CN103922282A - Hter的进料速率控制 - Google Patents

Hter的进料速率控制 Download PDF

Info

Publication number
CN103922282A
CN103922282A CN201410015931.9A CN201410015931A CN103922282A CN 103922282 A CN103922282 A CN 103922282A CN 201410015931 A CN201410015931 A CN 201410015931A CN 103922282 A CN103922282 A CN 103922282A
Authority
CN
China
Prior art keywords
mru
reformer
ratio
hydrocarbon
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410015931.9A
Other languages
English (en)
Inventor
M.F.詹森
C.F.汉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN103922282A publication Critical patent/CN103922282A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提供了一种用于设计热交换重整器(HER)的构造以最小化金属尘化的方法,和用于在热交换重整器(HER)中实现改善的热控制的方法。通过分析与主重整单元(MRU)和热交换重整器(HER)相关的各种参数,实现了改善的热控制和减少的金属尘化。

Description

HTER的进料速率控制
关于通过蒸汽重整生产合成气,要求高温以获得烃向合成气的可行的转化。
在传统的合成气设备中,已经将合成气中的显热用于产生蒸汽。对其进行夹点分析将通常得出以下结论:当在热端中的温度差异通常在650-750℃范围内时,来自重整器的气体中的显热可被更好地利用。然而,由于称为金属尘化的腐蚀现象,以设备的可靠性不受损害的方式设计热交换装置是具有挑战性的。甚至在用于传统合成气设备中的废热锅炉中(其中热金属表面亲合金属尘化的可能性由于在蒸汽/水侧上相对低的温度和高传热系数而显著降低),已经观察到由于金属尘化导致的失效。
因此当设计利用来自蒸汽重整段的显热的装置时,最重要的是金属尘化现象的大量知识和经验是可获得的。
通常,夹点分析和/或CAPEX/OPEX(资本支出/运行支出)评价显示温度方法(temperature approach)应当在10-150℃之间以具有投资和运行成分之间的最佳平衡。更高的值通常与更“独特的(exotic)”材料相关,即在具有高温和/或高腐蚀电位的环境中。
对于合成气生成,主要重整段的出口温度在850-1050℃的范围内,这意味着该显热可以用于将工艺料流加热至600-900℃。除了在重整方法本身,这种料流在合成气方法中不存在。因此,已经考虑了不同的概念来利用来自主重整器的合成气中的显热进行进一步的蒸汽重整,例如,Aasberg-Petersen K., Dybkjær I., Ovesen C.V., Schjødt N.C., Sehested J., Thomsen S.G. ”Natural gas to syngas – Catalysts and catalytic processes”, Journal of Natural Gas Science and Engineering, 2011。
附图说明
图1显示了在NH3设备前端中的HTER;
图2显示了用于合成染料的基于ATR前端中的HTER;
图3显示了H2设备中的HTER;
图4显示了卡口管HTER;
图5显示了双管HTER;
气体加热的蒸汽重整器可以与主重整器串联(称为HTER-s,即,串联的热交换重整器)或并联(HTER-p)主重整器构造。主重整器可以是管式重整器、二段转化炉或自热重整器。HTER-s具有可以获得更高的平均出口温度的优点,其对于进料的整体转化和特别是对于合成燃料的合成气的更高CO/H2比是有利的,而对于HTER-p概念来说前端的总压降更低。以下将仅讨论HTER-p,并且在图1-3中显示了HTER-p在不同设备类型中的实施方式。
在表1中显示了主重整器的典型的操作参数。
