion module 2-3, and the conversion cavity 31 is located outside the heat exchange cavity and inside the outer wall of the heat exchange conversion module.
  • the heat exchange cavity 32 is in the form of a heat exchange coil, which helps the high-temperature gas in the heat exchange cavity and the gas in the conversion cavity to fully exchange heat;
  • the outer wall of the heat exchange conversion module is coiled around the heat exchange coil , which helps the high-temperature gas flowing in the flue cavity outside the heat exchange conversion module to fully exchange heat with the gas in the conversion cavity.
  • the high-temperature gas entering the heat-exchange cavity 32 from the gas inlet 33 of the heat-exchange cavity comes from the gas out of the secondary conversion tube 2-2. This part of the high-temperature gas can supply heat to the conversion cavity through heat exchange. After the high temperature gas exchanges heat, it flows out from the gas outlet 34 of the heat exchange cavity.
  • the conversion chamber 31 is filled with a catalyst, and the reaction raw material gas enters the conversion chamber 31 from the gas inlet 35 of the conversion chamber, and the pre-reformation reaction is carried out under the action of the catalyst.
  • the heat required for the reaction of the gas in the conversion chamber partly comes from the high temperature gas in the heat exchange chamber, and part comes from the high temperature flue gas flowing in the flue cavity outside the heat exchange conversion module. After reacting in the conversion chamber 31, the reaction raw material gas flows out from the conversion chamber gas outlet 36.
  • the waste heat of the gas in the heat exchange cavity is used to heat the gas in the conversion cavity, which is helpful for the endothermic conversion.
  • the gas in the heat exchange cavity is moderately cooled, which facilitates its subsequent entry into the conversion unit for exothermic conversion reaction.
  • the first-level conversion module 2-1 is adjacent to the combustion module and mainly uses the flame radiation to transfer heat.
  • the primary conversion module 2-1 may be composed of a single primary conversion tube, or may be composed of multiple primary conversion tubes connected in parallel or in series. Multiple primary conversion tubes can be arranged around or on one side of the burner of the combustion module.
  • the reaction gas entering the primary conversion tube comes from the conversion chamber 31 of the heat exchange conversion module 2-3.
  • the inside of the primary reformer tube may have a central tube 211, the cavity 212 between the outer wall of the primary reformer tube and the central tube 211 is filled with a catalyst, and the reaction gas from the upper part of the primary reformer tube
  • the first-stage reformer gas inlet 213 enters the cavity 212 filled with catalyst, and reacts with the catalyst.
  • the reacted gas reaches the bottom of the first-stage reformer tube, and is collected by the central tube 211, and then passes through the first-stage reformer gas outlet 214.
  • the first-level conversion tube is exported.
  • the secondary conversion module 2-2 is located downstream of the primary conversion module 2-1.
  • the heating mode of the secondary conversion module 2-2 is radiative heat transfer and convective heat transfer of the combustion high-temperature flue gas flowing in the flue cavity.
  • the secondary conversion module 2-2 may be composed of a single secondary conversion tube, or may be composed of multiple secondary conversion tubes connected in parallel or in series.
  • the reaction gas entering the secondary reforming tube comes from the outgas of the primary reforming tube.
  • the interior of the secondary reformer tube may have a central tube structure, the cavity between the outer wall of the secondary reformer tube and the central tube is filled with catalyst, and the reaction gas enters the filling from the upper part of the secondary reformer tube. In the cavity with catalyst, it reacts with the catalyst, and the reacted gas reaches the bottom of the secondary reforming tube. After being collected by the central tube, it is led out of the secondary reforming tube, and then enters the heat exchange conversion module 2-3 for heat exchange Cavities 32.
  • the combustion flue gas flows from bottom to top, while in the secondary conversion tube, the reaction gas flows from top to bottom, and the reaction proceeds from top to bottom.
  • the airflow inside and outside the secondary conversion tube forms a reverse temperature gradient to improve heat transfer efficiency.
  • the high-temperature flue gas heats the gas at the end of the reaction to promote the chemical equilibrium to the reaction product direction, thereby increasing the conversion rate.
  • the steam generating unit includes a steam generating and superheating module 3.
  • the steam generation and superheating module 3 is heated by the combustion flue gas flowing in the flue cavity where it is located, thereby heating the raw material water entering the module to generate superheated steam for subsequent reactions.
  • the steam generation and overheating module 3 is located in the furnace body 1, and can generate steam by itself after the reforming reaction device is started to reach the set temperature. There is no need to provide additional start-up steam, and no steam is discharged outside, which reduces energy consumption and is simple to control. This further saves the space occupied by the reforming reaction device.
  • the steam generation and superheating module 3 is composed of heat exchange tubes, and the heat exchange tubes may be in the form of, for example, fins or smooth tubes, preferably fins.
  • the main reactions in the transformation unit are:
  • the CO shift reaction is an exothermic reaction, and low temperature is beneficial to the shift balance.
  • the transformation unit includes the intermediate transformation module 4.
  • the basic structure of the middle shift module 4 is a middle shift reaction tube. As shown in Figure 4, the middle shift reaction tube has a middle shift catalyst chamber 41 for filling the middle shift catalyst. The gas from the heat exchange chamber of the heat exchange conversion module is changed from it.
  • the air inlet 42 enters the middle shift module, flows through the middle shift catalyst chamber 41, and undergoes shift reaction under the action of the middle shift catalyst.
  • the gas after the shift reaction can be collected at the bottom of the medium-shift reaction tube and guided to the medium-shift gas outlet 43, or a central tube can be arranged inside the medium-shift reaction tube, and the gas after the shift reaction can be collected through the central tube. Export.
  • a first additional heat exchanger 44 is additionally provided.
  • the first additional heat exchanger 44 can be arranged in the flue cavity where the medium variable reaction tube is located, but it is more preferable that the first additional heat exchanger 44 is arranged inside the medium variable reaction tube, for example, the first additional heat exchanger 44 is placed In the middle shift catalyst chamber 41.
  • the fluid flowing in the first additional heat exchanger 44 may be the reaction raw material natural gas or the reforming reaction raw material water, preferably the reaction raw material natural gas.
  • the fluid is the reaction raw material natural gas: the raw natural gas enters the system from the raw natural gas inlet 11 and is divided into two branches. One branch of the reaction raw natural gas enters the first additional heat exchanger inlet 45 from the first additional heat exchanger.
  • the heat exchanger 44 through the heat exchange of the fluid inside and outside the first additional heat exchanger 44, the heat released by the CO shift reaction is used to preheat the reaction raw material natural gas, and the preheated reaction raw material natural gas is then sent to the desulfurization module 5.
  • the fluid is raw water: after the raw water enters the system from the raw water inlet 13, it enters the first additional heat exchanger 44 from the first additional heat exchanger inlet 45, and passes through the first additional heat exchanger 44
  • the heat exchange between the internal and external fluids, and the heat released by the CO shift reaction is used to preheat the raw material water, and the preheated raw material water is then sent to the steam generation and superheating module 3.
