WO2021220835A1 - 試料支持体、イオン化方法及び質量分析方法 - Google Patents

試料支持体、イオン化方法及び質量分析方法 Download PDF

Info

Publication number
WO2021220835A1
WO2021220835A1 PCT/JP2021/015636 JP2021015636W WO2021220835A1 WO 2021220835 A1 WO2021220835 A1 WO 2021220835A1 JP 2021015636 W JP2021015636 W JP 2021015636W WO 2021220835 A1 WO2021220835 A1 WO 2021220835A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample support
component
agent
holes
Prior art date
Application number
PCT/JP2021/015636
Other languages
English (en)
French (fr)
Inventor
政弘 小谷
孝幸 大村
明夏里 脇村
勉 寺内
修 平
康秀 内藤
Original Assignee
浜松ホトニクス株式会社
大陽日酸株式会社
国立大学法人福島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社, 大陽日酸株式会社, 国立大学法人福島大学 filed Critical 浜松ホトニクス株式会社
Priority to US17/921,189 priority Critical patent/US20230170201A1/en
Priority to CN202180032076.0A priority patent/CN115485548A/zh
Priority to EP21796331.3A priority patent/EP4135004A4/en
Publication of WO2021220835A1 publication Critical patent/WO2021220835A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present disclosure relates to a sample support, an ionization method and a mass spectrometry method.
  • a substrate having a first surface, a second surface opposite to the first surface, and a plurality of through holes opened in the first surface and the second surface is used.
  • Those provided are known (see, for example, Patent Document 1).
  • the intensity of the detected signal may be lowered depending on the type of the sample to be analyzed, and in such a case, the sensitivity of the mass spectrometry is lowered. There is a risk.
  • the sample support of the present disclosure is a sample support used for ionizing a component of a sample, and is on the first surface, the second surface opposite to the first surface, and the first surface and the second surface.
  • a substrate having a plurality of through holes to be opened, a conductive layer provided at least on the first surface, and a derivatizing agent provided in the plurality of through holes for derivatizing components are provided.
  • This sample support includes a first surface, a second surface opposite to the first surface, and a substrate having a plurality of through holes that open on the first surface and the second surface.
  • the component of the sample when introduced into the plurality of through holes, the component stays on the first surface side.
  • an energy ray such as a laser beam is applied to the first surface of the substrate while a voltage is applied to the conductive layer, the energy is transmitted to the components on the first surface side. This energy causes the components to be ionized to generate sample ions.
  • the sample support is provided in a plurality of through holes and includes a derivatizing agent for derivatizing the components.
  • the component remains on the first surface side in a state of being mixed with a part of the derivatizing agent.
  • the component can be derivatized while remaining on the first surface side, and the derivatized component can be ionized. Therefore, the ionized sample ions are easily detected, and the decrease in the signal intensity of the sample ions is suppressed. Therefore, according to this sample support, highly sensitive mass spectrometry becomes possible.
  • the derivatizing agent may be provided as a coating dry film. According to this configuration, the derivatizing agent can be easily provided.
  • the derivatizing agent may be provided as a vapor deposition film or a sputtering film.
  • the average particle size of the crystals of the derivatizing agent can be made relatively small, and the distribution of the crystals of the derivatizing agent can be made uniform. Therefore, a part of the derivatizing agent mixed with the component is uniformly distributed on the first surface side. As a result, the components can be uniformly derivatized at each position on the first surface side, and the spatial resolution in mass spectrometry can be improved.
  • the derivatizing agent may contain at least one selected from a pyrylium compound, a carbamate compound, an isothiocyanate compound, an N-hydroxysuccinimide ester and a hydrazide compound. According to this configuration, the derivatization of the components can be efficiently performed by applying a derivatizing agent suitable for the derivatization of the components of the sample according to the type of the sample.
  • the sample support of the present disclosure may further include a basicizing agent for making the environment in which the component is derivatized basic. According to this configuration, the environment in which the component is derivatized can be easily made basic, and the component can be easily derivatized.
  • the derivatizing agent may be provided on the second surface side, and the basicizing agent may be provided on the first surface side. According to this configuration, damage or side reactions of the derivatizing agent due to contact with the basicizing agent can be suppressed. Further, by introducing the component of the sample into the plurality of through holes from the second surface side, the contact between the component and the basicizing agent can be suppressed. This makes it possible to suppress component damage or side reactions caused by contact with the basicizing agent.
  • the derivatizing agent may be provided on the first surface side, and the basicizing agent may be provided on the second surface side. According to this configuration, damage or side reactions of the derivatizing agent due to contact with the basicizing agent can be suppressed. Further, by introducing the component of the sample into the plurality of through holes from the first surface side, the contact between the component and the basicizing agent can be suppressed. This makes it possible to suppress component damage or side reactions caused by contact with the basicizing agent.
  • the basicizing agent may be provided as a coating dry film. According to this configuration, the basicizing agent can be easily provided.
  • the basicizing agent may be provided as a vapor deposition film or a sputtering film. According to this configuration, the average particle size of the crystals of the basicizing agent can be made relatively small, and the distribution of the crystals of the basicizing agent can be made uniform. Thereby, the environment in which the component is derivatized can be easily made basic.
  • the basicizing agent may include at least one selected from amines, imines, inorganic bases, amines buffers, imines buffers and inorganic base buffers. .. According to this configuration, the derivatization of the component can be efficiently performed by applying the basicizing agent suitable for the derivatization of the component of the sample according to the type of the sample and the type of the derivatizing agent. can.
  • the width of each of the plurality of through holes may be 1 to 700 nm. According to this configuration, the components of the sample can be appropriately retained on the first surface side of the substrate.
  • the substrate may be formed by anodizing valve metal or silicon. According to this configuration, a substrate having a plurality of through holes can be easily and surely obtained.
  • a plurality of measurement regions each of which includes a plurality of through holes, may be formed on the substrate. According to this configuration, the components of the sample can be ionized for each of a plurality of measurement regions.
  • the sample support of the present disclosure is a sample support used for ionizing a component of a sample, and is on the first surface, the second surface opposite to the first surface, and the first surface and the second surface. It includes a conductive substrate having a plurality of through holes to be opened, and a derivatizing agent provided in the plurality of through holes for derivatizing components.
  • the conductive layer can be omitted, and as described above, the same effect as that of the sample support provided with the conductive layer can be obtained.
  • the ionization method of the present disclosure includes a first step of preparing a sample support provided with a derivatizing agent, a second step of introducing a sample component into a plurality of through holes, and a basic step of introducing the component-introduced sample support. It includes a third step of derivatizing the component by heating in an environment and a fourth step of ionizing the component by irradiating the first surface with energy rays while applying a voltage to the conductive layer. ..
