CN113184808A - 一种基于新能源消纳的天然气制备含氢产品的装置及方法 - Google Patents

一种基于新能源消纳的天然气制备含氢产品的装置及方法 Download PDF

Info

Publication number
CN113184808A
CN113184808A CN202110559132.8A CN202110559132A CN113184808A CN 113184808 A CN113184808 A CN 113184808A CN 202110559132 A CN202110559132 A CN 202110559132A CN 113184808 A CN113184808 A CN 113184808A
Authority
CN
China
Prior art keywords
hydrogen
natural gas
preheater
unit
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110559132.8A
Other languages
English (en)
Inventor
刘银河
宋虎潮
林啸龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110559132.8A priority Critical patent/CN113184808A/zh
Publication of CN113184808A publication Critical patent/CN113184808A/zh
Priority to PCT/CN2022/093069 priority patent/WO2022242598A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种基于新能源消纳的天然气制备含氢产品的装置及方法,属于新能源与天然气制氢技术领域。所述基于新能源消纳的天然气制备含氢产品的装置中,天然气在经过天然气预热器和精制脱硫单元后与预热完成的水蒸气混流,依次经过电热转化单元、变换反应单元、变压吸附单元完成氢气或富氢燃料的生产。本发明可及时消纳新能源电力,大大降低天然气制氢过程中的碳排放,与此同时给出天然气重整制氢系统在高度集成下不同品位热能的高效利用方法。

Description

一种基于新能源消纳的天然气制备含氢产品的装置及方法
技术领域
本发明属于新能源与天然气制氢技术领域,具体涉及一种基于新能源消纳的天然气制备含氢产品的装置及方法。
背景技术
大规模发展风能、太阳能等可再生清洁能源,推进能源消费结构向低碳化和清洁化方向转型已成为能源发展的新风向。然而以现有技术角度看,可再生能源的供需协同仍存在矛盾,风能光能产生的电无法及时消纳与传输,弃风弃电现状依然严重。另一方面氢能作为真正的清洁燃料受到广泛关注与研究,灵活地将富余可再生能源发电与氢能生产结合起来将成为解决可再生能源消纳问题和终端燃料清洁化的有力解决方案。
在制氢技术中天然气重整制氢技术虽然相比其他技术具有成本低、技术成熟等优点,但其在制氢过程中通常使用部分天然气燃烧作为热能供给,在带来一定程度碳排放的同时不能做到热能的充分利用;此外,燃烧器以及烟道的存在大大增加了系统的复杂程度,降低了系统的稳定性。
此外,现有天然气重整制氢厂往往规模较大,集成度不高,同时现有装置运输不便、占地面积大,不适合跟随风光资源的波动即用即走,难以实现资源的实时消纳;且天然气重整制氢厂建设周期长,土建成本高、现场调试周期长,不利于装置整体的投资回收。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于新能源消纳的天然气制备含氢产品的装置及方法,解决了天然气制氢中高能耗成本、且装置稳定性差的问题。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种基于新能源消纳的天然气制备含氢产品的装置,包括天然气原料入口、精制脱硫单元、原料预热器、变换反应单元、电热转化单元、给水预热器、高温热泵、加氢口、给水入口和混流器;变换反应单元内设有天然气预热器;
天然气原料入口通过天然气预热器与精制脱硫单元进口接通,精制脱硫单元出口通过混流器与原料预热器冷端入口接通,原料预热器热端出口与电热转化单元进口接通,电热转化单元出口与原料预热器热端入口接通,原料预热器冷端出口与变换反应单元进口接通,变换反应单元出口通过蒸汽过热器与给水预热器热端入口接通,给水预热器冷端出口与和高温热泵高温侧入口接通,高温热泵低温侧出口经过变压吸附单元与氢气分流器进口接通,氢气分流器出口与加氢口接通;
给水入口与给水预热器冷端入口接通,给水预热器热端出口与和高温热泵高温侧入口接通,高温热泵高温侧出口通过蒸汽过热器与混流器接通。
优选地,氢气分流器出口与精制脱硫单元进口接通;
变压吸附单元与氢气分流器进口之间的管路上还设有气液分离单元;变压吸附单元与天然气预热器接通;
高温热泵高温侧设有闪蒸器,高温热泵低温侧设有蓄热容器。
优选地,高温热泵高温侧出口与蒸汽过热器之间的管路上设有蒸汽压缩机;
电热转化单元内设有电热炉膛;
氢气分流器出口与加氢口之间的管路上设有氢气三通阀,氢气分流器出口与氢气三通阀之间的管路上设有氢气压缩机,氢气三通阀与加氢口之间的管路上设有氢气储存单元。
进一步优选地,还包括可再生电源接口,电热炉膛、高温热泵、氢气压缩机、蒸汽压缩机通过可再生电源接口使用外接可再生能源电能。
本发明公开了一种利用上述基于新能源消纳的天然气制备含氢产品的装置的方法,包括以下运行步骤:
1)天然气原料进入天然气预热器,获取来自变换反应单元的反应放热,温度升高至300℃以上;同时给水进入给水预热器进行初步预热到成饱和水;
2)初步预热后天然气原料与循环氢气同时进入精制脱硫单元,发生烯烃饱和反应以及有机含硫物脱硫反应;
3)脱硫后天然气原料进入混流器与水蒸气混合,之后进入电热转化单元进行转化,电热转化单元使用电能将炉膛加热到800-890℃用来供给转化反应吸热;
4)电热转化单元出口气包含CO、H2、CO2、CH4以及水蒸气,温度在700℃以上,出口气先进入原料预热器对天然气和水蒸气混合原料预热,同时降低自身温度以便发生变换反应;变换反应的反应放热将通过天然气预热器带离反应单元;