  • the desulfurization unit includes a desulfurization module 5 for desulfurization of raw natural gas for subsequent reactions.
  • the required desulfurization catalyst can be filled in the desulfurization module 5, usually a Co-Mo series, Mn series or ZnO series catalyst, and other catalysts can also be selected according to actual needs.
  • the desulfurized raw natural gas is exported from the outlet 51 of the desulfurization module, and can be directly transported to the conversion chamber 31 of the heat exchange conversion module 2-3, or, if a mixer 7 is additionally provided, it can also be transported to the mixer 7. After being mixed with the superheated steam, it is sent to the conversion chamber 31 of the heat exchange conversion module 2-3.
  • a flue gas heat exchange unit is further provided, and the flue gas heat exchange unit includes a flue gas heat exchange module 6.
  • the flue gas heat exchange module 6 can be arranged inside the furnace body 1, in the flue cavity at the end of the furnace body, at the end of the combustion flue gas flow. Alternatively, the flue gas heat exchange module 6 can also be placed outside the furnace body. Air flows into the flue gas heat exchange module from the air inlet 12, and exchanges heat with the combustion flue gas outside the flue gas heat exchange module. The air is heated by the waste heat of the combustion flue gas and then sent to the combustion module, which can improve the combustion efficiency of the combustion module.
  • the specific structure of the flue gas heat exchange module 6 can be a fin type, a smooth tube type, a flat plate heat exchanger, and the like, and a flat plate or a fin type is preferred.
  • the desulfurization module can be eliminated, and the reaction raw material natural gas can be directly introduced into the conversion unit to react with superheated steam, or mixed with superheated steam through a mixer before being sent to Conversion unit.
  • the desulfurization module can be moved to the outside of the furnace body of the integrated reforming reactor.
  • the positions of the desulfurization unit and the conversion unit can be interchanged, that is, along the advancing direction of the combustion flue gas, at least the conversion unit, the steam generation unit, the desulfurization unit, and the conversion unit are arranged in the furnace body in sequence ;
  • the flue gas heat exchange unit is after the conversion unit.
  • the high-temperature baffle between the intermediate transformer module and the desulfurization module can be shortened or eliminated, so that the channel between the flue cavity where the intermediate transformer module is located and the flue cavity where the desulfurization module is located is widened, or even
  • the middle variable module and the desulfurization module are in the same flue cavity.
  • a second additional heat exchanger can be further provided.
  • the second additional heat exchanger can be placed outside the flue cavity where the heat exchange conversion module is located.
  • the function of the second additional heat exchanger is to exchange heat between the outlet gas of the heat exchange cavity of the heat exchange conversion module and the reaction gas (the mixture of the desulfurized reaction raw material natural gas and superheated steam), thereby reducing the heat exchange of the heat exchange conversion module.
  • the temperature of the outlet gas from the hot chamber meets the requirements of the subsequent CO shift reaction.
  • the reaction gas is also heated to help the reaction gas undergo the conversion reaction.
  • the integrated small and medium-sized natural gas steam reforming reaction device of the present disclosure highly integrates the functional modules of the reforming reaction.
  • the volume and floor space of the device are effectively reduced, thereby reducing the investment in supporting equipment and pipelines, and on the other hand.
  • the heat exchange mode between the modules is cleverly set, so that the temperature of each module is compatible with its function, the heat loss of the reaction process is small, the system energy efficiency is high, and the reforming reaction conversion rate is high.
  • the integrated small and medium-sized natural gas steam reforming reaction device of the present disclosure can realize the function of a hot standby machine.
  • the temperature of the hot working equipment of the device can be controlled at the operating point temperature through the small load operation of the combustion module Nearby, the reaction materials can be quickly introduced at the next startup, which improves the efficiency of the device and shortens the startup and shutdown time of the device.
  • the present disclosure also provides a process for preparing hydrogen by using the above-mentioned integrated small and medium-sized natural gas steam reforming reactor.
  • the method steps are as follows:
  • Raw natural gas enters the device from the raw natural gas inlet 11, and part of the raw natural gas is burned in the combustion module 8 as fuel natural gas, so that the conversion unit, steam generation unit, desulfurization unit, conversion unit, flue gas heat exchange unit (such as Yes) heating up.
  • the desulfurized raw material natural gas and superheated steam are fed into the conversion unit according to a set ratio (directly input to the conversion unit, or mixed by a mixer and then input to the conversion unit), and then flow through the conversion chamber 31 of the heat exchange conversion module 2-3 in turn 1.
  • the device Since the feed gas pressure has reached the system demand pressure, the device does not require a compressor booster system; the feed gas comes from outside the boundary area, divided into two routes, all the way to the combustion module of the integrated steam reforming hydrogen production reactor as the combustion supply Heat; part of it is reduced to 1.9MPag and enters the flue cavity of the integrated steam reforming hydrogen production reactor to exchange heat to 350°C, and then enters the desulfurization unit. After the desulfurization unit is processed, the H 2 S content of the feed gas is reduced To less than 0.1ppm; the desalinated water from outside is pressurized to 1.9MPag by the booster pump and enters the steam generating unit after being metered. After generating 250-300°C superheated steam, it is mixed with natural gas and enters the conversion unit.
  • CH 4 and other alkane components in the natural gas in the conversion chamber undergo a pre-reformation reaction with water vapor to generate H 2 , CO, CO 2 and other gases; from the secondary conversion module
  • the conversion gas is supplied to the conversion reaction through the heat exchange coil in the conversion chamber of the heat-exchange conversion module; the temperature of the conversion gas is about 450-550°C, through heat exchange, and the mixing in the conversion chamber of the heat-exchange conversion module
  • the temperature of the gas is raised to 400-500°C, and the temperature of the reformed gas from the secondary conversion module is reduced to 280-350°C.
  • the heat source of the pre-conversion comes from the high-temperature synthesis gas flowing in the heat exchange cavity of the heat exchange conversion module and the high-temperature flue gas in the flue cavity.
  • the pre-converted gas enters the primary conversion module of the conversion unit.
  • the first-level conversion module is composed of four first-level conversion tubes.
  • the four first-level conversion tubes are located around the combustor. Every two conversion tubes form a set of series connection, and the groups form two sets of parallel connection.
  • the reaction gas passing through the first-level conversion module enters the second-level conversion module.
  • the second-level conversion module is composed of two second-level conversion tubes in parallel; the synthesis gas from the second-level conversion module enters the heat exchange chamber of the heat exchange conversion module to exchange heat. After the temperature is at 280 ⁇ 350°C, it exits the heat exchange conversion module and enters the intermediate transformation module.
  • the CO in the reaction gas and H 2 O further react to form H 2 and CO 2 , due to the intermediate transformation unit
  • a part of the heat generated by the intermediate transformation reaction is transferred to the flue gas, and the temperature of the intermediate transformation module is 350°C lower than the temperature of the adiabatic bed, which further improves the CO conversion rate.
  • the converted gas after leaving the middle transformer module enters the follow-up section.
  • the combustion flue gas passes through the intermediate transformation module and the desulfurization module, it enters the flue gas heat exchange module.
