WO2015024287A1 - 一种高co高变换率等温变换反应器及其工艺 - Google Patents

一种高co高变换率等温变换反应器及其工艺 Download PDF

Info

Publication number
WO2015024287A1
WO2015024287A1 PCT/CN2013/084160 CN2013084160W WO2015024287A1 WO 2015024287 A1 WO2015024287 A1 WO 2015024287A1 CN 2013084160 W CN2013084160 W CN 2013084160W WO 2015024287 A1 WO2015024287 A1 WO 2015024287A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
steam
catalyst bed
shift
Prior art date
Application number
PCT/CN2013/084160
Other languages
English (en)
French (fr)
Inventor
谢定中
Original Assignee
湖南安淳高新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南安淳高新技术有限公司 filed Critical 湖南安淳高新技术有限公司
Priority to US14/912,869 priority Critical patent/US9993790B2/en
Publication of WO2015024287A1 publication Critical patent/WO2015024287A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • B01J8/0415Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0473Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/14Handling of heat and steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00123Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the fields of synthetic ammonia, methanol synthesis, ethylene glycol, coal-to-oil, coal-based natural gas, hydrogen production and industrial furnace waste gas utilization, in particular to a high-co high conversion rate reactor and a process flow, relating to industrial furnace exhaust gas, CO (up to 85% or more) in industrial gas reacts with water vapor to become hydrogen, achieving a high conversion rate (up to 98.5% or more) of shift reactors and processes.
  • calcium carbide tail gas contains 80% CO and CO gas content is 30% ⁇ 68% (with gas The method can be changed to be useful, and the CO can be transformed into a useful reaction.
  • the shift reaction is an exothermic reversible reaction, and there must be a catalyst and an excess of 0 (steam) in a reaction excess to allow the reaction to proceed.
  • the catalyst is a cobalt or molybdenum shift catalyst, and its active component is MoS.
  • the shift catalyst can be used at temperatures ranging from 230 °C to 470 °C.
  • This temperature is higher than the maximum temperature at which the catalyst is used, which can seriously affect the activity of the catalyst.
  • the unreacted gas CO is very high, such as 45% to 80%, into the reactor, a large amount of CO reacts immediately, and the temperature rises sharply, especially when the unreacted gas itself carries a large amount of water vapor, which promotes the reaction and occurs so-called fly.
  • Temperature phenomenon How to control the temperature of the reaction process so as not to exceed the maximum temperature allowed by the catalyst is a difficult problem; another problem of CO conversion is the high conversion rate, the transformation is close to the end point, that is, the closer to the equilibrium, the smaller the driving force, the difficulty of transformation The bigger. If the CO conversion rate has reached 90%, (the conversion gas C0 is reduced to 1.5%).
  • the conversion gas C0 is reduced to 0.5%)
  • a terminal converter furnace needs to be added, and the catalytic amount is 40%.
  • Some unreacted gases do not contain water vapor, such as industrial furnace gas, semi-water gas, etc., the higher the final conversion rate, the more steam is added, the more steam consumption.
  • the current principle of solving the above problems is: Multi-stage adiabatic reaction.
  • the gas is preheated to the initial reaction temperature of the catalyst, and a certain amount of steam is added to reach a certain gas-to-gas ratio.
  • the first transformation reaction is carried out, and a part of C0 is changed, and the gas C0 is lowered to a certain degree, and the temperature rises.
  • High not exceeding the maximum allowable temperature of the catalyst
  • cooling the reaction gas lowering the temperature (slightly higher than the lowest temperature allowed by the catalyst, ensuring that the steam does not condense, the catalyst activity is higher)
  • performing the second reaction C0 decreases again, and the temperature rises again.
  • High (same as before, do not exceed the maximum temperature allowed by the catalyst), and then cool (cooling temperature as before); then carry out the third transformation reaction to reach the final required C0 content.
  • the gas contains C068. 65%, the water-gas ratio is 1.45, and the temperature is 211 °C.
  • the water is separated by the water vapor separator E-1, heated to 296 °C by the gas heat exchanger E-2, and connected in parallel to detoxification.
  • reaction heat steam condensation heat is used to generate low pressure (such as 0. 6MPa ⁇ 2. 5MPa) steam, and there is a large amount of condensed water discharged, low utilization rate;
  • E-9 uses cold water to directly vaporize and cool the reaction hot gas.
  • the wet gas with water mist can cause the catalyst to agglomerate or chalk, affecting the activity and shortening the service life.
  • the present invention aims to provide a high CO high conversion rate isothermal shift reactor which can achieve a high conversion rate of CO and a small system resistance.
  • a high CO high conversion rate isothermal shift reactor comprising a housing having a lumen, located within the housing An upper tube plate and a lower tube plate at an upper portion of the cavity, a tee at a bottom portion of the inner cavity of the outer casing; a top end of the outer casing has a head, and a cavity between the upper head of the outer casing and the upper tube plate is The water chamber, the cavity between the upper tube plate and the lower tube plate is a steam chamber; and the structural feature is that the water chamber communicates with a steam drum disposed above the outer casing through a water pipe, and the steam drum passes through the pipeline and the steam chamber Connected; an upper catalyst bed is disposed in a middle portion of the inner cavity of the outer casing, a lower catalyst bed is disposed in a lower portion of the inner cavity of the outer casing, an annular gap is formed between the upper catalyst bed and an inner wall of the casing, and the upper catalyst bed and the lower catalyst bed are a support head is disposed, the inner cavity of the
  • a plurality of vertically arranged water vapor tubes are disposed in the upper catalyst bed.
  • water vapor pipes There are two kinds of water vapor pipes: two sets of water vapor pipes, U-shaped water pipes.
  • a part of the water vapor pipe in the water vapor pipe is a double set of water vapor pipe, the double steam pipe comprises an inner pipe and an outer pipe passing through the support set on the inner pipe; the bottom end of the outer pipe closed at the bottom is provided with an elastic component.
  • the bottom of the inner tube communicates with the bottom of the outer tube, and the upper end of the inner tube protrudes from the outer tube and communicates with the water chamber, and the upper end of the outer tube communicates with the steam chamber.
  • a part of the water vapor pipe is a U-shaped water pipe, and the left and right pipes of the U-shaped water pipe are not equal in length, and the long-side pipe of the U-shaped water pipe is connected with the water chamber, and the U-shaped water pipe A short side tube is in communication with the steam chamber.
  • the water vapor pipe communicating with the water chamber is a double set of water vapor pipes
  • the double steam pipe includes an inner pipe and an outer pipe passing through the inner casing; the bottom end of the outer pipe closed at the bottom There is a resilient element, and the bottom of the inner tube is in communication with the bottom of the outer tube.
  • the top of the upper catalyst bed is provided with a charging tube, and the bottom of the upper catalyst bed is provided with an upper discharging tube; the lower catalyst bed is connected to the upper catalyst bed through a communicating ring hole The bottom of the lower catalyst bed is provided with a lower discharge pipe.
  • the loading amount of the upper catalyst bed accounts for 48%-60% of the total loading amount; and the loading amount of the lower catalyst bed accounts for 40%-52% of the total loading amount.
  • the shape of the support is B-shaped, and the elastic member is a spring.
  • the outer wall of the upper catalyst bed, the outer wall of the lower catalytic bed and the central tube are provided with flared venting holes.
  • a second object of the present invention is to provide a process for performing gas shift using the above-described high CO high conversion rate isothermal shift reactor, the process comprising the following steps:
  • the unconverted high-CO conversion rate isothermal shift reactor is sent.
  • the gas inlet wherein, the temperature of the gas entering the purification and detoxification device is 230 ° C ⁇ 240 ° C, the temperature of the gas entering the isothermal shift reactor is 255 ° C ⁇ 265 ° C;
  • the unshifted gas is reacted in the isothermal shift reactor, and the temperature in the upper catalyst bed and the lower catalyst bed is 260 ° C to 275 ° C. After the reaction is completed, the volume concentration of CO in the shift gas is 0.4% -0.7%. ;
  • the shift gas is sequentially sent from the shift gas outlet to the heat exchanger, the first waste heat boiler, the second waste heat boiler, the second water separator, the boiler feed water heater, the cooler, and the third water separator
  • the temperature of the shift gas entering the heat exchanger is 255 ⁇ 265 °C
  • the temperature of the shift gas entering the second water separator is 170 ° C ⁇ 190 ° C
  • the temperature of the shift gas entering the cooler is 75 ° C ⁇ 80 ° C
  • the temperature of the shift gas entering the third water separator is 35 ° C to 50 ° C.
  • the heated boiler desalinated steam supply steam, the first waste heat boiler, the second waste heat boiler and the steam saturated steam generated by the steam drum are respectively sent to the corresponding steam pipe network.
  • the heated boiler desalinates the steam drum to serve as the supplementary water for the shifting water vapor cycle and the waste heat boiler, and the three pressure saturated steam generated are sent to the corresponding steam pipe network.