5)变换反应之后的产物气体进入蒸汽过热器和给水预热器放热,之后将热量释放于高温热泵设有的蓄热容器中,作为高温热泵的热源;高温热泵将热量提取用电能将能源品位提升,使给水预热器出口的饱和水蒸发;
6)高温热泵出口的产物进入变压吸附装置对除氢气外气体进行吸附得到高纯度氢气。
本发明公开了一种基于新能源消纳的天然气制备含氢产品的装置,包括天然气原料入口、精制脱硫单元、原料预热器、变换反应单元、电热转化单元、给水预热器、高温热泵、富氢燃料出口、给水入口和混流器;变换反应单元内设有天然气预热器;
天然气原料入口通过天然气预热器与精制脱硫单元进口接通,精制脱硫单元出口通过混流器与原料预热器冷端入口接通,原料预热器热端出口与电热转化单元进口接通,电热转化单元出口与原料预热器热端入口接通,原料预热器冷端出口与变换反应单元进口接通,变换反应单元出口通过蒸汽过热器与给水预热器热端入口接通,给水预热器冷端出口与和高温热泵高温侧入口接通,高温热泵低温侧与产物产出单元连接;高温热泵低温侧经过CO2脱除单元与氢气分流器进口接通,氢气分流器出口与富氢燃料出口接通;
给水入口与给水预热器冷端入口接通,给水预热器热端出口与和高温热泵高温侧入口接通,高温热泵高温侧出口通过蒸汽过热器与混流器接通。
优选地,氢气分流器出口与精制脱硫单元进口接通;
CO2脱除单元与氢气分流器进口之间的管路上还设有气液分离单元;
高温热泵高温侧设有闪蒸器,高温热泵低温侧设有蓄热容器。
优选地,高温热泵高温侧出口与蒸汽过热器之间的管路上设有蒸汽压缩机;
电热转化单元内设有电热炉膛;
所述基于新能源消纳的天然气制备含氢产品的装置中还包括可再生电源接口,电热炉膛、高温热泵、蒸汽压缩机通过可再生电源接口使用外接可再生能源电能。
本发明公开了一种利用上述基于新能源消纳的天然气制备含氢产品的装置的方法,包括以下运行步骤:
1)天然气原料进入天然气预热器,获取来自变换反应单元的反应放热,温度升高至300℃以上;同时给水进入给水预热器进行初步预热到成饱和水;
2)初步预热后天然气原料与循环氢气同时进入精制脱硫单元,发生烯烃饱和反应以及有机含硫物脱硫反应;
3)脱硫后天然气原料进入混流器与水蒸气混合,之后进入电热转化单元进行转化,电热转化单元使用电能将炉膛加热到800-890℃用来供给转化反应吸热;
4)电热转化单元出口气包含CO、H2、CO2、CH4以及水蒸气,温度在700℃以上,出口气先进入原料预热器对天然气和水蒸气混合原料预热,同时降低自身温度以便发生变换反应;变换反应的反应放热将通过天然气预热器带离反应单元;
5)变换反应之后的产物气体进入蒸汽过热器和给水预热器放热,之后将热量释放于高温热泵设有的蓄热容器中,作为高温热泵的热源;高温热泵将热量提取用电能将能源品位提升,使给水预热器出口的饱和水蒸发;
6)高温热泵出口的产品气经降温后可进入CO2脱除单元、气液分离单元,分离完成后不经过压缩储存,直接从富氢燃料出口输出为富氢燃料。
优选地,上述基于新能源消纳的天然气制备含氢产品的装置,还包括用于设备容纳单元的撬装箱,天然气原料入口、给水入口和可再生电源接口分别设于撬装箱上。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种基于新能源消纳的天然气制备含氢产品的装置,天然气在经过天然气预热器和精制脱硫单元后与预热完成的水蒸气混流,依次经过电热转化单元、变换反应单元、变压吸附单元完成氢气生产。其中,给水预热器热流体通过管路与蒸汽过热器和高温热泵的低温侧接通,给水预热器冷流体通过管路与给水(去盐水)入口和高温热泵的高温侧接通,给水通过蒸汽过热器、给水预热器、高温热泵获取反应产物余热,降低生产制备能耗。其中,本发明通过改变现有天然气重整制氢技术中以天然气为燃料,利用生成的高温烟气为热源并产生大量碳排放的现状,通过耦合高温热泵、电热转化炉与蒸汽压缩机,实现电能高效利用的同时简化原有装置的结构,降低装置启停时间,使装置更加集成化,提升装置的整体稳定性。
进一步地,通过电热转化炉、高温热泵、蒸汽压缩机等设备利用可再生能源电能对原有天然气制氢设备进行改进,通过将可再生电能引入天然气重整制氢技术中,灵活地消纳可再生电能,为解决弃风弃光问题提供方案。
本发明公开了利用上述一种基于新能源消纳的天然气制备含氢产品的装置的制氢方法,天然气在经过天然气预热器和精制脱硫单元后与预热完成的水蒸气混流,依次经过电热转化单元、变换反应单元、变压吸附单元完成氢气生产。针对可再生能源消纳能力不足问题与燃料清洁化问题给出解决方案,与此同时给出天然气重整制氢系统在高度集成下不同品位热能的高效利用方法。
本发明公开了另一种基于新能源消纳的天然气制备含氢产品的装置,所得产品气在变换反应、经过多段换热降温后可进入CO2脱除单元、气液分离单元,分离完成后不经过压缩储存,直接输出为富氢燃料。
本发明还公开了利用上述另一种基于新能源消纳的天然气制备含氢产品的装置的富氢燃料方法,大大降低天然气制氢过程中的碳排放,提升燃料气能量转化效率。
进一步地,在上述撬装式天然气制氢装置中,装置为撬装箱式结构,可以供车辆运输。同时,以撬装式结构设计高效集成参与反应流程的设备,有效利用反应过程中的产热或余热,提升装置的效率。
其中,本发明设备选取、工艺流程不局限于撬装式结构,同样能够适合于大规模的电力消纳天然气制氢。
综上所述,本发明所述基于新能源消纳的天然气制备含氢产品的装置,具有以下优点:1、燃气制氢电气化:通过引入电热转化单元、高温热泵以及蒸汽压缩机,本装置可以高效利用电能参与反应,大大简化了装置结构,同时去除天然气燃烧环节,显著降低了天然气制氢过程中的碳排放。
2、装置设备集成化:以撬装式结构将天然气水蒸气制氢装置高度集成在集装箱内,提升装置设备的集成度,可有效降低装置生产周期,降低土地成本,同时有助于提升可再生电能消纳的灵活性。
3、余热利用梯级化:设计多级余热回收装置,包括换热器,高温热泵,有效利用反应过程中的产热或余热,提升装置的效率。
4、制氢工具模块化:所述装置拥有可再生电源接口、给水(去盐水)入口、天然气原料入口、加氢口。在实际生产中作为模块化的生产工具可以满足即插即用,大大提升制氢装置便利性。