  • the component when a sample component is introduced into a plurality of through holes, the component stays on the first surface side. Further, when the first surface of the substrate is irradiated with energy rays while the voltage is applied to the conductive layer, the energy is transferred to the components on the first surface side. This energy causes the components to be ionized to generate sample ions.
  • the sample support is provided in a plurality of through holes and includes a derivatizing agent for derivatizing the components. Therefore, the component remains on the first surface side in a state of being mixed with a part of the derivatizing agent.
  • the component can be derivatized and the derivatized component can be ionized. Therefore, the ionized sample ions are easily detected, and the decrease in the signal intensity of the sample ions is suppressed. Therefore, according to this sample support, highly sensitive mass spectrometry becomes possible.
  • the sample support may be arranged on the sample so that the second surface faces the sample.
  • a solution containing a component may be dropped from the second surface side into a plurality of through holes.
  • a solution containing a component may be dropped from the first surface side into a plurality of through holes.
  • the ionization method of the present disclosure includes a first step of preparing a sample support including a derivatizing agent and a basicizing agent, a second step of introducing a sample component into a plurality of through holes, and a sample into which the component has been introduced.
  • a sample support provided with a basicizing agent is prepared in the first step.
  • the environment in which the component is derivatized can be easily made basic, and the component can be easily derivatized.
  • a sample support in which the derivatizing agent is provided on the second surface side and the basicizing agent is provided on the first surface side is prepared, and in the second step, the sample support is prepared.
  • the sample support may be placed on the sample so that the second surface faces the sample. This makes it possible to suppress damage or side reactions of the derivatizing agent due to contact with the basicizing agent. Further, since the component of the sample is introduced into a plurality of through holes from the second surface side, the contact between the component and the basicizing agent can be suppressed, and the component is damaged due to the contact with the basicizing agent. Alternatively, side reactions can be suppressed.
  • a sample support in which the derivatizing agent is provided on the second surface side and the basicizing agent is provided on the first surface side is prepared, and in the second step, the sample support is prepared.
  • the solution containing the component may be dropped from the second surface side into the plurality of through holes. This makes it possible to suppress damage or side reactions of the derivatizing agent due to contact with the basicizing agent. Further, since the component of the sample is introduced into a plurality of through holes from the second surface side, the contact between the component and the basicizing agent can be suppressed, and the component is damaged due to the contact with the basicizing agent. Alternatively, side reactions can be suppressed.
  • a sample support in which the derivatizing agent is provided on the first surface side and the basicizing agent is provided on the second surface side is prepared, and in the second step, the sample support is prepared.
  • the solution containing the components may be dropped from the first surface side into the plurality of through holes. This makes it possible to suppress damage or side reactions of the derivatizing agent due to contact with the basicizing agent. Further, since the component of the sample is introduced into a plurality of through holes from the first surface side, the contact between the component and the basicizing agent can be suppressed, and the component is damaged due to the contact with the basicizing agent. Alternatively, side reactions can be suppressed.
  • the ionization method of the present disclosure includes a first step of preparing a sample support provided with a conductive substrate, a second step of introducing a sample component into a plurality of through holes, and a base of the sample support into which the component has been introduced. It includes a third step of derivatizing the component by heating in a sexual environment and a fourth step of ionizing the component by irradiating the first surface with energy rays while applying a voltage to the substrate. ..
  • the conductive layer can be omitted, and the same effect as the case of using the sample support provided with the conductive layer can be obtained as described above.
  • the mass spectrometric method of the present disclosure includes each step of the above ionization method and a fifth step of detecting an ionized component.
  • FIG. 1 is a plan view of the sample support of the first embodiment.
  • FIG. 2 is a cross-sectional view of the sample support along the line II-II shown in FIG.
  • FIG. 3 is an enlarged image of the substrate of the sample support shown in FIG.
  • FIG. 4 is a diagram showing a process of a mass spectrometry method using the sample support shown in FIG.
  • FIG. 5 is a diagram showing a process of a mass spectrometry method using the sample support shown in FIG.
  • FIG. 6 is a plan view and a cross-sectional view of the sample support of the second embodiment.
  • FIG. 7 is a cross-sectional view of the sample support shown in FIG.
  • FIG. 8 is a diagram showing a process of a mass spectrometry method using the sample support shown in FIG. FIG.
  • FIG. 9 is a diagram showing mass spectra obtained by the mass spectrometric methods of Comparative Example, First Example, and Second Example.
  • FIG. 10 is a cross-sectional view of the sample support of the modified example.
  • FIG. 11 is a cross-sectional view of the sample support of the modified example.
  • FIG. 12 is a diagram showing a two-dimensional distribution image of specific ions obtained by the mass spectrometry method of the third embodiment.
  • FIG. 13 is a cross-sectional view of the sample support of the modified example.
  • FIG. 14 is a cross-sectional view of the sample support of the modified example.
  • FIG. 15 is a cross-sectional view of the sample support of the modified example.
  • FIG. 16 is a diagram showing a process of a mass spectrometric method of a modified example.
  • FIG. 17 is a diagram showing a process of a mass spectrometric method of a modified example.
  • the sample support 1 used for ionizing the components of the sample includes a substrate 2, a frame 3, a conductive layer 5, a derivatizing agent 6, and a basicizing agent 7. , Is equipped.
  • the substrate 2 is formed in a rectangular plate shape by, for example, an insulating material.
  • the length of one side of the substrate 2 is, for example, about several cm.
  • the thickness of the substrate 2 is, for example, 1 to 50 ⁇ m.
  • the substrate 2 has a first surface 2a, a second surface 2b, and a plurality of through holes 2c.
  • the second surface 2b is a surface opposite to the first surface 2a.
  • the plurality of through holes 2c extend along the thickness direction of the substrate 2 (direction perpendicular to the first surface 2a and the second surface 2b), and openings are provided in each of the first surface 2a and the second surface 2b. doing.
  • the plurality of through holes 2c are uniformly formed (with a uniform distribution) on the substrate 2.
  • the shape of the through hole 2c when viewed from the thickness direction of the substrate 2 is, for example, substantially circular.
  • the width of each of the plurality of through holes 2c is, for example, 1 to 700 nm.
  • the width of the through hole 2c is a value obtained as follows. First, the images of the first surface 2a and the second surface 2b of the substrate 2 are acquired. FIG. 3 shows an example of a part of the SEM image of the first surface 2a of the substrate 2. In the SEM image, the black portion is the through hole 2c, and the white portion is the partition wall portion between the through holes 2c. Subsequently, the acquired image of the first surface 2a is subjected to, for example, binarization processing to correspond to a plurality of first openings (openings on the first surface 2a side of the through hole 2c) in the measurement area R.