  • a third object of the present invention is to provide a process for industrial furnace gas conversion using the above-described high CO high conversion rate isothermal shift reactor, the process comprising the following steps: 1), industrial furnace gas containing CO concentration of 45% ⁇ 85% in volume through the washing tower, the fourth water separator, the filter and then compressed by a gas compressor into the degreaser, after degreasing into the heat exchanger
  • the gas coming out of the heat exchanger enters the purification detoxifier and enters the hydroconverter in turn, and is sent to the high CO high conversion rate isothermal shift reactor;
  • the temperature of the industrial furnace gas entering the purification detoxifier is 200 ° C ⁇ 225 ° C
  • the temperature of the industrial furnace gas into the isothermal shift reactor is 225 ° C ⁇ 250 ° C;
  • the shifting gas from the steam dryer is sequentially sent to the boundary zone through the heat exchanger, the boiler desalinated water heater, the deaerator water heater, the cooler, and the fifth water separator;
  • the temperature of the shift gas entering the heat exchanger is 230 ° C ⁇ 255 ° C
  • the temperature of the shift gas entering the cooler is 75 ° C ⁇ 80 ° C
  • the temperature of the shift gas entering the third water separator is 35 ° C ⁇ 50 °C.
  • the heated boiler is sent to the steam drum by desalinated water, and after the self-produced saturated steam is dried, it returns to the isothermal shift reactor to participate in the shift reaction, and the saturated steam-water mixture is filled at the bottom of the shift reactor.
  • the heated boiler desalinates the steam drum to serve as the supplementary water for the shifting water vapor cycle, and the medium pressure steam is used as the reaction steam to be added to the conversion system.
  • a saturated steam-water mixture is added to the bottom of the shifting furnace to increase the chemical equilibrium of the reaction end and increase the final conversion rate.
  • a fourth object of the present invention is to provide a process for performing a half-water gas shift using the above-described high CO high conversion rate isothermal shift reactor, the process comprising the steps of:
  • the semi-aqueous gas containing CO with a volume concentration of 25% to 38% is passed through the filter, and then enters the heat exchanger, and the gas coming out of the heat exchanger enters the purification and detoxification device, and then is sent to the high CO high.
  • the conversion rate is isothermally transformed into the reactor; wherein, the temperature of the semi-aqueous gas entering the purification detoxifier is 210 ° C to 230 ° C, and the temperature of the semi - water gas entering the isothermal shift reactor is 230 ° C to 250 ° C ;
  • the shifting gas from the steam dryer is sequentially sent to the boundary zone through the heat exchanger, the boiler feed water heater, the desalinated water heater, the cooler, and the sixth water separator; wherein the temperature of the shift gas entering the heat exchanger is 230 ° C ⁇ 255 ° C, the temperature of the converter gas entering the cooler is 75 ° C ⁇ 80 ° C, the temperature of the converter gas entering the sixth water separator is 35 ° C ⁇ 50 ° C.
  • the heated boiler is sent to the steam drum by desalinated water, and after the self-produced saturated steam is dried, it returns to the isothermal shift reactor to participate in the shift reaction, and the saturated steam-water mixture is filled at the bottom of the shift reactor.
  • the heated boiler desalinates the steam drum to serve as the supplementary water for the shifting water vapor cycle, and the medium pressure steam is used as the reaction steam to be added to the conversion system.
  • a steam-water mixture in a saturated state is fed from the bottom of the shifting furnace to increase the chemical equilibrium of the reaction end and increase the final conversion rate.
  • the present invention is used in industrial furnace gas, industrial gas CO (volume concentration 40% to 85%), reacts with water vapor to become hydrogen, and the conversion rate is as high as 98% or more. 90% to 95% of the CO is reacted on the upper catalytic bed.
  • the reaction temperature is constant in the low temperature activity range, and different process flows are set for different unreacted gas to be converted, and two typical processes are formulated: high CO high water vapor ratio, medium and high pressure conversion; high CO low water vapor ratio, low pressure conversion; and low water vapor ratio Conversion rate.
  • the advantages of the present invention achieve a high CO content conversion rate by using a shift furnace and a corresponding simple process and simple and easy operation.
  • the reaction heat produces a medium-pressure steam, and the excess steam condenses heat to generate low-pressure steam.
  • the heat efficiency is high, the amount of cooling water is small, the catalyst life is long, and the resistance of the converter and the system is small.
  • the core of the technology of the present invention is that a plurality of water pipes are buried in the catalytic bed, and the catalytic reaction releases heat which is vaporized by the water in the water pipe to vaporize to maintain the temperature of the bed.
  • the characteristic is that the heat of vaporization is very high, and all the heat of reaction can be absorbed immediately, ensuring the temperature of the bed is constant, eliminating the phenomenon of flying temperature, ensuring efficient operation of the catalyst for a long period of time; low reaction temperature, large equilibrium temperature, large reaction driving force, catalyst efficiency High, small amount of catalyst, large production capacity;
  • the gas can be reduced to more than 80%, the conversion gas can be reduced to 0. 4%.
  • water vapor ratio 1. 1 ⁇ 1. 6, with a reaction Implements high C0, high transform The complex transformation process of rate and high water-gas ratio. Less reactor, short process;
  • the shift reactor is a low temperature isothermal reaction, the temperature of which is in the low end of the catalyst active range (230 °C ⁇ 310), and the maximum axial temperature difference of the reaction bed is 3 °C ⁇ 8 °C.
  • the catalyst has a long service life. No need to make reactors with high temperature resistant materials;
  • the reaction heat is all used to produce 3.
  • 9MPa medium pressure steam and can make full use of high water vapor to bring a large amount of water vapor to the gas body, participate in the shift reaction, (the existing process must first condense the steam in the gas, after the first reaction After that, it is necessary to add steam and water to humidify).
  • SMPa steam cooling cooling water is small.
  • the medium and low pressure steam can be supplied externally, and the steam required for the reaction in the industrial furnace tail gas CO conversion process greatly reduces the external supply steam. Has a very good energy saving effect;
  • the system resistance is 0. 2MPa; the resistance of the reactor is only 0. 05MPa, the system resistance is 0. 2MPa;
  • Figure 1 is a flow chart of the existing high CO gas shift process
  • FIG. 2 is a schematic structural view of the double sleeve of the present invention.
  • Figure 3 is a schematic structural view of an embodiment of the present invention.
  • FIG. 4 is a flow chart of the high CO transform of the present invention
  • Figure 5 is a flow chart of the high CO conversion of the industrial furnace exhaust gas of the present invention
  • Figure 6 is a flow chart showing the conversion of the hemihydrate gas of the present invention. detailed description
  • Example 1 4% ⁇ The CO in the conversion gas can be reduced to 0. 4%.
  • the shift reactor catalyst is a sulfur-tolerant cobalt-molybdenum type catalyst composed of MOS and COS.
  • the temperature of the catalyst bed is 30 ° C to 40 ° C above the dew point temperature, and the active temperature is low. °C ⁇ 310 °C), the radial maximum temperature difference of the reaction bed axis is only 3 °C ⁇ 8 °C.
  • the isothermal shift reactor 5 is generally cylindrical, as shown in Fig. 3, from the upper tube sheet 2, the charging tube 3, the lower tube sheet 4, the double set of steam tubes 5, the outer casing 6, the upper radial catalytic bed 7, the center Tube 8, U-shaped water vapor tube 9, annular communication hole 10, support head 11, steam-water mixture nozzle 12, lower radial catalytic bed 13, upper discharge tube 14, lower discharge tube 15, sealing packing 16, bottom three It is composed of a combination of a pass and an external drum 1 .
  • the upper radial catalytic bed 7 has a plurality of steam tubes 5, 9; a lower radial catalytic bed 13 without water tubes.
  • the two tube sheets 2, 4 above the catalytic bed are the upper part of the steam chamber and the water chamber, and are connected to the steam drum 1 through the rising steam pipe and the descending water pipe respectively.
  • Both the upper and lower catalytic beds are radial catalytic beds, referred to as full radial reaction beds.
  • the upper bed gas flows from the outer periphery to the center, and the lower bed gas flows from the center to the outer periphery.
  • Radial catalytic bed outer ring cylinder and central tube have horn-shaped small holes to ensure that the gas flows into the bed layer and is evenly distributed at each point of the bed. The radial flow structure greatly reduces the gas flow resistance.
  • the unreacted gas just entering the radial catalytic bed has a high CO, a high water-gas ratio, a large driving force, and a high reaction speed.
  • the C0 having a volume concentration of 60% is converted into H2 and C02 in the ring around the upper radial catalytic bed 7.
  • the inner diameter of the water pipe in the ring is small, and the pipe density is large; the inner circular water pipe has a large circular area and a small tube density.
  • the outer circumferential ring is a double casing 5