附图说明
图1为本发明所述基于新能源消纳的撬装式天然气制氢装置的结构示意图;
图2为本发明所述基于新能源消纳的撬装式天然气富氢燃料制备装置的结构示意图。
其中:100-撬装箱;200-精制脱硫单元;201-电热转化单元;202-变换反应单元;203-变压吸附单元;204-气液分离单元;205-电热炉膛;206-CO2脱除单元;300-蒸汽过热器;301-天然气预热器;302-给水预热器;303-原料预热器;400-高温热泵;401-闪蒸器;402-蓄热容器;500-氢气分流器;501-氢气压缩机;502-氢气三通阀;503-氢气储存单元;504-加氢口;505-富氢燃料出口;600-混流器;700-蒸汽压缩机;A-天然气原料入口;B-给水入口;C-可再生电源接口。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图和具体实施例对本发明做进一步详细描述:
实施例1
如图1所示,本发明提供了一种基于新能源消纳的天然气制备含氢产品的装置,构成基于新能源消纳的撬装式天然气制氢装置,具体包括:
撬装箱100、精制脱硫单元200、电热转化单元201、变换反应单元202、变压吸附单元203、气液分离单元204、蒸汽过热器300、天然气预热器301、给水预热器302、原料预热器303、高温热泵400、闪蒸器401、蓄热容器402、氢气分流器500、氢气压缩机501、氢气三通阀502、氢气储存单元503、加氢口504、混流器600、蒸汽压缩机700、天然气原料入口A、给水入口(给水(去盐水)入口)B以及可再生电源接口C。
其中,撬装箱100为设备容纳单元;电热转化单元201内设有电热炉膛205用于保证反应温度;电热转化单元201的进口通过管路与原料预热器303的热端出口连通,电热转化单元201的出口通过管路与原料预热器303的热端入口接通;变换反应单元202内设有天然气预热器301用于为变换反应降温同时预热原料;高温热泵400高温侧设有闪蒸器401用于产生蒸汽,高温热泵400低温侧设有蓄热容器402,蓄热容器402作为高温蒸汽热泵400的冷端用于冷却反应产物并蓄积反应物热能。高温热泵400低温侧出口经过变压吸附单元203与氢气分流器500进口接通,高温热泵400高温侧出口通过蒸汽过热器300与混流器600接通。变压吸附单元203与氢气分流器500进口之间的管路上还设有气液分离单元204;变压吸附单元203与天然气预热器301接通。高温热泵400热端与蒸汽过热器300之间的管路上设有蒸汽压缩机700。
电热转换单元201内电热炉膛205、高温热泵400、氢气压缩机501、蒸汽压缩机700通过可再生电源接口C使用外接可再生能源电能。
给水预热器302通过管路与蒸汽过热器300和高温热泵400的高温侧接通,给水入口B与给水预热器302冷端入口接通,给水预热器302热端出口与和高温热泵400高温侧入口接通,给水通过蒸汽过热器300、给水预热器302、高温热泵400获取反应产物余热。
高温热泵400使用可再生电能,热源为变压吸附单元203出口气体的热能,高温热泵400的高温侧入口通过管道连接给水预热器302冷端出口和闪蒸器401。
预热给水通过高温热泵400将热能品位提升为饱和水,闪蒸器401将饱和水蒸发形成蒸汽,蒸汽压缩机700对产生蒸汽进行压缩。高温热泵400中设有蓄热容器402收集反应产物余热并将其冷却。
蒸汽过热器300中热流体通过管路与给水预热器302和变换反应单元202接通,蒸汽过热器300中冷流体通过管路与闪蒸器401和混流器600接通。
变换反应单元202内天然气预热器301的热源为变换反应单元202内反应放出的热量,天然气预热器301冷端通过管道连接天然气原料入口A与精制脱硫单元200进口。
原料预热器303冷端出口与变换反应单元202进口接通,变换反应单元202出口通过蒸汽过热器300与给水预热器302热端入口接通,原料预热器303的热流体管道连接电热转化单元201的出口与变换反应单元202的入口,原料预热器303冷流体管道连接混流器600的出口与电热转化单元201的入口。原料预热器303冷端入口通过混流器600与精制脱硫单元200出口接通,天然气原料入口A通过天然气预热器301与精制脱硫单元200进口接通。
氢气分流器500其中一个氢气出口可以分流部分氢气供给精制脱硫单元200、与精制脱硫单元200进口接通,氢气分流器500另一氢气出口与加氢口504接通,氢气分流器500出口与加氢口504之间的管路上设有氢气三通阀502,氢气分流器500出口与氢气三通阀502之间的管路上设有氢气压缩机501,氢气三通阀502与加氢口504之间的管路上设有氢气储存单元503,当天然气原料入口A通入掺氢天然气时氢气分流器500则不分流。
氢气三通阀502用于控制所产氢气向外供给或是装置内储存。
实施例2
如图2所示,本发明提供了另一种基于新能源消纳的天然气制备含氢产品的装置,构成基于新能源消纳的撬装式天然气富氢燃料制备装置,具体包括:
撬装箱100、精制脱硫单元200、电热转化单元201、变换反应单元202、气液分离单元204、CO2脱除单元206、蒸汽过热器300、天然气预热器301、给水预热器302、原料预热器303、高温热泵400、闪蒸器401、蓄热容器402、氢气分流器500、氢气压缩机501、氢气三通阀502、氢气储存单元503、富氢燃料出口505、混流器600、蒸汽压缩机700、天然气原料入口A、给水入口B以及可再生电源接口C。
其中,撬装箱100为设备容纳单元;电热转化单元201内设有电热炉膛205用于保证反应温度;电热转化单元201的进口通过管路与原料预热器303的热端出口连通,电热转化单元201的出口通过管路与原料预热器303的热端进口;变换反应单元202内设有天然气预热器301用于为变换反应降温同时预热原料;高温热泵400高温侧设有闪蒸器401用于产生蒸汽,高温热泵400低温侧设有蓄热容器402,蓄热容器402作为高温蒸汽热泵400的冷端用于冷却反应产物并蓄积反应物热能。高温热泵400低温侧出口经过CO2脱除单元206与氢气分流器500进口接通,高温热泵400高温侧出口通过蒸汽过热器300与混流器600接通。CO2脱除单元206与氢气分流器500进口之间的管路上还设有气液分离单元204。高温热泵400高温侧与蒸汽过热器300之间的管路上设有蒸汽压缩机700。