  • the flue gas temperature is between 300 and 350°C.
  • the flue gas heat exchange module the flue gas transfers heat to the combustion-supporting air through heat exchange.
  • the flue gas exhaust temperature is 120-150°C
  • the flame-retardant air temperature is 230-280°C; the process of the natural gas steam reforming unit of the integrated steam reforming reactor is completed.

Abstract

一种一体化中小型天然气水蒸汽重整反应器以及进行重整反应的工艺;其中,所述的一体化中小型天然气水蒸汽重整反应器包括,炉体(1)和燃烧模块(8);燃烧模块(8)位于炉体(1)的外部,燃烧模块(8)向炉体(1)的内部供给燃烧烟气;炉体(1)的内部被多个高温隔板分隔为多个烟道腔,相邻的烟道腔通过高温隔板与炉体(1)内壁之间的间隙连通,多个烟道腔形成多次折向的烟气通道;多个烟道腔中分别设有转化反应模块(2)、蒸汽发生与过热模块(3)、中变模块(4)、脱硫模块(5),从而形成沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、变换单元、脱硫单元。

Description

一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺 技术领域
本发明属于制氢技术领域,具体涉及一种一体化中小型天然气水蒸汽重整反应器及利用该反应器进行重整反应制氢的方法。
背景技术
世界上约有2/3的氢气是通过天然气制氢方式获得,而在众多的天然气制氢技术中,采用水蒸汽重整制取氢气的技术最为成熟,应用也最广。天然气制氢设备包括:天然气压缩单元、天然气净化脱硫单元、水蒸气产生单元、水蒸汽重整单元、中温变换单元、热回收单元、气体的纯化单元几个部分组成。目前成熟的天然气制氢工艺基本是在传统合成氨工艺技术改进而来;制氢的各个单元分开独立设置,对于大型的制氢装置,各个单元分开设置,便于设备的加工以及检修。
近年随着燃料电池技术的日益成熟,氢燃料电池汽车成为世界各国研究的重点,加氢站建设步伐加快,小规模天然气制氢装置需求增加。而目前中小规模制氢装置的要求有了很多的变化;例如:1、设备不一定在化工园区,可能在城市中,对占地要求高,不能按传统的装置进行布置;2、设备要求快速启动,传统天然气制氢装置开机时间在36h以上,很难达到要求;3、智能化要求高,无人值守,传统的天然气装置需要现场人员巡检,难以达到要求。因此,开发更加紧凑高效的天然气制氢装置,成为气体设备生产公司研发的重点。
德国WS公司是专门研究燃烧器的公司,公司在其特殊燃烧器的基础上开发了一种紧凑型蒸汽重整反应器,该重整反应器集成了蒸汽发生器,烟气换热器与重整反应器一体,设备设计紧凑。但是该紧凑型蒸汽重整反应器并没有将天然气脱硫,变换反应集成在一块,同时排烟温度大于300℃,不利于系统的能效提升。
如何有效降低中小型天然气制氢装置占地面积,降低配套设备及管线等投资,做到物尽其用,成为中小型天然气水蒸汽制氢装置中亟待解决的瓶颈及核心问题。
发明内容
针对现有技术的不足,本发明的一个目的是提供一体化中小型天然气水蒸汽重整反应器,以及利用重整反应器进行重整反应的工艺方法。
为实现上述目的,本发明提供一种一体化中小型天然气水蒸汽重整反应器,其包括:
炉体1;
燃烧模块8,所述燃烧模块8位于所述炉体1的外部,所述燃烧模块8向所述炉体1的内部供给燃烧烟气;
所述炉体1的内部被多个高温隔板分隔为多个烟道腔,相邻的烟道腔通过高温隔板与炉体内壁之间的间隙连通,所述多个烟道腔形成多次折向的烟气通道;
所述多个烟道腔中分别设有转化反应模块2、蒸汽发生与过热模块3、中变模块4、脱硫模块5,从而形成沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、变换单元、脱硫单元。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述转化反应模块2包括一级转化模块2-1、二级转化模块2-2、换热式转化模块2-3;
所述转化单元进一步由高温隔板分隔,形成容纳一级转化模块2-1的第一次级烟道腔1-1、容纳二级转化模块2-2的第二次级烟道腔1-2、容纳换热式转化模块2-3的第三次级烟道腔1-3,所述第一次级烟道腔1-1、第二次级烟道腔1-2、第三次级烟道腔1-3连通形成多次折向的烟气通道。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述换热式转化模块2-3具有转化腔31和换热腔32;
所述脱硫模块5、所述蒸汽发生及过热模块3分别与所述换热式转化模块2-3的转化腔31直接或间接相连,所述换热式转化模块2-3的转化腔31、所述一级转化模块2-1、所述二级转化模块2-2、所述换热式转化模块2-3的换热腔32、所述中变模块4通过管路依次相连。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述一级转化模块2-1由1至6根一级转化管构成,所述一级转化管布置在所述燃烧模块8的烧嘴的周围或一侧;当一级转化管的数量超过1根时,多根一级转化管之间以并联或串联方式连接。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述二级转化模块2-2由1至6根二级转化管构成;当所述二级转化管的数量超过1根时,多根二级转化管之间以并联或串联方式连接。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,燃烧烟气在所述第二次级烟道腔1-2中流动的方向与反应气体在二级转化管中的流动方向相反。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述一级转化管和/或所述二级转化管的结构为具有中心管的转化管,转化管的管壁与中心管的外壁之间的腔内填充催化剂,反应气体从转化管的上部进入填充有催化剂的腔中,然后在所述转化管的底部处流入中心管,进而被导出转化管。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,在所述换热式转化模块2-3中,所述转化腔31内填充有催化剂;
所述换热腔32内流动的气体来自所述二级转化模块2-2的出气,所述换热腔32利用来自所述二级转化模块2-2的出气以及所述第三次级烟道腔1-3中的燃烧烟气为所述转化腔31内流动的反应气体提供热量。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述中变模块4的结构为中变反应管,来自所述换热式转化模块2-3的换热腔32的气体进入中变反应管内,在中变催化剂作用下发生变换反应生成中变气;中 变气从中变反应管底部出气,或者,在中变反应管的内部设中变中心管,通过中变中心管将中变气收集和导出。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述变换单元进一步包括第一附加换热器44;所述第一附加换热器44设置在所述中变模块4所处的烟道腔中,或者所述第一附加换热器设置在所述中变模块4内部;所述第一附加换热器44中的流体为反应原料天然气或者重整反应的原料水,优选反应原料天然气。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述蒸汽发生与过热模块3由换热管组成,所述换热管为翅片或光管形式,优选翅片。