HTER-p的负荷可以通常最多为在标准设备构造中应用的废热锅炉(和蒸汽过热器,如果适用的话)的负荷的40-50%,并且重整生产能力对应于主重整器的生产能力的25-30%。在氨、甲醇和氢气设备中,这意味着管式/主重整器的负荷可以相应地降低。除了重整器尺寸的降低之外,还显著地降低了燃料消耗和待回收的废热,导致较低的总进料+燃料消耗和管式重整器的废热段的降低的尺寸。对于应用自热重整器(ATR)的设备,降低了ATR的氧气需求,从而导致空气分离单元降低的运行成本和降低的单元尺寸。因为对于合成燃料设备来说经济规模是特别相关的,并且空气分离单元的生产能力通常是瓶颈,对于相同的O2消耗,HTER-p(和HTER-s)的实施方式可以提高总的设备生产能力。
如上所述,改善了合成气设备的进料和燃料消耗方面的效率,并且降低了CO2排放。然而,在某些情况下,在合成气设备中产生的蒸汽可能在整个综合设施中具有显著价值,并且对于这种情况稳定从合成气设备输出的蒸汽是重要的;参见Andersen N.U., Olsson H., “The hydrogen generation game”, Hydrocarbon Engineering 2011。通常在合成气设备中蒸汽产生效率可以高达94%,而辅助锅炉的典型效率为92.5%。然而,随着辅助锅炉效率的改进(例如通过使用有机朗肯循环实现由低温卡路里发电)和主要的泵和压缩机驱动器变为电动的,HTER的优势变得越来越显著。
当与在发射管式重整器(fired tubular reformers)获得的总热传递相比时,在HTER-p中获得了高热传递系数,并且这导致与所述管式重整器相比HTER-p非常小的图形区域(参见表2)。
可以看到HTER-p的热强度比典型管式重整器的强度高十几倍,这支持了这样的事实:尽管HTER-p的构建更加复杂,并且构建材料更加昂贵,但是对于新的或已有的管式重整器,HTER-p是增加重整生产能力的可行方式。
为了最小化整个设备的总成本,重要的是知晓整个设备中的关键参数。Topsøe具有两种类型的商业运行的HTER-p:1)卡口管型HTER-p,和2)双管型HTER-p。
卡口管型HTER-p(参见图4)由一个管束构成,其中每一个管组件有三个同心管组成。在外环流中,来自主重整器的加热气体向上流动,在中环中进料气体向下流动通过催化剂床,其从那里离开并且转入中心管(卡口管),向上流动到出口室,在这里冷却的重整气体与来自外环的冷却的加热气体混合。
双管HTER-p(参见图5)由具有两个管的管束构成。在中心管之内和外管之外装载催化剂。进料气体向下流动通过管内的催化剂和通过管外的催化剂。来自催化剂床的重整气体与来自主重整器的加热气体混合并且在双管组件之间的环中向上流动,同时与在催化剂床中流动的气体进行热交换。
通常,对于其中高转化率非常重要的设备,催化剂床的出口温度应当尽量高以保证合成气中最低的甲烷泄漏。当在低蒸汽与碳之比下操作时,例如在具有紧的燃料平衡的氨设备和氢气设备中往往如此。在这种情况下,卡口型HTER-p是最佳的,因为来自主重整器(管式重整器或二段转化炉)的加热气体在发生热交换之前不与HTER-p催化剂流出物气体混合。这导致了,相比于双管HTER-p,对于在HTER-p的热端中的相同温度方法在HTER-p中更高的重整温度(大约30-40℃)。在其中甲烷泄露不那么显著的情形下,双管HTER-p具有更紧凑的优点,因为管组件之间的空间作为催化剂床使用并且使得HTER-p甚至更紧凑。在主重整器出口温度相对高的基于ATR的设备中和在燃料平衡允许该设计的氢气设备中(通常在其中蒸汽与碳之比由进料的类型决定的设备中),双管HTER-p通常是最可行的解决方案。
以上标准通常是唯一的,并且许多其它因素可能影响HTER-p的最终和最可行的布局。
与通过重整工艺气体加热的热交换重整器相关的主要挑战是金属尘化腐蚀,其通常会在富集CO和/或烃的气氛中在400-800℃的温度范围发生。
金属尘化的先兆是积碳的形成,在重整气体中积碳的形成的可能机理是参见Agüero A., Gutiérrez M., Korcakova L., Nguyen T.T.M, Hinnemann B., Saadi S.. “Metal Dusting Protective Coatings. A Literature Review”, Oxidation of Metals, 2011:
鲍多尔德反应:
(1) 2 CO C + CO2
CO还原
(2) CO + H2 C + H2O
甲烷分解
(3) CH4 C + 2 H2