电热转换单元201内电热炉膛205、高温热泵400、蒸汽压缩机700通过可再生电源接口C使用外接可再生能源电能。
给水预热器302热端通过管路与蒸汽过热器300和高温热泵400的冷端接通,给水入口B与给水预热器302冷端入口接通,给水预热器302热端出口与和高温热泵400高温侧入口接通,给水通过蒸汽过热器300、给水预热器302、高温热泵400获取反应产物余热。
高温热泵400使用可再生电能,热源为变压吸附单元203出口气体的中温热能,高温热泵400高温侧入口通过管道连接给水预热器302冷端出口和闪蒸器401。
预热给水通过高温热泵400将热能品位提升为饱和水,闪蒸器401将饱和水蒸发形成蒸汽,蒸汽压缩机700对产生蒸汽进行压缩。高温热泵400中设有蓄热容器402收集反应产物余热并将其冷却。
蒸汽过热器300中热流体通过管路与给水预热器302和变换反应单元202接通,蒸汽过热器300中冷流体通过管路与闪蒸器401和混流器600接通。
变换反应单元202内天然气预热器301的热源为变换反应单元202内反应放出的热量,天然气预热器301冷端通过管道连接天然气原料入口A与精制脱硫单元200进口。
原料预热器303冷端出口与变换反应单元202进口接通,变换反应单元202出口通过蒸汽过热器300与给水预热器302热端入口接通,原料预热器303的热端连接电热转化单元201的出口与变换反应单元202的入口,原料预热器303冷流体管道通过连接混流器600的出口与电热转化单元201的入口。原料预热器303冷端入口通过混流器600与精制脱硫单元200出口接通,天然气原料入口A通过天然气预热器301与精制脱硫单元200进口接通。
氢气分流器500其中一个氢气出口可以分流部分氢气供给精制脱硫单元200、与精制脱硫单元200进口接通,氢气分流器500另一氢气出口与富氢燃料出口505,,当天然气原料入口A通入掺氢天然气时氢气分流器500则不分流。
针对上述本发明的具体实施例,以及本发明的任意具体实施方式中:
电热转化单元201内所含的多路电热转化管不仅限于2根。所有换热器根据热容流率匹配的方法布置,使换热器中热流体与冷流体的热容流率尽量一致,降低冷热流体换热温差,保障换热器效率。为满足换热器冷热流热容流率的匹配以及提升天然气转化率,反应水碳比应大于4。
本发明所述基于新能源消纳的天然气制备含氢产品的装置中,所述装置为撬装箱式结构,可以供车辆运输。此外,本发明设备选取、工艺流程不局限于撬装式结构,同样能够适合于大规模的电力消纳天然气制氢。
本发明提供了一种基于新能源消纳的天然气制备含氢产品的装置,利用所述基于新能源消纳的天然气制备含氢产品的装置,能够实现两种制备模式:1)包括当在制取纯度较高的运行策略下,即利用所述基于新能源消纳的天然气制备含氢产品的装置实现制氢;2)利用所述基于新能源消纳的天然气制备含氢产品的装置实现制取富氢燃料。其两种模式中,各个原料的反应路径具体如下:
装置所含设备主要可分为五个模块,其中撬装箱100为设备容纳单元;精制脱硫单元200、电热转化单元201、变换反应单元202、变压吸附单元203和气液分离单元204构成天然气制氢模块;蒸汽过热器300、天然气预热器301、给水预热器302和原料预热器303构成制氢过程中的余热回收模块;高温热泵400、闪蒸器401和蓄热容器402构成高温热泵模块;氢气分流器500、氢气压缩机501、氢气三通阀502、氢气储存单元503和加氢口504构成氢气处理模块。
天然气原料的反应路径顺序依次为天然气预热器301、精制脱硫单元200、混流器600、原料预热器303、电热转化单元201、原料预热器303、变换反应单元202、蒸汽过热器300、给水预热器302、高温热泵400、变压吸附单元203、气液分离单元204、氢气分流器500、氢气压缩机501、氢气三通阀502、加氢口504或氢气储存单元503。其间每个设备均通过气体管路接通。
给水进入反应器的路径顺序依次为给水预热器302、高温热泵400、闪蒸器401、蒸汽压缩机700、蒸汽过热器300、混流器600。
电热转换单元201内电热炉膛205、高温热泵400、氢气压缩机501、蒸汽压缩机700用电设备均通过可再生电源接口C使用外接可再生能源电能,外接电能应为通用交流电;给水入口B应接入去盐处理后的水,压力不应超过0.5MPa,使得饱和温度不高于150℃来满足高温热泵400蒸发过程;蒸汽压缩机700优选为螺杆式蒸汽压缩机,可以将水蒸气压缩至1.5MPa以上满足反应压力。换热器设计布置遵循热容流率匹配,反应产物比热容高于原料与给水比热容,为使换热器中冷热流体的热容更加接近,入口水碳比应大于4。
高温热泵400热源为蓄热容器402中蓄积热量,热量来自给水预热器302换热后出口产物的热能,蓄热容器402内部温度应高于80℃。高温热泵400热端通过管道连接给水预热器302和闪蒸器401,高温热泵400内部工质在低压侧蒸发温度为80℃附近,高压冷凝温度可达到150℃;高温热泵模块包含闪蒸器401,闪蒸器可以将150℃的饱和水闪蒸为蒸汽进行输出。整体来说,高温热泵400提升热能品位,将预热给水加热为饱和水,闪蒸器401将饱和水蒸发形成蒸汽。
变换反应单元202内天然气预热器301的热源为变换反应单元202内反应放热,冷端通过管道连接天然气原料入口A与精制脱硫单元200。变换反应单元的部分热量被原料天然气带走实现变换反应降温,有利于变换反应的正向进行,同时可以实现天然气原料的预热。
氢气与包括氢气的氢气分流器500分离部分氢气供给精制脱硫单元200,是由于精制脱硫单元中反应需要氢气参与,反应其一包括烯烃饱和反应,由于烯烃双键存在,分子碳氢比较高,在高温转化反应过程中容易形成积碳,将烯烃转换为烷烃有助于减轻转化炉内催化剂的积碳情况,增加催化剂使用寿命且降低催化剂换装难易程度,在精制脱硫单元中氢气与烯烃反应生成烷烃。反应其二是有机含硫物的转化反应,氢气与包括硫醇、硫醚、二硫醚、噻吩、氧硫化碳、二硫化碳等在内的有机含硫物在催化作用下发生反应形成H2S,再通过ZnO(固)与其进行反应对硫进行固化。当天然气入口(A)供给为天然气掺氢燃料时氢气分流器500不向精制脱硫单元200供氢。