  • a plurality of pixel groups are extracted, and the diameter of a circle having an average area of the first opening is obtained based on the size per pixel.
  • a plurality of pixel groups are extracted, and the diameter of a circle having an average area of the second opening is obtained based on the size per pixel. Then, the average value of the diameter of the circle acquired for the first surface 2a and the diameter of the circle acquired for the second surface 2b is acquired as the width of the through hole 2c.
  • a plurality of through holes 2c having a substantially constant width are uniformly formed on the substrate 2.
  • the aperture ratio of the through holes 2c in the measurement area R (the ratio of all the through holes 2c to the measurement area R when viewed from the thickness direction of the substrate 2) is practically 10 to 80%, and in particular. It is preferably 20 to 40%.
  • the sizes of the plurality of through holes 2c may be irregular to each other, or the plurality of through holes 2c may be partially connected to each other.
  • the substrate 2 shown in FIG. 3 is an alumina porous film formed by anodizing Al (aluminum). Specifically, the substrate 2 can be obtained by subjecting the Al substrate to anodizing treatment and peeling the oxidized surface portion from the Al substrate.
  • the substrate 2 is Ta (tantalum), Nb (niobium), Ti (titanium), Hf (hafnium), Zr (zirconium), Zn (zinc), W (tungsten), Bi (bismus), Sb (antimony). It may be formed by anodizing a valve metal other than Al such as, or it may be formed by anodizing Si (silicon).
  • the frame 3 has substantially the same outer shape as the substrate 2 when viewed from the thickness direction of the substrate 2.
  • the frame 3 has a third surface 3a and a fourth surface 3b, and an opening 3c and an opening 3q.
  • the fourth surface 3b is a surface opposite to the third surface 3a and is a surface on the substrate 2 side.
  • the opening 3c and the opening 3q are open to the third surface 3a and the fourth surface 3b, respectively.
  • the area (width) of the opening 3q is smaller than the area (width) of the opening 3c when viewed from the thickness direction of the substrate 2.
  • the frame 3 is attached to the substrate 2.
  • the first surface 2a of the substrate 2 and the fourth surface 3b of the frame 3 are fixed to each other by the adhesive layer 4.
  • the material of the adhesive layer 4 is, for example, an adhesive material having a small amount of emitted gas (low melting point glass, vacuum adhesive, etc.).
  • the portion of the substrate 2 corresponding to the opening 3c of the frame 3 is measured to move the sample component from the second surface 2b side to the first surface 2a side through the plurality of through holes 2c. It functions as an area R. That is, the measurement region R includes a plurality of through holes 2c.
  • the portion of the substrate 2 corresponding to the opening 3q of the frame 3 functions as a quantitative region Q for performing quantitative mass spectrometry.
  • the quantification region Q includes a plurality of through holes 2c.
  • the area (width) of the quantitative region Q is smaller than the area (width) of the measurement region R.
  • the conductive layer 5 is provided on the first surface 2a side of the substrate 2.
  • the conductive layer 5 is provided directly on the first surface 2a (that is, without interposing another film or the like).
  • the conductive layer 5 includes a region corresponding to the opening 3c and the opening 3q of the frame 3 (that is, a region corresponding to the measurement region R and the quantitative region Q), the opening 3c, and the first surface 2a of the substrate 2. It is formed continuously (integrally) on each inner surface of the opening 3q and on the third surface 3a of the frame 3.
  • the conductive layer 5 covers the portion of the first surface 2a of the substrate 2 in which the through hole 2c is not formed in each of the measurement region R and the quantitative region Q.
  • each through hole 2c is exposed to the opening 3c, and in the quantitative region Q, each through hole 2c is exposed to the opening 3q.
  • the conductive layer 5 may be provided indirectly (that is, via another film or the like) on the first surface 2a.
  • the conductive layer 5 is formed of a conductive material. However, as the material of the conductive layer 5, it is preferable to use a metal having low affinity (reactivity) with the sample and high conductivity for the reasons described below.
  • the conductive layer 5 is formed of a metal such as Cu (copper), which has a high affinity with a sample such as a protein
  • the sample is ionized with Cu atoms attached to the sample molecule in the process of ionizing the sample.
  • the ionized sample is detected as a Cu-added molecule, so that the detection result may be deviated. Therefore, as the material of the conductive layer 5, it is preferable to use a noble metal having a low affinity with the sample.
  • the higher the conductivity of the metal the easier it is to apply a constant voltage easily and stably. Therefore, when the conductive layer 5 is formed of a metal having high conductivity, it is possible to uniformly apply a voltage to the first surface 2a of the substrate 2 in each of the measurement region R and the quantitative region Q. Further, the material of the conductive layer 5 may be a metal capable of efficiently transmitting the energy of the energy rays (for example, laser light) irradiated to the substrate 2 to the sample through the conductive layer 5. preferable.
  • standard laser light used in MALDI Motrix-Assisted Laser Desorption / Ionization
  • the material of the conductive layer 5 is preferably Al, Au (gold), Pt (platinum), or the like, which has high absorbency in the ultraviolet region.
  • the material of the conductive layer 5 is Pt.
  • the conductive layer 5 is formed to have a thickness of about 1 nm to 350 nm by, for example, a plating method, an atomic layer deposition method (ALD: Atomic Layer Deposition), a thin film deposition method, a sputtering method, or the like. In the present embodiment, the thickness of the conductive layer 5 is, for example, about 20 nm.
  • the material of the conductive layer 5 for example, Cr (chromium), Ni (nickel), Ti (titanium) and the like may be used.
  • the derivatizing agent 6 is provided in a plurality of through holes 2c.
  • the fact that the derivatizing agent 6 is provided in the plurality of through holes 2c means that the derivatizing agent 6 is provided around each through hole 2c.
  • the derivatizing agent 6 is provided on the second surface 2b side of the substrate 2.
  • the derivatizing agent 6 is provided directly on the second surface 2b.
  • the derivatizing agent 6 covers a region of the second surface 2b where a plurality of through holes 2c are not formed. A part of the derivatizing agent 6 can be dissolved (mixed) in a component of a sample, a solvent, or the like.
  • the derivatizing agent 6 derivatizes the components of the sample by derivatizing the components of the sample.
  • the derivatizing agent 6 contains at least one selected from a pyrylium compound, a carbamate compound, an isothiocyanate compound, an N-hydroxysuccinimide ester and a hydrazide compound.
  • the pyrylium compound is, for example, a pyrylium salt.
  • the pyrylium compound is, for example, tetrafluoroborate of pyrylium, sulfoacetate of pyrylium, trifluoromethanesulfonate of pyrylium, and the like.
