WO2021220838A1 - 有機電界発光素子用材料及び有機電界発光素子 - Google Patents

有機電界発光素子用材料及び有機電界発光素子 Download PDF

Info

Publication number
WO2021220838A1
WO2021220838A1 PCT/JP2021/015655 JP2021015655W WO2021220838A1 WO 2021220838 A1 WO2021220838 A1 WO 2021220838A1 JP 2021015655 W JP2021015655 W JP 2021015655W WO 2021220838 A1 WO2021220838 A1 WO 2021220838A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
substituted
group
unsubstituted
organic electroluminescent
Prior art date
Application number
PCT/JP2021/015655
Other languages
English (en)
French (fr)
Inventor
裕士 池永
孝弘 甲斐
和成 吉田
健太郎 林
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202180030979.5A priority Critical patent/CN115443552A/zh
Priority to KR1020227037115A priority patent/KR20230005838A/ko
Priority to JP2022517632A priority patent/JPWO2021220838A1/ja
Priority to US17/915,749 priority patent/US20230128732A1/en
Priority to EP21796332.1A priority patent/EP4144817A1/en
Publication of WO2021220838A1 publication Critical patent/WO2021220838A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a material for an organic electroluminescent device and an organic electroluminescent device using the same.
  • an organic electroluminescent element By applying a voltage to an organic electroluminescent element (referred to as an organic EL element), holes are injected into the light emitting layer from the anode and electrons are injected from the cathode into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to generate excitons. At this time, singlet excitons and triplet excitons are generated at a ratio of 1: 3 according to the statistical law of electron spin. It is said that the internal quantum efficiency of a fluorescent light emitting type organic EL device that uses light emission by a singlet exciton is limited to 25%.
  • the phosphorescent organic EL element that uses light emission by triplet excitons can increase the internal quantum efficiency to 100% when intersystem crossing is efficiently performed from the singlet excitons. Has been done. However, extending the life of a phosphorescent organic EL device has become a technical issue.
  • Patent Document 1 discloses an organic EL device using a TTF (Triplet-Triplet Fusion) mechanism, which is one of the delayed fluorescence mechanisms.
  • TTF Triplet-Triplet Fusion
  • the TTF mechanism utilizes the phenomenon that singlet excitons are generated by the collision of two triplet excitons, and it is theoretically thought that the internal quantum efficiency can be increased to 40%.
  • Patent Document 2 discloses an organic EL device using a TADF (Thermally Activated Delayed Fluorescence) mechanism.
  • the TADF mechanism utilizes the phenomenon that inverse intersystem crossing from a triplet exciter to a singlet exciter occurs in a material with a small energy difference between the singlet level and the triplet level, and theoretically determines the internal quantum efficiency. It is believed that it can be increased to 100%. However, as with the phosphorescent element, further improvement in life characteristics is required.
  • Patent Documents 3 and 10 disclose the use of indolocarbazole compounds as host materials.
  • Patent Document 4 discloses the use of a biscarbazole compound as a host material.
  • Patent Documents 5 and 6 disclose that a biscarbazole compound is used as a mixed host.
  • Patent Documents 7 and 8 disclose that an indolocarbazole compound and a biscarbazole compound are used as a mixed host.
  • Patent Document 9 discloses the use of a host material in which a plurality of hosts containing an indolocarbazole compound are premixed.
  • Patent Document 11 discloses the use of a host material in which a plurality of indolocarbazole compounds are premixed. However, none of them can be said to be sufficient, and further improvement is desired.
  • an organic EL element In order to apply an organic EL element to a display element such as a flat panel display, it is necessary to improve the luminous efficiency of the element and at the same time to sufficiently secure the long life characteristics of the element. In view of the above situation, it is an object of the present invention to provide a practically useful organic EL device having high efficiency and long life while having a low drive voltage, and a compound suitable for the organic EL device.
  • the condensed aromatic heterocyclic compound represented by the following general formula (1) exhibits excellent properties when used in an organic EL element, and completed the present invention. I arrived.
  • the present invention is a material for an organic electroluminescent device composed of a compound represented by the general formula (1).
  • the ring A is a heterocyclic ring represented by the formula (1a), and the ring A is fused with an adjacent ring at an arbitrary position, and Ar 1 is independently substituted or unsubstituted and has 6 to 30 carbon atoms. Indicates an aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group having 3 to 11 carbon atoms, or a substituted or unsubstituted linked aromatic group formed by linking 2 to 5 of these aromatic rings.
  • Ar 2 independently has an substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or two aromatic rings thereof.
  • L 1 is independently substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or substituted or unsubstituted carbon number. It is an aromatic heterocyclic group having 3 to 11, L 2 represents an aromatic heterocyclic group having 3 to 11 substituted or unsubstituted carbon atoms, and Ar 3 is an independently substituted or unsubstituted aromatic heterocyclic group having 6 to 11 carbon atoms. It represents 30 aromatic hydrocarbon groups, or substituted or unsubstituted linked aromatic groups in which 2 to 5 of these aromatic hydrocarbon groups are linked, and a and b each independently indicate an integer of 0 to 4. , C represent an integer of 0 to 2. However, a + b + c ⁇ 1. d represents the number of repetitions and independently represents an integer of 0 to 3, e represents the number of substitutions and represents an integer of 0 to 5.
  • the compound represented by the general formula (1) can be a nitrogen-containing aromatic group having L 2 having 3 to 5 carbon atoms.
  • the compound represented by the general formula (1) is preferably a compound represented by any of the formulas (2) to (7).
  • L 2 , Ar 1 , Ar 2 , Ar 3 , a, b, c and e agree with the above general formula (1).
  • the present invention is an organic electroluminescent element having a plurality of organic layers between an anode and a cathode, and at least one of the organic layers is an organic layer containing the above-mentioned material for an organic electroluminescent element. It is an organic electroluminescent element characterized by.
  • the organic layer containing the above-mentioned material for an organic electroluminescent device may contain at least one of the material for an organic electroluminescent device and the compounds represented by the general formulas (8) to (10).
  • Ar 4 and Ar 5 are independently substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic groups having 3 to 17 carbon atoms, or these. Indicates a substituted or unsubstituted linked aromatic group formed by linking 2 to 5 aromatic rings.
  • ring B is a heterocycle represented by the formula (9b) or (9c), ring B is condensed with an adjacent ring at an arbitrary position, and L 3 is an independently substituted or unsubstituted carbon number. It is an aromatic hydrocarbon group of 6 to 30, where X represents NA 8 , O, or S.
  • Ar 6 , Ar 7 , and Ar 8 are independently substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic groups having 3 to 17 carbon atoms, or Indicates a substituted or unsubstituted linked aromatic group formed by linking these aromatic rings 2 to 5.
  • R 1 to R 3 are independently cyano groups, alkyl groups having 1 to 20 carbon atoms, aralkyl groups having 7 to 38 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and carbon atoms.
  • f and h independently represent an integer of 0 to 4, and g represents an integer of 0 to 2.
  • Ar 9 independently agrees with Ar 6 of the above general formula (9)
  • R 4 to R 6 independently agree with R 1 to R 3
  • l and n independently agree with 0 to 4, respectively.
  • Ar 10 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or a substituted or substituted product formed by linking 2 to 5 of them. Represents an unsubstituted linked aromatic group.
  • the organic layer can be at least one layer selected from a group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole blocking layer and an electron blocking layer.
  • a light emitting layer is preferable. This light emitting layer contains at least one kind of light emitting dopant.
  • the present invention is a mixed composition containing a compound represented by the general formula (1) and a compound represented by the general formula (8), the general formula (9), or the general formula (10). It is desirable that the difference in their 50% weight loss temperatures is within 20 ° C.
  • the present invention is also a method for manufacturing an organic electroluminescent device, which comprises forming a light emitting layer using the above mixed composition.
  • the hole injection transportability of the material can be improved to a high level by appropriately designing the number of substitutions and the connection mode. It is assumed that it could be controlled by. In addition, it is presumed that the electron injection transportability of the material could be controlled at a high level by changing the type of the substituent bonded to L 2 and the position where the substituent was introduced. Since it has the above characteristics, the material of the present invention is a material having both charge (electron / hole) injection transportability suitable for the device configuration, and the device can be driven by using this for an organic EL device. It is considered that unexpected characteristics such as voltage reduction and high luminous efficiency could be achieved.
  • the material for an organic EL device of the present invention exhibits good amorphous characteristics and high thermal stability and at the same time is extremely stable in an excited state, the organic EL device using this is unexpectedly long. It has a long life and is considered to have shown a practical level of durability.
  • the material for an organic electroluminescent device of the present invention is represented by the general formula (1).
  • the ring A is a heterocycle represented by the formula (1a), and the ring A is condensed with an adjacent ring at an arbitrary position.
  • Ar 1 independently contains a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 11 carbon atoms, or 2 to 5 of these aromatic rings.
  • Ar 2 independently has a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or 2 to 2 to these aromatic rings. Shows 5 linked substituted or unsubstituted linked aromatic groups, preferably 2 to 5 substituted or unsubstituted aromatic hydrocarbon groups having 6 to 24 carbon atoms or aromatic hydrocarbon groups. It is a substituted or unsubstituted linked aromatic group, more preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or 2 to 5 of these aromatic hydrocarbon groups are linked. It is a substituted or unsubstituted linked aromatic group.
  • Ar 1 and Ar 2 are an unsubstituted aromatic hydrocarbon group, an aromatic heterocyclic group, or a linked aromatic group include benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, and pyrene.
  • benzene naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, triphenylene, fluorene, benzo [a] anthracene, tetracene, pentacene, hexacene, coronene, heptacene, or a combination of 2 to 5 of these. Examples include groups resulting from the constituent compounds.
  • benzene naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, triphenylene, fluorene, benzo [a] anthracene, tetracene, or a compound composed of 2-5 linkages thereof.
  • the group is mentioned. More preferably, it is a phenyl group, a biphenyl group, or a terphenyl group. The terphenyl group may be linearly linked or branched.
  • Ar 1 is an aromatic heterocyclic group, it is limited to an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • Preferred unsubstituted aromatic heterocyclic groups include groups derived from pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole and the like. Be done. More preferably, it is a group derived from pyridine, pyrimidine, or triazine.
  • L 2 represents a substituted or unsubstituted aromatic heterocyclic group having 3 to 11 carbon atoms, preferably a substituted or unsubstituted aromatic heterocyclic group having 3 to 5 carbon atoms, and more preferably a substituted or unsubstituted aromatic heterocyclic group. It is a nitrogen-containing aromatic group having 3 to 5 carbon atoms.
  • L 2 is an unsubstituted aromatic heterocyclic group
  • cases where L 2 is an unsubstituted aromatic heterocyclic group include pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, pyrazine, furan, isothiazole, oxazole, and quinoline.
  • Preferred include groups resulting from pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole and the like. More preferably, it is a group derived from pyridine, pyrimidine, or triazine.
  • L 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 11 carbon atoms, and preferably substituted or unsubstituted carbon. It is an aromatic hydrocarbon group having a number of 6 to 24, and more preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms which is substituted or unsubstituted. Specific examples when L 1 is an unsubstituted aromatic hydrocarbon group are the same as in the case of Ar 1 and Ar 2 , and specific examples when L 1 is an unsubstituted aromatic heterocyclic group are L 2 and The same is true. Note that L 1 is a divalent group and L 2 is an e + 1 valent group.
  • Ar 3 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted linked aromatic group in which 2 to 5 of these aromatic hydrocarbon groups are linked, preferably. It is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 24 carbon atoms, or a substituted or unsubstituted linked aromatic group formed by linking 2 to 5 of these aromatic hydrocarbon groups, and more preferably. It is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted linked aromatic group formed by linking 2 to 5 of these aromatic hydrocarbon groups.
  • Ar 3 is an unsubstituted aromatic hydrocarbon group are the same as in the case of Ar 1 and Ar 2 . More preferably, it is a phenyl group, a biphenyl group, or a terphenyl group.
  • the terphenyl group may be linearly linked or branched.
  • a and b independently represent an integer of 0 to 4, and c represents an integer of 0 to 2.
  • a and b each independently represent an integer of 0 to 1, and c is preferably 1 or 2. More preferably, at least one of a and b is 0.
  • d is the number of repetitions, which is an integer of 0 to 3, preferably an integer of 0 to 1, and more preferably 0.
  • e represents the number of substitutions, represents an integer of 0 to 5, preferably 0 to 3, and more preferably 0 to 2.
  • the unsubstituted aromatic hydrocarbon group, the aromatic heterocyclic group, or the linked aromatic group may each have a substituent.
  • the substituents are heavy hydrogen, halogen, cyano group, triarylsilyl group, aliphatic hydrocarbon group having 1 to 10 carbon atoms, alkoxy group having 2 to 5 carbon atoms, and 1 to 5 carbon atoms. An alkoxy group or a diarylamino group having 12 to 44 carbon atoms is preferable.
  • the substituent is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, it may be linear, branched, or cyclic.
  • the number of substituents is 0 to 5, preferably 0 to 2.
  • the carbon number calculation does not include the carbon number of the substituent. However, it is preferable that the total number of carbon atoms including the number of carbon atoms of the substituent satisfies the above range.
  • substituents include cyano, methyl, ethyl, propyl, i-propyl, butyl, t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, vinyl, propenyl, butenyl, Examples thereof include pentenyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranylamino, diphenanthrenylamino, dipyrenylamino and the like.
  • Preferred include cyano, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, diphenylamino, naphthylphenylamino, or dinaphthylamino.
  • the linked aromatic group refers to an aromatic group in which the carbons of the aromatic ring of the aromatic group are linked by a single bond. It is an aromatic group in which two or more aromatic groups are linked, and these may be linear or branched.
  • the aromatic group may be an aromatic hydrocarbon group or an aromatic heterocyclic group, and the plurality of aromatic groups may be the same or different.
  • the aromatic group corresponding to the linked aromatic group is different from the substituted aromatic group.
  • hydrogen may be deuterium. That is, in the general formulas (1) to (10) and the like, part or all of H contained in the skeleton such as indolocarbazole and the substituent such as R 1 and Ar 1 may be deuterium.
  • the compound represented by the general formula (1) there is a compound represented by any of the above formulas (2) to (7), and more preferably any of the formulas (2) to (5). It is a compound represented.
  • the symbols common to the general formula (1) have the same meaning.
  • the organic electroluminescent device of the present invention has a plurality of organic layers between an anode and a cathode, and at least one of the organic layers contains the above-mentioned material for an organic electroluminescent device.
  • at least one of the compounds represented by the general formulas (8) to (10) is contained in the same layer together with the above-mentioned material for an organic electroluminescent device.
  • Ar 4 and Ar 5 are independently substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 carbon atoms, and substituted or unsubstituted aromatic heterocycles having 3 to 17 carbon atoms, respectively.
  • Ar 4 and Ar 5 are an unsubstituted aromatic hydrocarbon group, an aromatic heterocyclic group, or a linked aromatic group are the same as in the case of Ar 2 .
  • benzene, naphthalene, or a group formed by taking one hydrogen from a compound composed of 2 to 4 of these linked together can be mentioned. More preferably, it is a phenyl group, a biphenyl group, or a terphenyl group.
  • the terphenyl group may be linearly linked or branched.
  • the ring B is a heterocycle represented by the formula (9b) or (9c), and the ring B is condensed with an adjacent ring at an arbitrary position.
  • L 3 is an independently substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, and is preferably substituted or unsubstituted. It is an aromatic hydrocarbon group having 6 to 24 carbon atoms, more preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, and further preferably a phenylene group. Specific examples of the case where L 3 is an unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group are the same as in the case of Ar 2 . L 3 is a divalent group.
  • X represents NAr 8 , O, or S, preferably NAr 8 or O, and more preferably NAr 8 .
  • Ar 6 , Ar 7 , and Ar 8 are independently substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic groups having 3 to 17 carbon atoms, or These aromatic rings are substituted or unsubstituted linked aromatic groups in which 2 to 5 are linked, preferably substituted or unsubstituted aromatic hydrocarbon groups having 6 to 24 carbon atoms, substituted or unsubstituted carbons. It is an aromatic heterocyclic group having a number of 3 to 15, or a substituted or unsubstituted linked aromatic group formed by linking these aromatic rings with 2 to 5, more preferably having 6 to 18 substituted or unsubstituted carbon atoms. Aromatic hydrocarbon groups of the above, or substituted or unsubstituted linked aromatic groups formed by linking 2 to 5 of these aromatic hydrocarbon groups.
  • Ar 6 , Ar 7 , and Ar 8 are an unsubstituted aromatic hydrocarbon group, an aromatic heterocyclic group, or a linked aromatic group are the same as in the case of Ar 2 , and are preferable.
  • benzene More preferably, one from benzene, naphthalene, acenaphthene, acenaphthylene, azulene, anthracene, chrysene, pyrene, phenanthrene, triphenylene, fluorene, benzo [a] anthracene, tetracene, or a compound composed of 2 to 5 linkages thereof.
  • the group produced by taking hydrogen from fluorene can be mentioned. More preferably, it is a phenyl group, a biphenyl group, or a terphenyl group.
  • the terphenyl group may be linearly linked or branched.
  • Ar 6 preferably has a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 12 to 17 carbon atoms, or an aromatic ring having 2 to 2 to 17 of these aromatic rings. It is a substituted or unsubstituted linked aromatic group consisting of 5 linked aromatic group, more preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 24 carbon atoms, and a substituted or unsubstituted aromatic group having 12 to 17 carbon atoms.
  • Ar 6 is an unsubstituted aromatic heterocyclic group having 12 to 17 carbon atoms include a group derived from dibenzofuran, dibenzothiophene, dibenzoselenophene, or carbazole.
  • I and j independently represent integers of 0 to 3, preferably i and j are 0 to 1, more preferably i is 0, and j is 1. However, i + j is an integer of 1 or more.
  • K and v represent the number of substitutions, k represents 0 to 3, v independently represents an integer of 0 to 4, preferably k and v are 0 to 1, and more preferably k and v are 0.
  • R 1 to R 3 are independently cyano groups, alkyl groups having 1 to 20 carbon atoms, aralkyl groups having 7 to 38 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and carbon atoms.
  • a group hydrocarbon group or an aromatic heterocyclic group having 3 to 17 carbon atoms substituted or unsubstituted is shown. It preferably represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 24 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, and more preferably an substituted or unsubstituted aromatic hydrocarbon group. It is an aromatic hydrocarbon group of 6 to 18 or an unsaturated aromatic heterocyclic group having 3 to 12 carbon atoms which is not substituted.
  • R 1 to R 3 are an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 38 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and a dialkylamino having 2 to 40 carbon atoms.
  • alkoxycarbonyl group having 2 to 20 carbon atoms examples include methyl, ethyl, propyl, butyl, pentyl, and cyclopentyl.
  • Acrylic groups such as valeryl and benzoyl, acyloxy groups such as acetyloxy, propionyloxy, butyryloxy, valeryloxy and benzoyloxy, alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, nonyloxy and decanyloxy, methoxy.
  • Alkoxycarbonyl groups such as carbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, methoxy Alkoxycarbonyloxy groups such as carbonyloxy, ethoxycarbonyloxy, propoxycarbonyloxy, butoxycarbonyloxy, pentoxycarbonyloxy, alkylsulfoxy groups such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, pentylsulfonyl, cyano groups, Examples thereof include a nitro group, a fluoro group and a tosyl group.
  • R 1 to R 3 are an unsubstituted aromatic hydrocarbon group or an aromatic heterocyclic group are the same as in the case of Ar 2 described above.
  • the above general formula (1) may also be applicable.
  • the compound having j of 1 or more in the general formula (9) is generally used.
  • the compounds of formula (9) are treated, and the other compounds are treated as compounds of general formula (1), and are not classified as compounds corresponding to both.
  • F and h each independently represent an integer of 0 to 4, preferably 0 to 1, and more preferably 0.
  • g represents an integer of 0 to 2, preferably 0 to 1, more preferably 0.
  • the ring D is a heterocycle represented by the formula (10d), and the ring D is condensed with an adjacent ring at an arbitrary position.
  • Ar 9 independently agrees with Ar 6 of general formula (9).
  • R 4 to R 6 independently agree with R 1 to R 3 of the general formula (9).
  • l and n each independently represent an integer of 0 to 4, preferably 0 to 1, and more preferably 0.
  • m represents an integer of 0 to 2, preferably 0 to 1, and more preferably 0.
  • Ar 10 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or a substituted or unsubstituted aromatic group in which 2 to 5 of them are linked.
  • a substituted or unsubstituted aromatic hydrocarbon group having 6 to 24 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 15 carbon atoms, or 2 to 5 of these aromatic rings are linked.
  • Substituted or unsubstituted linked aromatic groups more preferably substituted or unsubstituted aromatic hydrocarbon groups having 6 to 18 carbon atoms, or substituted or unsubstituted aromatic rings in which these aromatic rings are linked by 2 to 5 It is a linked aromatic group of.
  • Ar 10 is an unsubstituted aromatic hydrocarbon group and an unsubstituted aromatic heterocyclic group are the same as in the case of Ar 7 and Ar 8 .
  • Ar 10 is a divalent group.
  • the material for an organic electroluminescent device of the present invention is contained in an organic layer, and the organic layer includes a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole blocking layer and the like. It may be selected from a herd of electron blocking layers. It is preferably a light emitting layer, and the light emitting layer may contain at least one kind of light emitting dopant.
  • the light emitting layer contains the material for the organic electroluminescent device of the present invention
  • the material for an organic electroluminescent device of the present invention is used as a first host, and a compound selected from the compounds represented by the general formulas (8), (9), or (10) is contained as a second host. Is good.
  • these compounds can be individually vapor-deposited from different vapor deposition sources, but they are premixed before vapor deposition for organic EL elements. It is preferable to use a mixed composition (also referred to as a premix) and simultaneously vapor-deposit the premix from one vapor deposition source to form a light emitting layer.
  • the premix may be mixed with the luminescent dopant material required to form the light emitting layer or other hosts used as needed, but there is a large difference in the temperature at which the desired vapor pressure is obtained. In that case, it is preferable to vapor-deposit from another vapor deposition source.
  • the mixed composition of the present invention contains a compound represented by the above general formula (1) and a compound represented by any of the general formulas (8) to (10). One type of these compounds may be used, or two or more types may be used. Preferably, the compound represented by the general formula (1) and the compound represented by the general formula (8) are included. It is desirable that each compound blended in the mixed composition has a 50% weight loss temperature of 20 ° C. or less.
  • the ratio of the first host to the total of the first host and the second host is preferably 10 to 70%, preferably more than 15%. , Less than 65%, more preferably 20-60%.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, in which 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represent an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted into either the cathode side or the cathode side of the light emitting layer, and both can be inserted at the same time.
  • the organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but it is preferable to have a hole injection transport layer and an electron injection transport layer in addition to the essential layers, and further, a light emitting layer and an electron injection. It is preferable to have a hole blocking layer between the transport layers.
  • the hole injection transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection transport layer means either or both of the electron injection layer and the electron transport layer.
  • the structure opposite to that of FIG. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4, and the anode 2 can be laminated in this order on the substrate 1, and in this case as well, the layers can be laminated in this order. It can be added or omitted.
  • the organic EL device of the present invention is preferably supported by a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element, and for example, a substrate made of glass, transparent plastic, quartz or the like can be used.
  • anode material in the organic EL element a material having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2, and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2, and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3- ZnO) capable of producing a transparent conductive film may be used.
  • a thin film may be formed by forming a thin film of these electrode materials by a method such as thin film deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 ⁇ m or more). May form a pattern through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
  • a coatable substance such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode material a material having a small work function (4 eV or less) (electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples include mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, magnesium / silver mixture, magnesium / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these cathode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission brightness is improved, which is convenient.
  • a transparent or translucent cathode can be produced. By applying this, it is possible to manufacture an element in which both the anode and the cathode are transparent.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and cathode, and the light emitting layer may contain an organic light emitting dopant material and a host. ..
  • the first host and the second host may be used.
  • the compound represented by the general formula (1) as the first host one kind may be used, or two or more kinds may be used.
  • one kind of carbazole compound or indolocarbazole compound represented by the general formulas (8) to (10) as the second host may be used, or two or more kinds may be used.
  • one or a plurality of other known host materials may be used in combination, but the amount used may be 50 wt% or less, preferably 25 wt% or less, based on the total amount of the host materials.
  • the form of the host and its premixture may be powder, stick or granular.
  • each host can be vapor-deposited from different vapor deposition sources, or multiple types of hosts can be vapor-deposited from one vapor deposition source at the same time by premixing them before vapor deposition to form a premixture. ..
  • a method capable of mixing as uniformly as possible is desirable, and examples thereof include pulverization mixing, heating and melting under reduced pressure or in an atmosphere of an inert gas such as nitrogen, sublimation, and the like. It is not limited to the method.
  • the 50% weight loss temperature is the temperature at which the weight is reduced by 50% when the temperature is raised from room temperature to 550 ° C at a rate of 10 ° C per minute in TG-DTA measurement under nitrogen airflow decompression (1 Pa). .. It is considered that vaporization by evaporation or sublimation occurs most actively in the vicinity of this temperature.
  • the difference between the 50% weight loss temperature of the first host and the second host is preferably within 20 ° C, more preferably within 15 ° C.
  • a known method such as pulverization and mixing can be adopted, but it is desirable to mix as uniformly as possible.
  • the phosphorescent dopant When a phosphorescent dopant is used as the luminescent dopant material, the phosphorescent dopant contains an organic metal complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum and gold. What to do is good. Specifically, the iridium complexes described in J.Am.Chem.Soc.2001,123,4304 and JP-A-2013-53051 are preferably used, but are not limited thereto.
  • the phosphorescent dopant material only one type may be contained in the light emitting layer, or two or more types may be contained.
  • the content of the phosphorescent dopant material is preferably 0.1 to 30 wt% and more preferably 1 to 20 wt% with respect to the host material.
  • the phosphorescent dopant material is not particularly limited, but specific examples include the following.
  • the fluorescent light emitting dopant is not particularly limited, and is, for example, a benzoxazole derivative, a benzothiazole derivative, a benzoimidazole derivative, a styrylbenzene derivative, a polyphenyl derivative, a diphenylbutadiene derivative, or a tetraphenyl.
  • polymer compounds such as polyphenylene and polyphenylene vinylene, and organic silane derivatives.
  • Preferred are condensed aromatic derivatives, styryl derivatives, diketopyrrolopyrrole derivatives, oxazine derivatives, pyromethene metal complexes, transition metal complexes, or lanthanoid complexes, and more preferably naphthalene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • the fluorescent light emitting dopant material only one kind may be contained in the light emitting layer, or two or more kinds may be contained.
  • the content of the fluorescent dopant material is preferably 0.1 to 20%, more preferably 1 to 10% with respect to the host material.
  • the heat-activated delayed fluorescence light-emitting dopant is not particularly limited, but is described in a metal complex such as a tin complex or a copper complex, or as described in WO2011 / 070963.
  • the thermally activated delayed fluorescence dopant material is not particularly limited, but specific examples include the following.
  • the thermally activated delayed fluorescent dopant material may contain only one type or two or more types in the light emitting layer. Further, the thermally activated delayed fluorescence dopant may be mixed with a phosphorescence light emitting dopant or a fluorescence emission dopant. The content of the thermally activated delayed fluorescent dopant material is preferably 0.1 to 50%, more preferably 1 to 30% with respect to the host material.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the driving voltage and improve the emission brightness.
  • the injection layer can be provided as needed.
  • the hole blocking layer has the function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a significantly small ability to transport holes.
  • a known hole blocking layer material can be used for the hole blocking layer, but it is preferable to contain a compound represented by the general formula (1).
  • the electron blocking layer has a function of a hole transporting layer in a broad sense, and by blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. ..
  • the material of the electron blocking layer a known electron blocking layer material can be used, and a hole transporting layer material described later can be used as needed.
  • the film thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer, and the excitons are inserted by inserting this layer. It is possible to efficiently confine it in the light emitting layer, and it is possible to improve the light emitting efficiency of the element.
  • the exciton blocking layer can be inserted between two adjacent light emitting layers in an element in which two or more light emitting layers are adjacent to each other.
  • exciton blocking layer As the material of the exciton blocking layer, a known exciton blocking layer material can be used. For example, 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenylatoaluminum (III) (BAlq) can be mentioned.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis (2-methyl-8-quinolinolato) -4-phenylphenylatoaluminum
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier property, and may be either an organic substance or an inorganic substance. Any compound can be selected and used for the hole transport layer from conventionally known compounds. Examples of such hole transporting materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and amino-substituted chalcone derivatives.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any of conventionally known compounds can be selected and used.
  • polycyclic aromatic derivatives such as naphthalene, anthracene and phenanthroline, tris (8-quinolinolato) aluminum (III).
  • Derivatives phosphine oxide derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fraolenilidene methane derivatives, anthracinodimethane and anthracene derivatives, bipyridine derivatives, quinoline derivatives, oxadiazole derivatives, benzoimidazole Derivatives, benzothiazole derivatives, indolocarbazole derivatives and the like can be mentioned, and polymer materials in which these materials are introduced into a polymer chain or these materials are used as the main chain of a polymer can also be used.
  • Synthesis example 1 Compound 129 was synthesized according to the following reaction formula. Under a nitrogen atmosphere, 10.0 g (13.9 mmol) of the intermediate (a), 2.2 g (18.1 mmol) of the compound (b), 0.5 g (0.4 mmol) of tetrakis (triphenylphosphine) palladium (0), and 5.8 g of potassium carbonate. , M-xylene 300 ml, ethanol 30 ml, distilled water 30 ml were added, and the mixture was stirred for 3 hours while heating at 100 ° C. After cooling to room temperature, distilled water (50 ml) was added, the organic layer was separated, and the mixture was concentrated to dryness.
  • Example 1 Each thin film was laminated with a vacuum degree of 4.0 ⁇ 10 -5 Pa by a vacuum vapor deposition method on a glass substrate on which an anode made of ITO having a film thickness of 110 nm was formed.
  • CuPc was formed on the ITO to a thickness of 25 nm as a hole injection layer, and then NPD was formed to a thickness of 30 nm as a hole transport layer.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • compound 128 as a host material and Ir (ppy) 3 as a light emitting dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 40 nm.
  • the concentration of Ir (ppy) 3 was 10 wt%. Furthermore, H-3 was formed to a thickness of 10 nm as a hole blocking layer. Next, ET-1 was formed to a thickness of 10 nm as an electron transport layer. Further, LiF was formed on the electron transport layer as an electron injection layer to a thickness of 1 nm. Finally, Al was formed as a cathode on the electron injection layer to a thickness of 70 nm to prepare an organic EL device. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed, and it was found that emission from Ir (ppy) 3 was obtained.
  • Examples 2-7 An organic EL device was prepared in the same manner as in Example 1 except that compounds 155, 112, 120, 122, 129, or 156 were used instead of compound 128 as the host material for the light emitting layer in Example 1. When a DC voltage was applied to the obtained organic EL device, an emission spectrum with a maximum wavelength of 517 nm was observed.
  • Comparative Examples 1 to 4 An organic EL device was produced in the same manner as in Example 1 except that compound A, B, C, or D was used as the host material for the light emitting layer in Example 1. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum having a maximum wavelength of 517 nm was observed.
  • Table 1 shows the evaluation results of the produced organic EL device.
  • the brightness, drive voltage, and luminous efficiency are the values when the drive current is 20 mA / cm 2 and are the initial characteristics.
  • LT70 is the time required for the initial brightness to decay to 70%, and represents the life characteristic.
  • Example 8 Each thin film was laminated with a vacuum degree of 4.0 ⁇ 10 -5 Pa by a vacuum vapor deposition method on a glass substrate on which an anode made of ITO having a film thickness of 110 nm was formed.
  • HAT-CN was formed on the ITO to a thickness of 25 nm as a hole injection layer, and then NPD was formed to a thickness of 30 nm as a hole transport layer.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • compound 128 as the first host, compound 602 as the second host, and Ir (ppy) 3 as the light emitting dopant were co-deposited from different vapor deposition sources to form a light emitting layer having a thickness of 40 nm.
  • ET-1 was formed to a thickness of 20 nm as an electron transport layer.
  • LiF was formed on the electron transport layer as an electron injection layer to a thickness of 1 nm.
  • Al was formed as a cathode on the electron injection layer to a thickness of 70 nm to prepare an organic EL device.
  • Example 8 an organic EL device was produced in the same manner as in Example 8 except that the compounds shown in Table 2 were used as the first host and the second host.
  • Example 15-21 Example 8 except that the compounds shown in Table 2 were used for the first host and the second host and co-deposited under the vapor deposition conditions where the weight ratio of the first host and the second host was 40:60.
  • An organic EL element was manufactured in the same manner as in the above.
  • Examples 49-51 Organic as in Example 8 except that the premix obtained by weighing the first host (0.30 g) and the second host (0.70 g) and mixing them while grinding in a mortar was co-deposited from one vapor deposition source. I made an EL element.
  • Example 8 an organic EL device was produced in the same manner as in Example 8 except that the compounds shown in Table 2 were used as the first host and the second host.
  • Example 15 an organic EL device was produced in the same manner as in Example 15 except that the compounds shown in Table 2 were used as the first host and the second host.
  • Tables 2 and 3 show the evaluation results of the manufactured organic EL device.
  • the brightness, drive voltage, luminous efficiency, and LT70 in the table are the same as those in Table 1.
  • Table 4 lists the 50% weight loss temperatures (T 50 ) for compounds 112, 120, 129, 602 and 640.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

低駆動電圧でありながら、高効率かつ長寿命な有機EL素子及びそれに適する有機電界発光素子用材料を提供する。この有機電界発光素子用材料は、下記一般式(1)で表されるインドロカルバゾール化合物からなる。  ここで、環Aは式(1a)で表される複素環であり、Ar、Arは芳香族炭化水素基、芳香族複素環基、又は連結芳香族基であり、Lは芳香族複素環基であり、Arは芳香族炭化水素基又はこの芳香族炭化水素基が複数連結してなる連結芳香族基であり、a+b+c≧1である。

Description

有機電界発光素子用材料及び有機電界発光素子
 本発明は有機電界発光素子用材料とそれを使用した有機電界発光素子に関する。
 有機電界発光素子(有機EL素子という。)に電圧を印加することで、陽極から正孔が、陰極からは電子がそれぞれ発光層に注入される。そして発光層において、注入された正孔と電子が再結合し、励起子が生成される。この際、電子スピンの統計則により、一重項励起子及び三重項励起子が1:3の割合で生成する。一重項励起子による発光を用いる蛍光発光型の有機EL素子は、内部量子効率は25%が限界であるといわれている。一方で三重項励起子による発光を用いる燐光発光型の有機EL素子は、一重項励起子から項間交差が効率的に行われた場合には、内部量子効率が100%まで高められることが知られている。
 しかしながら、燐光発光型の有機EL素子に関しては、長寿命化が技術的な課題となっている。
 さらに最近では、遅延蛍光を利用した高効率の有機EL素子の開発がなされている。例えば特許文献1には、遅延蛍光のメカニズムの一つであるTTF(Triplet-Triplet Fusion)機構を利用した有機EL素子が開示されている。TTF機構は2つの三重項励起子の衝突によって一重項励起子が生成する現象を利用するものであり、理論上内部量子効率を40%まで高められると考えられている。しかしながら、燐光発光型の有機EL素子と比較すると効率が低いため、更なる効率の改良が求められている。
 一方で特許文献2では、TADF(Thermally Activated Delayed Fluorescence)機構を利用した有機EL素子が開示されている。TADF機構は一重項準位と三重項準位のエネルギー差が小さい材料において三重項励起子から一重項励起子への逆項間交差が生じる現象を利用するものであり、理論上内部量子効率を100%まで高められると考えられている。しかしながら燐光発光型素子と同様に寿命特性の更なる改善が求められている。
WO 2010/134350 A WO 2011/070963 A WO 2008/056746 A 特開2003-133075公報 WO 2013/062075 A US 2014/0374728 A US 2014/0197386 A US 2015/0001488 A WO 2011/136755 A KR 2013/132226 A WO 2016/042997 A
 特許文献3、10ではインドロカルバゾール化合物について、ホスト材料としての使用を開示している。特許文献4ではビスカルバゾール化合物について、ホスト材料としての使用を開示している。
 特許文献5、6ではビスカルバゾール化合物を混合ホストとして使用することを開示している。特許文献7、8ではインドロカルバゾール化合物とビスカルバゾール化合物を混合ホストとして使用することを開示している。
 特許文献9ではインドロカルバゾール化合物を含む複数のホストを予備混合したホスト材料の使用を開示している。
 特許文献11では複数のインドロカルバゾール化合物を予備混合したホスト材料の使用を開示している。
 しかしながら、いずれも十分なものとは言えず、更なる改良が望まれている。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に、素子の長寿命特性を十分に確保する必要がある。本発明は、上記現状に鑑み、低駆動電圧でありながら、高効率かつ長寿命を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記一般式(1)で表される縮合芳香族複素環化合物を有機EL素子に用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
 本発明は、一般式(1)で表される化合物からなる有機電界発光素子用材料である。
Figure JPOXMLDOC01-appb-C000007
 
 ここで、環Aは式(1a)で表される複素環であり、環Aは隣接する環と任意の位置で縮合し、Arそれぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~11の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示し、Arはそれぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示し、Lは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~11の芳香族複素環基であり、Lは、置換若しくは未置換の炭素数3~11の芳香族複素環基を示し、Arは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結した置換若しくは未置換の連結芳香族基を表し、a、及びbはそれぞれ独立に0~4の整数を示し、cは0~2の整数を示す。ただし、a+b+c≧1である。dは繰り返し数を表し、独立に0~3の整数を示し、eは置換数を表し、0~5の整数を表す。
 前記一般式(1)で示される化合物は、Lが炭素数3~5の含窒素芳香族基であることができる。また、Ar、Ar、及びLが、炭素数6~24の芳香族炭化水素基、又は芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基であることができ、好ましくはd=0である。
 前記一般式(1)で示される化合物は、式(2)~(7)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
 ここで、L、Ar、Ar、Ar、a、b、c及びeは、上記一般式(1)と同意である。
 前記一般式(1)、又は式(2)~(7)において、a及びbのうち、少なくとも一方が0であり、c≧1であることがよい。
 また本発明は、陽極と陰極との間に複数の有機層を有する有機電界発光素子であって、該有機層の少なくとも1層が、上記の有機電界発光素子用材料を含む有機層であることを特徴とする有機電界発光素子である。
 上記の有機電界発光素子用材料を含む有機層は、有機電界発光素子用材料と、一般式(8)~(10)で示される化合物のうち少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000010
 
 ここで、Ar及びArはそれぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示す。
Figure JPOXMLDOC01-appb-C000011
 
 ここで、環Bは式(9b)又は(9c)で表される複素環であり、環Bは隣接する環と任意の位置で縮合し、Lは、独立に置換若しくは未置換の炭素数6~30の芳香族炭化水素基であり、XはNAr、O、又はSを表す。
Ar、Ar、及びArは、それぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基を示す。i、及びjはそれぞれ独立に0~3の整数を示し、k及びvは置換数を表し、kは0~3、vは独立に0~4の整数を表す。ただし、i+jは1以上の整数である。
 R~Rはそれぞれ独立に、シアノ基、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、それぞれ置換基を有してもよい。f、及びhはそれぞれ独立に0~4の整数を示し、gは0~2の整数を示す。
Figure JPOXMLDOC01-appb-C000012
 
 ここで、環D、及びD’は式(10d)で表される複素環であり、環D及びD’はそれぞれ独立に、隣接する環と任意の位置で縮合し、
Arは独立に、上記一般式(9)のAr6と同意であり、R~Rはそれぞれ独立に、R~Rと同意であり、l及びnはそれぞれ独立に0~4の整数を示し、mは独立に0~2の整数を示す。Ar10は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はそれらが2~5個連結してなる置換若しくは未置換の連結芳香族基を表す。
 前記有機層は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層及び電子阻止層からなる群れから選ばれる少なくとも一つの層であることができ、好ましくは、発光層である。この発光層は少なくとも1種の発光性ドーパントを含有する。
 さらに本発明は、一般式(1)で表される化合物と、一般式(8)、一般式(9)、又は一般式(10)で表される化合物を含む混合組成物である。それらの50%重量減少温度の差が20℃以内であることが望ましい。
 また本発明は、上記混合組成物を使用して発光層を形成することを特徴とする有機電界発光素子の製造方法である。
 本発明の有機EL素子用材料は、縮合芳香族複素環上に芳香族炭化水素基を有するので、その置換数や連結様式を適切に設計することにより、材料の正孔注入輸送性を高いレベルで制御できたと想定される。
 加えて、Lに結合する置換基の種類や置換基導入位置を変えることで、材料の電子注入輸送性を高いレベルで制御できたと想定される。
 以上のような特徴を有することから、本発明の材料は素子構成に適した両電荷(電子・正孔)注入輸送性を有する材料であり、これを有機EL素子に使用することで素子の駆動電圧の低減ならびに高い発光効率といった想定外の特性を達成できたと考えられる。
 また、本発明の有機EL素子用材料は、良好なアモルファス特性と高い熱安定性を示すと同時に励起状態で極めて安定であったと想定されるため、これを用いた有機EL素子は想定外に長寿命であり、実用レベルの耐久性を示したと考えられる。
有機EL素子の一構造例を示す断面図である。
 本発明の有機電界発光素子用材料は、前記一般式(1)で表される。一般式(1)において、環Aは式(1a)で表される複素環であり、環Aは隣接する環と任意の位置で縮合する。
 Arは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~11の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示し、好ましくは、置換若しくは未置換の炭素数6~24の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基である。
 Arは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基を示し、好ましくは、置換若しくは未置換の炭素数6~24の芳香族炭化水素基、又は芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基である。
 Ar及びArが未置換の芳香族炭化水素基、芳香族複素環基、又は連結芳香族基である場合の具体例としては、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、トリフェニレン、フルオレン、ベンゾ[a]アントラセン、テトラセン、ペンタセン、ヘキサセン、コロネン、ヘプタセン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール、又はこれらが2~5連結して構成される化合物から1個の水素を取って生じる基が挙げられる。好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、トリフェニレン、フルオレン、ベンゾ[a]アントラセン、テトラセン、ペンタセン、ヘキサセン、コロネン、ヘプタセン、又はこれらが2~5連結して構成される化合物から生じる基が挙げられる。より好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、トリフェニレン、フルオレン、ベンゾ[a]アントラセン、テトラセン、又はこれらが2~5連結して構成される化合物からから生じる基が挙げられる。さらに好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 なお、Arが芳香族複素環基である場合は、炭素数が3~11である芳香族複素環基に限定される。したがって、上記からジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾールが除かれる。好ましい未置換の芳香族複素環基としては、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール等から生じる基が挙げられる。より好ましくは、ピリジン、ピリミジン、又はトリアジンから生じる基である。 
 Lは、置換若しくは未置換の炭素数3~11の芳香族複素環基を示し、好ましくは置換若しくは未置換の炭素数3~5の芳香族複素環基、より好ましくは置換若しくは未置換の炭素数3~5の含窒素芳香族基である。
 Lが未置換の芳香族複素環基である場合の具体例としては、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、ピラジン、フラン、イソキサゾール、オキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、ベンゾトリアゾール、フタラジン、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾイソチアゾール又はベンゾチアジアゾールから生じる基が挙げられる。好ましくは、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール等から生じる基が挙げられる。より好ましくは、ピリジン、ピリミジン、又はトリアジンから生じる基である。 
 Lは、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~11の芳香族複素環基であり、好ましくは、置換若しくは未置換の炭素数6~24の芳香族炭化水素基であり、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基である。Lが未置換の芳香族炭化水素基である場合の具体例は、Ar及びArの場合と同様であり、未置換の芳香族複素環基である場合の具体例は、Lと同様である。なお、Lは2価の基であり、Lはe+1価の基である。
 Arは置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結した置換若しくは未置換の連結芳香族基を表し、好ましくは、置換若しくは未置換の炭素数6~24の芳香族炭化水素基、又はこれらの芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又は芳これらの香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基である。Arが未置換の芳香族炭化水素基である場合の具体例は、Ar及びArの場合と同様である。さらに好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 a及びbはそれぞれ独立に0~4の整数を示し、cは0~2の整数を示す。ただし、a+b+c≧1である。好ましくは、a及びbはそれぞれ独立に0~1の整数を示し、cが1もしくは2であることがよい。さらに好ましくは、a及びbのうち、少なくとも一方が0である。
 dは繰り返し数であり、0~3の整数、好ましくは0~1の整数、より好ましくは0である。eは置換数を表し、0~5の整数を表し、好ましくは0~3であり、より好ましくは0~2である。
 本明細書において、未置換の芳香族炭化水素基、芳香族複素環基、又は連結芳香族基は、それぞれ置換基を有してもよい。置換基を有する場合の置換基は、重水素、ハロゲン、シアノ基、トリアリールシリル基、炭素数1~10の脂肪族炭化水素基、炭素数2~5のアルケニル基、炭素数1~5のアルコキシ基又は炭素数12~44のジアリールアミノ基が好ましい。ここで、置換基が炭素数1~10の脂肪族炭化水素基である場合、直鎖状、分岐状、環状であってもよい。
 なお、置換基の数は0~5、好ましくは0~2がよい。芳香族炭化水素基及び芳香族複素環基が置換基を有する場合の炭素数の計算には、置換基の炭素数を含まない。しかし、置換基の炭素数を含んだ合計の炭素数が上記範囲を満足することが好ましい。
 上記置換基の具体例としては、シアノ、メチル、エチル、プロピル、i-プロピル、ブチル、t-ブチル、ペンチル、シクロペンチル、へキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ビニル、プロペニル、ブテニル、ペンテニル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ等が挙げられる。好ましくは、シアノ、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ジフェニルアミノ、ナフチルフェニルアミノ、又はジナフチルアミノが挙げられる。
 本明細書において、連結芳香族基は、芳香族基の芳香族環の炭素同士が単結合で結合して連結した芳香族基をいう。芳香族基が2以上連結した芳香族基であり、これらは直鎖状であっても、分岐してもよい。芳香族基は芳香族炭化水素基であっても、芳香族複素環基であってもよく、複数の芳香族基は同一であっても、異なってもよい。連結芳香族基に該当する芳香族基は、置換芳香族基とは異なる。
 本明細書において、水素は重水素であってもよいと理解される。すなわち、一般式(1)~(10)等において、インドロカルバゾールのような骨格、R1やAr1のような置換基が有するHの一部又は全部は重水素であってもよい。
 一般式(1)で表される化合物の好ましい態様として、上記式(2)~(7)のいずれかで表される化合物があり、より好ましくは式(2)~(5)のいずれかで表される化合物である。式(2)~(7)において、一般式(1)と共通する記号は同じ意味を有する。
 一般式(1)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
 本発明の有機電界発光素子は、陽極と陰極との間に複数の有機層を有し、この有機層の少なくとも1層に上記の有機電界発光素子用材料を含む。
 本発明の有機電界発光素子の他の態様は、上記の有機電界発光素子用材料と共に、上記一般式(8)~(10)で示される化合物の少なくとも1種を同一層に含む。
 一般式(8)においては、Ar及びArはそれぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基を示し、好ましくは炭素数6~12の芳香族炭化水素基、又はこれら芳香族炭化水素基が2~4個連結してなる置換若しくは未置換の連結芳香族基を示し、より好ましくは炭素数6~10の芳香族炭化水素基又はこれら芳香族炭化水素基が2~3個連結してなる置換若しくは未置換の連結芳香族基である。
 Ar及びArが、未置換の芳香族炭化水素基、芳香族複素環基、又は連結芳香族基である場合の具体例は、Arの場合と同様である。好ましくは、ベンゼン、ナフタレン、又はこれらが2~4個連結して構成される化合物から1個の水素を取って生じる基が挙げられる。より好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 一般式(8)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
 一般式(9)において、環Bは式(9b)又は(9c)で表される複素環であり、環Bは隣接する環と任意の位置で縮合する。
 Lは、独立に置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基であり、好ましくは、置換若しくは未置換の炭素数6~24の芳香族炭化水素基であり、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基であり、さらに好ましくはフェニレン基である。Lが未置換の芳香族炭化水素基、又は芳香族複素環基である場合の具体例は、Arの場合と同様である。なお、Lは2価の基である。
 XはNAr、O、又はSを表し、好ましくはNAr、又はOであり、より好ましくはNArである。
 Ar、Ar、及びArは、それぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基であり、好ましくは置換若しくは未置換の炭素数6~24の芳香族炭化水素基、置換若しくは未置換の炭素数3~15の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれら芳香族炭化水素基が2~5連結してなる置換若しくは未置換の連結芳香族基である。
 Ar、Ar、及びArが、未置換の芳香族炭化水素基、芳香族複素環基、又は連結芳香族基である場合の具体例は、Arの場合と同様であり、好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、トリフェニレン、フルオレン、ベンゾ[a]アントラセン、テトラセン、ペンタセン、ヘキサセン、コロネン、ヘプタセン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、プリン、ピラノン、クマリン、イソクマリン、クロモン、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、カルバゾール、又はこれらが2~5連結して構成される化合物から1個の水素を取って生じる基が挙げられる。より好ましくは、ベンゼン、ナフタレン、アセナフテン、アセナフチレン、アズレン、アントラセン、クリセン、ピレン、フェナントレン、トリフェニレン、フルオレン、ベンゾ[a]アントラセン、テトラセン、又はこれらが2~5連結して構成される化合物から1個の水素を取って生じる基が挙げられる。さらに好ましくは、フェニル基、ビフェニル基、又はターフェニル基である。ターフェニル基は、直鎖状に連結しても、分岐してもよい。
 Arは、好ましくは、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数12~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは置換若しくは未置換の炭素数6~24の芳香族炭化水素基、置換若しくは未置換の炭素数12~17の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基であり、更に好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれら芳香族炭化水素基が2~5連結してなる置換若しくは未置換の連結芳香族基である。
 Arが、炭素数12~17の未置換の芳香族複素環基である場合の具体例としては、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、又はカルバゾールから生じる基が挙げられる。
 i及びjはそれぞれ独立に0~3の整数を示し、好ましくはi及びjは0~1、より好ましくは、iは0、jは1である。但し、i+jは1以上の整数である。
 k及びvは置換数を表し、kは0~3、vは独立に0~4の整数を表し、好ましくはk及びvは0~1、より好ましくはk及びvは0である。
 R~Rはそれぞれ独立に、シアノ基、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示す。好ましくは置換若しくは未置換の炭素数6~24の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、より好ましくは、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は未置換の炭素数3~12の芳香族複素環基である。
 R~Rが炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基である場合の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル等のアルキル基、フェニルメチル、フェニルエチル、フェニルイコシル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル等のアラルキル基、ビニル、プロペニル、ブテニル、ペンテニル、デセニル、イコセニル等のアルケニル基、エチニル、プロパルギル、ブチニル、ペンチニル、デシニル、イコシニル等のアルキニル基、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチニルアミノ、ジデシルアミノ、ジイコシルアミノ等のジアルキルアミノ基、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ等のジアリールアミノ基、ジフェニルメチルアミノ、ジフェニルエチルアミノ、フェニルメチルフェニルエチルアミノ、ジナフチルメチルアミノ、ジアントラニルメチルアミノ、ジフェナンスレニルメチルアミノ等のジアラルキルアミノ基、アセチル、プロピオニル、ブチリル、バレリル、ベンゾイル等のアシル基、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ベンゾイルオキシ等のアシルオキシ基、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニロキシ、デカニロキシ等のアルコキシ基、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル等のアルコキシカルボニル基、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ、ペントキシカルボニルオキシ等のアルコキシカルボニルオキシ基、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル等のアルキルスルホキシ基、シアノ基、ニトロ基、フルオロ基、トシル基等が挙げられる。好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、又はドデシルである。
 R~Rが、未置換の芳香族炭化水素基、又は芳香族複素環基である場合の具体例は、上記Arの場合と同様である。なお、R~Rが芳香族炭化水素基である場合、上記一般式(1)にも該当する場合があるが、その場合は、一般式(9)のjが1以上の化合物は一般式(9)の化合物とし、それ以外の化合物は一般式(1)の化合物として扱い、両方に該当する化合物とはしない。
 f、及びhはそれぞれ独立に0~4の整数を示し、好ましくは0~1、より好ましくは0である。gは0~2の整数を示し、好ましくは0~1、より好ましくは0である。
 一般式(9)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
 一般式(10)において、環Dは式(10d)で表される複素環であり、環Dは隣接する環と任意の位置で縮合する。
 Arは、独立に、一般式(9)のAr6と同意である。
 R~Rはそれぞれ独立に、一般式(9)のR~Rと同意である。
 l及びnはそれぞれ独立に0~4の整数を示し、好ましくは0~1、より好ましくは0である。
 mは0~2の整数を示し、好ましくは0~1、より好ましくは0である。
 Ar10は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はそれらが2~5連結してなる置換若しくは未置換の連結芳香族基を表す。好ましくは置換若しくは未置換の炭素数6~24の芳香族炭化水素基、置換若しくは未置換の炭素数3~15の芳香族複素環基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、又はこれらの芳香族環が2~5連結してなる置換若しくは未置換の連結芳香族基である。
 Ar10が未置換の芳香族炭化水素基、未置換の芳香族複素環基である場合の具体例は、Ar、及びArの場合と同様である。なお、Ar10は2価の基である。
 一般式(10)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000038
  
Figure JPOXMLDOC01-appb-C000039
  
Figure JPOXMLDOC01-appb-C000040
  
 本発明の有機電界発光素子用材料は、有機層に含まれるが、この有機層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層及び電子阻止層からなる群れから選ばれることがよい。
 好ましくは、発光層であり、発光層は少なくとも1種の発光性ドーパントを含有することがよい。
 発光層に本発明の有機電界発光素子用材料を含む場合は、ホストとして含まれることが望ましい。有利には、本発明の有機電界発光素子用材料を第1ホストとして、前記一般式(8)、(9)、又は(10)で表される化合物から選ばれる化合物を第2ホストとして含むことがよい。
 上記化合物を第1ホストと第2ホストとして使用する場合は、これらの化合物を個々に異なる蒸着源から蒸着するなどして使用することもできるが、蒸着前に予備混合して有機EL素子用の混合組成物(予備混合物ともいう。)とし、その予備混合物を1つの蒸着源から同時に蒸着して発光層を形成することが好ましい。この場合、予備混合物には、発光層を形成するために必要な発光性ドーパント材料又は必要により使用される他のホストを混合させてもよいが、所望の蒸気圧となる温度に大きな差がある場合は、別の蒸着源から蒸着させることがよい。
 本発明の混合組成物は、上記一般式(1)で表される化合物と、一般式(8)~(10)のいずれかで表される化合物を含む。これらの化合物は1種を使用してもよく、2種以上を使用してもよい。好ましくは、一般式(1)で表される化合物と、一般式(8)で表される化合物を含む。混合組成物に配合される各化合物は、50%重量減少温度が20℃以内であることが望ましい。
 また、第1ホストと第2ホストの混合比(重量比)は、第1ホストと第2ホストの合計に対し、第1ホストの割合が10~70%がよく、好ましくは15%よりも多く、65%よりも少ないことであり、より好ましくは20~60%である。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造はこれに限定されない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有してもよい。励起子阻止層は発光層の陰極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。
―基板―
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであれば良く、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
―陽極―
 有機EL素子における陽極材料としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物からなる材料が好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等の非晶質で、透明導電膜を作成可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成しても良く、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは有機導電性化合物のような塗布可能な物質を用いる場合には印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
―陰極―
 一方、陰極材料としては仕事関数の小さい(4eV以下)金属(電子注入性金属)、合金、電気伝導性化合物又はこれらの混合物からなる材料が用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの陰極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度は向上し、好都合である。
 また、陰極に上記金属を1~20nmの膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
―発光層―
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり発光層には有機発光性ドーパント材料とホストを含むことがよい。
 ホストには、上記第1ホストと第2ホストを使用することがよい。
 第1ホストしての一般式(1)で表される化合物は、1種を使用してもよく、2種以上を使用してもよい。同様に、第2ホストしての一般式(8)~(10)で表されるカルバゾール化合物又はインドロカルバゾール化合物は1種を使用してもよく、2種以上を使用してもよい。
 必要により、他の公知のホスト材料を1種又は複数種類併用しても良いが、その使用量はホスト材料の合計に対し、50wt%以下、好ましくは25wt%以下とすることがよい。
 ホスト、及びその予備混合物の形態は、粉体、スティック状、または顆粒状であってもよい。
 ホストを複数種使用する場合は、それぞれのホストを異なる蒸着源から蒸着するか、蒸着前に予備混合して予備混合物とすることで1つの蒸着源から複数種のホストを同時に蒸着することもできる。
 予備混合の方法としては可及的に均一に混合できる方法が望ましく、粉砕混合や、減圧下又は窒素のような不活性ガス雰囲気下で加熱溶融させる方法や、昇華等が挙げられるが、これらの方法に限定されるものではない。
 第1ホストと第2ホストを予備混合して使用する場合は、良好な特性を有する有機EL素子を再現性良く作製するために、50%重量減少温度(T50)の差が小さいことが望ましい。50%重量減少温度は、窒素気流減圧(1Pa)下でのTG-DTA測定において、室温から毎分10℃の速度で550℃まで昇温したとき、重量が50%減少した際の温度をいう。この温度付近では、蒸発又は昇華による気化が最も盛んに起こると考えられる。
 第1ホストと第2ホストは、上記50%重量減少温度の差が20℃以内であることが好ましく、15℃以内であることがより好ましい。予備混合方法としては、粉砕混合等の公知の方法が採用できるが、可及的に均一に混合することが望ましい。
 発光性ドーパント材料として燐光発光ドーパントを使用する場合、燐光発光ドーパントとしては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも1つの金属を含む有機金属錯体を含有するものがよい。具体的には、J.Am.Chem.Soc.2001,123,4304や特表2013-53051号公報に記載されているイリジウム錯体が好適に用いられるが、これらに限定されない。
 燐光発光ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。燐光発光ドーパント材料の含有量はホスト材料に対して0.1~30wt%であることが好ましく、1~20wt%であることがより好ましい。
 燐光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
 発光性ドーパント材料として蛍光発光ドーパントを使用する場合、蛍光発光ドーパントとしては、特に限定されないが例えばベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピロリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族誘導体、スチリル誘導体、ジケトピロロピロール誘導体、オキサジン誘導体、ピロメテン金属錯体、遷移金属錯体、又はランタノイド錯体が挙げられ、より好ましくはナフタレン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタレン、ヘキサセン、ナフト[2,1-f]イソキノリン、α‐ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、又はジアリールアミノ基を有しても良い。
 蛍光発光ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~20%であることが好ましく、1~10%であることがより好ましい。
 発光性ドーパント材料として熱活性化遅延蛍光発光ドーパントを使用する場合、熱活性化遅延蛍光発光ドーパントとしては、特に限定されないがスズ錯体や銅錯体等の金属錯体や、WO2011/070963号公報に記載のインドロカルバゾール誘導体、Nature 2012,492,234に記載のシアノベンゼン誘導体、カルバゾール誘導体、Nature Photonics 2014,8,326に記載のフェナジン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、スルホン誘導体、フェノキサジン誘導体、アクリジン誘導体等が挙げられる。
 熱活性化遅延蛍光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 
 熱活性化遅延蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。また、熱活性化遅延蛍光発光ドーパントは燐光発光ドーパントや蛍光発光ドーパントと混合して用いてもよい。熱活性化遅延蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~50%であることが好ましく、1~30%であることがより好ましい。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
 正孔阻止層には、公知の正孔阻止層材料を用いることができるが、一般式(1)で表される化合物を含有させることが好ましい。
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、公知の電子阻止層材料を用いることができ、また後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は2つ以上の発光層が隣接する素子において、隣接する2つの発光層の間に挿入することができる。
  励起子阻止層の材料としては、公知の励起子阻止層材料を用いることができる。例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には従来公知の化合物の中から任意のものを選択して用いることができる。かかる正孔輸送材料としては例えば、ポルフィリン誘導体、アリールアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン誘導体、アリールアミン誘導体及びスチリルアミン誘導体を用いることが好ましく、アリールアミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ナフタレン、アントラセン、フェナントロリン等の多環芳香族誘導体、トリス(8-キノリノラト)アルミニウム(III)誘導体、ホスフィンオキサイド誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ビピリジン誘導体、キノリン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、インドロカルバゾール誘導体等が挙げられ、更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を超えない限りにおいて、種々の形態で実施することが可能である。
合成例1
 次の反応式に従い化合物129を合成した。
Figure JPOXMLDOC01-appb-C000044
 
 窒素雰囲気下、中間体(a)を10.0 g(13.9 mmol)、化合物(b)2.2 g(18.1 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)を0.5 g(0.4 mmol)、炭酸カリウム5.8 g、m-キシレン300 ml、エタノール30ml、蒸留水30ml加え、100℃で加熱しながら3時間撹拌した。室温まで冷却した後に蒸留水(50 ml)を加え、有機層を分取、濃縮乾固した。得られた固体をシリカゲルカラムクロマトグラフィーで精製、晶析精製を行い、黄色固体として化合物129を5.3g (7.4 mmol、収率53.2%)得た(APCI-TOFMS, m/z 716 [M+H]+)。
合成例2
Figure JPOXMLDOC01-appb-C000045
 
 窒素雰囲気下、中間体(c)を10.0 g(24.2 mmol)、化合物(d)6.2g(50.7 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)を0.8 g(0.7 mmol)、炭酸カリウム10.0 g、m-キシレン300 ml、エタノール30ml、蒸留水30ml加え、100℃で加熱しながら3時間撹拌した。室温まで冷却した後に蒸留水(200 ml)を加え、析出した固体をろ取した。得られた固体を晶析精製し、中間体(f)を5.5g (13.4 mmol、収率55.8%)得た(APCI-TOFMS, m/z 409 [M+H]+)。
合成例3
Figure JPOXMLDOC01-appb-C000046
 
 窒素雰囲気下、中間体(f)を10.0 g(24.5 mmol)に、化合物(g)を7.5g(36.7mmol)、CuIを0.9g(4.9mmol)、リン酸三カリウムを26.0g(120.0mmmol)、1,4-ジオキサンを300ml、trans-1,2-シクロヘキサンジアミンを1.1g(9.8mmol)を加え、加熱還流下で6時間撹拌した。室温まで冷却後、固液分離して得られた液層を濃縮乾固した。
得られた固体をシリカゲルカラムクロマトグラフィーで精製し、中間体(h)を5.2g (10.7 mmol、収率43.8%)得た(APCI-TOFMS, m/z 485 [M+H]+)。
合成例4
Figure JPOXMLDOC01-appb-C000047
 
 窒素雰囲気下、N,N’-ジメチルアセトアミド200gに60重量%水素化ナトリウム1.0g(24.8mmol)を加え、懸濁液を調製した。そこに中間体(h)を10.0 g(20.6 mmol)加え、1時間撹拌後5℃まで冷却した。そこに化合物(j)を9.2g(26.8mmol)加えた後、室温にもどして4時間撹拌した。反応溶液をエタノール (100 ml)、蒸留水(200 ml)の混合溶液に撹拌しながら加え、析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィーで精製、晶析精製を行い、黄色固体として化合物120を7.1 g (9.0 mmol、収率43.4%)得た(APCI-TOFMS, m/z 792 [M+H]+)。
  上記合成例に準じて、化合物128、155、112、122および156を合成した。また、比較のための化合物A、B、C、DおよびEを合成した。
実施例1
  膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてCuPcを25nmの厚さに形成し、次に正孔輸送層としてNPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、ホスト材料としての化合物128と発光ドーパントとしてIr(ppy)3をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度が10wt%であった。更に正孔阻止層としてH-3を10nmの厚さに形成した。次に電子輸送層としてET-1を10nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
 得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測され、Ir(ppy)3からの発光が得られていることがわかった。
実施例2~7
  実施例1における発光層のホスト材料として、化合物128に代えて、化合物155、112、120、122、129、又は156を用いた以外は実施例1と同様にして有機EL素子を作成した。得られた有機EL素子に直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測された。
比較例1~4
 実施例1における発光層のホスト材料として化合物A、B、C、又はDを用いた以外は実施例1と同様にして有機EL素子を作成した。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測された。
 作製した有機EL素子の評価結果を表1に示す。表中で輝度、駆動電圧、発光効率は駆動電流20mA/cm2時の値であり、初期特性である。LT70は、初期輝度が70%まで減衰するまでにかかる時間であり、寿命特性を表す。
Figure JPOXMLDOC01-appb-T000048
 
実施例8
  膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてNPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、第1ホストとして化合物128を、第2ホストとして化合物602を、発光ドーパントとしてIr(ppy)3をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度が10wt%、第1ホストと第2ホストの重量比が30:70となる蒸着条件で共蒸着した。次に電子輸送層としてET-1を20nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例9~14、22~48
 実施例8において、第1ホスト及び第2ホストを、表2に示す化合物を使用した以外は実施例8と同様にして有機EL素子を作製した。
実施例15~21
  実施例8において、第1ホスト及び第2ホストを表2に示す化合物を使用し、第1ホストと第2ホストの重量比が40:60となる蒸着条件で共蒸着した以外は、実施例8と同様にして有機EL素子を作製した。
実施例49~51
 第1ホスト(0.30g)と第2ホスト(0.70g)を量りとり、乳鉢ですり潰しながら混合することにより得た予備混合物を一つの蒸着源から共蒸着した以外は実施例8と同様にして有機EL素子を作成した。
比較例6~10、16~18
 実施例8において、第1ホスト及び第2ホストを、表2に示す化合物を使用した以外は実施例8と同様にして有機EL素子を作製した。
比較例11~15
 実施例15において、第1ホスト及び第2ホストを、表2に示す化合物を使用した以外は実施例15と同様にして有機EL素子を作製した。
 作製した有機EL素子の評価結果を表2~3に示す。表中で輝度、駆動電圧、発光効率、LT70は、表1と同じである。
Figure JPOXMLDOC01-appb-T000049
 
Figure JPOXMLDOC01-appb-T000050
 
 実施例で使用した化合物を次に示す。
Figure JPOXMLDOC01-appb-C000051
 
 表4に、化合物112、120、129、602および640の50%重量減少温度(T50)を記す。
 
Figure JPOXMLDOC01-appb-T000052

Claims (15)

  1.  一般式(1)で表される化合物からなる有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000001
     ここで、環Aは式(1a)で表される複素環であり、環Aは隣接する環と任意の位置で縮合し、
    Arは、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~11の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示し、
    Arは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示し、
    は独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~11の芳香族複素環基であり、
    は、置換若しくは未置換の炭素数3~11の芳香族複素環基を示し、
    Arは独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は該芳香族炭化水素基が2~5個連結した置換若しくは未置換の連結芳香族基を表し、
    a、及びbはそれぞれ独立に0~4の整数を示し、cは0~2の整数を示す。ただし、a+b+c≧1である。
    dは繰り返し数を表し、0~3の整数を示し、eは置換数を表し、0~5の整数を表す。
  2.  前記Lが置換若しくは未置換の炭素数3~5の芳香族複素環基である請求項1に記載の有機電界発光素子用材料。
  3.  前記Ar、Ar、及びLが、それぞれ独立に置換若しくは未置換の炭素数6~24の芳香族炭化水素基、又は該芳香族炭化水素基が2~5個連結してなる置換若しくは未置換の連結芳香族基である請求項1又は2に記載の有機電界発光素子用材料。
  4.  前記dが0である請求項1~3のいずれかに記載の有機電界発光素子用材料。
  5.  前記一般式(1)で表される化合物が、下記式(2)~(7)のいずれかで表される化合物である請求項4に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     ここで、L、Ar、Ar、Ar、a、b、c及びeは、上記一般式(1)と同意である。
  6.  前記a及びbのうち、少なくとも一方が0である請求項1~5のいずれかに記載の有機電界発光素子用材料。
  7.  前記cが1又は2である請求項1~6のいずれかに記載の有機電界発光素子用材料。
  8.  陽極と陰極との間に複数の有機層を有する有機電界発光素子であって、該有機層の少なくとも1層に、請求項1~7のいずれかに記載の有機電界発光素子用材料を含むことを特徴とする有機電界発光素子。
  9.  前記有機電界発光素子用材料と共に、下記一般式(8)~(10)で示される化合物のうち少なくとも1種を同一層に含むことを特徴とする請求項8に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
     ここで、Ar及びArはそれぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示す。
    Figure JPOXMLDOC01-appb-C000005
     ここで、環Bは式(9b)又は(9c)で表される複素環であり、環Bは隣接する環と任意の位置で縮合し、
    は、独立に置換若しくは未置換の炭素数6~30の芳香族炭化水素基であり、
    XはNAr、O、又はSを表す。
    Ar、Ar、及びArは、それぞれ独立に、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を示す。
    i、及びjはそれぞれ独立に0~3の整数を示し、k及びvは置換数を表し、kは0~3、vは独立に0~4の整数を表す。但し、i+jは1以上の整数である。
    ~Rはそれぞれ独立に、シアノ基、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、
    f、及びhはそれぞれ独立に0~4の整数を示し、gは0~2の整数を示す。
    Figure JPOXMLDOC01-appb-C000006
     ここで、環D、及びD’は式(10d)で表される複素環であり、環D及びD’はそれぞれ独立に、隣接する環と任意の位置で縮合し、
    Arは独立に、上記一般式(9)のArと同意であり、
    ~Rはそれぞれ独立に、上記一般式(9)のR~Rと同意であり、
    l及びnはそれぞれ独立に0~4の整数を示し、mは独立に0~2の整数を示す。
    Ar10は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又はこれらの芳香族環が2~5個連結してなる置換若しくは未置換の連結芳香族基を表す。
  10.  前記有機電界発光素子用材料を含む有機層が、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔阻止層及び電子阻止層からなる群れから選ばれる少なくとも一つの層である請求項8又は9に記載の有機電界発光素子。
  11.  前記有機電界発光素子用材料を含む有機層が発光層であり、該発光層が少なくとも1種の発光性ドーパントを含有する請求項10記載の有機電界発光素子。
  12.  請求項9又は10に記載された有機電界発光素子を製造するに当たり、前記有機電界発光素子用材料と、前記一般式(8)~(10)で示される化合物のうち少なくとも1種を含む混合組成物を用意し、これを使用して発光層を作製することを特徴とする有機電界発光素子の製造方法。
  13.  請求項12に記載の有機電界発光素子の製造方法で使用される前記混合組成物であって、前記有機電界発光素子用材料と、前記一般式(8)~(10)で示される化合物のうち少なくとも1種を含むことを特徴とする混合組成物。
  14.  前記有機電界発光素子用材料と、前記一般式(8)、一般式(9)、又は一般式(10)で表される化合物との50%重量減少温度の差が20℃以内であることを特徴とする請求項13に記載の混合組成物。
  15.  前記有機電界発光素子用材料と、前記一般式(8)で示される化合物を含むことを特徴とする請求項13又は14に記載の混合組成物。
PCT/JP2021/015655 2020-04-30 2021-04-16 有機電界発光素子用材料及び有機電界発光素子 WO2021220838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180030979.5A CN115443552A (zh) 2020-04-30 2021-04-16 有机电场发光元件用材料及有机电场发光元件
KR1020227037115A KR20230005838A (ko) 2020-04-30 2021-04-16 유기 전계 발광소자용 재료 및 유기 전계 발광소자
JP2022517632A JPWO2021220838A1 (ja) 2020-04-30 2021-04-16
US17/915,749 US20230128732A1 (en) 2020-04-30 2021-04-16 Organic electroluminescence element material and organic electroluminescence element
EP21796332.1A EP4144817A1 (en) 2020-04-30 2021-04-16 Organic electroluminescence element material and organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080549 2020-04-30
JP2020080549 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220838A1 true WO2021220838A1 (ja) 2021-11-04

Family

ID=78332390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015655 WO2021220838A1 (ja) 2020-04-30 2021-04-16 有機電界発光素子用材料及び有機電界発光素子

Country Status (7)

Country Link
US (1) US20230128732A1 (ja)
EP (1) EP4144817A1 (ja)
JP (1) JPWO2021220838A1 (ja)
KR (1) KR20230005838A (ja)
CN (1) CN115443552A (ja)
TW (1) TW202200754A (ja)
WO (1) WO2021220838A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133075A (ja) 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2011136755A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2013062075A1 (ja) 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
JP2013168649A (ja) * 2012-02-14 2013-08-29 Samsung Display Co Ltd 改善された効率特性を有する有機発光素子及びこれを備える有機発光表示装置
KR20130132226A (ko) 2012-05-25 2013-12-04 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
US20140197386A1 (en) 2013-01-17 2014-07-17 Cheil Industries Inc. Material for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US20140374728A1 (en) 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
US20150001488A1 (en) 2013-07-01 2015-01-01 Soo-Hyun Min Composition and organic optoelectric device and display device
WO2016042997A1 (ja) 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
US20170194569A1 (en) * 2015-12-23 2017-07-06 Samsung Display Co., Ltd Organic light-emitting device
JP2017520904A (ja) * 2014-05-07 2017-07-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
JP6663427B2 (ja) * 2015-05-29 2020-03-11 日鉄ケミカル&マテリアル株式会社 有機電界発光素子

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133075A (ja) 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2011136755A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2013062075A1 (ja) 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
US20140374728A1 (en) 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
JP2013168649A (ja) * 2012-02-14 2013-08-29 Samsung Display Co Ltd 改善された効率特性を有する有機発光素子及びこれを備える有機発光表示装置
KR20130132226A (ko) 2012-05-25 2013-12-04 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
US20140197386A1 (en) 2013-01-17 2014-07-17 Cheil Industries Inc. Material for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US20150001488A1 (en) 2013-07-01 2015-01-01 Soo-Hyun Min Composition and organic optoelectric device and display device
JP2017520904A (ja) * 2014-05-07 2017-07-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
WO2016042997A1 (ja) 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
JP6663427B2 (ja) * 2015-05-29 2020-03-11 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
US20170194569A1 (en) * 2015-12-23 2017-07-06 Samsung Display Co., Ltd Organic light-emitting device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
NATURE PHOTONICS, vol. 8, 2014, pages 326
NATURE, vol. 492, 2012, pages 234

Also Published As

Publication number Publication date
CN115443552A (zh) 2022-12-06
EP4144817A1 (en) 2023-03-08
US20230128732A1 (en) 2023-04-27
KR20230005838A (ko) 2023-01-10
JPWO2021220838A1 (ja) 2021-11-04
TW202200754A (zh) 2022-01-01

Similar Documents

Publication Publication Date Title
JP7030794B2 (ja) 有機電界発光素子
JP6786393B2 (ja) 有機電界発光素子
JP6894913B2 (ja) 有機電界発光素子
WO2020195917A1 (ja) 有機電界発光素子用溶融混合物、及び有機電界発光素子
WO2022131123A1 (ja) 有機電界発光素子及びその製造方法
WO2020218188A1 (ja) 有機電界発光素子
WO2021200243A1 (ja) 有機電界発光素子
WO2022255243A1 (ja) 重水素化物及び有機電界発光素子
WO2022255241A1 (ja) 重水素化物及び有機電界発光素子
WO2022149493A1 (ja) 有機電界発光素子及びその製造方法
JP6860504B2 (ja) 有機電界発光素子
WO2021131755A1 (ja) 有機電界発光素子及びその製造方法
WO2020218187A1 (ja) 有機電界発光素子
WO2021220838A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2021220837A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2022085776A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2022124365A1 (ja) 有機電界発光素子
WO2022124366A1 (ja) 有機電界発光素子
WO2024048536A1 (ja) 有機電界発光素子
WO2022085777A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2024019072A1 (ja) 有機電界発光素子
WO2024048535A1 (ja) 有機電界発光素子用ホスト材料及び予備混合物並びに有機電界発光素子
WO2022124367A1 (ja) 有機電界発光素子用材料及び有機電界発光素子
WO2022255242A1 (ja) 重水素化物及び有機電界発光素子
WO2020203202A1 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796332

Country of ref document: EP

Effective date: 20221130