氢气三通阀502用于控制所产氢气向外供给或是装置内储存,这取决于本撬装式装置所执行的工作以及现场所提供环境,当现场提供储氢设备可向外输出,若不提供储氢设备将储存入装置中的储氢罐。
1)制氢:当在制取纯度较高的运行策略下,高温热泵400出口产物进入变压吸附单元203对除氢气外气体进行吸附得到高纯度氢气,变压吸附单元203温度应在40℃,变压吸附单元203中解析气经过脱除CO2后通过天然气管道进入装置再次反应,提升转化效率。
2)制取富氢燃料:当在制取富氢燃料的运行策略下,产品气在变换反应、经过多段换热降温后可进入CO2脱除单元206、气液分离单元204,分离完成后不经过压缩储存,直接输出为富氢燃料。
本发明同时提供基于新能源消纳的天然气制备含氢产品的装置的运行步骤。同样对应于制氢和制取富氢燃料两种模式下的运行步骤,因此,利用基于新能源消纳的天然气制备含氢产品的装置制氢或制取富氢燃料两种模式下,其具体方法包括如下:
1、天然气原料进入天然气预热器301,获取来自变换反应单元202的反应放热,温度升高至300℃以上;同时给水(去盐水)进入给水预热器302进行初步预热到成饱和水。
2、初步预热后天然气原料与循环氢气同时进入精制脱硫单元200,发生烯烃饱和反应以及有机含硫物脱硫反应,反应方程如下:
烯烃饱和:CnH2n+H2→CnH2n+2
硫醇:RSH+H2→RH+H2S
硫醚:R1SR2+2H2→R1H+R2H+H2S
二硫醚:R1SSR2+3H2→R1H+R2H+2H2S
噻吩:C4H4S+4H2→C4H10+H2S
氧硫化碳:COS+H2→CO+H2S
二硫化碳:CS2+4H2→CH4+2H2S
在烯烃饱和反应以及有机含硫物脱硫反应之后在催化剂作用下通过氧化锌进行固硫,发生如下反应:
ZnO(固)+H2S→ZnS(固)+H2O
3、精制脱硫后天然气原料进入混流器600与水蒸气混合,之后进入电热转化单元201进行转化,电热转化单元201使用电能将炉膛加热到800-890℃用来供给转化反应吸热,转换反应方程如下所示:
CH4+H2O→CO+3H2 HR=205kJ/mol
4、电热转化单元201出口气主要包含CO、H2、CO2、CH4以及水蒸气,温度在700℃以上,出口气气体流出后首先进入原料预热器303对天然气和水蒸气混合原料预热,同时降低自身温度以便发生变换反应。进入变换反应单元202发生如下反应:
CO+H2O→H2+CO2 HR=-41.3kJ/mol
该反应温度范围在320-420℃,该反应为放热反应,低温有利于反应进行,故变换反应的反应放热将通过天然气预热器301带离反应单元。
5、变换反应之后的产物气体进入蒸汽过热器300和给水预热器302放热,之后将热量释放于高温热泵400设有的蓄热容器402中,作为高温热泵400的热源。高温热泵400将热量提取用电能将能源品位提升,使给水预热器302出口的饱和水蒸发。
1)制氢:当在制取纯度较高的运行策略下,高温热泵400出口的产物进入变压吸附装置203对除氢气外气体进行吸附得到高纯度氢气,变压吸附单元203温度应在40℃,变压吸附单元203中解析气经过脱除CO2后再次通过天然气管道进入装置反应。
2)制取富氢燃料:当在制取富氢燃料的运行策略下,高温热泵400出口的产品气在变换反应、经过多段换热降温后可进入CO2脱除单元206、气液分离单元204,分离完成后不经过压缩储存,直接从富氢燃料出口505输出为富氢燃料。
6、氢气在变压吸附后进入气液分离单元204,实现气液分离。随后进入氢气分流器500分流部分氢气进行精制脱硫,大部分氢气进入氢气压缩机501压缩后输出或储存。当天然气入口供给的是掺氢天然气,则不向精制脱硫单元200分流。
根据上述一种基于新能源消纳的天然气制备含氢产品的装置的运行步骤,本发明的工作原理在于:
天然气在进入电热转化单元201前经历了一次预热和一次预反应,一次预热是在天然气预热器301中吸收变换反应放热,一次预反应是进入精制脱硫单元200完成脱硫;水蒸气在进入电热转化单元201前共经历了四段加热,其所需热量来自反应过程的余热与蒸汽压缩机700做工。其中两段分别在蒸汽过热器300和给水预热器302加热,热源为变换反应单元202的产物余热,其三是使用高温热泵400利用产物中低温余热获得热量完成蒸发。其四是通过蒸汽压缩机700对蒸汽进行增压来满足反应使用。
天然气与水蒸气完成预热及预处理后混合,在原料预热器303中经历一次预热,热源为电热转化单元201的产物余热。预热之后进入电热转化炉完成转化。电热转化单元201出口气体在排出后经历四次温降和一次放热反应。首先进入原料预热器303加热天然气水蒸气混合原料,完成第一次温降;后进入变换反应单元202发生放热反应,将反应热量通过原料预热器303传输给天然气原料;后进入蒸汽过热器300加热蒸汽完成第二次温降;后进入给水预热器302向给水换热,完成第三次温降;后进入高温热泵400向给水传输热量,完成第四次温降。在气液分离单元204中更低的氢气温度可以保证能够脱除更多的水分,提升氢气的纯度。
最后应说明的是:以上各实施例仅仅为本发明的较优实施例用以说明本发明的技术方案,而非对其限制,当然更不是限制本发明的专利范围;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围;也就是说,但凡在本发明的主体设计思想和精神上做出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内;另外,将本发明的技术方案直接或间接的运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,包括天然气原料入口(A)、精制脱硫单元(200)、原料预热器(303)、变换反应单元(202)、电热转化单元(201)、给水预热器(302)、高温热泵(400)、加氢口(504)、给水入口(B)和混流器(600);变换反应单元(202)内设有天然气预热器(301);