鲍多尔德反应(1)和CO还原反应(2)二者均是放热反应,即,当实际温度低于平衡温度时,存在由两个反应形成积碳的亲合力。然而,在某一温度下,如400-450℃,反应速率是如此低以致实践中发生了微不足道的腐蚀。甲烷分解反应(3)是吸热反应,即形成积碳的亲合力在平衡温度以上存在。在表3中,显示了积碳形成反应的典型的平衡温度。
可以看到工艺气体通过临界温度范围,和存在对于积碳形成的亲合力和金属尘化的潜力。对碳具有亲合力不一定与具有不可接受的金属尘化腐蚀相同(但通常是)。一些商业合金具有长的潜伏期和低腐蚀速率,使得它们对于在与金属尘化具有亲合力的条件下操作时是合适的。然而,在对于积碳形成具有亲合力的条件下操作要求在商业单元中使用前进行广泛的测试,并且Topsøe不断测试材料和操作条件以绘制在实验室中的金属尘化腐蚀并且与研发特种合金的龙头企业具有广泛的合作。最后但也同样重要的是,Topsøe的确在金属尘化领域内在对流型重整器的操作中具有超过十年的成功工业经验。
自从1990年起,Haldor Topsøe A/S (Topsøe) 就已经开始使用对流重整器。第一台热交换重整器是基于废气的对流的(Haldor Topsøe对流重整器“HTCR”)。大部分运行中的HTCR(超过30年)是卡口型的(参见图6),并且的确具有相对复杂的热传递机制。由这些单元已经获得了在对流重整器中热传递的广泛的反馈和经验,并且已经用于优化其它类型的对流重整器的设计。
在2003年,在南非的赛康达的Sasol’s Synfuel Plant成功启动了第一台HTER,并且其自从那时起就一直运行(Thomsen S.G., Han P. A., Loock S., Ernst W. ”The first Industrial Experience with the Haldor Topsøe Exchanger Reformer , AIChE Ammonia Safety Symposium, 2006)。该HTER是双管型的并且通过应用HTER,合成气的产最被提升超过30%。由于高的温度和低蒸汽与碳之比,该重整器的操作条件就金属尘化而言较苛刻。第一管束运行了超过7年,金属尘化腐蚀在预期的速率内并且不是更换管束的原因。
2010年,在印度的Numaligarh Refinery Limited启动了卡口型的HTER(Konwar S., Thakuria A.. ”New Paradigms in Revamp Options for Hydrogen Units – The HTERp in NRL” 16th Refinery Technology Meet., 2011)。由于对于燃料产品的更加严格的环境要求,该HTER是与精炼厂综合设备中整体H2要求相关的改造的一部分。现有氢气单元的原始生产能力为38000MTPY(52400 Nm3/h),HTER提供的另外的H2生产能力是14600 Nm3/h,即生产能力增加超过25%。
在2007年,Essar Oil Vadinar Limited和Haldor Topsøe对于设计具有130000 Nm3/h氢气的生产能力的氢气单元达成共识。
考虑到操作成本和对于氢气单元的进料和燃料消耗的优势,Essar Oil决定实施双管HTER。氢气单元的构造在图7中显示。该设备被设计为高度灵活性的并且既可作用天然气、炼厂气、LPG又可使用石脑油作为原料。为了在原料中容纳高灵活性,对于预重整器和管式重整器选择了2.5的蒸汽与碳之比,确保优化预重整器操作。
管式重整器已被设计具有915℃的最大操作出口温度以实现最高的效率和转化率,并且另外其允许进一步更好地利用HTER-p。当将其冷却至大约280℃时(废热锅炉的普通出口温度),HTER-p的负荷为大约23 Gcal/h,对应于大约40%的在合成气中的显热。该负荷还对应于氢气单元的进料和燃料降低大约5%(并且蒸汽输出相应降低)。
如上所述,保证金属表面的温度在某些限度内以避免由金属尘化造成的过度腐蚀是非常重要的。对于在Essar Oil H2设备中的HTER-p,最重要的参数是CO还原温度。当合成气通过对于金属尘化具有亲合力的临界温度同时将热传递到催化剂床时,重要的是对管束的相关部件选择对于金属尘化具有足够抗性的材料。考虑成本和操作灵活性二者优化材料的选择。当Essar Oil H2设备具有预重整器并且HTER-p的进料在预重整器下游取出时,HTER-p的进料组成(以恒定的蒸汽与碳之比)是相对恒定的,与原料类型(NG、RFG、LPG或石脑油)的变化无关,但其它参数对于HTER中的温度曲线是重要的:
与管式重整器相比,HTER的相对进料速率