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述脱硫模块5中填充的催化剂为Co-Mo系、Mn系或ZnO系催化剂。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,将所述脱硫单元与变换单元的位置互换,使所述炉体1内至少具有沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、脱硫单元、变换单元。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,取消所述脱硫模块5,或将所述脱硫模块5移至所述炉体1的外部。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,将所述中变模块4与所述脱硫模块5之间的高温隔板取消,使所述中变模块4与所述脱硫模块5处于同一烟道腔中。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,所述一体化中小型天然气水蒸汽重整反应器还包括位于所述炉体1外部的混合器7,所述脱硫模块5、所述蒸汽发生及过热模块3分别与所述混合器7相连,所述混合器7进一步连接至所述换热式转化模块2-3的转化腔31。
进一步地,在本公开的一体化中小型天然气水蒸汽重整反应器中,在所述换热式转化模块2-3所处的烟道腔外部设置第二附加换热器,所述第二附加换热器使所述换热式转化模块2-3的换热腔32的出气与所述混合器7中流动的 反应气进行换热。
进一步地,本公开的一体化中小型天然气水蒸汽重整反应器进一步包括烟气换热模块6;所述烟气换热模块6设置在所述炉体1中,位于燃烧烟气流的尾部的烟道腔中,所述烟气换热模块6与其所处的烟道腔共同形成烟气换热单元;
优选所述烟气换热模块6的结构为翅片式换热器,或光管式换热器,或平板式换热器。
本公开还提供一种利用一体化中小型天然气水蒸汽重整反应器进行重整反应的工艺,包括以下步骤:
S1、将原料天然气输送入一体化中小型天然气水蒸汽重整反应器,将一部分原料天然气作为燃料天然气在燃烧模块8中燃烧,至少使转化单元、蒸汽发生单元、变换单元、脱硫单元升温;
S2、将另一部分原料天然气作为反应原料天然气,送至脱硫单元脱硫;将原料水输送至所述蒸汽发生单元,制得过热蒸汽;
S3、将脱硫后的反应原料天然气与过热蒸汽按设定比例输入转化单元,在转化单元中发生转化反应,得到转化气;
S4、将转化气输送进入变换单元,在变换单元中进行CO变换反应,得到含有氢气的中变气;
S5、将所述中变气从所述一体式中小型天然气水蒸气重整反应装置中导出,输送至下游工段。
本公开的技术方案实现以下一方面或几方面的有益技术效果:
1、本装置将脱硫与变换等模块高度集成在炉体内,有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资;
2、根据重整反应各步骤的反应特点,巧妙设置了模块之间的热交换方式,使得各模块的温度与其功能相适应,反应过程热损失小、系统能效高,重整反应转化率高;
3、本公开的一体式中小型天然气水蒸气重整反应装置实现了热备机的功 能,在装置短时间停车阶段,可以通过燃烧器小负荷运行维持装置的温度,再次启动时可快速进入工作状态,提高了装置的使用效率以及缩短了装置的启停时间;
4、本公开的一体式中小型天然气水蒸气重整反应装置中的烟气通道可引导高温的燃烧烟气多次折向流动,大幅简化装置的升温过程;
5、重整反应装置中集成了蒸汽发生与过热模块,在重整反应装置启动达到设定温度后即可自行产生蒸汽,无需额外提供开工蒸汽,且无蒸汽外排,降低了能耗,控制简单。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一体化中小型天然气水蒸汽重整反应器的一种示例性结构示意图;
图2为一种示例性的换热式转化模块的结构示意图;
图3为一种示例性的一级转化模块的结构示意图;
图4为一种示例性的中变模块和脱硫模块的结构示意图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具 有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介(如管线)间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面结合附图对本发明的实施例进行详细说明。
一体化中小型天然气水蒸汽重整反应器的总体结构:
本发明提供了一种一体化中小型天然气水蒸汽重整反应器,该装置集成多个功能性工段于一体,能够有效降低装置的体积及占地面积,从而降低配套设备及管线等投资。如图1所示,本发明的一体化中小型天然气水蒸汽重整反应器在总体结构上包括:
炉体1;
燃烧模块8,安装在炉体1的外顶部,该模块通过燃料天然气的燃烧,向炉体1内供给高温的燃烧烟气;
炉体1内部设多个高温隔板,其中一些高温隔板与炉体1的顶板相连而与炉体1的底板之间存在间隙(此类高温隔板称为上隔板),而与上隔板相邻的高温隔板与炉体1的底板相连而与炉体1的顶板之间存在间隙(此类高温隔板称为下隔板),由此,多个高温隔板在炉体1的内部分隔出多个烟道腔,多个烟道腔形成多次折向的烟气通道。
分隔出的各个烟道腔中分别设置具体的功能性模块,各烟道腔与容纳在该烟道腔中的功能性模块一起,形成沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、变换单元、脱硫单元;优选地,沿着燃烧烟气前进方向,在脱硫单元的下游即燃烧烟气流的尾部,还可以进一步设烟气换热单元。在炉体1远离燃烧模块8的一侧开设烟气出口10,供燃烧烟气从炉体1中排出。
原料天然气从原料天然气进口11进入系统后分为两支,分别作为供重整 反应用的反应原料天然气和供燃烧模块燃烧用的燃料天然气。反应原料天然气进入脱硫单元进行脱硫处理;原料水从原料水进口13进入系统,在蒸汽发生单元中转化为过热蒸汽;脱硫后的反应原料天然气和过热蒸汽作为重整反应原料气,依次流经转化单元、变换单元,发生相应的反应,然后从变换单元流出,经合成气出口14输送至重整反应装置的下游工段。
烟气通道可引导高温的燃烧烟气多次折向流动,为炉体内部的各个单元供热,使各单元分别达到其适宜的工作温度,升温过程相比于传统的重整反应装置大幅简化,同时大大缩减了装置的启动时间。
以下对一体化中小型天然气水蒸汽重整反应器的各主要结构分别进行说明。
(A)炉体
炉体1的材质可根据实际需要适当选取,常见为钢结构炉体。炉体通常内衬耐火层。
(B)燃烧模块
燃烧模块8安装在炉体1的外顶部。燃烧模块将燃料天然气和空气共同喷入炉体内进行燃烧,燃烧产生的高温的燃烧烟气在炉体内部沿着多次折向的烟气通道流动,为炉体内的设备提供反应所需的热量。
(C)混合器
脱硫后的反应原料天然气和过热蒸汽可以作为重整反应原料气直接进入转化单元,但在一种优选的实施方式中,还可以在炉体1外进一步设置混合器7,用于将脱硫后的反应原料天然气与过热蒸汽混合,再将经混合后的重整反应原料气送入转化单元。
(D)转化单元
转化单元位于炉体内部接近燃烧模块处。转化单元中设置转化反应模块,具体而言,转化反应模块可包括沿烟气前进方向布置的一级转化模块2-1、二级转化模块2-2、换热式转化模块2-3,优选一级转化模块2-1、二级转化模块2-2、换热式转化模块2-3之间进一步通过上隔板、下隔板分隔。
换热式转化模块2-3具有转化腔31和换热腔32,重整反应原料气进入换热式转化模块2-3的转化腔31,再依次流经一级转化模块2-1、二级转化模块2-2,然后进入换热式转化模块2-3的换热腔32,最后从换热式转化模块2-3的换热腔32流出,向后续的变换单元流动。
在转化单元的各模块中,反应气体主要进行的反应为转化反应:
CH 4+H 2O→CO+3H 2–Q(吸热)
以下对转化单元中的各转化反应模块分别进行说明。