天然气原料入口(A)通过天然气预热器(301)与精制脱硫单元(200)进口接通,精制脱硫单元(200)出口通过混流器(600)与原料预热器(303)冷端入口接通,原料预热器(303)热端出口与电热转化单元(201)进口接通,电热转化单元(201)出口与原料预热器(303)热端入口接通,原料预热器(303)冷端出口与变换反应单元(202)进口接通,变换反应单元(202)出口通过蒸汽过热器(300)与给水预热器(302)热端入口接通,给水预热器(302)冷端出口与和高温热泵(400)高温侧入口接通,高温热泵(400)低温侧出口经过变压吸附单元(203)与氢气分流器(500)进口接通,氢气分流器(500)出口与加氢口(504)接通;
给水入口(B)与给水预热器(302)冷端入口接通,给水预热器(302)热端出口与和高温热泵(400)高温侧入口接通,高温热泵(400)高温侧出口通过蒸汽过热器(300)与混流器(600)接通。
2.根据权利要求1所述的一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,氢气分流器(500)出口与精制脱硫单元(200)进口接通;
变压吸附单元(203)与氢气分流器(500)进口之间的管路上还设有气液分离单元(204);变压吸附单元(203)与天然气预热器(301)接通;
高温热泵(400)高温侧设有闪蒸器(401),高温热泵(400)低温侧设有蓄热容器(402)。
3.根据权利要求1所述的一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,高温热泵(400)高温侧出口与蒸汽过热器(300)之间的管路上设有蒸汽压缩机(700);
电热转化单元(201)内设有电热炉膛(205);
氢气分流器(500)出口与加氢口(504)之间的管路上设有氢气三通阀(502),氢气分流器(500)出口与氢气三通阀(502)之间的管路上设有氢气压缩机(501),氢气三通阀(502)与加氢口(504)之间的管路上设有氢气储存单元(503)。
4.根据权利要求3所述的一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,还包括可再生电源接口(C),电热炉膛(205)、高温热泵(400)、氢气压缩机(501)、蒸汽压缩机(700)通过可再生电源接口(C)使用外接可再生能源电能。
5.一种利用权利要求1~4任意一项所述基于新能源消纳的天然气制备含氢产品的装置的方法,其特征在于,包括以下运行步骤:
1)天然气原料进入天然气预热器(301),获取来自变换反应单元(202)的反应放热,温度升高至300℃以上;同时给水进入给水预热器(302)进行初步预热到成饱和水;
2)初步预热后天然气原料与循环氢气同时进入精制脱硫单元(200),发生烯烃饱和反应以及有机含硫物脱硫反应;
3)脱硫后天然气原料进入混流器(600)与水蒸气混合,之后进入电热转化单元(201)进行转化,电热转化单元(201)使用电能将炉膛加热到800-890℃用来供给转化反应吸热;
4)电热转化单元(201)出口气包含CO、H2、CO2、CH4以及水蒸气,温度在700℃以上,出口气先进入原料预热器(303)对天然气和水蒸气混合原料预热,同时降低自身温度以便发生变换反应;变换反应的反应放热将通过天然气预热器(301)带离反应单元;
5)变换反应之后的产物气体进入蒸汽过热器(300)和给水预热器(302)放热,之后将热量释放于高温热泵(400)设有的蓄热容器(402)中,作为高温热泵(400)的热源;高温热泵(400)将热量提取用电能将能源品位提升,使给水预热器(302)出口的饱和水蒸发;
6)高温热泵(400)出口的产物进入变压吸附装置(203)对除氢气外气体进行吸附得到高纯度氢气。
6.一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,包括天然气原料入口(A)、精制脱硫单元(200)、原料预热器(303)、变换反应单元(202)、电热转化单元(201)、给水预热器(302)、高温热泵(400)、富氢燃料出口(505)、给水入口(B)和混流器(600);变换反应单元(202)内设有天然气预热器(301);
天然气原料入口(A)通过天然气预热器(301)与精制脱硫单元(200)进口接通,精制脱硫单元(200)出口通过混流器(600)与原料预热器(303)冷端入口接通,原料预热器(303)热端出口与电热转化单元(201)进口接通,电热转化单元(201)出口与原料预热器(303)热端入口接通,原料预热器(303)冷端出口与变换反应单元(202)进口接通,变换反应单元(202)出口通过蒸汽过热器(300)与给水预热器(302)热端入口接通,给水预热器(302)冷端出口与和高温热泵(400)高温侧入口接通,高温热泵(400)低温侧与产物产出单元连接;高温热泵(400)低温侧经过CO2脱除单元(206)与氢气分流器(500)进口接通,氢气分流器(500)出口与富氢燃料出口(505)接通;
给水入口(B)与给水预热器(302)冷端入口接通,给水预热器(302)热端出口与和高温热泵(400)高温侧入口接通,高温热泵(400)高温侧出口通过蒸汽过热器(300)与混流器(600)接通。
7.根据权利要求6所述的一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,氢气分流器(500)出口与精制脱硫单元(200)进口接通;
CO2脱除单元(206)与氢气分流器(500)进口之间的管路上还设有气液分离单元(204);
高温热泵(400)高温侧设有闪蒸器(401),高温热泵(400)低温侧设有蓄热容器(402)。
8.根据权利要求6所述的一种基于新能源消纳的天然气制备含氢产品的装置,其特征在于,高温热泵(400)高温侧出口与蒸汽过热器(300)之间的管路上设有蒸汽压缩机(700);
电热转化单元(201)内设有电热炉膛(205);
所述基于新能源消纳的天然气制备含氢产品的装置中还包括可再生电源接口(C),电热炉膛(205)、高温热泵(400)、蒸汽压缩机(700)通过可再生电源接口(C)使用外接可再生能源电能。
9.一种利用权利要求6~8任意一项所述基于新能源消纳的天然气制备含氢产品的装置的方法,其特征在于,包括以下运行步骤:
1)天然气原料进入天然气预热器(301),获取来自变换反应单元(202)的反应放热,温度升高至300℃以上;同时给水进入给水预热器(302)进行初步预热到成饱和水;