管式重整器出口温度
蒸汽与碳之比。
在图8中,显示了以上参数对于温度曲线的影响。
进行材料的选择以保证允许设备操作参数的变动的稳健设计,并且以促进控制和最小化由金属尘化造成的腐蚀,用算法设计该设备,确保以最优的方式控制流入HTER的进料。
由图8可见,温度曲线的显著参数是HTER进料流动速率和管式重整器出口温度。由于管式重整器出口温度可能由其它要求(重整器管金属温度、管燃烧速率(firing rate)等)决定,因此选择了操控进料流动速率与HTER的进料流量以在HTER中具有最佳的温度曲线:
FHTER = f (F管式重整器, T , 管式重整器, S/C)
其中:
FHTER : HTER的进料流动速率
F管式重整器: 管式重整器的进料流动速率
T , 管式重整器: 管式重整器出口温度
S/C: 进入重整段的蒸汽与碳之比。
蒸汽与碳之比(S/C)是指在给定工艺料流中H2O与碳的摩尔比。
积碳形成反应的平衡温度受管式重整器的出口温度和蒸汽与碳之比影响。对于降低的出口温度和增加的蒸汽与碳之比,平衡温度降低,因此对于管式重整器来说被认为是更温和的操作条件对于HTER来说也是更温和的因此产生了一种自我调节,只要HTER和管式重整器的进料之比保持恒定。然而,总是推荐使用先进的算法,因为其将促进控制和最小化由于误操作而导致的过早失效的风险。
Topsøe已经设计和获得了HTER-p。压力壳层带有耐火材料内衬,并且耐火材料在设备试车之前在2011年8月现场干燥。压力壳层耐火材料不能在预试车/试车期间干燥(如出口收集器中的耐火材料那样),因为在试车(或操作)期间不能有流沿着耐火材料通过。
2011年9月,架设了压力壳层并且安装了管束。
在2011年11月,向HTER-p中装入了用于热交换重整器的尺寸为16x8 mm的Topsøe催化剂,装载进行的很顺利并且在管中获得了装载密度和压降之间的非常低的偏差(+3.1/-2.2%)。这保证了管之间良好的流量分配。对于管内的催化剂和管外的催化剂二者,总的催化剂装载时间为十天白班。预期该时间可以缩短并且与具有相似H2生产能力(~32000 Nm3/h,对应于80-100个重整器管)的常规管式重整器相比,HTER的装载时间仅长了3-4天,考虑到HTER的紧凑型和HTER的装载通常不在关键路径上,其可以被认为是合理的。
H2设备在2012年1月机械完成并充分预试车,然后立即开始试车。在循环氮气中的重整段(预重整器、管式重整器和HTER-p)的加热在1月12日启动,并且在1月15日将进料引入到重整段。
Essar Oil H2设备设计有中温转换(MTS),并且由于用于启动的进口空气的可用性,选择通过具有旁路中温转换的H2设备本身产生的H2来还原MTS催化剂。这可以通过以降低的生产能力、降低的重整器(管式重整器和HTER)出口温度,和增加的蒸汽与碳之比操作重整段来完成,以这种方式产生用于进料到变压吸附(PSA)单元的合成气,和以这种方式产生用于MTS催化剂还原的H2
MTS催化剂还原在1月20日终止,并且在同一天插入中温转换器,并且在2012年1月21日达到了60%的生产能力,并且在2012年1月22日达到了85%的生产能力。氢气设备按照在炼油厂综合设施中的H2需求运行。
该H2设备在2012年的第二季度的早期重新启动,并且在2012年5月进行了100%生产能力的演示运转。使用数据调和(data reconciliation)程序分析了操作数据,保证设备和HTER的分析在没有热和质量平衡上的误差的一致的数据组的基础上进行。在130130 Nm3/h的生产能力下操作和消耗值如预期,并且现场优化显示,可以得到比预期和保证的更好的消耗值(参见表4)。
还评价了在演示运转期间HTER-p的操作和性能,并且测量的温度与通过Topsøe重整器模型模拟的温度很好地吻合(参见图9),表明在运转开始时实际热传递比通过模型预测的热传递略好。
比较重整器模型的直接输出(用使用调和终端温度的模拟)的温度曲线的评价表明,临界温度的位置仅位移了大约0.5m,并且对于该情况(并且一般而言对于双管HTER-p)该位置向上移动,即进一步至由对于金属尘化具有更高抗性的材料组成的管组件部分。参见例如图10。
总之,安装Haldor Topsøe Exchange Reformer可以显著降低了H2设备的进料和燃料消耗并由此还降低了设备的CO2排放。HTER-p是非常紧凑的重整器,具有非常高的热强度,这使得基层设备和改造项目二者均是可行的。