(D-1)换热式转化模块
如图2所示,换热式转化模块2-3具有转化腔31和换热腔32。换热腔32位于换热式转化模块2-3的内部,转化腔31位于换热腔以外、换热式转化模块的外壁以内。优选地,换热腔32的形式为换热盘管,有助于换热腔内的高温气体与转化腔内的气体充分换热;优选地,换热式转化模块外壁盘绕着换热盘管,有助于换热式转化模块外的烟道腔中流动的高温气体与转化腔内的气体充分换热。
自换热腔气体进口33进入换热腔32的高温气体来自于二级转化管2-2的出气,此部分高温气体可通过热交换为转化腔供热。高温气体换热后,从换热腔气体出口34流出。
转化腔31中填充有催化剂,反应原料气从转化腔气体进口35进入转化腔31,在催化剂作用下进行预转化反应。转化腔中的气体进行反应所需的热量部分来自换热腔内高温气体,部分来自换热式转化模块外的烟道腔中流动的高温烟气。反应原料气在转化腔31中进行反应后,从转化腔气体出口36流出。
在换热式转化模块中,通过转化腔与换热腔之间的换热,一方面利用了换热腔中气体的余热,使转化腔中的气体被加热,有助于进行吸热的转化反应,另一方面换热腔中的气体被适度降温,有助于其后续进入变换单元中进行放热的变换反应。
(D-2)一级转化模块
一级转化模块2-1邻近燃烧模块,主要利用燃烧的火焰辐射传热。
一级转化模块2-1可由单根一级转化管构成,或者可由并联或串联的多根一级转化管构成。多根一级转化管可布置在燃烧模块烧嘴的周围或一侧。
进入一级转化管的反应气体来自换热式转化模块2-3的转化腔31。优选地,如图3所示,一级转化管的内部可具有中心管211,一级转化管的外壁与中心管211之间的空腔212内填充催化剂,反应气体从一级转化管上部的一级转化进气口213进入填充有催化剂的空腔212中,与催化剂接触而发生反应,反应后的气体到达一级转化管底部,通过中心管211收集后,从一级转化出气口214处被导出一级转化管。
(D-3)二级转化模块
沿着燃烧烟气的前进方向,二级转化模块2-2位于一级转化模块2-1的下游。二级转化模块2-2的加热方式为烟道腔中流动的燃烧高温烟气辐射传热和对流传热。
二级转化模块2-2可由单根二级转化管构成,或者可由并联或串联的多根二级转化管构成。
进入二级转化管的反应气体来自一级转化管的出气。优选地,与一级转化管类似,二级转化管的内部可具有中心管结构,二级转化管的外壁与中心管之间的空腔内填充催化剂,反应气体从二级转化管上部进入填充有催化剂的腔中,与催化剂接触而发生反应,反应后的气体到达二级转化管底部,通过中心管收集后,被导出二级转化管,随后进入换热式转化模块2-3的换热腔32。
优选地,在二级转化管所处的烟道腔中,燃烧烟气由下向上流动,而在二级转化管内,反应气体由上向下流动,反应由上向下进行。二级转化管内外的气流形成逆向温度梯度,提高传热效率,同时高温烟气加热反应末期气体,推动化学平衡向反应产物方向进行,从而提高转化率。
(E)蒸汽发生单元
蒸汽发生单元包括蒸汽发生与过热模块3。蒸汽发生与过热模块3被其所处的烟道腔中流动的燃烧烟气加热,从而将进入模块的原料水加热,产生过 热蒸汽,供后续反应使用。蒸汽发生与过热模块3位于炉体1内,在重整反应装置启动达到设定温度后即可自行产生蒸汽,无需额外提供开工蒸汽,且无蒸汽外排,降低了能耗,控制简单,并且进一步节约了重整反应装置的占用空间。
优选地,蒸汽发生与过热模块3由换热管组成,换热管可采用例如翅片或光管形式,优选翅片。
(F)变换单元
在变换单元中主要进行的反应为:
CO+H 2O→CO 2+H 2+Q(放热)
CO变换反应为放热反应,低温对变换平衡有利。
变换单元包括中变模块4。中变模块4的基本结构为中变反应管,如图4所示,中变反应管内具有用于装填中变催化剂的中变催化剂腔41,来自换热式转化模块换热腔的气体从中变进气口42进入中变模块内,流经中变催化剂腔41,在中变催化剂作用下发生变换反应。发生变换反应后的气体可在中变反应管底部被收集并引导至中变出气口43,或者也可在中变反应管的内部设中心管,通过中心管将发生变换反应后的气体收集和导出。
在一种优选的实施方案中,附加设置第一附加换热器44。第一附加换热器44可设置在中变反应管所处的烟道腔中,但更优选第一附加换热器44设置在中变反应管内部,例如将第一附加换热器44置于中变催化剂腔41内。第一附加换热器44内流动的流体可以是反应原料天然气或重整反应的原料水,优选为反应原料天然气。例如,在所述流体为反应原料天然气的情况下:原料天然气从原料天然气进口11进入系统后分为两支,作为反应原料天然气的一支从第一附加换热器入口45进入第一附加换热器44,通过第一附加换热器44内外流体的换热,CO变换反应放出的热量被用于预加热反应原料天然气,经过预加热的反应原料天然气随后被送入脱硫模块5。或者,在所述流体为原料水的情况下:原料水从原料水进口13进入系统后,从第一附加换热器入口45进入第一附加换热器44,通过第一附加换热器44内外流体的换热,CO变换反 应放出的热量被用于预加热原料水,经过预加热的原料水随后被送入蒸汽发生与过热模块3。由此可见,通过附加设置第一附加换热器44,CO变换反应的放热得到利用。同时,由于反应放出的热量被及时导走,也有利于放热的CO变换反应向右进行。
(G)脱硫单元
脱硫单元包括脱硫模块5,用于对原料天然气进行脱硫,供后续反应需要。根据原料天然气的实际组分,可在脱硫模块5中填充所需的脱硫催化剂,通常为Co-Mo系,Mn系或ZnO系催化剂,也可根据实际需要选择其他催化剂。经过脱硫的原料天然气从脱硫模块出口51导出,可直接输送至换热式转化模块2-3的转化腔31,或者,在附加设置了混合器7的情况下,也可输送至混合器7,与过热蒸汽混合后再送至换热式转化模块2-3的转化腔31。
(H)烟气换热单元
在优选的实施方案中,进一步设置烟气换热单元,烟气换热单元包括烟气换热模块6。烟气换热模块6可以设置在炉体1内部,置于炉体末端的烟道腔内,位于燃烧烟气流动的尾部。或者,也可将烟气换热模块6置于炉体外部。空气从空气入口12流入烟气换热模块中,与烟气换热模块外的燃烧烟气发生热交换,空气被燃烧烟气的余热加热后输送至燃烧模块,可提高燃烧模块的燃烧效率。
烟气换热模块6的具体结构可选择翅片式、光管式、平板式等换热器形式,以平板式或翅片式为优。
以上对本公开的一体式中小型天然气水蒸气重整反应装置的一种代表性的结构进行了说明。此外,本公开的技术方案还可进行一些变化。下面给出一些可选的变化形式。
对于原料天然气本身硫含量达标,无需进行脱硫即可用于重整反应的情况,可将脱硫模块取消,将反应原料天然气直接引入转化单元与过热蒸汽反应,或经过混合器与过热蒸汽混合后再送至转化单元。
对于某些硫组分特殊的原料天然气,由于脱硫反应所需条件不同,可将 脱硫模块移至一体化重整反应器炉体的外部。
对于脱硫单元设置在炉体内的情况,可将脱硫单元与变换单元的位置互换,即,沿着燃烧烟气的前进方向,炉体内至少依次排列转化单元、蒸汽发生单元、脱硫单元、变换单元;在设置烟气换热单元的情况下,变换单元之后为烟气换热单元。
根据实际情况,可将中变模块与脱硫模块之间的高温隔板缩短或取消,使中变模块所处的烟道腔与脱硫模块所处的烟道腔之间的通道加宽,甚至使中变模块与脱硫模块处于同一烟道腔中。通过这一调整,可改变烟道腔中燃烧烟气的流速,使之符合实际生产的具体需要。
根据实际情况,如果换热式转化模块所处的烟道腔空间受限而导致气体换热后难以达到指定温度,则可进一步设置第二附加换热器。第二附加换热器可置于换热式转化模块所处的烟道腔以外。第二附加换热器的作用是使换热式转化模块的换热腔的出气与反应气(脱硫后的反应原料天然气与过热蒸汽的混合气)进行换热,从而降低换热式转化模块换热腔出气的温度,使之符合后续CO变换反应的需求,同时也将反应气加热,有助于反应气进行转化反应。
以上对本公开的一体式中小型天然气水蒸气重整反应装置的一种代表性的结构进行了说明。但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内可轻易想到的各种变化或替换也应涵盖在本发明的保护范围之内。