  • the U-shaped pipe is inward
  • the lower end of the double casing outer pipe 18 is closed
  • the upper end is welded on the lower pipe plate.
  • the inner tube 17 is inserted into the outer tube 18, the lower end is not closed, and is kept at a distance from the lower end of the outer tube 18, and the upper end is welded to the upper tube sheet.
  • the U-shaped tube 9 has a longer side, the nozzle is welded to the upper tube sheet 2, and the shorter side tube is welded to the lower tube sheet 4.
  • the double-casing arrangement can be denser, but the inner tube only acts as a diversion and has no heat transfer function, which in turn increases the weight and cost of the equipment; the advantages and disadvantages of the U-shaped tube are opposite.
  • the CO-containing gas enters from the lower tee, passes from the bottom of the annulus, passes through the small hole of the upper radial catalytic bed, and is radially reacted by the catalytic bed.
  • the CO drops to 3% ⁇ 5% and enters the central tube 8.
  • the reactor is taken out from the bottom tee 16 .
  • the water inlet chamber of the steam drum 1 descends into the long side tube of the U-shaped tube 9 and the inner tube of the double sleeve 5 respectively.
  • the water entering the inner tube from top to bottom to the bottom is folded to the outer casing, and the heat of reaction outside the tube is absorbed from the bottom to the top, and the water phase changes to a mixture of steam and water and rises to the steam drum 1 .
  • the water entering the long side of the U-shaped tube 9 flows from top to bottom to the bottom and absorbs the heat of reaction outside the tube to partially vaporize the water.
  • the vapor-water mixture is folded to the short side of the U-shaped tube 9, from bottom to top, and continues to absorb the heat outside the tube. , more water turns into a soda mixture and rises to the drum.
  • the soda-water mixture is separated in the drum 1, the steam is sent out, the water is lowered, and a water vapor cycle is completed.
  • the upper radial catalytic bed 7 loading accounts for 48% ⁇ 60% of the total, and the lower radial catalytic bed loading accounts for 40% ⁇ 52% of the total.
  • the charging (catalyst) tube between the upper and lower tube sheets is 8% to 12% of the total number of water tubes, and there is a large tube in the middle, and the catalyst added from the charging tube passes through the annular communication hole 10 in the middle of the head. , can reach the lower radial catalytic bed.
  • the upper discharge (catalyst) tube is discharged from the radial catalytic bed catalyst, and the two symmetrical tubes are mounted on the periphery of the cylinder; the lower discharge tube is a catalyst for removing the radial catalytic bed, and is symmetrically two.
  • the lower port of the discharge pipe is closed with a high-pressure blind plate to prevent the catalyst from falling during normal operation.
  • the gas shifting process of the present invention is matched with the isothermal shifting reactor of the present invention.
  • the volumetric ratio of the CO is 40% to 70%, and the water-gas ratio is 1. 3 ⁇ 1.
  • heat exchanger E-42 purification detoxifier E-43, E-44, isothermal shift reactor E_45, first waste heat boiler E-46, second waste heat boiler E-47, second water separation E-48, boiler feed water heater E_49, water cooler E-410, consisting of a third water separator E-411.
  • the coal containing CO passes through the first water separator E-41, enters the heat exchanger E-42, and the unreacted gas is heated to 230 ° C ⁇ 240 ° C, into the purification detoxifier E- 43, E- 44, chlorine, phosphorus, oxygen, hydrocarbons in the gas are removed here, a small amount of CO is also converted, the gas temperature rises to 255 ° C ⁇ 265 ° C, into the isothermal shift reactor E-45, from the lower part of the converter After entering, the catalyst bed is subjected to a shift reaction, and the catalyst bed temperature is 260 ° C to 275 ° C.
  • the volume of the shift gas CO is about 0.7%, and the heat exchanger is discharged from the lower tee through the heat exchanger.
  • E- 42 through the first waste heat boiler E-46, generating 1.2MPa steam, changing the gas through the second waste heat boiler E_47, generating 0.6MPa steam, three kinds of pressure self-produced saturated steam is sent to the corresponding pressure level pipe network, transform
  • the gas temperature drops to 255 ⁇ 265°C.
  • the second water separator E-48 the temperature of the shift gas drops to about 180°C, and the excess steam condenses.
  • the sensible heat, condensation heat and other waste heat generate 1.3MPa and 0.6MPa steam respectively.
  • Boiler feed water heater E-49 successively demineralized boiler, (de) deaerator water heating, temperature After being heated to 75 ° C to 80 ° C, the water cooler E-410 is cooled to 40 ° C with circulating cold water, and the gas vapor is condensed in a large amount, and the condensed water is separated and transformed by the first third water separator E-411. Gas is sent out of the boundary.
  • the heated boiler desalinates the steam drum to serve as the supplementary water for the shifting water vapor cycle, and the low pressure evaporating boiler feed water to generate steam.
  • the C050% ⁇ 85% industrial furnace gas (such as acetylene furnace gas, steelmaking converter, and yellow phosphorus furnace gas) is matched with the isothermal shift reactor of the present invention.
  • the industrial furnace gas is characterized by high C0% content (40% ⁇ 85%), basically no water vapor, basically no sulfur, but the dust content is high, the oxygen content is more, and the acetylene furnace gas also contains unsaturated hydrocarbons.
  • the E-51 scrubber, the E-52 water separator, the parallel filter E-53, E-54, the compressor E-55, the degreaser E_516, and the purification process are matched by the isothermal shift process.
  • the industrial furnace gas enters the washing tower E-51, and the dust is washed with circulating water, and will be passed through the fourth water separator E-52.
  • the gas compressor is compressed to 1. 8MPa ⁇ by the gas compressor E-55.
  • the gas is compressed by the gas compressor E-55 to 1. 8MPa ⁇ 2.
  • 3MPa enters the heat exchanger E-510, the unreacted gas is heated to 200 ° C ⁇ 225 ° C, into the parallel purification detoxifier E_56, E-57, chlorine, phosphorus, oxygen, hydrocarbons in the gas are removed here There is also a small amount of CO converted, the gas temperature rises to 2250 ° C ⁇ 250 ° C, enters the hydroconverter E-517, after hydroconversion, the lower tee enters the isothermal shift reactor E-58, in the furnace The catalyst bed is subjected to a shift reaction, and the catalyst bed temperature is 235 ° C to 260 ° C.
  • the shift gas CO is reduced to about 0.7% to achieve the conversion process requirement, and the heat transfer gas is passed through the steam dryer.
  • the self-produced saturated steam is dried, the temperature is reduced to about 230 ° C ⁇ 255 ° C, the gas is heated and compressed by the heat exchanger E-510, and the boiler is dehydrated by the boiler E-511.
  • the heated boiler demineralized steam supply steam bag is used as the supplementary water for changing the water vapor circulation of the furnace, and the medium pressure steam is generated as the reaction steam to be added to the conversion system.
  • the saturated steam-water mixture is added to the bottom of the shifting furnace to increase the chemical equilibrium of the reaction end and increase the final conversion rate.
  • the C030% ⁇ C038% semi-water gas shifting process matched with the isothermal shift reactor of the present invention although the semi-aqueous gas CO is not high, but when the ammonia is produced, the conversion gas CO is required to be low, which is 0. 4% ⁇ 0. 6%, and the gas is dusty, oily, oxygen-containing, chlorine-containing, without water vapor.
  • the matching process of the present invention is through two parallel filters E-61, E-62 (one filter another Clean), dust and tar dust removal filter, remove dust and oil, enter heat exchanger E-67, unreacted gas is heated to 210 °C ⁇ 230 °C, enter parallel purification detoxifier E-63, E-64, remove harmful substances such as oxygen, chlorine and phosphorus in the gas, and also have a small amount of C0 change.
  • the temperature of the gas rises to 230 °C ⁇ 250 °C, and the lower tee enters the isothermal shift reactor E-65 in the furnace.
  • the catalyst bed is subjected to a shift reaction, and the bed temperature is 230 ° C to 265 ° C.
  • the shift gas C0 is reduced to 0.4% ⁇ 0. 7 or so, the conversion process is required, and the heat transfer gas is removed from the lower tee.
  • Steam dryer E-66 drying self-produced saturated steam, the temperature is reduced to 230 °C ⁇ 255°C, heat the semi-water gas through the heat exchanger E-67, and heat the boiler to the brine by the boiler feed water heater E-68, and preheat (de) deaerator water through the desalted water heater E-69.
  • the temperature is reduced to 75 °C ⁇ 80 °C
  • the water cooler E-610 is cooled to 40 °C with circulating cold water
  • the gas vapor is condensed in large quantities
  • the condensed water is separated and transformed by the sixth water separator E-61 1 Gas is sent out of the boundary.
  • the heated boiler demineralized steam supply steam bag is used as the supplementary water for changing the water vapor circulation of the furnace, and the medium pressure steam is generated as the reaction steam to be added to the conversion system.
  • the saturated steam-water mixture is added to the bottom of the shifting furnace to increase the chemical equilibrium of the reaction end and increase the final conversion rate.
  • the percentage of CO in the present invention means the volume concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种高CO高变换率等温变换反应器及其工艺。所述等温变换反应器包括外壳、内腔、焊有水管的上管板和下管板,底部三通;所述外壳的上下两端均具有封头,所述内腔上部设有水室和汽室;所述内腔中部设有上催化剂床,该内腔下部设有下催化剂床,上催化剂床布有水管,下催化剂床无水管,所述内腔设有中心管,该中心管的上部位于上催化剂床内,该中心管的下部位于下催化剂床内;所述底部三通具有未反应气入口、变换气出口和汽水混合物入口;所述中心管内套装有汽水混合物喷管,所述反应器配置不同CO%未反应气及变换气中不同CO%不同的工艺流程,本发明可以实现低温、高CO、高变换率,且系统阻力小。