  • the pyrylium compound is, for example, 2,4,6-trimethylpyrylium tetrafluoroborate, 2,4,6-triethyl-3.5-dimethylpyrylium trifluoromethanesulfonate and the like.
  • Carbamate compounds include, for example, 6-aminoquinolyl-N-hydroxysucciimidyl carbamate (AQC), p-dimethylaminoaniryl-N-hydroxysuccinimidyl carbamate (DAHS), 3-aminopyridyl-N-hydroxysque.
  • the isothiocyanate compound is, for example, phenyl isothiocyanate, floorosein isothiocyanate and the like.
  • Hydrazide compounds include, for example, 2,4-dinitrophenylhydrazine, dansylhydrazine, 4- (N, N-dimethylaminosulfonyl) -7-hydrazino-2,1,3-benzoxadiazole, 4-hydrazino-7-. Nitro-2,1,3-benzoxadiazole hydrazine, trimethylacetohydrazidoammonium chloride, 1- (hydrazinocarbonylmethyl) pyridinium chloride, N, N-dimethylglycine hydrazidodihydrochloride and the like.
  • the derivatizing agent 6 is a low-molecular-weight compound (for example, 2,4,6-trimethylpyrrylium tetrafluoroborate, or 2) which has a charge and is highly reactive with the components of the sample (object to be analyzed). , 4,6-triethyl-3.5-dimethylpyrrylium trifluoromethanesulfonate, etc.). According to this, the sensitivity of mass spectrometry can be improved.
  • the derivatizing agent 6 is provided as a coating dry film. Specifically, the derivatizing agent 6 is formed by applying, for example, a liquid material containing the derivatizing agent 6 to the substrate 2 by spraying or the like, and then drying the substrate 2.
  • the thickness of the derivatizing agent 6 is, for example, about 50 to 100 ⁇ m.
  • the derivatizing agent 6 has crystallinity.
  • the average particle size of the crystals of the derivatizing agent 6 is, for example, about 20 to 100 ⁇ m.
  • the average particle size of the crystals of the derivatizing agent 6 is a value obtained by SEM. Specifically, first, an SEM image of the derivatizing agent 6 is acquired. Subsequently, for example, by performing a binarization treatment on the acquired image of the derivatizing agent 6, a plurality of pixel groups corresponding to a plurality of crystals of the derivatizing agent 6 are extracted and adjusted to the size per pixel. Based on this, the diameter of the circle having the average area of the plurality of crystals is obtained as the average particle size of the plurality of crystals.
  • the basicizing agent 7 is provided on the first surface 2a side of the substrate 2.
  • the basicizing agent 7 is indirectly provided on the first surface 2a.
  • the basicizing agent 7 is provided on the first surface 2a via the conductive layer 5.
  • the basicizing agent 7 is directly provided on the surface of the conductive layer 5 opposite to the substrate 2.
  • the basicizing agent 7 is conductive formed on the inner surfaces of the surface 5c, the opening 3c, and the opening 3q of the conductive layer 5 formed in the regions corresponding to the measurement region R and the quantification region Q, respectively. It is provided continuously (integrally) on the surface 5b of the layer 5 and the surface 5a of the conductive layer 5 formed on the third surface 3a of the frame 3.
  • the basicizing agent 7 covers the portion of the surface 5c of the conductive layer 5 in which the through hole 2c is not formed in each of the measurement region R and the quantification region Q. That is, in the measurement region R, each through hole 2c is exposed to the opening 3c, and in the quantitative region Q, each through hole 2c is exposed to the opening 3q.
  • the basicizing agent 7 makes the environment (reaction field) in which the components of the sample are derivatized basic.
  • the basicizing agent 7 is heated with water, for example, a part of the basicizing agent 7 mixes with water vapor to create an atmosphere around the sample support 1 (at least a space in which the components of the sample are derivatized). Make it basic.
  • the basicizing agent 7 it is preferable to use a basicizing agent that is hard to volatilize at the temperature at the time of production or storage and has excellent compound stability.
  • the basicizing agent 7 contains at least one selected from amines, imines, inorganic bases, amines buffers, imines buffers and inorganic base buffers.
  • the basicizing agent 7 is, for example, a borate buffer or N, N-dimethylamipyridine.
  • the basicizing agent 7 is provided as a coating dry film. Specifically, the basicizing agent 7 is formed by applying, for example, a liquid material containing the basicizing agent 7 to the conductive layer 5 by spraying or the like, and then drying the material.
  • the thickness of the basicizing agent 7 is, for example, about 50 to 100 ⁇ m.
  • the basicizing agent 7 has crystallinity.
  • the average particle size of the crystals of the basicizing agent 7 is, for example, about 20 to 100 ⁇ m.
  • the average particle size of the crystals of the basicizing agent 7 is a value obtained by SEM as in the case of the derivatizing agent 6. In FIG. 1, the conductive layer 5 and the basicizing agent 7 are not shown.
  • the sample support 1 is prepared (first step).
  • the sample support 1 may be prepared by being manufactured by the practitioner of the ionization method and the mass spectrometry method, or may be prepared by being transferred from the manufacturer or the seller of the sample support 1. ..
  • the component S1 of the sample S (see FIG. 4C) is introduced into the plurality of through holes 2c of the sample support 1 (second). Process).
  • the sample S is arranged on the mounting surface 8a of the slide glass (mounting portion) 8.
  • the slide glass 8 is a glass substrate on which a transparent conductive film such as an ITO (Indium Tin Oxide) film is formed, and the mounting surface 8a is the surface of the transparent conductive film.
  • a member capable of ensuring conductivity for example, a substrate made of a metal material such as stainless steel may be used as the mounting portion.
  • Sample S is a thin-film biological sample (hydrous sample) such as a tissue section, and is in a frozen state.
  • sample S is obtained by slicing mouse brain S0.
  • the sample support 1 is placed on the sample S so that the second surface 2b (see FIG. 2) of the sample support 1 faces the sample S and the derivatizing agent 6 (see FIG. 2) contacts the sample S. To place.
  • the sample support 1 is arranged so that the sample S is located in the measurement region R when viewed from the thickness direction of the substrate 2.
  • the sample support 1 is fixed to the slide glass 8 using a conductive tape (for example, carbon tape or the like).
  • a conductive tape for example, carbon tape or the like.
  • the finger F contacts the back surface (the surface opposite to the mounting surface 8a) 8b of the slide glass 8.
  • the heat H of the finger F is transmitted to the sample S via the slide glass 8, and the sample S is thawed.
  • the component S1 of the sample S is mixed with a part 61 of the derivatizing agent 6, and at the same time, for example, due to a capillary phenomenon, the first surface is from the second surface 2b side through the plurality of through holes 2c.