重要的是用于尺寸化重整器的设计工具准确地预测热传递和催化剂活性两者,并且考虑到热设计和催化剂性能之间的相互作用。高估热传递和催化剂活性将导致不能满足设计生产能力的装置,但应用“设计余量”不是解决办法,因为太好的热传递和/或催化剂活性可能导致具有金属尘化腐蚀的临界操作。
Essar Oil H2设备的试车和操作显示HTER-p的实施不会不利地影响试车和起始时间,并且HTER-p的操作是稳健和安全的,并且不影响设备的可靠性。来自Essar Oil H2设备的操作数据的评价显示,用于预测热传递和催化剂的模型是非常准确的并且保证HTER-p的合适和安全设计。
可以预见由Topsøe设计的具有HTER-p的九个单元将在2013-2015年启动。
US 专利6224789描述了生产合成气的方法,包括并联的自热重整器和热交换重整器,其中自热重整器的流出物被用于加热热交换重整器。
通过本发明公开了一种方法,其中在距热交换重整器的入口一定距离使用了对于金属尘化具有抗性的金属,并且其中这一距离由主重整器的蒸汽与碳之比、流出物出口温度和烃流量以及热交换重整器的蒸汽与碳之比和烃流动速率计算得到。
根据本文并且对应于附带的权利要求,本发明的方面如下:
方面1. 一种用于设计热交换重整器(HER)的构造以最小化金属尘化的方法,所述HER是合成气生产单元的一部分,所述合成气生产单元包括主重整单元(MRU)和热交换重整器(HER),其中设置来自MRU的流出物以向HER提供热,和其中设置烃原料以并行地通过MRU和HER二者,由此提供:
a. 具有MRU蒸汽与碳之比(MRUS/C),流出物出口温度(TMRU)和MRU烃流动速率(FMRU)的MRU烃进料和
b. 具有HER蒸汽与碳之比(HERS/C)和HER烃流动速率(FHER)的HER烃进料,
所述方法包括:
- 确定HER内的温度曲线如何随距HER的入口的距离作为FHER/FMRU 之比、MRU出口温度(TMRU)、MRU蒸汽与碳之比(MRUS/C)、HER蒸汽与碳之比(HERS/C)和总的烃流动速率(FMRU + FHER)的函数而变化;
- 由所述温度曲线,确定金属尘化不显著的距HER的入口的距离(A);
- 在大于所述距HER的入口的距离(A)的距离,由对于金属尘化具有更高抗性的第一金属构建HER;和
在小于所述距HER的入口的距离(A)的距离,由对于金属尘化具有比所述第一金属更低抗性的第二金属构建HER。
方面2. 一种用于在合成气生产单元的热交换重整器(HER)中实现改善的热控制的方法,所述合成气生产单元包括主重整单元(MRU)和热交换重整器(HER),其中设置来自MRU的流出物以向HER提供热量,和其中设置烃原料以并行地通过MRU和HER二者,由此提供:
a. 具有MRU蒸汽与碳之比(MRUS/C),流出物出口温度(TMRU)和MRU烃流动速率(FMRU)的MRU烃进料和
b. 具有HER烃流动速率(FHER)的HER烃进料,
所述方法包括:通过基于MRUS/C、TMRU、HERS/C和总的烃流动速率(FMRU+FHER)调节进入MRU和HER的烃流来调节FHER/FMRU之比,以在热交换重整器(HER)中维持稳定的温度曲线。
方面3. 根据方面2的方法,其中所述方法包括增大或缩小FHER/FMRU之比,优选缩小FHER/FMRU的比。
方面4. 根据方面2的方法,其中所述方法包括增大或缩小MRU蒸汽与碳之比(MRUS/C),提高或降低MRU流出物出口温度(TMRU),增大或缩小HER蒸汽与碳之比(HERS/C)和/或提高或降低总的烃流动速率(FMRU+FHER)。
方面5. 根据方面4的方法,其中所述方法包括增大TR蒸汽与碳之比(TRS/C)。
方面6. 根据前述方面的任一项的方法,其中HER是卡口型HER或双管型HER。
方面7. 根据前述方面的任一项的方法,其中所述方法包括缩小FHER/FMRU比。
方面8. 根据前述方面的任一项的方法,其中MRU向氢气设备、氨设备、甲醇设备和/或合成燃料设备提供合成气。
方面9. 根据前述方面的任一项的方法,其中MSR选自管式重整器、吹空气的二段转化炉、吹氧气的二段转化炉和自热重整器。
方面10. 根据前述方面的任一项的方法,其中设置来自MRU的流出物与在HER中的HER烃进料并流流动或逆流流动。
方面11. 根据前述方面的任一项的方法,其中烃原料包含天然气、LPG、石脑油、重整汽油(RFG)、或者LPG与石脑油的混合物。
方面12. 根据前述方面的任一项的方法,其中所述合成气生产单元进一步包括设置在MRU和/或HER上游的预重整器。
方面13. 根据方面2-11的任一项的方法用于减少HER中的金属尘化的用途。