2)初步预热后天然气原料与循环氢气同时进入精制脱硫单元(200),发生烯烃饱和反应以及有机含硫物脱硫反应;
3)脱硫后天然气原料进入混流器(600)与水蒸气混合,之后进入电热转化单元(201)进行转化,电热转化单元(201)使用电能将炉膛加热到800-890℃用来供给转化反应吸热;
4)电热转化单元(201)出口气包含CO、H2、CO2、CH4以及水蒸气,温度在700℃以上,出口气先进入原料预热器(303)对天然气和水蒸气混合原料预热,同时降低自身温度以便发生变换反应;变换反应的反应放热将通过天然气预热器(301)带离反应单元;
5)变换反应之后的产物气体进入蒸汽过热器(300)和给水预热器(302)放热,之后将热量释放于高温热泵(400)设有的蓄热容器(402)中,作为高温热泵(400)的热源;高温热泵(400)将热量提取用电能将能源品位提升,使给水预热器(302)出口的饱和水蒸发;
6)高温热泵(400)出口的产品气经降温后可进入CO2脱除单元(206)、气液分离单元(204),分离完成后不经过压缩储存,直接从富氢燃料出口(505)输出为富氢燃料。
10.根据权利要求1~4任意一项或权利要求6~8任意一项所述基于新能源消纳的天然气制备含氢产品的装置,其特征在于,还包括用于设备容纳单元的撬装箱(100),天然气原料入口(A)、给水入口(B)和可再生电源接口(C)分别设于撬装箱(100)上。
CN202110559132.8A 2021-05-21 2021-05-21 一种基于新能源消纳的天然气制备含氢产品的装置及方法 Pending CN113184808A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110559132.8A CN113184808A (zh) 2021-05-21 2021-05-21 一种基于新能源消纳的天然气制备含氢产品的装置及方法
PCT/CN2022/093069 WO2022242598A1 (zh) 2021-05-21 2022-05-16 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110559132.8A CN113184808A (zh) 2021-05-21 2021-05-21 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Publications (1)

Publication Number Publication Date
CN113184808A true CN113184808A (zh) 2021-07-30

Family

ID=76984773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110559132.8A Pending CN113184808A (zh) 2021-05-21 2021-05-21 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Country Status (2)

Country Link
CN (1) CN113184808A (zh)
WO (1) WO2022242598A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242598A1 (zh) * 2021-05-21 2022-11-24 西安交通大学 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118207564B (zh) * 2024-05-22 2024-09-27 山东国创燃料电池技术创新中心有限公司 一种高温电解水制氢集成热部件及工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159584A1 (en) * 2003-02-18 2004-08-19 Ke Liu Mini-CPO providing hydrogen for hydrogen desulfurization of hydrocarbon feeds
CN202543164U (zh) * 2012-02-16 2012-11-21 成都市科达自动化控制工程有限公司 天然气加热和气液分离一体化撬装设备
CN108799824A (zh) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 一种以lng为原料现场制氢的加注方法及装置
CN109855070A (zh) * 2019-03-28 2019-06-07 山东力诺瑞特新能源有限公司 中温太阳能耦合热泵低温蒸汽系统及供应蒸汽方法
EP3730456A1 (en) * 2019-04-24 2020-10-28 SABIC Global Technologies B.V. Use of renewable energy in ammonia synthesis
US20210002141A1 (en) * 2019-07-05 2021-01-07 Zoneflow Reactor Technologies, LLC Ammonia production method
CN112736939A (zh) * 2020-12-11 2021-04-30 国网江苏省电力有限公司南通供电分公司 掺氢天然气综合能源系统制氢储氢装置优化容量配置方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016073500A1 (en) * 2014-11-03 2016-05-12 Ztek Corporation Renewable energy storage and zero emission power system
CN107998840A (zh) * 2017-11-06 2018-05-08 宁波大学 一种可再生能源驱动碳捕集与水解制氢合成甲烷装置