  • the component S1 is derivatized by heating the sample support 1 into which the component S1 is introduced (third step).
  • the slide glass 8 on which the sample S and the sample support 1 are arranged is carried into the internal space of the constant temperature bath 80.
  • the constant temperature bath 80 is, for example, a column constant temperature bath, and can maintain the internal space within a predetermined temperature range.
  • a predetermined amount (for example, about 1 ml) of water (not shown) is arranged in the internal space of the constant temperature bath 80.
  • the water is arranged in a state of being absorbed by, for example, a waste cloth such as Kimwipe (registered trademark).
  • the constant temperature bath 80 is operated for, for example, about 15 minutes so that the temperature of the internal space of the constant temperature bath 80 becomes, for example, about 70 ° C.
  • the water absorbed by the Kimwipe evaporates, and the internal space of the constant temperature bath 80 becomes a water vapor atmosphere.
  • a part of the basicizing agent 7 is mixed with water vapor, and the atmosphere around the basicizing agent 7 (a space including at least the first surface 2a of the substrate 2 and a space in which the component S1 is derivatized). Becomes basic.
  • the sample support 1 is heated in a steam atmosphere.
  • the derivatization reaction of the component S1 remaining on the first surface 2a side in a state of being mixed with a part 61 of the derivatizing agent 6 proceeds.
  • the slide glass 8 on which the sample S and the sample support 1 are arranged is carried out from the constant temperature bath 80, and the component S1 is ionized (fourth step). Specifically, the slide glass 8 on which the sample S and the sample support 1 are arranged is arranged on a support portion (for example, a stage) of the mass spectrometer. Subsequently, the voltage application unit of the mass spectrometer is operated to apply a voltage to the conductive layer 5 of the sample support 1 via the mounting surface 8a of the slide glass 8 and the tape, and the laser beam irradiation of the mass spectrometer is performed.
  • the region corresponding to the measurement region R in the first surface 2a of the substrate 2 is irradiated with the laser beam (energy ray) L.
  • the laser beam L is scanned with respect to the region corresponding to the measurement region R.
  • sample ion S2 (ionized component S1) is generated.
  • the above steps correspond to an ionization method using the sample support 1 (in this embodiment, a laser desorption / ionization method).
  • the released sample ion S2 is detected by the ion detection unit of the mass spectrometer (fifth step). Specifically, the emitted sample ion S2 is provided between the sample support 1 and the ion detection unit due to the potential difference generated between the conductive layer 5 to which the voltage is applied and the ground electrode. It moves while accelerating toward, and is detected by the ion detector. Then, the ion detection unit detects the sample ion S2 so as to correspond to the scanning position of the laser beam L, so that the two-dimensional distribution of the molecules constituting the sample S is imaged.
  • the mass spectrometer is a scanning mass spectrometer that uses a time-of-flight mass spectrometry (TOF-MS). The above steps correspond to the mass spectrometry method using the sample support 1.
  • TOF-MS time-of-flight mass spectrometry
  • the sample support 1 has a plurality of through holes opened in the first surface 2a, the second surface 2b opposite to the first surface 2a, and the first surface 2a and the second surface 2b.
  • a substrate 2 having 2c is provided.
  • the sample support 1 is provided in a plurality of through holes 2c and includes a derivatizing agent 6 for derivatizing the component S1. Therefore, the component S1 stays on the first surface 2a side in a state of being mixed with a part 61 of the derivatizing agent 6. As a result, the component S1 can be derivatized while remaining on the first surface 2a side, and the derivatized component S1 can be ionized. Therefore, the ionized sample ion S2 is easily detected, and the decrease in the signal intensity of the sample ion S2 is suppressed. Therefore, according to the sample support 1, highly sensitive mass spectrometry is possible. Specifically, for example, the limit of the concentration of sample S can be extended. That is, even when the amount of the component S1 remaining on the first surface 2a of the substrate 2 is relatively small, it is possible to suppress the decrease in the signal intensity of the sample ion S2 and improve the sensitivity of mass spectrometry. Can be done.
  • the derivatizing agent 6 is provided as a coating dry film. According to this configuration, the derivatizing agent 6 can be easily provided. That is, as compared with the case where the derivatizing agent 6 is provided as a vapor-deposited film or the like, equipment for providing the vapor-deposited film or the like can be omitted.
  • the derivatizing agent 6 contains at least one selected from a pyrylium compound, a carbamate compound, an isothiocyanate compound, an N-hydroxysuccinimide ester and a hydrazide compound. According to this configuration, the derivatization of the component S1 can be efficiently performed by applying the derivatizing agent 6 suitable for the derivatization of the component S1 of the sample S according to the type of the sample S.
  • the sample support 1 is provided with a basicizing agent 7 for making the environment in which the component S1 is derivatized basic.
  • a basicizing agent 7 for making the environment in which the component S1 is derivatized basic.
  • the environment in which the component S1 is derivatized can be easily made basic, and the derivatization of the component S1 can be easily performed.
  • the sample support does not include the basicizing agent 7, when derivatizing the component S1 of the sample S, for example, the sample support on which the sample is placed is subjected to a volatile basic reagent such as triethylamine.
  • a volatile basic reagent such as triethylamine.
  • the constant temperature bath 80 is arranged and operated in, for example, a fume hood.
  • the practitioner of the mass spectrometry method may inhale the basic water vapor released from the internal space.
  • the entire internal space of the constant temperature bath 80 has a basic atmosphere when the component S1 of the sample S is derivatized. Is suppressed. Therefore, even if the constant temperature bath 80 is not arranged in the fume hood, it is possible to suppress the inhalation of basic water vapor by the practitioner of the mass spectrometry method. Therefore, it is possible to facilitate the derivatization of the sample S and reduce the cost.
  • the derivatizing agent 6 is provided on the second surface 2b side
  • the basicizing agent 7 is provided on the first surface 2a side.
  • damage or side reaction of the derivatizing agent 6 due to contact with the basicizing agent 7 can be suppressed.
  • the contact between the component S1 and the basicizing agent 7 can be suppressed. Thereby, the damage or side reaction of the component S1 caused by the contact with the basicizing agent 7 can be suppressed.
  • the basicizing agent 7 is provided as a coating dry film. According to this configuration, the basicizing agent 7 can be easily provided. That is, as compared with the case where the basicizing agent 7 is provided as a vapor-deposited film or the like, equipment for providing the vapor-deposited film or the like can be omitted.