Claims (13)

1.一种用于设计热交换重整器(HER)的构造以最小化金属尘化的方法,所述HER是合成气生产单元的一部分,所述合成气生产单元包括主重整单元(MRU)和热交换重整器(HER),其中设置来自MRU的流出物以向HER提供热,和其中设置烃原料以并行地通过MRU和HER二者,由此提供:
a. 具有MRU蒸汽与碳之比(MRUS/C),流出物出口温度(TMRU)和MRU烃流动速率(FMRU)的MRU烃进料和
b. 具有HER蒸汽与碳之比(HERS/C)和HER烃流动速率(FHER)的HER烃进料,
所述方法包括:
- 确定HER内的温度曲线如何随距HER的入口的距离作为FHER/FMRU 之比、MRU出口温度(TMRU)、MRU蒸汽与碳之比(MRUS/C)、HER蒸汽与碳之比(HERS/C)和总的烃流动速率(FMRU + FHER)的函数而变化;
- 由所述温度曲线,确定金属尘化不显著的距HER的入口的距离(A);
- 在大于所述距HER的入口的距离(A)的距离,由对于金属尘化具有更高抗性的第一金属构建HER;和
- 在小于所述距HER的入口的距离(A)的距离,由对于金属尘化具有比所述第一金属更低抗性的第二金属构建HER。
2.一种用于在合成气生产单元的热交换重整器(HER)中实现改善的热控制的方法,所述合成气生产单元包括主重整单元(MRU)和热交换重整器(HER),其中设置来自MRU的流出物以向HER提供热量,和其中设置烃原料以并行地通过MRU和HER二者,由此提供:
a. 具有MRU蒸汽与碳之比(MRUS/C),流出物出口温度(TMRU)和MRU烃流动速率(FMRU)的MRU烃进料和
b. 具有HER烃流动速率(FHER)的HER烃进料,
所述方法包括:通过基于MRUS/C、TMRU、HERS/C和总的烃流动速率(FMRU+FHER)调节进入MRU和HER的烃流来调节FHER/FMRU之比,以在热交换重整器(HER)中维持稳定的温度曲线。
3.根据权利要求2的方法,其中所述方法包括增大或缩小FHER/FMRU之比,优选缩小FHER/FMRU的比。
4.根据权利要求2的方法,其中所述方法包括增大或缩小MRU蒸汽与碳之比(MRUS/C),提高或降低MRU流出物出口温度(TMRU),增大或缩小HER蒸汽与碳之比(HERS/C)和/或提高或降低总的烃流动速率(FMRU+FHER)。
5.根据权利要求4的方法,其中所述方法包括增大TR蒸汽与碳之比(TRS/C)。
6.根据前述权利要求的任一项的方法,其中HER是卡口型HER或双管型HER 。
7. 根据前述权利要求的任一项的方法,其中所述方法包括缩小FHER/FMRU比。
8.根据前述权利要求的任一项的方法,其中MRU向氢气设备、氨设备、甲醇设备和/或合成燃料设备提供合成气。
9. 根据前述权利要求的任一项的方法,其中MSR选自管式重整器、吹空气的二段转化炉、吹氧气的二段转化炉和自热重整器。
10. 根据前述权利要求的任一项的方法,其中设置来自MRU的流出物与在HER中的HER烃进料并流流动或逆流流动。
11. 根据前述权利要求的任一项的方法,其中烃原料包含天然气、LPG、石脑油、重整汽油(RFG)、或者LPG与石脑油的混合物。
12. 根据前述权利要求的任一项的方法,其中所述合成气生产单元进一步包括设置在MRU和/或HER上游的预重整器。
13. 根据权利要求2-11的任一项的方法用于减少HER中的金属尘化的用途。
CN201410015931.9A 2013-01-14 2014-01-14 Hter的进料速率控制 Pending CN103922282A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201300025 2013-01-14
DKPA201300025 2013-01-14