本公开的一体式中小型天然气水蒸气重整反应装置将重整反应的各功能性模块高度集成,一方面有效降低了装置的体积及占地面积,从而降低了配套设备及管线等投资,另一方面根据重整反应各步骤的反应特点,巧妙设置了模块之间的热交换方式,使得各模块的温度与其功能相适应,反应过程热损失小、系统能效高、重整反应转化率高。另外,本公开的一体式中小型天然气水蒸气重整反应装置可以实现热备机的功能,在装置短时间停车阶段,可以通过燃烧模块小负荷运行将装置的热工作设备温度控制在工作点温度附近, 下次启动时可快速引入反应原料,提高了装置的使用效率,缩短了装置的启停时间。
本公开还提供利用上述一体式中小型天然气水蒸气重整反应装置制取氢气的工艺,其方法步骤如下:
S1、原料天然气从原料天然气进口11进入装置,将一部分原料天然气作为燃料天然气在燃烧模块8中燃烧,使炉体内的转化单元、蒸汽发生单元、脱硫单元、变换单元、烟气换热单元(如有)升温。
S2、将另一部分原料天然气作为反应原料天然气,送至脱硫单元脱硫(如果原料天然气的硫含量达标,也可省略脱硫工序);同时,将原料水输送至蒸汽发生单元,制得过热蒸汽。
S3、脱硫后的反应原料天然气与过热蒸汽按设定比例输入转化单元(直接输入转化单元,或经混合器混合后输入转化单元),依次流经换热式转化模块2-3的转化腔31、一级转化管2-1、二级转化管2-2、换热式转化模块2-3的换热腔32,在转化单元中发生转化反应,得到转化气:
CH 4+H 2O→CO+3H 2–Q(吸热);
S4、将转化气输送进入变换单元,在变换单元中进行CO变换反应,得到中变气:
CO+H 2O→CO 2+H 2+Q(放热);
S5、将中变气从一体式中小型天然气水蒸气重整反应装置中导出,输送至下游工段。
应用例
200Nm 3/h一体化天然气水蒸气重整制氢反应器
原料天然气组成:CH 4:96.2%;C 2H 6:2.87%,C 3H 8:0.514%,C 4H 10:0.21%,N 2:0.18%;CO 2:0.0018%;H 2S含量<5mg/Nm 3;原料气压力2.5MPag。
由于原料气压力已经达到系统需求压力,因此该装置不需要压缩机增压系统;原料气来自界区外,分两路,一路到一体化水蒸气重整制氢反应器的燃烧模块作为燃烧供热;一部分经减压至1.9MPag进入一体化水蒸气重整制 氢反应器的烟道腔内换热至350℃,然后进入脱硫单元,经过脱硫单元处理后,原料气的H 2S含量降低至0.1ppm以下;来自界外的脱盐水通过增压泵增压至1.9MPag并计量后进入蒸汽发生单元,产生250~300℃的过热蒸汽后与天然气混合进入转化单元。
在转化单元的换热式转化模块中,在转化腔内天然气中的CH 4及其他烷烃组分与水蒸气发生预转化反应,生成H 2、CO、CO 2等气体;来自二级转化模块的转化气在换热式转化模块的转化腔内通过换热盘管将热量提供给转化反应;转化气的温度约450~550℃,通过换热,而换热式转化模块的转化腔内的混合气升温至400~500℃,来自二级转化模块的转化气温度降低至280~350℃。预转化的热源来自换热式转化模块的换热腔中流动的高温的合成气以及烟道腔中的高温烟道气。
通过预转化后的气体进入到转化单元的一级转化模块。一级转化模块由四根一级转化管组成,该四根一级转化管位于燃烧器的四周,每两根转化管形成一组串联,组与组之间形成两组并联。通过一级转化模块的反应气再进入到二级转化模块,二级转化模块由两根二级转化管并联组成;出二级转化模块合成气进入换热式转化模块的换热腔,换热后温度在280~350℃,出换热式转化模块,进入到中变模块,在中变模块中,反应气中的CO与H 2O进一步发生反应生成H 2与CO 2,由于中变单元处于烟道腔内,中变反应产生的热量有一部分转移到烟气中,中变模块温度350℃低于绝热床温度,进一步提高了CO的转化率。出中变模块后的转化气进入后续工段。燃烧烟气经过中变模块及脱硫模块后,进入到烟气换热模块,烟气温度在300~350℃,在烟气换热模块中,烟气将热量转移到助燃空气中,通过换热,烟气排烟温度在120~150℃,阻燃空气温度230~280℃;一体化水蒸气重整反应器天然气水蒸气重整单元的工序完成。
当系统启动时,由于中变单元与脱硫单元在烟道腔内,中变单元与脱硫单元的升温采用烟道腔内的高温气体升温,不需要单独采用N 2对中变与脱硫单元升温。短时间装置停机,只需要将燃烧器燃烧功率调低,将一体化水蒸 气重整反应器内温度调节至500℃以下可以实现热待机功能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种一体化中小型天然气水蒸汽重整反应器,其特征在于,所述一体化中小型天然气水蒸汽重整反应器包括:
    炉体(1);
    燃烧模块(8),所述燃烧模块(8)位于所述炉体(1)的外部,所述燃烧模块(8)向所述炉体(1)的内部供给燃烧烟气;
    所述炉体(1)的内部被多个高温隔板分隔为多个烟道腔,相邻的烟道腔通过高温隔板与炉体内壁之间的间隙连通,所述多个烟道腔形成多次折向的烟气通道;
    所述多个烟道腔中分别设有转化反应模块(2)、蒸汽发生与过热模块(3)、中变模块(4)、脱硫模块(5),从而形成沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、变换单元、脱硫单元。
  2. 根据权利要求1所述的一体化中小型天然气水蒸汽重整反应器,其中,所述转化反应模块(2)包括一级转化模块(2-1)、二级转化模块(2-2)、换热式转化模块(2-3);
    所述转化单元进一步由高温隔板分隔,形成容纳一级转化模块(2-1)的第一次级烟道腔(1-1)、容纳二级转化模块(2-2)的第二次级烟道腔(1-2)、容纳换热式转化模块(2-3)的第三次级烟道腔(1-3),所述第一次级烟道腔(1-1)、第二次级烟道腔(1-2)、第三次级烟道腔(1-3)连通形成多次折向的烟气通道。
  3. 根据权利要求2所述的一体化中小型天然气水蒸汽重整反应器,其中,所述换热式转化模块(2-3)具有转化腔(31)和换热腔(32);所述脱硫模块(5)、所述蒸汽发生及过热模块(3)分别与所述换热式转化模块(2-3)的转化腔(31)直接或间接相连,所述换热式转化模块(2-3)的转化腔(31)、所述一级转化模块(2-1)、所述二级转化模块(2-2)、所述换热式转化模块(2-3)的换热腔(32)、所述中变模块(4)通过管路依次相连。
  4. 根据权利要求2或3所述的一体化中小型天然气水蒸汽重整反应器,其中,所述一级转化模块(2-1)由1至6根一级转化管构成,所述一级转化管布置在所述燃烧模块(8)的烧嘴的周围或一侧,当一级转化管的数量超过1根时,多根一级转化管之间以并联或串联方式连接。
  5. 根据权利要求3或4所述的一体化中小型天然气水蒸汽重整反应器,其中,所述二级转化模块(2-2)由1至6根二级转化管构成,当所述二级转化管的数量超过1根时,多根二级转化管之间以并联或串联方式连接。
  6. 根据权利要求5所述的一体化中小型天然气水蒸汽重整反应器,其中,燃烧烟气在所述第二次级烟道腔(1-2)中流动的方向与反应气体在所述二级转化管中的流动方向相反。
  7. 根据权利要求4至6任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述一级转化管和/或所述二级转化管的结构为具有中心管的转化管,转化管的管壁与中心管的外壁之间的腔内填充催化剂,反应气体从转化管的上部进入填充有催化剂的腔中,然后在所述转化管的底部处流入中心管,进而被导出转化管。
  8. 根据权利要求3至7任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,在所述换热式转化模块(2-3)中,所述转化腔(31)内填充有催化剂;