Description

一种高 CO高变换率等温变换反应器及其工艺 技术领域
本发明涉及合成氨、 甲醇合成、 制乙二醇、 煤制油、 煤制天然气、 制氢及 工业炉废气利用领域, 尤其涉及一种高 co 高变换率反应器及工艺流程, 涉及 工业炉尾气、 工业煤气中 CO (最高 85%以上) 与水蒸汽反应变成氢, 实现高 变换率 (最高至 98.5%以上) 的变换反应器和工艺。
背景技术
煤气、 天然气转化气、 焦炉气转化气、 电石炉尾气、 高炉煤气等, 这些气 体均含有大量的 CO , 例如电石尾气含有 CO为 80 %, 煤气中 CO含量为 30%〜 68% (随煤气化方法不同而有异), CO 可变换为很有用的 , 其变换的反应式 为:
CO+H20 (汽) =C02+H2+Q
变换反应为放热可逆反应, 必须有催化剂和过量的 0 (水蒸气) 按反应 式过量, 才能使反应向生成 方向进行。
催化剂为钴、 钼变换催化剂, 其活性成分为 MoS。 变换催化剂的使用温度 范围为 230 °C〜470 °C。
MoS2+2H20=Mo02+2H2S
由反应式可知, CO变换是放热反应, 放出的热量会使反应气体升温, 催化 剂同步在该温度下反应。 每反应 1%C0 (湿基), 温升 9°C〜10 °C (干基升高 5 °C〜6°C ) ; 煤气中 CO含量越高, 而反应后变换气 CO含量越低, 即变换 CO越 多, 温升越高。
例如: 煤气中 CO 65% (干基), 水气比 R=1.15, 变换后 C08.6% (干 基), 按:
CO + H20 = C02 + H2 + Q
65 115 4.3 23.7
计算反应掉一氧化碳△(〇; (65-ACO)/(100+ACO)=0.086 △CO=52
反应后反应热: 9590cal/mol,
放出热: 52 X 9590=498680Kcal/h,
Cp: 9.01kcal/kmol°C,
反应后物料: 215kmol/h,
498680-=215 X 9.01 X At,
△t=257.43
若反应前温度 245°C, 则反应后温度为: 257.43+245=502.43 °C ;
此温度高于催化剂使用最高温度, 会严重影响催化剂的活性。 当未反应气 CO很高, 如 45%至 80%, —进入反应器, 大量 CO立即反应, 温度猛升, 特别是 未反应气自身带有大量水蒸汽时, 更促进了反应, 发生所谓飞温现象。 如何控 制反应过程的温度, 使之不超过催化剂允许的最高使用温度, 是一打难题; CO 变换的另一个难题是高变换率, 变换接近终点, 即越接近平衡, 推动力越小, 变换难度越大。 如 CO变换率已达 90%, (变换气 C0降至 1. 5%) 如再多变换 1% (变换气 C0降至 0. 5%) , 需要增加一终端变换炉, 其催化量为总量 40%。 有些 未反应气自身不带水蒸汽, 如工业炉气、 半水煤气等, 最终变换率越高, 加入 过量蒸汽越多, 汽耗越大。
目前解决上述问题的原则办法是: 采多炉多段绝热反应。 如如图 1 所示, 煤气预热到催化剂起始反应温度, 补加一定量蒸汽, 达到一定气汽比, 进行第 一次变换反应, C0变换一部分, 气体中 C0 降低到一定程度, 温度升高 (不超 过催化剂允许最高温度), 将反应气冷却, 温度降低 (比催化剂允许最低温度 稍高, 保证蒸汽不冷凝, 催化剂活性较高); 进行第二次反应, C0 又降低, 温 度又升高 (同前, 不超过催化剂允许最高温度), 再冷却 (冷却温度如前原 则); 再进行第三次变换反应, 达到最终需要的 C0含量。
如煤气含 C068. 65%, 水气比 1. 45、 温度 211 °C, 经水汽分离器 E-1分离出 水分, 经气气换热器 E-2加热至 296°C, 并联进入脱毒槽 E-3、 预变炉 E-4和 脱毒槽 E-5、 预变炉 E-6, CO降至 35%, 温度升至 380°C, 经热交换器 E_2、 中 压蒸发冷凝器 E-7 降温, 进入第三个变换炉 E-8反应, CO降至 6. 7%, 温度上 升至 434°C经喷水净化器 E-9、 中压蒸发冷凝器降温 E-10 , 经冷凝水加热器 E- 11, 进入第四个变换炉 E-12反应, CO降至 1%, 温升到 260°C, 经低压蒸发冷 凝器 E-13 , 降温至 185°C再进入第五个变换炉 E-14反应, CO降至 0. 4%, 温度 上升至 204°C, 再经锅炉给水加热器 E-15 , 低压蒸发冷凝器 E-16汽水分离器 E- 17离开界区。 上述现有技术存在如下几个问题:
1, 含 C068. 65%煤气, 变换气用于制氨或制氢, 其变换气 CO降至〜 0. 4%变 换率要求很高, 99%以上需四段五个变换炉, 需变换反应器太多, 其间有一个 气气换热器, 6个冷却冷凝器, 一个喷水降温器; 至少需要 17台主要设备, 由 此设备太多, 连接管道太多; 占地面积大, 投资多, 操作难度大;
2, 如果未变换气体中 CO高达 70%〜86%, 设备更多, 连接管道更长, 即使 用四至五段绝热变换也无法实现变换;
3, 总量 85%的 CO在 380°C〜430°C下反应掉, 高温使反应催化剂易老化, 影响使用寿命, 高温反应设备管道受热应力大, 材质要求高;
4, 大部分催化剂温度达 40CTC, 高温反应不利于化学平衡, 达到同样变换 率需要催化剂多;
5, 反应热蒸汽冷凝热用于产生低压 (如 0. 6MPa〜2. 5MPa ) 蒸汽, 且还有 大量冷凝水排出, 利用率低;
6, 其中 E-9 采用冷水直接向反应热气喷淋汽化降温, 带水雾的湿气体可 能使催化剂结块或粉化, 影响活性, 缩短使用寿命。 发明内容
针对现有的高 CO 反应器存在的上述不足, 本发明旨在提供一种高 CO 高 变换率等温变换反应器, 该反应器可以实现 CO的高变换率, 且系统阻力小。
为了实现上述目的, 本发明所采用的技术方案是:
一种高 CO 高变换率等温变换反应器, 包括具有内腔的外壳, 位于外壳内 腔上部的上管板和下管板, 位于外壳内腔底部的三通; 所述外壳的上下两端均 具有封头, 该外壳的上封头与所述上管板之间的腔体为水室, 上管板与下管板 之间的腔体为汽室; 其结构特点是, 所述水室通过水管与设在外壳上方的汽包 连通, 该汽包通过管道与所述汽室连通; 所述外壳内腔中部设有上催化剂床, 该外壳内腔下部设有下催化剂床, 所述上催化剂床与壳体内壁之间具有环隙, 所述上催化剂床与下催化剂床之间设有支承封头, 所述外壳内腔设有中心管, 该中心管的上部位于上催化剂床内, 该中心管的下部位于下催化剂床内; 所述 底部三通具有未反应气入口、 变换气出口和汽水混合物入口; 所述上催化剂床 通过环隙与所述未反应气入口连通, 所述下催化剂床与所述变换气出口连通; 所述中心管内装有汽水混合物喷管, 该汽水混合物喷管与所述汽水混合物入口 连通。 以下为本发明的进一步改进的技术方案:
进一步地, 为了对催化剂床进行温度控制, 所述上催化剂床内设有多根竖 向布置的水汽管。
所述水汽管有两种: 双套水汽管, U形水汽管。 所述水汽管中的一部分水 汽管为双套水汽管, 该双套水汽管包括内管和通过支撑套装在内管上的外管; 底部封闭的所述外管的底端装有弹性元件, 所述内管的底部与所述外管底部连 通, 该内管的上端伸出所述外管并与所述水室连通, 该外管的上端与所述汽室 连通。 所述水汽管中的一部分水汽管为 U形水汽管, 该 U形水汽管的左右两 边管不等长, 该 U形水汽管的长边管与所述水室连通, 该 U形水汽管的短边 管与所述汽室连通。
更进一步地, 与所述水室连通的水汽管为双套水汽管, 该双套水汽管包括 内管和通过支承套装在内管上的外管; 底部封闭的所述外管的底端装有弹性元 件, 所述内管的底部与所述外管底部连通。
为了便于实现催化剂的更换, 所述上催化剂床顶部设有装料管, 该上催化 剂床的底部设有上卸料管; 所述下催化剂床通过连通环孔与所述上催化剂床连 通, 该下催化剂床的底部设有下卸料管。
进一步地, 所述上催化剂床的装填量占总装填量的 48%-60%; 所述下催化 剂床的装填量占总装填量的 40%-52%。
作为一种具体的优选实例, 所述支撑的外形呈 B 形, 所述弹性元件为弹 簧。
为了保证气体实现喷射的效果, 所述上催化剂床的外壁、 下催化床的外壁 以及中心管上均设有喇叭状通气小孔。
进一步地, 本发明的第二个发明目的是提供了一种利用上述高 CO 高变换 率等温变换反应器进行煤气变换的工艺, 该工艺包括如下步骤:
1 )、 将含体积浓度为 40%〜70%的 CO 的煤气依次经过第一水分离器、 热 交换器、 净化除毒器之后, 送入上述高 CO 高变换率等温变换反应器的未变换 气入口; 其中, 煤气进入净化除毒器的温度为 230°C〜240°C, 煤气进入等温变 换反应器的温度为 255°C〜265°C ;