Publications (1)

Publication Number Publication Date
CN103922282A true CN103922282A (zh) 2014-07-16

Family

ID=51140719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410015931.9A Pending CN103922282A (zh) 2013-01-14 2014-01-14 Hter的进料速率控制

Country Status (8)

Country Link
US (1) US20140196875A1 (zh)
KR (1) KR20140092244A (zh)
CN (1) CN103922282A (zh)
AU (1) AU2014200102A1 (zh)
BR (1) BR102014000540A2 (zh)
CA (1) CA2837066A1 (zh)
MX (1) MX2014000501A (zh)
RU (1) RU2014100608A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107585740A (zh) * 2016-07-07 2018-01-16 乔治·克劳德方法的研究开发空气股份有限公司 具有内部热交换的防腐蚀重整器管
CN110234798A (zh) * 2017-02-15 2019-09-13 普莱克斯技术有限公司 蒸汽甲烷重整器管出口组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472236B2 (en) 2016-10-25 2019-11-12 Technip France Catalyst tube for reforming
US20180230009A1 (en) * 2017-02-15 2018-08-16 Kwamina BEDU-AMISSAH Steam methane reformer tube outlet assembly
CN109443043B (zh) * 2018-09-05 2019-09-27 西安交通大学 一种铅-超临界二氧化碳中间换热器
KR20220052909A (ko) 2019-06-28 2022-04-28 테크니프 에너지스 프랑스 튜브형 반응기에 촉매 튜브 조립체를 로딩하는 방법 및 튜브형 반응기를 위한 촉매 튜브 조립체