    所述换热腔(32)内流动的气体来自所述二级转化模块(2-2)的出气,所述换热腔(32)利用来自所述二级转化模块(2-2)的出气以及所述第三次级烟道腔(1-3)中的燃烧烟气为所述转化腔(31)内流动的反应气体提供热量。
  9. 根据权利要求3至8任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述中变模块(4)的结构为中变反应管,来自所述换热式转化模块(2-3)的换热腔(32)的气体进入所述中变反应管内,在中变催化剂作用下发生变换反应生成中变气;
    所述中变气从所述中变反应管底部出气,或者,在所述中变反应管的内 部设中变中心管,通过所述中变中心管将所述中变气收集和导出。
  10. 根据权利要求1至9任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,
    所述变换单元进一步包括第一附加换热器(44);
    所述第一附加换热器(44)设置在所述中变模块(4)所处的烟道腔中,或者,所述第一附加换热器设置在所述中变模块(4)的内部;
    所述第一附加换热器(44)中的流体为反应原料天然气或者重整反应的原料水,优选反应原料天然气。
  11. 根据权利要求1至10任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述蒸汽发生与过热模块(3)由换热管组成,所述换热管为翅片或光管形式,优选翅片。
  12. 根据权利要求1至11任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述脱硫模块(5)中填充的催化剂为Co-Mo系、Mn系或ZnO系催化剂。
  13. 根据权利要求1至12任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,将所述脱硫单元与所述变换单元的位置互换,使所述炉体(1)内至少具有沿着燃烧烟气前进方向依次排列的转化单元、蒸汽发生单元、脱硫单元、变换单元。
  14. 根据权利要求1至13任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,取消所述脱硫模块(5),或将所述脱硫模块(5)移至所述炉体(1)的外部。
  15. 根据权利要求1至13任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,将所述中变模块(4)与所述脱硫模块(5)之间的高温隔板取消,使所述中变模块(4)与所述脱硫模块(5)处于同一烟道腔中。
  16. 根据权利要求3至15任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述一体化中小型天然气水蒸汽重整反应器还包括位于所述炉体(1)外部的混合器(7),所述脱硫模块(5)、所述蒸汽发生及过热模块 (3)分别与所述混合器(7)相连,所述混合器(7)进一步连接至所述换热式转化模块(2-3)的转化腔(31)。
  17. 根据权利要求16所述的一体化中小型天然气水蒸汽重整反应器,其中,在所述换热式转化模块(2-3)所处的烟道腔外部设置第二附加换热器,所述第二附加换热器使所述换热式转化模块(2-3)的换热腔(32)的出气与所述混合器(7)中流动的反应气进行换热。
  18. 根据权利要求1至17任一项所述的一体化中小型天然气水蒸汽重整反应器,其中,所述一体化中小型天然气水蒸汽重整反应器进一步包括烟气换热模块(6);
    所述烟气换热模块(6)设置在所述炉体(1)中,位于燃烧烟气流的尾部的烟道腔中,所述烟气换热模块(6)与其所处的烟道腔共同形成烟气换热单元;
    优选所述烟气换热模块(6)的结构为翅片式换热器,或光管式换热器,或平板式换热器。
  19. 一种利用根据权利要求1-18任一项所述的一体化中小型天然气水蒸汽重整反应器进行重整反应的工艺,包括以下步骤:
    S1、将原料天然气输送入所述一体化中小型天然气水蒸汽重整反应器,将一部分原料天然气作为燃料天然气在燃烧模块(8)中燃烧,至少使所述转化单元、所述蒸汽发生单元、所述变换单元、所述脱硫单元升温;
    S2、将另一部分原料天然气作为反应原料天然气,送至所述脱硫单元脱硫;将原料水输送至所述蒸汽发生单元,制得过热蒸汽;
    S3、将脱硫后的反应原料天然气与过热蒸汽按设定比例输入所述转化单元,在所述转化单元中发生转化反应,得到转化气;
    S4、将所述转化气输送进入变换单元,在变换单元中进行CO变换反应,得到含有氢气的中变气;
    S5、将所述中变气从所述一体式中小型天然气水蒸气重整反应装置中导出,输送至下游工段。
PCT/CN2020/108090 2019-08-20 2020-08-10 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺 WO2021031894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/336,287 US20210309516A1 (en) 2019-08-20 2021-06-01 Integrated small and medium-sized natural gas steam reforming reactor and reforming reaction process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910770234.7 2019-08-20
CN201910770234.7A CN110407172B (zh) 2019-08-20 2019-08-20 一种中小型天然气制氢装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/336,287 Continuation US20210309516A1 (en) 2019-08-20 2021-06-01 Integrated small and medium-sized natural gas steam reforming reactor and reforming reaction process

Publications (1)

Publication Number Publication Date
WO2021031894A1 true WO2021031894A1 (zh) 2021-02-25

Family

ID=68368136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108090 WO2021031894A1 (zh) 2019-08-20 2020-08-10 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺

Country Status (3)

Country Link
US (1) US20210309516A1 (zh)
CN (1) CN110407172B (zh)
WO (1) WO2021031894A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407172B (zh) * 2019-08-20 2024-04-26 四川亚联氢能科技股份有限公司 一种中小型天然气制氢装置
CN113620244B (zh) * 2020-05-07 2023-04-07 中国石油化工股份有限公司 一种天然气水蒸汽重整制氢的系统及其方法
CN112158802B (zh) * 2020-10-10 2023-04-07 辽宁华融富瑞新能源科技股份有限公司 一种天然气制氢系统