2 )、 未变换气在等温变换反应器内反应, 上催化剂床和下催化剂床内的温 度为 260°C〜275°C, 反应完毕后, 变换气中 CO 的体积浓度为 0.4% -0.7%;
3 )、 变换气从变换气出口依次进入热交换器、 第一余热锅炉、 第二余热锅 炉、 第二水分离器、 锅炉给水加热器、 冷却器、 第三水分离器后送出界区; 其 中变换气进入热交换器的温度为 255〜265 °C, 变换气进入第二水分离器的温度 为 170°C~190°C, 变换气进入冷却器的温度为 75 °C〜80°C, 变换气进入第三水 分离器的温度为 35 °C〜50°C。
进一步地, 加热的锅炉脱盐水送汽包, 第一余热锅炉、 第二余热锅炉和汽 包产生的压力饱和蒸汽分别送往相应的蒸汽管网。
由此, 加热的锅炉脱盐水送汽包, 作为变换炉水汽循环和余热锅炉的补充 水, 产生的三种压力饱和蒸汽分别送往相应的蒸汽管网。
进一步地, 本发明第三个发明目的是提供一种利用上述高 CO 高变换率等 温变换反应器进行工业炉气变换的工艺, 该工艺包括如下步骤: 1 )、 将含体积浓度为 45%〜85%的 CO 的工业炉气依次经过洗涤塔、 第四 水分离器、 过滤器后经气体压缩机压缩进入除油器, 除油后进热交换器中, 从 热交换器中出来的气体依次进入净化除毒器、 进加氢转化器后, 送入上述高 CO 高变换率等温变换反应器内; 工业炉气进入净化除毒器的温度为 200 °C〜 225 °C , 工业炉气进入等温变换反应器的温度为 225°C〜250°C ;
2 )、 工业炉气在等温变换反应器内反应, 上催化剂床和下催化剂床内的温 度为 235°C〜260°C, 反应完毕后, 变换气从变换气出口进入蒸汽干燥器内将自 产饱和蒸汽干燥;
3 )、 从蒸汽干燥器出来的变换气依次通过热交换器、 锅炉脱盐水加热器、 除氧水加热器、 冷却器、 第五水分离器后送出界区;
其中进入热交换器的变换气温度为 230°C ~255 °C, 进入冷却器的变换气温 度为 75°C〜80°C, 进入第三水分离器的变换气温度为 35 °C〜50°C。
进一步地, 加热的锅炉脱盐水送入汽包, 自产饱和蒸汽经干燥后, 返回 等温变换反应器参与变换反应, 在所述变换反应器底部补入处于饱和状态的汽 水混合物。
由此, 加热的锅炉脱盐水送汽包, 作为变换炉水汽循环的补充水, 产生中 压蒸汽做本变换系统需加入的反应蒸汽。 另在由变换炉底部补入处于饱和状态 的汽水混合物, 以提高反应末端化学平衡度, 提高最终转化率。
进一步地, 本发明第四个发明目的是提供一种利用上述高 CO 高变换率等 温变换反应器进行半水煤气变换的工艺, 该工艺包括如下步骤:
1 )、 将含体积浓度为 25%〜38%的 CO 的半水煤气经过过滤器、 后进入热 交换器中, 从热交换器中出来的气体进入净化除毒器, 后送入上述高 CO高变 换率等温变换反应器内; 其中, 进入净化除毒器的半水煤气温度为 210°C〜230 °C, 进入等温变换反应器的半水煤气温度为 230°C〜250°C ;
2 )、 半水煤气在等温变换反应器内反应, 上催化剂床和下催化剂床内的温 度为 235°C〜260°C, 反应完毕后, 变换气从变换气出口进入蒸汽干燥器内将自 产饱和蒸汽干燥;
3 )、 从蒸汽干燥器出来的变换气依次通过热交换器、 锅炉给水加热器、 脱 盐水加热器、 冷却器、 第六水分离器后送出界区; 其中进入热交换器的变换气 温度为 230°C ~255 °C, 进入冷却器的变换气温度为 75 °C〜80°C, 进入第六水分 离器的变换气温度为 35°C〜50°C。
进一步地, 加热的锅炉脱盐水送入汽包, 自产饱和蒸汽经干燥后, 返回 等温变换反应器参与变换反应, 在所述变换反应器底部补入处于饱和状态的汽 水混合物。
由此, 加热的锅炉脱盐水送汽包, 作为变换炉水汽循环的补充水, 产生 中压蒸汽做本变换系统需加入的反应蒸汽。 另在由变换炉底部补入处于饱和状 态的汽水混合物, 以提高反应末端化学平衡度, 提高最终转化率。
由此, 本发明用于工业炉尾气、 工业煤气中 CO (体积浓度 40%〜85%), 与 水蒸汽反应变成氢, 且变换率高达 98%以上。 90%〜95%的 CO在上催化床完成反 应。 反应温度恒定在低温活性范围, 不同待变换未反应气配置不同工艺流程, 制定两种典型工艺流程: 高 CO高水汽比、 中高压变换; 高 CO低水汽比、 低压 变换; 以及低水汽比高变换率。 本发明优点用一台变换炉和相应简单流程、 简 单容易的操作, 实现 CO 含量高变换率。 反应热副产中压蒸汽, 多余蒸汽凝热 产生低压蒸汽热效率高冷却水量少、 催化剂寿命长, 变换炉及系统阻力小。
与现有技术相比, 本发明的有益效果是:
1、 本发明技术核心是众多水管埋于催化床中, 催化反应放出热被水管内 水吸收汽化为蒸汽维持床层温度。 其特点水汽化热很大, 所有反应热都能随即 吸收, 保证床层温度恒定, 杜绝飞温现象, 保催化剂长周期高效运行; 反应温 度低, 平衡温距大, 反应推动力大, 催化剂效率高, 催化剂量少, 生产能力 大;
2、 未反应气体中 CO可高达 80%以上, 变换气中 CO可降至 0. 4%.对纯氧水 蒸汽与煤制得的煤气, 水汽比 1. 1〜1. 6, 用一个反应器实现了高 C0、 高变换 率、 高水气比的复杂变换过程。 反应器少, 流程短;
3、 由于上述优点, 只需控制汽包压力, 就操控了反应全过程, 反应温度 恒定、 变换气 CO 恒定; 由于上述反应器少、 流程短, 使变换界区占地面积 小;
4、 变换反应器为低温等温反应, 其温度在催化剂活性范围内的低端 (230 °C〜310), 反应床层轴向径最大温差 3 °C〜8°C内。 使催化剂使用寿命长。 无需 耐高温材料制作反应器;
5, 反应热全部用于产生 3. 9MPa 中压蒸汽并能充分利用高水气比煤气身带 来大量水蒸汽, 参与变换反应, (现有工艺要先冷凝煤气中蒸汽, 经第一段反 应后, 又要补加蒸汽和喷水增湿)。 产生较余下蒸汽冷凝热产生 1. 2MPa 和 O. SMPa 蒸汽, 降温冷却水量少。 高水气比煤气变换流程中, 中低压蒸汽可外 供, 在工业炉尾气 CO 变换流程中作为反应需要的蒸汽, 使外供蒸汽大为减 少。 具有很好节能效果;
6、 本发明反应温度低, 汽气比小, 除恒温等温低温变换炉外, 净化炉、 终变炉均设为径向结构, 反应器阻力只 0. 05MPa, 系统阻力 0. 2MPa;
7、 高径比大, 单炉能力大, 易大型化; 例如日产 1500吨合成氨, 煤气 CO 为 64%, 变换气 C0为 0. 8%, —台内径 04000净高 17M等温变换反应器即可 以下结合附图和实施例对本发明作进一步阐述。
附图说明
图 1是现有高 CO煤气变换工艺流程图;
图 2是本发明所述双套管的结构示意图;
图 3是本发明一种实施例的结构原理图;
图 4是本发明高 CO变换变换流程图
图 5是本发明工业炉尾气高 CO变换流程图
图 6是本发明半水煤气变换流程图。 具体实施方式
实施例 1 本发明的未反应气体中 CO可高达 85%以上, 变换气中 CO可降至 0. 4%。 变 换反应器催化剂是以 M0S、 COS 为活性组成的耐硫钴钼型催化剂, 本发明在催 化床层温度, 只要高于露点温度 30 °C〜40 °C, 处活性温度低端范围内 (230 °C〜310 °C ), 反应床层轴径向最大温差只 3 °C〜 8 °C内。
等温变换反应器 5整体为圆筒形, 如图 3所示, 由上管板 2, 装料管 3, 下管板 4, 双套水汽管 5, 外壳 6, 上径向催化床 7, 中心管 8, U形水汽管 9, 环形连通孔 10, 支承封头 11, 汽水混合物喷管 12, 下径向催化床 13, 上卸料 管 14, 下卸料管 15, 密封填料 16, 底部三通以及体外汽包 1组合构成。
上径向催化床 7有众多汽水管 5、 9; 下径向催化床 13无水管。 催化床 之上的两块管板 2、 4 将上部分为汽室和水室, 分别通过上升汽管和下降水管 与汽包 1连通。
上、 下催化床都为径向催化床, 称为全径向反应床。 上床层气体从外周边 向中心流, 下床层气体从中心往外周边流。 径向催化床外圈筒体和中心管上都 有喇叭形小孔, 以保证气体成喷射流状进床层, 均匀分布于床层各点, 径向流 结构使气体流动阻力大为降低。
刚进入径向催化床的未反应气 CO 高, 水气比高, 推动力大, 反应速度 快, 体积浓度为 60%的 C0是在上径向催化床 7周边圆环内变换为 H2和 C02 , 此圆环内水管的圆面积小, 管密度较大; 中间圆内水管, 圆面积大, 管密度较 小。
所述水汽管有两种: 外周环圈是双套管 5, 往内是 U形管 9, 双套管外管 18下端封闭, 上端焊在下管板上。 内管 17插在外管 18 内, 下端未封闭, 与 外管 18下端保持一段距离, 上端焊在上管板上。 U形管 9一边较长, 其管口 焊在上管板 2上, 较短一边管口焊在下管板 4上。 双套管排布密度可大些, 但 内管只起导流作用, 无传热功能, 反而增加了设备重量和成本; U 形管的优缺 点与之相反。
如图 3所示, 双套管内外管 17, 18间有弹性 "B "形支撑 19, 以防止内管 17摆振, 支撑在内管 17上错开排布; 外管 18下端有锥形小弹簧 20, 使双套 管伸缩有弹性。
含 CO煤气由下部三通进入, 由沿环隙下而上, 经上径向催化床 7 筒体小 孔, 径向经催化床反应, CO降至 3%〜5%, 进入中心管 8, 由上而下至下段流去 中心管, 至下径向催化床 13反应。 径向流向周边, CO降至 0. 4%〜1%, 穿过下 径向催化床筒体小孔, 完成反应。 由底部三通 16出反应器。
汽包 1下降的水进水室, 经分别流入 U形管 9长边管和双套管 5内管。 进 入内管内的水由上而下至底部, 折向到外套管, 由下而上吸收管外反应热, 水 相变为汽水混合物, 上升至汽包 1。 进入 U形管 9长边的水, 由上而下至底部 并吸收管外反应热使水部分汽化, 汽水混合物折向到 U 形管 9 短边, 由下而 上, 继续吸收管外反应热, 更多水变为汽水混合物, 上升至汽包。 汽水混合 物在汽包 1中分离, 蒸汽外送, 水下降, 完成一个水汽循环。
上径向催化床 7 装填量占总量 48%〜60%, 下径向催化床装填量占总量 40%〜52%,
在上下管板间的装料 (催化剂) 管, 其数量为水管总数 8%〜12%, 中间有 较大的管子, 从此装料管加入的催化剂, 通过封头中间的环形连通孔 10 穿 过, 可达下径向催化床。
当催化剂需更换时, 应将反应器内废旧催化剂卸出。 上卸料 (催化剂) 管 是卸上径向催化床催化剂, 对称两根装于靠筒体周边; 下卸料管是卸下径向 催化床催化剂, 对称两根。 卸料管下端口用高压盲板封闭, 防止正常运行 时, 催化剂落下。
实施例 2
如图 4 所示, 与本发明的等温变换反应器相配的 CO 体积浓度为 40%〜 70%, 水气比 1. 3〜1. 6的煤气变换工艺流程, 其由第一水分离器 E-41 , 热交换 器 E-42 , 净化除毒器 E-43、 E-44 , 等温变换反应器 E_45, 第一余热锅炉 E- 46, 第二余热锅炉 E-47 , 第二水分离器 E-48 , 锅炉给水加热器 E_49, 水冷器 E-410, 第三水分离器 E-411组成。 工作时, 含 CO的煤经第一水分离器 E-41, 进入热交换器 E-42, 未反应气被加热至 230°C〜240°C, 进入净化除毒器 E- 43, E-44, 气体中氯、 磷、 氧、 烃在此处被清除, 也有少量 CO 被转化, 气体 温度升至 255°C〜265°C后, 进入等温变换反应器 E-45, 由变换炉下部三通进 入, 在炉内催化剂床进行变换反应, 催化剂床层温度 260°C〜275°C, 反应后, 变换气 CO 体积浓度为 0.7%左右, 从下部三通出炉, 热变换气经热交换器 E- 42, 经第一余热锅炉 E-46, 产生 1.2MPa蒸汽, 变换气经第二余热锅炉 E_47, 产生 0.6MPa 蒸汽, 三种压力自产饱和蒸汽外送相应压力级管网, 变换气温度 降至 255〜265°C, 经第二水分离器 E-48, 变换气温度下降至 180°C左右, 多余 蒸汽冷凝, 其显热、 冷凝热等余热分别产生 1.3MPa和 0.6MPa蒸汽, 经锅炉给 水加热器 E-49 先后将锅炉脱盐水、 (去) 除氧水加热, 温度降至 75°C〜80°C 后, 再经水冷器 E-410用循环冷水冷却至 40°C, 变换气蒸汽大量冷凝, 经第一 第三水分离器 E-411, 将冷凝水分离, 变换气送出界区。
加热的锅炉脱盐水送汽包, 作为变换炉水汽循环的补充水, 和低压蒸发生 器给水, 产生蒸汽外送。
实施例 3
如图 5所示, 与本发明的等温变换反应器相配的 C050%〜85%工业炉气 (如 乙炔炉气、 炼钢转炉、 黄磷炉气) 变换工艺流程。
工业炉气特点是 C0%含量高 (40%〜85%), 基本上没带水蒸汽, 基本不含 硫, 但粉尘含量多, 氧含量较多, 乙炔炉气还含不饱和烃。
如图 5所示, 用等温变换工艺相配流程由 E-51洗涤塔、 E-52水分离器、 并联的过滤器 E-53、 E-54、 压缩机 E-55、 除油器 E_516、 净化除毒器 E_56、 E-57、 加氢转化器 E-517、 等温变换反应器 E-58、 蒸汽干燥器 E_59、 热交换 器 E-510, 锅炉脱盐水加热器 E-51 除氧水加热器 E-512、 风冷器 E_513、 第 五水分离器 E-514、 汽包 E-515组成。
工业炉气进入洗涤塔 E-51, 将粉尘用循环水洗涤,经第四水分离器 E-52将 气体带水分离,再经两个并联的过滤器 E-53 , E-54 (一个过滤另一个清理),将 粉尘清除至〜 0. lmg,经气体压缩机 E-55压缩至 1. 8MPa〜2. 3MPa进入热交换器 E-510 , 未反应气被加热至 200°C〜225 °C,进入并联的净化除毒器 E_56, E-57, 气体中氯、 磷、 氧、 烃在此清除,也有少量 CO被转化,气体温度升至 2250°C〜 250 °C ,进入加氢转化器 E-517,经加氢转化后, 由下部三通进入等温变换反应 器 E-58,在炉内催化剂床进行变换反应, 催化剂床层温度 235 °C〜260 °C,反应 后,变换气 CO 降至 0. 7%左右,达到变换工艺要求,从下部三通出炉,热变换气经 蒸汽干燥器 E-59,将自产饱和蒸汽干燥,温度降至 230°C〜255°C左右,变换气经 热交换器 E-510加热压缩后气体, 经锅炉脱盐水加热器 E-511,先后将锅炉脱盐 水加热、 经除氧水加热器 E-512 预热(去)除氧水,温度降至 75 °C〜80 °C,经风 冷器 E-513,用风冷(或循环冷水)冷却至 40 °C,变换气蒸汽大量冷凝,经第五水 分离器 E-514,将冷凝水分离,变换气送出界区。
加热的锅炉脱盐水送汽包, 作为变换炉水汽循环的补充水, 产生中压蒸汽 做本变换系统需加入的反应蒸汽。 另在由变换炉底部补入处于饱和状态的汽水 混合物, 以提高反应末端化学平衡度, 提高最终转化率。
实施例 4
如图 6所示, 与本发明的等温变换反应器相配的约 C030%〜C038%半水煤气 变换工艺流程, 半水煤气 CO虽不高, 但制合成氨时, 要求变换气 CO很低, 为 0. 4%〜0. 6%, 且煤气含尘、 含油、 含氧、 含氯, 不带水蒸汽, 本发明相配流程 是经两个并联的过滤器 E-61 、 E-62 (一个过滤另一个清理), 将粉尘焦油除 尘除油过滤器, 清除粉尘、 油污, 进入热交换器 E-67 , 未反应气被加热至 210 °C〜230 °C, 进入并联的净化除毒器 E-63 , E-64 , 将煤气中氧、 氯、 磷等有害 物清除, 也有少量 C0变换, 气体温度升至 230 °C〜250°C, 由下部三通进入等 温变换反应器 E-65 , 在炉内催化剂床进行变换反应, 床层温度 230 °C〜265 °C, 反应后, 变换气 C0 降至 0. 4%〜0. 7 左右, 达到变换工艺要求, 从下部三 通出炉, 热变换气经蒸汽干燥器 E-66 , 将自产饱和蒸汽干燥, 温度降至 230 °C〜255°C左右, 经热交换器 E-67 加热半水煤气, 经锅炉给水加热器 E-68 先 后将锅炉脱盐水加热、 经脱盐水加热器 E-69 预热 (去) 除氧水, 温度降至 75 °C〜80 °C, 经水冷器 E-610用循环冷水冷却至 40 °C, 变换气蒸汽大量冷凝, 经 第六水分离器 E-61 1 , 将冷凝水分离, 变换气送出界区。
加热的锅炉脱盐水送汽包, 作为变换炉水汽循环的补充水, 产生中压蒸汽 做本变换系统需加入的反应蒸汽。 另在由变换炉底部补入处于饱和状态的汽水 混合物, 以提高反应末端化学平衡度, 提高最终转化率。
本发明中的 CO百分数均表示体积浓度。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发 明, 而不用于限制本发明的范围, 在阅读了本发明之后, 本领域技术人员对本 发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

Claims

权 利 要 求
1. 一种高 CO高变换率等温变换反应器, 包括具有内腔的外壳 (6) , 位于外壳 (6)内腔上部的上管板(2)和下管板(4),位于外壳(6)内腔底部的三通( 16); 所述外壳(6) 的上下两端均具有封头, 该外壳(6) 的上封头与所述上管板(2) 之间的腔体为水室, 上管板 (2) 与下管板 (4) 之间的腔体为汽室; 其特征是, 所述水室通过水管与设在外壳 (6) 上方的汽包 (1) 连通, 该汽包 (1) 通过管 道与所述汽室连通; 所述外壳(6) 内腔中部设有上催化剂床(7) , 该外壳(6) 内腔下部设有下催化剂床 (13) , 所述上催化剂床 (7)与壳体 (6) 内壁之间具 有环隙, 所述上催化剂床 (7) 与下催化剂床 (13) 之间设有支承封头 (11) , 所述外壳(6) 内腔设有中心管(8) , 该中心管(8)的上部位于上催化剂床(7) 内, 该中心管 (8) 的下部位于下催化剂床 (13) 内; 所述底部三通具有未反应 气入口、 变换气出口和汽水混合物入口; 所述上催化剂床 (7) 通过环隙与所述 未反应气入口连通, 所述下催化剂床(13)与所述变换气出口连通; 所述中心管 (8) 内装有汽水混合物喷管 (12) , 该汽水混合物喷管 (12) 与所述汽水混合 物入口连通。
2. 根据权利要求 1所述的高 CO高变换率等温变换反应器, 其特征是, 所述上催 化剂床 (7) 内设有多根竖向布置的水汽管 (5,9) 。
3. 根据权利要求 2所述的高 CO高变换率等温变换反应器, 其特征是, 所述水汽 管 (5,9) 中的一部分水汽管为双套水汽管, 该双套水汽管包括内管 (17) 和通 过支撑 (19)套装在内管 (17) 上的外管 (18) ; 底部封闭的所述外管 (18) 的 底端装有弹性元件 (20) , 所述内管 (17) 的底部与所述外管 (18) 底部连通, 该内管 (17) 的上端伸出所述外管 (18) 并与所述水室连通, 该外管 (18) 的上 端与所述汽室连通。
4. 根据权利要求 2或 3所述的高 CO高变换率等温变换反应器, 其特征是, 所述 水汽管 (5,9) 中的一部分水汽管为 U形水汽管, 该 U形水汽管的左右两边管不 等长, 该 U形水汽管的长边管与所述水室连通, 该 U形水汽管的短边管与所述汽 室连通。
5. 根据权利要求 1或 2所述的高 C0高变换率等温变换反应器, 其特征是, 所述 上催化剂床 (7) 顶部设有装料管 (3) , 该上催化剂床 (7) 的底部设有上卸料 管 (14) ; 所述下催化剂床 (13) 通过连通环孔与所述上催化剂床 (7) 连通, 该下催化剂床 (13) 的底部设有下卸料管 (15) 。
6. 根据权利要求 1或 2所述的高 CO高变换率等温变换反应器, 其特征是, 所述 上催化剂床 (7) 的装填量占总装填量的 48%-60%; 所述下催化剂床 (13) 的装 填量占总装填量的 40%_52%。
7. 根据权利要求 3所述的高 CO高变换率等温变换反应器, 其特征是, 所述支撑 (19) 的外形呈 B形, 所述弹性元件 (20) 为弹簧。
8. 根据权利要求 1或 2所述的高 CO高变换率等温变换反应器, 其特征是, 所述 上催化剂床(7) 的外壁、 下催化床的外壁以及中心管 (8)上均设有喇叭状通气 小孔。
9. 一种利用权利要求 1-8之一所述高 CO高变换率等温变换反应器进行煤气变换 的工艺, 其特征是, 包括如下步骤:
1) 将含体积浓度为 40%〜75%的 CO的煤气依次经过第一水分离器 (E-41) 、 热 交换器 (E-42) 、 净化除毒器(E-43、 E-44)之后, 送入权利要求 1_8之一所述 高 CO高变换率等温变换反应器 (E-45) 的未变换气入口; 煤气进入净化除毒器 (E-43、 E-44) 的温度为 230°C〜240°C, 煤气进入等温变换反应器 (E-45) 的 温度为 255°C〜265°C;
2)未变换气在等温变换反应器(E-45) 内反应, 上催化剂床(7)和下催化剂床 (13) 内的温度为 260°C〜275°C, 反应完毕后, 变换气中 C0 的体积浓度为
0.4% 〜0.7%;
3) 、 变换气从变换气出口依次进入热交换器 (E-42) 、 第一余热锅炉 (E-46) 、 第二余热锅炉 (E-47) 、 第二水分离器 (E-48) 、 锅炉给水加热器 (E-49) 、 冷 却器(E-410) 、 第三水分离器(E-411)后送出界区; 其中变换气进入热交换器 (E-42) 的温度为 255〜265°C, 变换气进入第二水分离器(E-48) 的温度为 170 °C~190°C, 变换气进入冷却器 (E-410) 的温度为 75°C〜80°C, 变换气进入第三 水分离器 (E-411) 的温度为 35°C〜50°C。
10. 根据权利要求 9所述的进行煤气变换的工艺, 其特征是,加热的锅炉脱盐水 送入汽包 (1) , 第一余热锅炉 (E-46) 、 第二余热锅炉 (E-47)和汽包 (1)产 生的三种压力饱和蒸汽分别送往相应的蒸汽管网。
11. 一种利用权利要求 1-8之一所述高 CO高变换率等温变换反应器进行工业炉 气变换的工艺, 其特征是, 包括如下步骤:
1) 将含体积浓度为 45%〜85%的 CO的工业炉气依次经过洗涤塔 (E-51) 、 第四 水分离器(E-52) 、 过滤器 (E-53、 E-54)后经气体压縮机 (E-55)压縮进入除 油器 (E-516) , 除油后进热交换器 (E-510) 中, 从热交换器 (E-510) 中出来 的气体依次进入净化除毒器 (E-56, E-57) 、 进加氢转化器(E-517)后, 送入 权利要求 1-8之一所述高 CO高变换率等温变换反应器 (E-58) 内; 工业炉气进 入净化除毒器 (E-56, E-57) 的温度为 200°C〜225°C, 工业炉气进入等温变换 反应器 (E-58) 的温度为 225°C〜250°C;
2)工业炉气在等温变换反应器(E-58) 内反应, 上催化剂床(7)和下催化剂床 (13) 内的温度为 235°C〜260°C, 反应完毕后, 变换气从变换气出口进入蒸汽 干燥器 (E-59) 内将自产饱和蒸汽干燥;
3)从蒸汽干燥器(E-59) 出来的变换气依次通过热交换器(E-510) 、 锅炉脱盐 水加热器 (E-511) 、 除氧水加热器 (E-512) 、 冷却器 (E-513) 、 第五水分离 器 (E-514) 后送出界区;
其中变换气进入热交换器 (E-510) 的温度为 230°C~255°C, 变换气进入冷却器 (E-513) 的温度为 75°C〜80°C, 变换气进入第三水分离器 (E-514) 的温度为 35°C〜50°C。
12. 根据权利要求 11所述的进行工业炉气变换的工艺, 其特征是, 加热的锅炉 脱盐水送入汽包 (1) , 自产饱和蒸汽经干燥后, 返回等温变换反应器 (E-58) 参与变换反应,在所述变换反应器(E-58)底部补入处于饱和状态的汽水混合物。
13. 一种利用权利要求 1-8之一所述高 CO高变换率等温变换反应器进行半水煤 气变换的工艺, 其特征是, 包括如下步骤:
1) 将含体积浓度为 25%〜38%的 CO的半水煤气经过过滤器 (E_61、 E-62) 后进 入热交换器(E-67)中,从热交换器(E-67)中出来的气体进入净化除毒器(E-63, E-64)后送入权利要求 1-8之一所述高 CO高变换率等温变换反应器(E-65) 内; 其中, 进入净化除毒器 (E-63, E-64) 的半水煤气温度为 210°C〜230°C, 进入 等温变换反应器 (E-65) 的半水煤气温度为 230°C〜250°C; 2)半水煤气在等温变换反应器(E-65) 内反应, 上催化剂床(7)和下催化剂床 (13) 内的温度为 235°C〜260°C, 反应完毕后, 变换气从变换气出口进入蒸汽 干燥器 (E-66) 内将自产饱和蒸汽干燥;
3) 从蒸汽干燥器 (E-66) 出来的变换气依次通过热交换器 (E-67) 、 锅炉给水 加热器(E-68)、脱盐水加热器(E-69)、冷却器(E-610)、第六水分离器(E-611) 后送出界区; 其中变换气进入热交换器 (E-67) 的温度为 230°C~255°C, 变换气 进入冷却器 (E-610) 的温度为 75°C〜80°C, 变换气进入第六水分离器 (E-611) 的温度为 35°C〜50°C。
14. 根据权利要求 13所述的进行半水煤气变换的工艺, 其特征是, 加热的锅炉 脱盐水送入汽包 (1) , 自产饱和蒸汽经干燥后, 返回等温变换反应器 (E-65) 参与变换反应,在所述变换反应器(E-65)底部补入处于饱和状态的汽水混合物。
PCT/CN2013/084160 2013-08-20 2013-09-25 一种高co高变换率等温变换反应器及其工艺 WO2015024287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,869 US9993790B2 (en) 2013-08-20 2013-09-25 Isothermal conversion reactor with high CO and high conversion rate, and process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310364045.2 2013-08-20
CN201310364045.2A CN103435006B (zh) 2013-08-20 2013-08-20 一种高co高变换率等温变换反应器及其工艺

Publications (1)

Publication Number Publication Date
WO2015024287A1 true WO2015024287A1 (zh) 2015-02-26

Family

ID=49688760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084160 WO2015024287A1 (zh) 2013-08-20 2013-09-25 一种高co高变换率等温变换反应器及其工艺

Country Status (3)

Country Link
US (1) US9993790B2 (zh)
CN (1) CN103435006B (zh)
WO (1) WO2015024287A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921619A (zh) * 2019-10-24 2020-03-27 中石化宁波工程有限公司 一种配套粉煤气化的多股流co等温变换工艺及等温变换炉
CN110975767A (zh) * 2019-10-24 2020-04-10 中石化宁波工程有限公司 一种双冷却系统的双等温变换炉
CN111732075A (zh) * 2020-06-28 2020-10-02 南京聚拓化工科技有限公司 复合式绝热串控温变换炉装置及变换工艺
CN112520695A (zh) * 2020-12-14 2021-03-19 河南骏化发展股份有限公司 一种调整汽包压力提高催化剂活性节约蒸汽的工艺

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085855B (zh) * 2014-07-14 2015-10-28 南京博扬化工科技有限公司 一种干气脱毒器外逆向增湿等温一氧化碳变换的工艺方法
CN104150439B (zh) * 2014-07-21 2016-06-15 中国五环工程有限公司 一氧化碳变换工艺
CN104828775B (zh) * 2015-03-23 2017-02-08 宝泰隆新材料股份有限公司 一种用于co气体变换和冷却的装置
CN104743511B (zh) * 2015-03-23 2017-01-11 宝泰隆新材料股份有限公司 一种使用co气体变换和冷却的装置变换和冷却co气体的工艺方法
CN105233763B (zh) * 2015-10-23 2017-12-08 湖南安淳高新技术有限公司 水冷反应器
CN105854736A (zh) * 2016-03-31 2016-08-17 湖南安淳高新技术有限公司 一种等温反应器
CN105727844A (zh) * 2016-03-31 2016-07-06 湖南安淳高新技术有限公司 一种等温反应器催化剂床层温度调节装置
CN105749816A (zh) * 2016-03-31 2016-07-13 湖南安淳高新技术有限公司 一种等温反应器的冷却水循环装置
CN105854588B (zh) * 2016-03-31 2019-05-21 湖南安淳高新技术有限公司 一种硫回收等温反应器及其工艺
US9751773B1 (en) 2017-02-07 2017-09-05 Hunan Anchun Advanced Technology Co., Ltd. Ammonia synthesis system and method
CN107570088B (zh) * 2017-10-10 2023-11-17 湖南安淳高新技术有限公司 一种管壳式反应器的催化剂卸载系统及卸载方法
CN107670592B (zh) * 2017-10-10 2023-12-05 湖南安淳高新技术有限公司 一种管壳式反应器及甲醇合成工艺
CN109294627B (zh) * 2018-09-29 2020-11-06 国家能源投资集团有限责任公司 等温变换装置及包含其的合成气完全变换反应系统
CN109081346B (zh) * 2018-09-30 2022-03-22 中石化宁波工程有限公司 一种配套甲醇合成的高co等温变换工艺
CN109054908B (zh) * 2018-09-30 2020-09-08 中石化宁波工程有限公司 一种配套粉煤气化的等温变换工艺
CN109319733B (zh) * 2018-09-30 2022-04-08 中石化宁波工程有限公司 配套甲醇合成的co变换工艺
CN109319734B (zh) * 2018-09-30 2022-04-01 中石化宁波工程有限公司 一种配套甲醇合成的co变换工艺
CN110237778A (zh) * 2019-05-28 2019-09-17 沈阳化工大学 一种便捷更换催化剂的等温反应器及其工艺方法
CN110550601B (zh) * 2019-08-08 2023-03-14 中石化宁波工程有限公司 一种用于高浓度co原料气的变换工艺
CN110498391B (zh) * 2019-08-08 2023-03-17 中石化宁波工程有限公司 一种用于高浓度一氧化碳全部变换工艺
CN110550602B (zh) * 2019-08-08 2022-08-12 中石化宁波工程有限公司 一种用于羰基合成的高浓度一氧化碳可控半等温变换工艺
CN110498395B (zh) * 2019-08-08 2022-07-19 中石化宁波工程有限公司 一种用于水煤浆多水气比工况的一氧化碳全部变换工艺
CN110655092A (zh) * 2019-09-20 2020-01-07 安徽泉盛化工有限公司 合成氨变换工段提升产能的方法
JPWO2021060145A1 (zh) * 2019-09-27 2021-04-01
CN110898768A (zh) * 2019-10-24 2020-03-24 中石化宁波工程有限公司 一种双等温系统变换炉
CN110921617B (zh) * 2019-10-24 2023-03-14 中石化宁波工程有限公司 一种配套粉煤气化的等温变换并联气冷变换制合成气工艺及等温变换炉
CN112980519A (zh) * 2021-03-02 2021-06-18 山西沃能化工科技有限公司 一种焦炉气中的co变换处理装置及其变换处理方法
CN113401871B (zh) * 2021-07-06 2023-01-06 中石化宁波工程有限公司 一种列管式分段可控半等温变换炉
WO2023219610A1 (en) * 2022-05-11 2023-11-16 Nooter/Eriksen, Inc. System and method for thermal energy storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039539A (zh) * 1988-06-27 1990-02-14 阿莫尼·卡萨尔公司 具有几个催化床层和外部回收反应热的放热非均相合成方法和反应器
CN101721956A (zh) * 2009-12-04 2010-06-09 湖南安淳高新技术有限公司 等温低温co变换反应器
CN102887480A (zh) * 2012-10-08 2013-01-23 中国石油化工集团公司 一种等温变换串绝热变换的co变换工艺
CN102887481A (zh) * 2012-10-08 2013-01-23 中国石油化工集团公司 一种低水气比预变串等温co变换工艺
CN203411321U (zh) * 2013-08-20 2014-01-29 湖南安淳高新技术有限公司 一种高co高变换率等温变换反应器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825501A (en) * 1969-11-26 1974-07-23 Texaco Inc Exothermic reaction process
US3796547A (en) * 1969-11-26 1974-03-12 Texaco Inc Heat exchange apparatus for catalytic system
JPS5839572B2 (ja) * 1979-04-03 1983-08-31 東洋エンジニアリング株式会社 反応器およびその使用法
DE3318098A1 (de) * 1983-05-18 1984-11-22 Linde Ag, 6200 Wiesbaden Verfahren und reaktor zur durchfuehrung einer endo- oder exothermen reaktion
JPS6369546U (zh) * 1986-10-23 1988-05-10
GB8627897D0 (en) * 1986-11-21 1986-12-31 Shell Int Research Reactor
US6306354B1 (en) * 1996-05-17 2001-10-23 International Fuel Cells, Llc Shift converter
CN102059078B (zh) * 2010-11-19 2013-06-19 航天长征化学工程股份有限公司 一种等温径向变换反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039539A (zh) * 1988-06-27 1990-02-14 阿莫尼·卡萨尔公司 具有几个催化床层和外部回收反应热的放热非均相合成方法和反应器
CN101721956A (zh) * 2009-12-04 2010-06-09 湖南安淳高新技术有限公司 等温低温co变换反应器
CN102887480A (zh) * 2012-10-08 2013-01-23 中国石油化工集团公司 一种等温变换串绝热变换的co变换工艺
CN102887481A (zh) * 2012-10-08 2013-01-23 中国石油化工集团公司 一种低水气比预变串等温co变换工艺
CN203411321U (zh) * 2013-08-20 2014-01-29 湖南安淳高新技术有限公司 一种高co高变换率等温变换反应器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921619A (zh) * 2019-10-24 2020-03-27 中石化宁波工程有限公司 一种配套粉煤气化的多股流co等温变换工艺及等温变换炉
CN110975767A (zh) * 2019-10-24 2020-04-10 中石化宁波工程有限公司 一种双冷却系统的双等温变换炉
CN110921619B (zh) * 2019-10-24 2023-06-06 中石化宁波工程有限公司 一种配套粉煤气化的多股流co等温变换工艺及等温变换炉
CN111732075A (zh) * 2020-06-28 2020-10-02 南京聚拓化工科技有限公司 复合式绝热串控温变换炉装置及变换工艺
CN111732075B (zh) * 2020-06-28 2023-06-27 南京聚拓化工科技有限公司 复合式绝热串控温变换炉装置及变换工艺
CN112520695A (zh) * 2020-12-14 2021-03-19 河南骏化发展股份有限公司 一种调整汽包压力提高催化剂活性节约蒸汽的工艺

Also Published As

Publication number Publication date
US20160200572A1 (en) 2016-07-14
CN103435006B (zh) 2015-04-08
CN103435006A (zh) 2013-12-11
US9993790B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2015024287A1 (zh) 一种高co高变换率等温变换反应器及其工艺
WO2016119224A1 (zh) 一种等温低温变换炉及变换工艺
CN101704513B (zh) 分流式等温耐硫变换工艺及其设备
CN104555924B (zh) 具有高输出蒸汽的氢生产方法
CN101157442B (zh) 一种用于co变换的余热回收方法
CN102888252B (zh) 一种饱和塔等温炉串绝热炉co变换工艺
JP2012510427A (ja) アンモニア合成効率を向上させるシステム及び方法
AU2005261096A1 (en) Hydrogen production system and reforming apparatus
CN110407172B (zh) 一种中小型天然气制氢装置
CN203411321U (zh) 一种高co高变换率等温变换反应器
CN104445064A (zh) 一种合成气co组合变换方法和装置
CN204917951U (zh) 去除粗煤气中co的等温变换系统
CN112678770B (zh) 一种采用psa尾气催化燃烧供热的甲醇、水制氢装置
CN105561739B (zh) 一种密闭空间内co2富集与转化设备及方法
CN210419231U (zh) 一种中小型天然气制氢装置
CN212237215U (zh) 自热净化炉和变换反应及热回收装置
JP5860224B2 (ja) Co2を排出しない合成ガスの製造方法
CN209696864U (zh) 具有多孔式中心管的合成反应系统
JP2005015294A (ja) 化学反応装置
CN103911196A (zh) 一种利用工厂废气制天然气的方法和装置
CN201439492U (zh) 分流式等温耐硫变换设备
CN109111967B (zh) 一种焦炉气制天然气的甲烷化系统及方法
CN203303923U (zh) 一种烃化反应器
CN205700479U (zh) 蒸汽上升式径向流反应器
CN111268645B (zh) 一种含有co的原料气变换及热回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891706

Country of ref document: EP

Kind code of ref document: A1