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413547A1 (en) * 2002-09-26 2004-04-28 Haldor Topsoe A/S Process for the production of synthesis gas
SE526673C2 (sv) * 2003-08-28 2005-10-25 Sandvik Intellectual Property Användning av en metallförstoftningsresistent kopparlegering
US20090184293A1 (en) * 2008-01-18 2009-07-23 Han Pat A Process for reforming hydrocarbons

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107585740A (zh) * 2016-07-07 2018-01-16 乔治·克劳德方法的研究开发空气股份有限公司 具有内部热交换的防腐蚀重整器管
CN107585740B (zh) * 2016-07-07 2022-12-20 乔治·克劳德方法的研究开发空气股份有限公司 具有内部热交换的防腐蚀重整器管
CN110234798A (zh) * 2017-02-15 2019-09-13 普莱克斯技术有限公司 蒸汽甲烷重整器管出口组件
CN110234798B (zh) * 2017-02-15 2022-05-10 普莱克斯技术有限公司 蒸汽甲烷重整器管出口组件

Also Published As

Publication number Publication date
US20140196875A1 (en) 2014-07-17
BR102014000540A2 (pt) 2015-10-06
KR20140092244A (ko) 2014-07-23
MX2014000501A (es) 2014-09-16
RU2014100608A (ru) 2015-07-20
AU2014200102A1 (en) 2014-07-31
CA2837066A1 (en) 2014-07-14

Similar Documents

Publication Publication Date Title
KR101127688B1 (ko) 원통형 소형 개질 장치
CN103922282A (zh) Hter的进料速率控制
JP4128804B2 (ja) 燃料改質器
CN101842314B (zh) 容易启动、操作稳定并且高效的氢发生器
US8025862B2 (en) Process for producing synthesis gas by steam reforming in a reactor-exchanger
EP1977993B1 (en) Catalytic steam reforming with recycle
US20160002035A1 (en) Steam methane reformer system and method of performing a steam methane reforming process
US20050217179A1 (en) Highly integrated fuel processor for distributed hydrogen production
EP3160632B1 (en) Steam methane reformer system and method of performing a steam methane reforming process
US20030188475A1 (en) Dynamic fuel processor with controlled declining temperatures
US20080219901A1 (en) Cylindrical Steam Reformer Having Integrated Heat Exchanger
JP7473532B2 (ja) 炭化水素の水蒸気改質又は乾式改質
CN104555924A (zh) 具有高输出蒸汽的氢生产方法
Elshout Hydrogen Production By Steam Reforming.
KR20220041007A (ko) 증기 엑스포트가 적은 순수 수소 생성 공정
CN110225879A (zh) 通过预加热预重整的燃料气体使蒸汽甲烷重整器的燃烧效率最大化
US20150175416A1 (en) Feed ratio control for hter
KR100761945B1 (ko) 가스연료처리기
KR100707834B1 (ko) 내부 열교환 구조를 이용하여 열효율을 향상시킨연료개질장치
US7901662B2 (en) Steam generation apparatus and method
JP2017113746A (ja) 放射状の非触媒性の回収改質装置
US9803153B2 (en) Radiant non-catalytic recuperative reformer
KR102586411B1 (ko) 열교환의 최적화를 통해 안정적인 수소생산 및 일산화탄소 제거가 가능하도록 한 내구성을 갖는 고효율 연료처리장치
Overwater et al. Considerations for design of steam reforming hydrogen plants
Orphanides Achievements and Trends in Reforming System Design

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140716