CN113184808A (zh) * 2021-05-21 2021-07-30 西安交通大学 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190781A (zh) * 2006-11-23 2008-06-04 上海标氢气体技术有限公司 小型轻烃水蒸气转化制氢工艺方法
CN201548103U (zh) * 2009-08-28 2010-08-11 四川亚联高科技股份有限公司 一种天然气制氢装置用原料气换热器
US20100313840A1 (en) * 2009-05-05 2010-12-16 Days Energy Systems Method and system for converting waste into energy
US20110014088A1 (en) * 2007-05-20 2011-01-20 Robert M Zubrin Compact natural gas steam reformer with linear countercurrent heat exchanger
CN102745647A (zh) * 2012-06-20 2012-10-24 青海宜化化工有限责任公司 一种利用电石尾气的天然气制氢工艺
CN102849680A (zh) * 2012-08-30 2013-01-02 苏州金宏气体股份有限公司 从天然气中合成及纯化氢气的方法
CN108275653A (zh) * 2018-03-22 2018-07-13 上海华林工业气体有限公司 一种蒸汽转化炉烟道气热量回收利用系统及方法
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
CN210419231U (zh) * 2019-08-20 2020-04-28 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
CN210438410U (zh) * 2019-08-20 2020-05-01 四川亚联高科技股份有限公司 一种天然气制氢转化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300331B1 (ko) * 2007-11-01 2013-08-28 에스케이이노베이션 주식회사 용이한 초기 구동, 운전 안정성 및 높은 열효율을 갖는수소발생 장치
CN102173381B (zh) * 2011-02-28 2012-08-08 四川亚联高科技股份有限公司 一种以天然气为原料制备氢气的方法
CN108439337A (zh) * 2018-03-16 2018-08-24 新地能源工程技术有限公司 一种天然气转化制氢的方法
CN109179320B (zh) * 2018-11-08 2020-02-07 新地能源工程技术有限公司 一种天然气现场制氢装置及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190781A (zh) * 2006-11-23 2008-06-04 上海标氢气体技术有限公司 小型轻烃水蒸气转化制氢工艺方法
US20110014088A1 (en) * 2007-05-20 2011-01-20 Robert M Zubrin Compact natural gas steam reformer with linear countercurrent heat exchanger
US20100313840A1 (en) * 2009-05-05 2010-12-16 Days Energy Systems Method and system for converting waste into energy
CN201548103U (zh) * 2009-08-28 2010-08-11 四川亚联高科技股份有限公司 一种天然气制氢装置用原料气换热器
CN102745647A (zh) * 2012-06-20 2012-10-24 青海宜化化工有限责任公司 一种利用电石尾气的天然气制氢工艺
CN102849680A (zh) * 2012-08-30 2013-01-02 苏州金宏气体股份有限公司 从天然气中合成及纯化氢气的方法
CN108275653A (zh) * 2018-03-22 2018-07-13 上海华林工业气体有限公司 一种蒸汽转化炉烟道气热量回收利用系统及方法
CN110407172A (zh) * 2019-08-20 2019-11-05 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
CN210419231U (zh) * 2019-08-20 2020-04-28 四川亚联高科技股份有限公司 一种中小型天然气制氢装置
CN210438410U (zh) * 2019-08-20 2020-05-01 四川亚联高科技股份有限公司 一种天然气制氢转化装置

Also Published As

Publication number Publication date
US20210309516A1 (en) 2021-10-07
CN110407172B (zh) 2024-04-26
CN110407172A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2021031894A1 (zh) 一种一体化中小型天然气水蒸汽重整反应器及重整反应工艺
US5516344A (en) Fuel cell power plant fuel processing apparatus
CN101222975B (zh) 紧凑型重整反应器
CN101208264B (zh) 紧凑型重整反应器
JP4073960B2 (ja) 炭化水素の水蒸気改質方法
JP3842167B2 (ja) プレート形水蒸気改質装置
CN109193009A (zh) 固体氧化物燃料电池复合系统及使用方法
CN105680072A (zh) 一种中小规模分布式天然气水蒸汽重整制氢系统及方法
JP2003002609A (ja) コンパクト型水蒸気改質装置
CN102381717B (zh) 一种天然气转化生产氨的方法
CN102173381B (zh) 一种以天然气为原料制备氢气的方法
CN108408688A (zh) 天然气制取氢气的方法
CN105925329B (zh) 一种分布式供能系统中实现co2零排放的方法及其系统
RU2008113706A (ru) Способ создания водородного энергохимического комплекса и устройство для его реализации
CN103922282A (zh) Hter的进料速率控制
JP2019085317A (ja) 水素発生装置
CN110562920A (zh) 集成型重整制氢装置中的热利用机构
CN113292045A (zh) 一种甲醇水重整制氢系统及控制方法
CN217297309U (zh) 一种甲醇水重整制氢系统
WO2022242598A1 (zh) 一种基于新能源消纳的天然气制备含氢产品的装置及方法
CN210419231U (zh) 一种中小型天然气制氢装置
CN210150715U (zh) 一种天然气蒸汽重整制氢装置
CN208345753U (zh) 由高温烟气供热的水蒸气重整制氢装置
CN208394781U (zh) 水蒸气重整制氢装置中的重整反应器
CN203998947U (zh) 一种含烃尾气转化制氢系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854659

Country of ref document: EP

Kind code of ref document: A1