  • the basicizing agent 7 contains at least one selected from amines, imines, inorganic bases, amines buffers, imines buffers and inorganic base buffers. There is. According to this configuration, the derivatization of the component S1 is made more efficient by applying the basicizing agent 7 suitable for the derivatization of the component S1 of the sample S according to the type of the sample S and the type of the derivatizing agent 6. Can be done as a target.
  • the width of each of the plurality of through holes 2c is 1 to 700 nm. According to this configuration, the component S1 can be appropriately retained on the first surface 2a side of the substrate 2.
  • the substrate 2 is formed by anodizing the valve metal or silicon. According to this configuration, the substrate 2 having a plurality of through holes 2c can be easily and surely obtained.
  • the sample support 1 is arranged on the sample S so that the second surface 2b faces the sample S.
  • a sample support 1 provided with the basicizing agent 7 is prepared.
  • the environment in which the component S1 is derivatized can be easily made basic, and the derivatization of the component S1 can be easily performed.
  • a sample support 1 in which the derivatizing agent 6 is provided on the second surface 2b side and the basicizing agent 7 is provided on the first surface 2a side is prepared.
  • the sample support 1 is arranged on the sample S so that the second surface 2b faces the sample S. This makes it possible to suppress damage or side reactions of the derivatizing agent 6 due to contact with the basicizing agent 7.
  • the component S1 is introduced into the plurality of through holes 2c from the second surface 2b side, the contact between the component S1 and the basicizing agent 7 can be suppressed, which is caused by the contact with the basicizing agent 7. It is possible to suppress the damage or side reaction of the component S1.
  • the sample support 1A of the second embodiment includes the frame 3A instead of the frame 3, and the first embodiment is provided. It is mainly different from the sample support 1 in the form.
  • the sample support 1A includes a substrate 2, a frame 3A, a conductive layer 5, a derivatizing agent 6, and a basicizing agent 7.
  • the frame 3A has a third surface 3d, a fourth surface 3e, and a plurality of openings 3f.
  • Each of the plurality of openings 3f defines a plurality of measurement regions R. That is, a plurality of measurement regions R are formed on the substrate 2.
  • a sample S is arranged in each measurement region R.
  • the basicizing agent 7 is provided on the first surface 2a side of the substrate 2.
  • the basicizing agent 7 is indirectly provided on the first surface 2a.
  • the basicizing agent 7 is provided on the first surface 2a via the conductive layer 5.
  • the basicizing agent 7 is directly provided on the surface of the conductive layer 5 opposite to the substrate 2.
  • the basicizing agent 7 includes the surface 5c of the conductive layer 5 formed in the region corresponding to each measurement region R, the surface 5b of the conductive layer 5 formed on the inner surface of each opening 3f, and the frame 3. It is provided continuously (integrally) on the surface 5a of the conductive layer 5 formed on the third surface 3d of the above.
  • the basicizing agent 7 covers the portion of the surface 5c of the conductive layer 5 where the through hole 2c is not formed in each measurement region R. That is, in each measurement region R, each through hole 2c is exposed to the opening 3f.
  • illustration of the adhesive layer 4 the conductive layer 5, the derivatizing agent 6 and the basicizing agent 7 is omitted.
  • the sample support 1A is prepared (first step). Subsequently, the components of the sample S are introduced into the plurality of through holes 2c (see FIG. 7) of the sample support 1A (second step). Specifically, the sample S is arranged in each measurement region R of the sample support 1A.
  • a pipette 9 is used to drop a solution containing the component of sample S from the second surface 2b (see FIG. 7) side of the substrate 2 into the plurality of through holes 2c of each measurement region R.
  • the solution containing the component of sample S is dropped onto the surface provided with the derivatizing agent 6. Specifically, the solution is dropped onto the second surface 2b in a state where the sample support 1 is supported so that the second surface 2b is located above the first surface 2a (derivatizing agent 6). Will be done.
  • the solution is moved from the second surface 2b side into the plurality of through holes 2c in a state where the sample support 1 is supported so that the second surface 2b is located above the first surface 2a. .. Specifically, by maintaining the state in which the second surface 2b is located above the first surface 2a, the solution moves into the through hole 2c due to gravity and capillary action. As a result, the solution is mixed with a part of the derivatizing agent 6 and moves from the second surface 2b side to the first surface 2a side of the substrate 2 through the plurality of through holes 2c. The solution remains on the first surface 2a side in a state of being mixed with a part of the derivatizing agent 6.
  • both the derivatizing agent 6 and the substrate 2 have a higher affinity for water than both the basicizing agent 7 and the conductive layer 5, the solution is added dropwise to the second surface 2b.
  • the sample solution can flow into the through hole 2c more smoothly than when the solution is dropped onto the first surface 2a.
  • the sample support 1 is inverted so that the first surface 2a (basicizing agent 7) is located above the second surface 2b.
  • the first surface 2a (basicizing agent 7) is located above the second surface 2b.
  • the sample support 1 is placed on the mounting surface 8a of the slide glass 8 and carried into the internal space of the constant temperature bath 80 together with the slide glass 8.
  • the sample support 1 is placed on the mounting surface 8a so that the second surface 2b faces the mounting surface 8a.
  • the components of sample S are derivatized (third step).
  • the slide glass 8 on which the sample support 1 is arranged is carried out from the constant temperature bath 80, and the first surface 2a is located above the second surface 2b.
  • the components of sample S are ionized (fourth step).
  • the above steps correspond to the ionization method using the sample support 1A.
  • the released sample ion S2 is detected by the ion detection unit of the mass spectrometer (fifth step).
  • the ion detection unit acquires the mass spectrum of the molecule constituting the sample S by detecting the sample ion S2.
  • the above steps correspond to the mass spectrometry method using the sample support 1A.
  • FIG. 9A is a diagram showing a mass spectrum obtained by the mass spectrometry method of Comparative Example.
  • FIGS. 9 (b) and 9 (c) are diagram showing mass spectra obtained by the respective mass spectrometric methods of the first embodiment and the second embodiment.
  • the sample support used in the mass spectrometric method of the comparative example is different from the sample support 1A in that it does not include the derivatizing agent 6 and the basicizing agent 7.
  • a solution containing the derivatized sample component was added dropwise to the plurality of through holes 2c of the sample support, and then the sample component was ionized.
  • a solution containing the component of the sample was added dropwise to the plurality of through holes 2c of the sample support 1A to derivatize the component, and then the component was ionized.
  • the solution containing the component of the sample was sucked up from the second surface 2b side of the substrate 2 into the plurality of through holes 2c, the component was derivatized, and then the component was ionized.
  • glycine was used as the sample S
  • 2,4,6-trimethylpyrrylium tetrafluoroborate was used as the derivatizing agent 6, respectively, and they were basic.
  • a boric acid buffer was used as shown in FIGS. 9A to 9C.