CN109179320B (zh) * 2018-11-08 2020-02-07 新地能源工程技术有限公司 一种天然气现场制氢装置及方法
CN110407172B (zh) * 2019-08-20 2024-04-26 四川亚联氢能科技股份有限公司 一种中小型天然气制氢装置
CN110649650A (zh) * 2019-09-06 2020-01-03 华电电力科学研究院有限公司 一种可再生能源制氢与生物质气化耦合的发电系统及工作方法
CN110589765A (zh) * 2019-10-09 2019-12-20 中石化南京工程有限公司 一种利用天然气制备不同比例合成气的方法及系统
CN111422832A (zh) * 2020-03-31 2020-07-17 青岛海通新材料科技发展有限公司 一种天然气或煤层气催化裂解制氢的装置和方法
CN113184808A (zh) * 2021-05-21 2021-07-30 西安交通大学 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159584A1 (en) * 2003-02-18 2004-08-19 Ke Liu Mini-CPO providing hydrogen for hydrogen desulfurization of hydrocarbon feeds
CN202543164U (zh) * 2012-02-16 2012-11-21 成都市科达自动化控制工程有限公司 天然气加热和气液分离一体化撬装设备
CN108799824A (zh) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 一种以lng为原料现场制氢的加注方法及装置
CN109855070A (zh) * 2019-03-28 2019-06-07 山东力诺瑞特新能源有限公司 中温太阳能耦合热泵低温蒸汽系统及供应蒸汽方法
EP3730456A1 (en) * 2019-04-24 2020-10-28 SABIC Global Technologies B.V. Use of renewable energy in ammonia synthesis
US20210002141A1 (en) * 2019-07-05 2021-01-07 Zoneflow Reactor Technologies, LLC Ammonia production method
CN112736939A (zh) * 2020-12-11 2021-04-30 国网江苏省电力有限公司南通供电分公司 掺氢天然气综合能源系统制氢储氢装置优化容量配置方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242598A1 (zh) * 2021-05-21 2022-11-24 西安交通大学 一种基于新能源消纳的天然气制备含氢产品的装置及方法

Also Published As

Publication number Publication date
WO2022242598A1 (zh) 2022-11-24

Similar Documents

Publication Publication Date Title
CN102660340B (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的工艺及设备
CN101791517B (zh) 一种从含有硫化氢的酸性气体中回收硫的方法
CN100582201C (zh) 基于煤气化与甲烷化的电-替代天然气联产系统及工艺
CN101274746A (zh) 联合循环电厂使用的俘获部分二氧化碳的重整系统
CN102381717B (zh) 一种天然气转化生产氨的方法
CN113184808A (zh) 一种基于新能源消纳的天然气制备含氢产品的装置及方法
CN113479906B (zh) 一种冷热电联用的可再生能源合成氨系统
CN108313981B (zh) 一种太阳能氢电甲醇联产储能系统及其使用方法
CN107461606A (zh) 一种在天然气输气管道中存储电能的方法
CN105648466A (zh) 燃气轮机系统热化学循环闭式发电与电解制氢耦合多联产的方法
CA3165596A1 (en) Ammonia derivative production plant and ammonia derivative production method
CN114992885A (zh) 一种基于光热技术的绿氨生产系统及方法
CN110156047A (zh) 一种固体氧化物电解/化石燃料合成氨耦合的合成氨方法
CN204874343U (zh) 一种沼气与焦炉煤气联合生产甲醇装置
CN1869165B (zh) 双燃料重整多功能能源系统及方法
CN106160240B (zh) 一种储存和释放电能的系统和工艺
CN202538625U (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的设备
CN115900409A (zh) 一种化学热泵耦合液态空气储能的装置系统及方法
CN213231512U (zh) 一种天然气制氢中温变换系统
CN107810252A (zh) 用于制造甲烷的结合水的水解作用的布杜阿尔反应
CN213326722U (zh) 一种天然气制氢蒸汽发生系统
CN106160242B (zh) 一种储存和释放电能的系统和工艺
Jabarivelisdeh et al. Ammonia Production Processes from Energy and Emissions Perspectives: A Technical Brief
CN219934746U (zh) 一种氢氧化钙热化学储能系统
EP2511232A1 (en) Hydrogen production apparatus and power generation plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination