JP6977082B2 - アンモニア分解装置及びシステム並びに水素製造方法 - Google Patents

アンモニア分解装置及びシステム並びに水素製造方法 Download PDF

Info

Publication number
JP6977082B2
JP6977082B2 JP2020038073A JP2020038073A JP6977082B2 JP 6977082 B2 JP6977082 B2 JP 6977082B2 JP 2020038073 A JP2020038073 A JP 2020038073A JP 2020038073 A JP2020038073 A JP 2020038073A JP 6977082 B2 JP6977082 B2 JP 6977082B2
Authority
JP
Japan
Prior art keywords
heat exchange
ammonia
hydrogen
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020038073A
Other languages
English (en)
Other versions
JP2021001105A (ja
Inventor
ジアン リロン
ルオ ユ
チェン チョンチ
リン シンジイ
リン ジェンシン
Original Assignee
ナショナル エンジニアリング リサーチ センター オブ ケミカル ファーティライザー キャタリスト、フージョウ ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナショナル エンジニアリング リサーチ センター オブ ケミカル ファーティライザー キャタリスト、フージョウ ユニバーシティ filed Critical ナショナル エンジニアリング リサーチ センター オブ ケミカル ファーティライザー キャタリスト、フージョウ ユニバーシティ
Publication of JP2021001105A publication Critical patent/JP2021001105A/ja
Application granted granted Critical
Publication of JP6977082B2 publication Critical patent/JP6977082B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00128Controlling the temperature by direct heating or cooling by evaporation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00907Separation using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00918Separation by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/001Physical processing by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0065Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Description

本発明は水素製造の技術分野に属し、具体的には、アンモニア分解装置及びシステム並びに水素製造方法に関する。
燃料電池は、燃料の化学エネルギーを電気エネルギーに直接変換する化学デバイスであり、電気化学発電機とも呼ばれ、水力発電、火力発電及び原子力発電に続く第4種の発電技術である。燃料電池は、電気化学反応によって燃料の化学エネルギー中のギブス自由エネルギーの一部を電気エネルギーに変換し、カルノーサイクル効果に制限されないため、効率が高い。また、燃料電池と酸素は原料として使用され、メカニカル且つ伝動部材、騒音公害がなく、排出される有害ガスが比較的に少ない。エネルギー節約と生態環境保護の観点から、燃料電池の開発の見通しがあることが分かる。
水素は燃料電池に最適な燃料であるが、水素貯蔵技術にはまだ多くの課題があり、例えば、常温常圧での水素ガスの体積エネルギー密度は0.0108MJ・L-1であり、車両用燃料電池の航続距離の要件を満たすために、水素の体積エネルギー密度を3MJ・L-1に上げるには、水素ガスを35MPaに加圧する必要がある。これにより、対応する投資コストも増加し、車両用燃料電池の安全性が低下する。アンモニア、メタノール、ガソリンや天然ガスなどの水素リッチ燃料を使用して改質することにより水素ガスを提供することは、より簡単で、安全で、効率的で経済的である。アンモニアは、水素含有量が17.6wt%となる水素リッチ燃料であり、しかも液化しやすく、エネルギー密度が高く、炭素排出がなく、安全性が高く、燃料コストが低いなどの利点がある。ただ2MPaの場合、アンモニアを、体積エネルギー密度が13MJ・L-1となる液体に液化することができ、これは圧縮水素貯蔵より3〜4倍高いため、アンモニアの触媒分解による水素製造により燃料電池に水素を供給することは、効率的で信頼できる新しい方法である。従来のアンモニア分解による水素製造方法においては、システム構造が複雑で、触媒利用効率が低く、エネルギー浪費が深刻で、アンモニア分解が不完全で、及びアンモニア分解後のガス中のアンモニアガスの残留量が高い。
したがって、本発明が解決しようとする技術的課題は、先行技術における、アンモニア分解による水素製造においてアンモニアガス分解が不完全で、ガス生成物中のアンモニアガスの残留量が高いなどの欠陥を克服し、それにより、アンモニア分解装置及びシステム並びにアンモニア分解方法を提供することである。
この目的のために、本発明は以下のような技術的解決手段を提供する。
本発明は、ケーシングを備えるアンモニア分解装置を提供し、前記ケーシングは、順次連通する加熱ゾーンと熱交換ゾーンとを含み、前記加熱ゾーンと熱交換ゾーンは、ケーシングの長手方向に沿って順次連通して設置されてもよく、孔路により並んで連通して設置されてもよく、
前記アンモニア分解装置は、
順次連通して設置される第1反応部と第2反応部とを含み、前記第1反応部が前記加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、前記第2反応部が前記熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部と、
前記第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、前記第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が前記第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを前記第1反応部と第2反応部内に順次送り反応させる熱交換コイルと、をさらに備える。
前記ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比は(1〜3):1である。
前記反応部のアスペクト比は(5〜10):1である。
前記アンモニア分解装置は、
前記加熱ゾーン内に設置され前記ケーシングの内壁と前記第1反応部との間に位置して、前記第1反応部内の反応温度を維持するバーナーと、
前記ケーシング内に設置され、且つ前記ケーシングを加熱ゾーンと熱交換ゾーンに分け、前記バーナー内の排気ガスが排気ガス貫通孔を通過して前記熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の前記排気ガス貫通孔が開設される仕切り板と、をさらに備える。
前記反応部は少なくとも2つあり、前記ケーシング内に互いに並んで設置され、
前記反応部の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比は(8〜50):1である。
前記反応部は固定床反応器であり、
前記バーナーは多孔質媒体バーナー又は触媒バーナーであり、そのうち、多孔質媒体バーナーは、多孔質媒体構造を有するバーナーである。
本発明は、アンモニア分解システムをさらに提供し、上記アンモニア分解装置を備え、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、前記熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置と、をさらに備える。
前記アンモニア分解システムは、
ガス分離装置又はアンモニア除去装置と、アンモニア貯蔵タンクと、燃料タンクと、をさらに備え、
前記ガス分離装置は、前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記ガス分離装置に送り分離して高純度水素を得て、前記ガス分離装置は、双方向に連通して設置される圧力スイング吸着装置と膜分離装置とを含み、前記圧力スイング吸着装置が前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記圧力スイング吸着装置内に送り分離して高純度水素を得て、前記圧力スイング吸着装置と膜分離装置が双方向に連通することによって、前記圧力スイング吸着装置内の分離されていない窒素と水素の混合物が前記膜分離装置を通過して前記圧力スイング吸着装置内に循環して送り込まれ分離されて高純度水素を得て、
前記アンモニア除去装置は、前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記アンモニア除去装置内に送り、水素窒素混合ガス中の残留アンモニアを除去し、前記アンモニア除去装置は水素燃料電池と連通して、残留アンモニアを除去した後の水素窒素混合ガスを水素燃料電池内に送り、前記水素燃料電池の排気ガス出口が前記第2熱交換装置に接続されて、前記水素燃料電池から排出された水素含有排気ガスを燃料ガスと混合し、熱交換後に前記加熱ゾーン内に送り燃焼させ、
前記アンモニア貯蔵タンクは、前記第1熱交換装置に接続され、
前記燃料タンクは、前記第2熱交換装置に接続される。
前記第1熱交換装置は熱交換器又は蒸発器であり、
前記第2熱交換装置は熱交換器又は蒸発器である。
また、本発明は、上記アンモニア分解装置を用いたアンモニア分解方法をさらに提供し、アンモニアガスが空間速度500〜10000mL/(gcat・h)で前記第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成するステップを含み、前記第1反応部の反応温度は650〜850℃であり、前記第2反応部の反応温度は450〜600℃である。
本発明の技術的解決手段には、以下のような利点がある。
1、本発明によって提供されるアンモニア分解装置は、ケーシングと、加熱ゾーンと、熱交換ゾーンと、反応部と、熱交換コイルとを備え、熱交換コイルを反応部の外壁に螺旋状に巻くことにより、アンモニアガスを十分に加熱することができ、アンモニアガスの加熱効率を向上させ、反応部に、順次連通する第1反応部と第2反応部を設置することにより、アンモニアガスが第1反応部に入った後に分解されて窒素と水素の混合物を生成するよう保証することができ、アンモニアガスの分解効率を向上させる。第2反応部は、第1反応部で生成された窒素と水素の混合物中の残留アンモニアガスに対して二次分解を行い、第2反応部の窒素と水素の混合物中のアンモニアガスの残留量を低減し、アンモニアガスをより完全に分解させることができ、該装置は、アンモニアガスの変換率を99.9%以上に達させ、窒素と水素の混合物中のアンモニアガスの残留量を1000ppm未満にすることができる。
2、本発明によって提供されるアンモニア分解装置は、ニッケル系触媒層とルテニウム系触媒層の厚さの比を(1〜3):1に制御することにより、反応器の温度分布を制御し、触媒のコストを節約し、装置のコンパクト性を向上させることができる。
3、本発明によって提供されるアンモニア分解システムは、アンモニア分解装置と、第1熱交換装置と、第2熱交換装置とを備え、該システムは、第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが第1反応部に入るようにするために、第1熱交換装置を介して第1反応部のアンモニアガスの入口端及び第2反応部の水素窒素混合ガスの出口端に接続することができ、第2熱交換装置内に熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが加熱ゾーンに入って燃焼するようにするために、第2熱交換装置が熱交換ゾーン及び加熱ゾーンにそれぞれ接続され、従って、廃熱を十分に利用し、システムの利用効率を向上させることができる。
4、本発明によって提供されるアンモニア分解システムは、ガス分離装置を備える場合、ガス分離装置が圧力スイング吸着装置と膜分離装置とを含み、窒素と水素の混合物を分離して高純度水素を得る時に、水素ガスの純度を高め、その体積分率を99.9%以上に達させることができ、アンモニア除去装置と水素燃料電池とを備える場合、該システムは水素燃料電池に安定した原料を供給できるだけでなく、水素燃料電池で生成された水素含有排気ガスをリサイクルすることができ、それによりシステムの利用率を向上させる。
5、本発明によって提供されるアンモニア分解方法は、第1固定床反応器の温度を650〜850℃に設定し、第2固定床反応器の温度を450〜600℃に設定することにより、触媒の触媒効果を十分に発揮し、ニッケル系触媒とルテニウム系触媒でのアンモニアガスの分解効率を向上させ、生成物中のアンモニアガスの残留量を低減することができる。
本発明の特定の実施形態又は先行技術における技術的解決手段をより明確に説明するために、以下、特定の実施形態又は従来技術の説明において使用する必要がある図面を簡単に説明し、当然ながら、以下に説明する図面は単に本発明のいくつかの実施形態であり、当業者であれば、創造的な労働を要することなくこれらの図面に基づいて他の図面を得ることができることは自明である。
本発明の実施例1におけるアンモニア分解装置の構造概略図である。 本発明の実施例1と実施例2におけるアンモニア分解システムの構造概略図である。 本発明の実施例2におけるアンモニア分解装置の構造概略図である。 本発明の実施例3におけるアンモニア分解システムの構造概略図である。 本発明の実施例4におけるアンモニア分解システムの構造概略図である。 本発明の実施例5におけるアンモニア分解システムの構造概略図である。 本発明の実施例6におけるアンモニア分解システムの構造概略図である。
以下の実施例は、本発明をより良く理解するために提供されるが、前記好適な実施形態に限定されず、本発明の内容及び特許範囲を限定するものではなく、誰でも本発明の教示で又は本発明を他の先行技術の特徴と組み合わせて得られた本発明と同一又は類似の任意の製品は、すべて本発明の特許範囲内に含まれる。
実施例において特定の実験ステップ又は条件が明記されていない場合、本分野内の文献に記載された従来の実験ステップの操作又は条件に従って行えばよい。製造業者が明記されていない使用される試薬又は機器は、すべて市販により得られる従来の試薬製品である。
実施例1
本実施例はアンモニア分解装置を提供し、その構造が図1に示され、ケーシングを備え、前記ケーシングは、前記ケーシングの長手方向に沿って順次連通する加熱ゾーンと熱交換ゾーン6とを含み、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部2であって、具体的には、本実施例において、反応部2が固定床反応器であり、固定床反応器のアスペクト比が8:1であり、第1反応部と第2反応部が同一の固定床反応器内に設置され、第1反応部3が加熱ゾーンに近い固定床反応器の一端に設置され、第2反応部5が熱交換ゾーンに近い固定床反応器の一端に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が3:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が20:1である反応部2と、
第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルが固定床反応器の外壁に螺旋状に巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の排気ガス貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解システムをさらに提供し、図2に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例は、アンモニア分解方法をさらに提供し、アンモニアガスが空間速度2000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成するステップを含み、第1反応部の反応温度は700℃であり、第2反応部の反応温度は500℃であり、そのうち、窒素と水素の混合物において、水素ガスの体積分率が75%であり、窒素ガスの体積分率が25%であり、アンモニアガスが1000ppm未満である。
実施例2
本実施例はアンモニア分解装置を提供し、その構造が図3に示され、ケーシングを備え、順次連通する加熱ゾーンと熱交換ゾーン6とをさらに備え、加熱ゾーンと熱交換ゾーンとが孔路により並んで連通して設置され、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部であって、具体的には、本実施例において、反応部が固定床反応器であり、固定床反応器のアスペクト比が5:1であり、第1反応部と第2反応部がそれぞれ2つの固定床反応器内に設置され、2つの固定床反応器がパイプを介して直列に接続して設置され、第1反応部3が第1固定床反応器内に設置され、第2反応部5が第2固定床反応器内に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が1:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が40:1である反応部と、
第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルが第1固定床反応器及び第2固定床反応器の外壁に螺旋状に順次巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の排気ガス貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解システムをさらに提供し、図2に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例は、アンモニア分解方法をさらに提供し、アンモニアガスが空間速度2000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成するステップを含み、第1反応部の反応温度は700℃であり、第2反応部の反応温度は500℃であり、そのうち、窒素と水素の混合物において、水素ガスの体積分率が75%であり、窒素ガスの体積分率が25%であり、アンモニアガスが1000ppm未満である。
実施例3
本実施例はアンモニア分解装置を提供し、その構造が図1に示され、ケーシングを備え、前記ケーシングは、前記ケーシングの長手方向に沿って順次連通する加熱ゾーンと熱交換ゾーン6とを含み、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部2であって、具体的には、本実施例において、反応部2が固定床反応器であり、固定床反応器のアスペクト比が8:1であり、第1反応部と第2反応部が同一の固定床反応器内に設置され、第1反応部3が加熱ゾーンに近い固定床反応器の一端に設置され、第2反応部5が熱交換ゾーンに近い固定床反応器の一端に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が3:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が20:1である反応部2と、
第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルが固定床反応器の外壁に螺旋状に巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の排気ガス貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解による水素製造システムをさらに提供し、図4に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
第1熱交換装置に接続されて、熱交換された水素窒素混合ガスをガス分離装置に送り分離して高純度水素を得て、ガス分離装置が、双方向に連通して設置される圧力スイング吸着装置13と膜分離装置14とを含み、圧力スイング吸着装置が第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを圧力スイング吸着装置に送り分離して高純度水素を得て、圧力スイング吸着装置と膜分離装置が双方向に連通することによって、圧力スイング吸着装置内の分離されていない窒素と水素の混合物が膜分離装置を通過して圧力スイング吸着装置内に循環して送り込まれ分離されて高純度水素を得るガス分離装置であって、具体的には、本実施例において、圧力スイング吸着装置から膜分離装置内に入る、分離されていない窒素と水素の混合物中の窒素と水素の体積比が1:1であるガス分離装置と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例は、アンモニア分解方法をさらに提供し、アンモニアガスが空間速度5000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成し、窒素と水素の混合物がガス分離装置を通過した後、高純度水素を得るステップを含み、そのうち、第1反応部の反応温度は850℃であり、第2反応部の反応温度は450℃であり、得られた高純度水素ガスの体積分率は>99.9%であり、水素回収率は85%である。
実施例4
本実施例はアンモニア分解装置を提供し、その構造が図1に示され、ケーシングを備え、前記ケーシングは、前記ケーシングの長手方向に沿って順次連通する加熱ゾーンと熱交換ゾーン6とを含み、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部2であって、具体的には、本実施例において、反応部2が固定床反応器であり、固定床反応器のアスペクト比が8:1であり、第1反応部と第2反応部が同一の固定床反応器内に設置され、第1反応部3が加熱ゾーンに近い固定床反応器の一端に設置され、第2反応部5が熱交換ゾーンに近い固定床反応器の一端に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が3:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が8:1である反応部2と、
第2反応部と第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルが固定床反応器の外壁に螺旋状に巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板には複数の排気ガス貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解システムをさらに提供し、図5に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスをアンモニア除去装置に送り、水素窒素混合ガス中の残留アンモニアを除去し、アンモニア除去装置が水素燃料電池15と連通して、残留アンモニアを除去した後の水素窒素混合ガスを水素燃料電池に送り、前記水素燃料電池の排気ガス出口が前記第2熱交換装置に接続されて、前記水素燃料電池から排出された水素含有排気ガスを燃料ガスと混合し、熱交換後に前記加熱ゾーン内に送り燃焼させるアンモニア除去装置12と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例は、アンモニア分解方法をさらに提供し、アンモニアガスが空間速度1000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成し、窒素と水素の混合物がアンモニア除去装置を通過した後に水素燃料電池に入り、水素燃料電池に原料を供給し、水素燃料電池から排出された水素含有排気ガスを燃料ガスと混合し、熱交換後に前記加熱ゾーンに送り燃焼させるステップを含み、そのうち、第1反応部の反応温度は650℃であり、第2反応部の反応温度は450℃である。
また、本実施例は、アンモニア分解による水素製造方法及び水素ガスのリサイクルをさらに提供し、アンモニアガスがアンモニアガス貯蔵装置から排出され、熱交換器を通過した後にアンモニア分解装置のコイル内に入り、加熱後に第1固定床反応器及び第2固定床反応器に順次入って分解され、窒素と水素の混合物を生成し、窒素と水素の混合物がアンモニア除去装置を通過した後に燃料電池内に入り、燃料電池にガスを供給し、燃料電池から排出された水素含有排気ガスが燃焼し、燃料貯蔵装置から供給された燃料と熱交換することを含む。
実施例5
本実施例はアンモニア分解装置を提供し、その構造が図1に示され、ケーシングを備え、前記ケーシングは、前記ケーシングの長手方向に沿って順次連通する加熱ゾーンと熱交換ゾーン6とを含み、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部2であって、具体的には、本実施例において、反応部2が固定床反応器であり、固定床反応器のアスペクト比が8:1であり、第1反応部と第2反応部が同一の固定床反応器内に設置され、第1反応部3が加熱ゾーンに近い固定床反応器の一端に設置され、第2反応部5が熱交換ゾーンに近い固定床反応器の一端に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が3:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が20:1である反応部2と、
第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルが固定床反応器の外壁に螺旋状に巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の排気ガス貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解による水素製造システムをさらに提供し、図6に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
第1熱交換装置に接続されて、熱交換された水素窒素混合ガスをガス圧力スイング吸着装置内に送り分離して高純度水素を得る圧力スイング吸着装置と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例はアンモニア分解方法をさらに提供し、アンモニアガスが空間速度5000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成し、窒素と水素の混合物が圧力スイング吸着装置を通過した後、高純度水素を得るステップを含み、そのうち、第1反応部の反応温度は850℃であり、第2反応部の反応温度は450℃であり、得られた高純度水素ガスの体積分率は99.9%であり、水素回収率は60%である。
実施例6
本実施例はアンモニア分解装置を提供し、その構造が図1に示され、ケーシングを備え、前記ケーシングは、前記ケーシングの長手方向に沿って順次連通する加熱ゾーンと熱交換ゾーン6とを含み、
前記アンモニア分解装置は、
順次連通して設置される第1反応部3と第2反応部5とを含み、第1反応部が加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、第2反応部が熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部2であって、具体的には、本実施例において、反応部2が固定床反応器であり、固定床反応器のアスペクト比が8:1であり、第1反応部と第2反応部が同一の固定床反応器内に設置され、第1反応部3が加熱ゾーンに近い固定床反応器の一端に設置され、第2反応部5が熱交換ゾーンに近い固定床反応器の一端に設置され、ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比が3:1であり、固定床反応器の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比が20:1である反応部2と、
第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを第1反応部と第2反応部内に順次送り反応させる熱交換コイル4であって、具体的には、本実施例において、熱交換コイルは固定床反応器の外壁に螺旋状に巻かれる熱交換コイル4と、
加熱ゾーン内に設置されケーシングの内壁と第1反応部との間に位置して、第1反応部内の反応温度を維持するバーナー1であって、具体的には、本実施例において、バーナーが多孔質媒体バーナーであるバーナー1と、
ケーシング内に設置され、且つケーシングを加熱ゾーンと熱交換ゾーンに分け、バーナー内の排気ガスが排気ガス貫通孔を通過して熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の排気ガスの貫通孔が開設される仕切り板7と、をさらに備える。
本実施例は、上記装置を備えるアンモニア分解の水素製造システムをさらに提供し、図7に示すように、
第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置8であって、具体的には、本実施例において、第1熱交換装置が第1熱交換器である第1熱交換装置8と、
第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置9であって、具体的には、本実施例において、第2熱交換装置が第2熱交換器である第2熱交換装置9と、
第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを膜分離装置に送り分離して高純度水素を得る膜分離装置と、
第1熱交換装置に接続されるアンモニア貯蔵タンク10と、
第2熱交換装置に接続される燃料タンク11と、を備える。
また、本実施例は、アンモニア分解方法をさらに提供し、アンモニアガスが空間速度5000mL/(gcat・h)で第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成し、窒素と水素の混合物が膜分離装置を通過した後、高純度水素を得るステップを含み、そのうち、第1反応部の反応温度は850℃であり、第2反応部の反応温度は450℃であり、得られた高純度水素ガスの体積分率は94%であり、水素回収率は92%である。
上記実施例は、明確に説明するための単なる例であるが、実施形態を限定するものではないことが明らかである。当業者にとっては、上記の説明に基づいて、様々な形態の他の変化又は変更を行うことができる。ここではすべての実施形態を挙げる必要がなく、挙げることもできない。これから生じる明らかな変化又は変更は、依然として本発明の特許範囲内にある。
1−バーナー、2−反応部、3−第1反応部、4−熱交換コイル、5−第2反応部、6−熱交換ゾーン、7−仕切り板、8−第1熱交換装置、9−第2熱交換装置、10−アンモニア貯蔵タンク、11−燃料タンク、12−アンモニア除去装置、13−圧力スイング吸着装置、14−膜分離装置、15−水素燃料電池

Claims (9)

  1. ケーシングを備えるアンモニア分解装置であって、
    前記ケーシングは、順次連通する加熱ゾーンと熱交換ゾーンとを含み、
    前記アンモニア分解装置は、
    順次連通して設置される第1反応部と第2反応部とを含み、前記第1反応部が前記加熱ゾーン内に設置されその内にニッケル系触媒を充填してニッケル系触媒層を形成し、前記第2反応部が前記熱交換ゾーン内に設置されその内にルテニウム系触媒を充填してルテニウム系触媒層を形成する反応部と、
    前記第2反応部及び第1反応部の外壁に螺旋状に順次巻かれ、熱交換コイルのアンモニアガスの入口が、前記第2反応部の水素窒素混合ガスの出口端の近くに設置され、熱交換コイルのアンモニアガスの出口が前記第1反応部のアンモニアガスの入口部と連通して、予熱されたアンモニアガスを前記第1反応部と第2反応部内に順次送り反応させる熱交換コイルと、
    前記加熱ゾーン内に設置され前記ケーシングの内壁と前記第1反応部との間に位置して、前記第1反応部内の反応温度を維持するバーナーと、
    前記ケーシング内に設置され、且つ前記ケーシングを加熱ゾーンと熱交換ゾーンに分け、前記バーナー内の排気ガスが排気ガス貫通孔を通過して前記熱交換ゾーンに入って熱交換媒体とするようにするために、仕切り板に複数の前記排気ガス貫通孔が開設される仕切り板と、をさらに備える
    ことを特徴とするアンモニア分解装置。
  2. 前記ニッケル系触媒層と前記ルテニウム系触媒層の厚さの比は(1〜3):1であることを特徴とする請求項1に記載のアンモニア分解装置。
  3. 前記反応部のアスペクト比は(5〜10):1であることを特徴とする請求項1又は2に記載のアンモニア分解装置。
  4. 前記反応部は少なくとも2つあり、前記ケーシング内に互いに並んで設置され、
    前記反応部の内径とニッケル系触媒又はルテニウム系触媒粒子の粒径との比は(8〜50):1である
    ことを特徴とする請求項1又は2に記載のアンモニア分解装置。
  5. 前記反応部は固定床反応器であり、前記バーナーは多孔質媒体バーナー又は触媒バーナーであることを特徴とする請求項に記載のアンモニア分解装置。
  6. アンモニア分解システムであって、
    請求項1〜のいずれか一項に記載のアンモニア分解装置を備え、
    第1熱交換装置内に水素窒素混合ガスと間接熱交換を行った後のアンモニアガスが前記第1反応部に入るようにするために、前記熱交換コイルのアンモニアガスの入口端及び前記第2反応部の水素窒素混合ガスの出口端にそれぞれ接続される第1熱交換装置と、
    第2熱交換装置内に前記熱交換ゾーンからの排気ガスと間接熱交換を行った後の燃料ガスが前記加熱ゾーンに入って燃焼するようにするために、前記熱交換ゾーン及び前記加熱ゾーンにそれぞれ接続される第2熱交換装置と、をさらに備える
    ことを特徴とするアンモニア分解システム。
  7. ガス分離装置又はアンモニア除去装置と、アンモニア貯蔵タンクと、燃料タンクと、をさらに備え、
    前記ガス分離装置は、前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記ガス分離装置内に送り分離して高純度水素を得て、前記ガス分離装置は、双方向に連通して設置される圧力スイング吸着装置と膜分離装置とを含み、前記圧力スイング吸着装置が前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記圧力スイング吸着装置内に送り分離して高純度水素を得て、前記圧力スイング吸着装置と膜分離装置が双方向に連通することによって、前記圧力スイング吸着装置内の分離されていない窒素と水素の混合物が前記膜分離装置を通過して前記圧力スイング吸着装置内に循環して送り込まれ分離されて高純度水素を得て、
    前記アンモニア除去装置は、前記第1熱交換装置に接続されて、熱交換された水素窒素混合ガスを前記アンモニア除去装置内に送り、水素窒素混合ガス中の残留アンモニアを除去し、前記アンモニア除去装置は水素燃料電池と連通して、残留アンモニアを除去した後の水素窒素混合ガスを水素燃料電池内に送り、前記水素燃料電池の排気ガス出口が前記第2熱交換装置に接続されて、前記水素燃料電池から排出された水素含有排気ガスを燃料ガスと混合し、熱交換後に前記加熱ゾーン内に送り燃焼させ、
    前記アンモニア貯蔵タンクは、前記第1熱交換装置に接続され、
    前記燃料タンクは、前記第2熱交換装置に接続される
    ことを特徴とする請求項に記載のアンモニア分解システム。
  8. 前記第1熱交換装置は熱交換器又は蒸発器であり、
    前記第2熱交換装置は熱交換器又は蒸発器である
    ことを特徴とする請求項6又は7に記載のアンモニア分解システム。
  9. 請求項1〜のいずれか一項に記載のアンモニア分解装置を用いたアンモニア分解方法であって、
    アンモニアガスが空間速度500〜10000mL/(gcat・h)で前記第1反応部と第2反応部を順次通過して分解され、窒素と水素の混合物を生成するステップを含み、前記第1反応部の反応温度は650〜850℃であり、前記第2反応部の反応温度は450〜600℃であるアンモニア分解方法。
JP2020038073A 2019-06-20 2020-03-05 アンモニア分解装置及びシステム並びに水素製造方法 Active JP6977082B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910538522.X 2019-06-20
CN201910538522.XA CN110203882B (zh) 2019-06-20 2019-06-20 一种氨分解装置及系统和制氢方法

Publications (2)

Publication Number Publication Date
JP2021001105A JP2021001105A (ja) 2021-01-07
JP6977082B2 true JP6977082B2 (ja) 2021-12-08

Family

ID=67793685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038073A Active JP6977082B2 (ja) 2019-06-20 2020-03-05 アンモニア分解装置及びシステム並びに水素製造方法

Country Status (3)

Country Link
US (1) US11084012B2 (ja)
JP (1) JP6977082B2 (ja)
CN (1) CN110203882B (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020267318B2 (en) * 2019-11-15 2023-08-10 Korea Institute Of Energy Research Hydrogen Production Reactor Without Carbon Emission
CN112050202B (zh) * 2020-09-03 2023-04-28 福大紫金氢能科技股份有限公司 一种管式氨分解反应器
JP2024510733A (ja) * 2021-03-11 2024-03-11 トプソー・アクチエゼルスカベット アンモニアクラッキングから水素を製造するための方法およびシステム
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
JP2024521417A (ja) 2021-06-11 2024-05-31 アモジー インコーポレイテッド アンモニアを処理するためのシステムおよび方法
EP4112540A1 (de) * 2021-06-30 2023-01-04 Linde GmbH Verfahren und vorrichtung zur erzeugung von wasserstoff aus ammoniak
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
EP4201874A1 (en) * 2021-12-21 2023-06-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Apparatus for cracking ammonia
EP4201875A1 (en) * 2021-12-21 2023-06-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for cracking ammonia
EP4201873A1 (en) * 2021-12-21 2023-06-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus to generate a hydrogen-rich product
NL2030905B1 (en) * 2022-02-11 2023-08-18 Proton Ventures B V Hybrid ammonia decomposition system
DE212023000130U1 (de) * 2022-04-08 2024-09-02 Basf Se Zonenreaktor zur Reformierung von NH3
EP4282815A1 (en) * 2022-05-25 2023-11-29 Basf Se A process for recovering h2
GB202209013D0 (en) * 2022-06-20 2022-08-10 Johnson Matthey Plc Process for cracking ammonia
CN115106049B (zh) * 2022-06-21 2023-07-18 福州大学 一种具有氨气预加热功能的氨分解反应器
CN115106035B (zh) * 2022-07-04 2023-12-05 福州大学 一种用于氨分解的微通道反应器
CN115092884B (zh) * 2022-07-14 2023-04-18 招商局海洋装备研究院有限公司 一种自加热氨分解制氢装置及其制氢方法
GB2625045A (en) * 2022-10-04 2024-06-12 Catalsys Ltd Modular ammonia cracker
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US20240166502A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166504A1 (en) * 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166506A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166503A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166505A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
EP4375236A1 (de) * 2022-11-22 2024-05-29 Linde GmbH Anlage zur ammoniakspaltung
CN116053538B (zh) * 2022-12-07 2024-04-30 福州大学 一种氨自蒸发可快速吸脱附切换的氨燃料电池系统及其发电方法
US12116956B2 (en) * 2022-12-13 2024-10-15 General Electric Company Ammonia based hydrogen powered combined propulsion system
EP4389693A1 (en) * 2022-12-23 2024-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing synthesis gas product comprising hydrogen
EP4389697A1 (en) * 2022-12-23 2024-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing synthesis gas product comprising hydrogen
CN116281853A (zh) * 2023-02-10 2023-06-23 浙江工业大学 一种自热式氨制氢系统
CN116474703B (zh) * 2023-06-21 2023-08-15 淄博职业学院 一种氨分解制氢反应器
CN117446751A (zh) * 2023-11-14 2024-01-26 南京国昌化工科技有限公司 一种多段氨催化分解制氢装置及工艺方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2013652A (en) * 1931-06-04 1935-09-10 Ici Ltd Method for the production of nitrogen and hydrogen by the thermal decomposition of ammonia
FR1490186A (fr) * 1965-08-23 1967-07-28 Allis Chalmers Mfg Co Appareil pour la dissociation de l'ammoniac
US5679313A (en) * 1994-06-08 1997-10-21 Mitsubishi Jukogyo Kabushiki Kaisha Ammonia decomposition catalysts
US5623986A (en) * 1995-09-19 1997-04-29 Wiggs; B. Ryland Advanced in-ground/in-water heat exchange unit
JP4267325B2 (ja) 2001-03-02 2009-05-27 インテリジェント・エネルギー・インコーポレーテッド アンモニアベース水素発生装置および同装置の使用方法
US8172913B2 (en) 2002-04-23 2012-05-08 Vencill Thomas R Array of planar membrane modules for producing hydrogen
US7371361B2 (en) * 2004-11-03 2008-05-13 Kellogg Brown & Root Llc Maximum reaction rate converter system for exothermic reactions
CN101538010B (zh) * 2009-03-17 2011-04-06 陈效刚 一种基于热机排气余热的氨分解制氢系统
JP5430224B2 (ja) 2009-05-21 2014-02-26 日立造船株式会社 水素製造システム
JP5346693B2 (ja) * 2009-06-02 2013-11-20 日立造船株式会社 アンモニアを燃料に用いる燃料電池システム
CN101863455B (zh) * 2010-05-07 2012-01-25 大连理工大学 一种用于氨分解制氢的板式等离子体反应器
JP2012167070A (ja) 2011-02-16 2012-09-06 Nippon Shokubai Co Ltd 化学品の合成方法
EP2524727A1 (en) * 2011-05-19 2012-11-21 Amminex A/S Method for preparing a supported ruthenium catalyst
DE102014212972A1 (de) * 2013-07-04 2015-01-08 Technische Universität Dresden Verfahren und Anlage zur Wasserstoffherstellung
RU2543094C1 (ru) * 2013-12-24 2015-02-27 Петр Михайлович Трофимов Кожухотрубный теплообменник
IL253738B2 (en) * 2015-02-03 2023-03-01 Gencell Ltd A nickel-based catalyst for the decomposition of ammonia
JP6566662B2 (ja) * 2015-03-06 2019-08-28 国立大学法人 大分大学 アンモニア酸化分解触媒、並びにアンモニア酸化分解触媒を用いる水素製造方法及び水素製造装置
KR101781412B1 (ko) * 2015-06-02 2017-09-25 한국과학기술연구원 암모니아 탈수소용 촉매, 이의 제조 방법 및 이를 이용하여 암모니아로부터 수소를 생산하는 방법
JP6769856B2 (ja) 2016-12-13 2020-10-14 三菱パワー株式会社 水素含有燃料供給システム、火力発電プラント、燃焼ユニット及び燃焼ユニットの改造方法
US11325105B2 (en) * 2017-05-15 2022-05-10 Starfire Energy Metal-decorated barium calcium aluminum oxide and related materials for NH3 catalysis
CN109529865A (zh) * 2018-11-22 2019-03-29 福州大学化肥催化剂国家工程研究中心 一种钌基氨分解制氢催化剂及其制备方法与应用
CN210885290U (zh) * 2019-06-20 2020-06-30 福州大学化肥催化剂国家工程研究中心 一种氨分解装置及系统

Also Published As

Publication number Publication date
JP2021001105A (ja) 2021-01-07
US20200398240A1 (en) 2020-12-24
US11084012B2 (en) 2021-08-10
CN110203882A (zh) 2019-09-06
CN110203882B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
JP6977082B2 (ja) アンモニア分解装置及びシステム並びに水素製造方法
CN101222975B (zh) 紧凑型重整反应器
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
CN1330034C (zh) 重整器和具有该重整器的燃料电池系统
EP1670090B1 (en) Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
CN111137855B (zh) 一种基于液氨载氢-制氢的能量储存及转换系统
CN207572466U (zh) 车载燃料电池发电系统
CN104953147B (zh) 一种自供应氢气燃料电池系统及其工作方法
CN209418658U (zh) 一种液氨制氢燃料电池装置及汽车
CN210885290U (zh) 一种氨分解装置及系统
CN111747378A (zh) 一种甲醇水燃料重整制氢系统
CN108400358A (zh) 固体氧化物燃料电池焦炉气发电工艺及装置
CN105720285A (zh) 一种封闭式燃料电池氢源系统
CN112811390A (zh) 一种甲醇水燃料重整制氢系统
CN106145036B (zh) 甲烷化反应净化co的甲醇重整反应器
KR101243767B1 (ko) 고분자 전해질 연료전지용 수소생산시스템
CN206767644U (zh) 高汽化率乙醇重整反应器
CN205933214U (zh) 甲烷化反应净化co的甲醇重整反应器
CN205944261U (zh) 甲醇重整反应器及小型燃料电池发电系统
JPS6238828B2 (ja)
JP7181065B2 (ja) 反応装置、及び燃料電池発電システム
CN116759614A (zh) 一种氨-甲烷双燃料发电系统和方法
CN207572467U (zh) 乙醇燃料电池汽车
CN107863542B (zh) 应用于燃料电池发电系统或者产氢机的燃烧重整器
CN212387735U (zh) 一种甲醇水燃料重整制氢系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R150 Certificate of patent or registration of utility model

Ref document number: 6977082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350