  • the ion detection intensities in the mass spectrometric methods of the first and second examples are higher than the ion detection intensities in the mass spectrometric method of the comparative example. Is also big.
  • a plurality of measurement regions R each including a plurality of through holes 2c are formed on the substrate 2. According to this configuration, the components of the sample S can be ionized for each of the plurality of measurement regions R.
  • a sample support 1A in which the derivatizing agent 6 is provided on the second surface 2b side and the basicizing agent 7 is provided on the first surface 2a side is prepared.
  • the solution containing the component of the sample S is dropped from the second surface 2b side into the plurality of through holes 2c. This makes it possible to suppress damage or side reactions of the derivatizing agent 6 due to contact with the basicizing agent 7. Further, since the solution is introduced into the plurality of through holes 2c from the second surface 2b side, the contact between the component of the sample S and the basicizing agent 7 can be suppressed, and the contact with the basicizing agent 7 can be suppressed. Damage to the components of sample S or side reactions caused by this can be suppressed.
  • the present disclosure is not limited to each of the embodiments described above.
  • the sample support 1 is provided with the basicizing agent 7 is shown, but the sample support may not be provided with the basicizing agent 7.
  • the sample supports 1B to 1E not provided with the basicizing agent 7 will be described.
  • the sample supports 1B to 1E are mainly different from the sample support 1 in that they do not include the basicizing agent 7.
  • the derivatizing agent 6 may be provided on the second surface 2b side, and the basicizing agent 7 may not be provided on the first surface 2a side.
  • the derivatizing agent 6 may be provided on the first surface 2a side.
  • the derivatizing agent 6 is indirectly provided on the first surface 2a.
  • the derivatizing agent 6 is provided on the first surface 2a via the conductive layer 5.
  • the derivatizing agent 6 is directly provided on the surface of the conductive layer 5 opposite to the substrate 2.
  • the derivatizing agent 6 is a conductive layer formed on the inner surfaces of the surface 5c, the opening 3c, and the opening 3q of the conductive layer 5 formed in the regions corresponding to the measurement region R and the quantification region Q, respectively.
  • the surface 5b of the conductive layer 5 and the surface 5a of the conductive layer 5 formed on the third surface 3a of the frame 3 are continuously (integrally) provided.
  • the derivatizing agent 6 covers the portion of the surface 5c of the conductive layer 5 in which the through hole 2c is not formed in each of the measurement region R and the quantification region Q. That is, in the measurement region R, each through hole 2c is exposed to the opening 3c, and in the quantitative region Q, each through hole 2c is exposed to the opening 3q.
  • FIG. 12 is a diagram showing a two-dimensional distribution image of specific ions obtained by the mass spectrometry method of the third embodiment.
  • the sample support 1C was used to perform mass spectrometry in the same manner as the mass spectrometry method using the sample support 1 described above (see FIGS. 4 and 5).
  • 2,4,6-trimethylpyrrylium tetrafluoroborate was used as the derivatizing agent 6.
  • the sample support 1C into which the component S1 (here, glycine) is introduced is together with Kimwipe or the like in which triethylamine or the like which is a volatile basic reagent (basicizing agent) is absorbed.
  • the derivatizing agent 6 is provided on the second surface 2b side like the sample support 1B, and is provided on the first surface like the sample support 1C. It may be provided on the 2a side.
  • the derivatizing agent 6 is provided on the second surface 2b side like the sample support 1B, and is provided on the first surface 2a side like the sample support 1C. And may be provided on the inner surface of a plurality of through holes 2c.
  • the derivatizing agent 6 is provided directly on the inner surface of the plurality of through holes 2c.
  • the derivatizing agent 6 has a thickness that does not block the through hole 2c. That is, since the thickness of the derivatizing agent 6 is sufficiently small, the conductive layer 5 can function properly.
  • the derivatizing agent 6 may be provided only on the inner surface of the plurality of through holes 2c.
  • the derivatizing agent 6 may be indirectly provided on the inner surface of the plurality of through holes 2c via, for example, a conductive layer. Further, the derivatizing agent 6 may be formed by dip coating.
  • the sample support does not have to include the basicizing agent 7 as in the sample supports 1B to 1E.
  • the sample support 1C into which the component S1 is introduced is volatile, as in the third embodiment described above. It is carried into the internal space of the constant temperature bath 80 together with Kimwipes or the like in which triethylamine or the like which is a basic reagent (basicizing agent) having the above is absorbed. As a result, when the constant temperature bath 80 is operated, the basic reagent absorbed by the Kimwipe is vaporized, and the internal space of the constant temperature bath 80 becomes a basic environment (basic atmosphere).
  • the derivatization reaction of the component S1 remaining on the first surface 2a side in a state of being mixed with a part of the derivatizing agent 6 proceeds. This enables highly sensitive mass spectrometry, similar to the mass spectrometry method using the sample supports 1, 1A.
  • the second step is performed.
  • the sample support 1 may be arranged on the sample S so that the surface 2b faces the sample S.
  • the sample S A solution containing the above components may be dropped from the second surface 2b side into the plurality of through holes 2c.
  • the solution is applied to the first surface 2a of the substrate 2.
  • the solution can be introduced into the plurality of through holes 2c more smoothly than when the solution is dropped from the side into the plurality of through holes 2c.
  • a solution containing the components is dropped from the first surface 2a side into the plurality of through holes 2c. May be good.
  • both the introduction of the solution and the irradiation of the laser beam L can be performed from the first surface 2a side, so that the sample support 1 does not have to be inverted in each step. Therefore, the work in each process becomes easy.
  • the derivatizing agent 6 may be provided as, for example, a vapor deposition film or a sputtering film.
  • the average particle size of the crystals of the derivatizing agent 6 is, for example, 1 to 50 ⁇ m.
  • the average particle size of the crystals of the derivatizing agent 6 is a value measured by SEM. According to this configuration, the average particle size of the crystals of the derivatizing agent 6 can be made relatively small, and the distribution of the crystals of the derivatizing agent 6 can be made uniform.
  • a part 61 of the derivatizing agent 6 mixed with the component S1 is uniformly distributed on the first surface 2a side.
  • the component S1 can be uniformly derivatized at each position on the first surface 2a side, and the spatial resolution in mass spectrometry (here, imaging mass spectrometry) can be enhanced.
  • the basicizing agent 7 may be provided as, for example, a vapor deposition film or a sputtering film.
  • the average particle size of the crystals of the basicizing agent 7 is, for example, 1 to 50 ⁇ m.
  • the average particle size of the crystals of the basicizing agent 7 is a value measured by SEM. According to this configuration, the average particle size of the crystals of the basicizing agent 7 can be made relatively small, and the distribution of the crystals of the basicizing agent 7 can be made uniform. Thereby, the environment in which the component S1 is derivatized can be easily made basic. Further, although the example in which the basicizing agent 7 has crystallinity is shown, the basicizing agent 7 may have volatility.
  • the derivatizing agent 6 is provided on the second surface 2b side and the basicizing agent 7 is provided on the first surface 2a side, as shown in FIG.
  • the derivatizing agent 6 may be provided on the first surface 2a side
  • the basicizing agent 7 may be provided on the second surface 2b side.
  • the sample support 1F is prepared, and in the second step, even if the solution containing the component of the sample S is dropped from the first surface 2a side into the plurality of through holes 2c. good. This makes it possible to suppress damage or side reactions of the derivatizing agent 6 due to contact with the basicizing agent 7.
  • the component of the sample S is introduced into the plurality of through holes 2c from the first surface 2a side, the contact between the component and the basicizing agent 7 can be suppressed, and the contact with the basicizing agent 7 can be suppressed. Damage to the resulting components or side reactions can be suppressed.
  • the sample S is not limited to the water-containing sample, and may be a dry sample.
  • a solution for lowering the viscosity of the sample S for example, an acetonitrile mixture
  • the component S1 of the sample S can be moved to the first surface 2a side of the substrate 2 through the plurality of through holes 2c.
  • the sample support 1 is prepared. Subsequently, as shown in FIGS. 16A and 16B, the components of the sample S are introduced into the plurality of through holes 2c (see FIG. 2) of the sample support 1. Specifically, the sample S is placed on the mounting surface 8a of the slide glass 8.
  • the sample S is a thin-film biological sample (dried sample) such as a tissue section, and is obtained by slicing the biological sample S9. Subsequently, on the mounting surface 8a so that the second surface 2b (see FIG. 2) of the sample support 1 faces the sample S and the derivatizing agent 6 (see FIG. 2) contacts the sample S on the sample S. Place the sample support 1.
  • the sample support 1 is fixed to the slide glass 8 using a conductive tape.
  • the solvent 90 is dropped into the measurement region R by, for example, a pipette 9.
  • the components of the sample S are mixed with the solvent 90 and a part of the derivatizing agent 6, and are passed through the plurality of through holes 2c from the second surface 2b side of the substrate 2 to the first surface 2a (see FIG. 2). Move to the side.
  • the component of sample S remains on the first surface 2a side in a state of being mixed with a part of the derivatizing agent 6.
  • FIG. 17 (a) the components of sample S are derivatized.
  • the components of the sample are ionized.
  • the released sample ion S2 is detected by the ion detection unit of the mass spectrometer.
  • the conductive layer 5 may or may not be provided on the second surface 2b of the substrate 2 and the inner surface of each through hole 2c as long as it is provided on at least the first surface 2a of the substrate 2. May be good.
  • the substrate 2 may have conductivity.
  • the laser beam L may be applied to the first surface 2a while applying a voltage to the substrate 2.
  • the conductive layer 5 can be omitted, and the same effect as in the case of using the sample supports 1 to 1F provided with the conductive layer 5 described above can be obtained.
  • irradiating the first surface 2a with the laser beam L means irradiating the conductive layer 5 with the laser beam L when the sample support 1 includes the conductive layer 5, and the substrate 2 When it has conductivity, it means irradiating the first surface 2a of the substrate 2 with the laser beam L.
  • the derivatizing agent 6 is directly provided on the second surface 2b
  • the derivatizing agent 6 is indirectly provided on the second surface 2b via, for example, a conductive layer or the like. May be good.
  • a plurality of through holes 2c are formed in the entire substrate 2
  • a plurality of through holes 2c are formed in at least a portion of the substrate 2 corresponding to each of the measurement region R and the quantitative region Q. I just need to be there.
  • the mass spectrometer may be a scanning type mass spectrometer or a projection type mass spectrometer.
  • the scanning type a signal of one pixel having a size corresponding to the spot diameter of the laser beam L is acquired for each irradiation of the laser beam L by the irradiation unit. That is, the laser beam L is scanned (changed in the irradiation position) and irradiated for each pixel.
  • the projection type a signal of an image (a plurality of pixels) corresponding to the spot diameter of the laser beam L is acquired for each irradiation of the laser beam L by the irradiation unit.
  • the imaging mass spectrometry can be performed by irradiating the laser beam L once.
  • the signal of the entire measurement region R is signaled by scanning and irradiating the laser beam L in the same manner as in the scanning type. Can be obtained.
  • the area (width) of the opening 3q (quantitative region Q) is smaller than the area (width) of the opening 3c (measurement region R) when viewed from the thickness direction of the substrate 2.
  • the present invention is not limited to this.
  • the area (width) of the opening 3q (quantitative region Q) may be substantially the same as the area (width) of the opening 3c (measurement region R), for example.
  • the frame 3A has a plurality of openings 3f as in the sample support 1A of the second embodiment, the region defined by the opening 3f of one of the substrates 2 is used as the quantitative region. You may.
  • the frame 3 has substantially the same outer shape as the substrate 2 when viewed from the thickness direction of the substrate 2, but the sample support 1 is replaced with the substrate 2.
  • a first substrate that is one size larger than the opening 3c when viewed from the thickness direction of the frame 3 and a second substrate that is one size larger than the opening 3q when viewed from the thickness direction of the frame 3 are provided. You may be.
  • Each of the first substrate and the second substrate may have a circular plate shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

試料支持体(1)は、試料の成分のイオン化に用いられる試料支持体であって、第1表面(2a)、及び第1表面とは反対側の第2表面(2b)、並びに、第1表面及び第2表面に開口する複数の貫通孔(2c)を有する基板(2)と、少なくとも第1表面に設けられた導電層(5)と、複数の貫通孔に設けられ、成分を誘導体化するための誘導体化剤(6)と、を備える。

Description

試料支持体、イオン化方法及び質量分析方法
 本開示は、試料支持体、イオン化方法及び質量分析方法に関する。
 試料の成分のイオン化に用いられる試料支持体として、第1表面、及び第1表面とは反対側の第2表面、並びに、第1表面及び第2表面に開口する複数の貫通孔を有する基板を備えるものが知られている(例えば、特許文献1参照)。
特許第6093492号公報
 上述したような試料支持体を用いた質量分析では、分析対象である試料の種類によって、検出される信号の強度が低くなる場合があり、そのような場合には、質量分析の感度が低下するおそれがある。
 そこで、本開示は、高感度な質量分析を可能にする試料支持体、イオン化方法及び質量分析方法を提供することを目的とする。
 本開示の試料支持体は、試料の成分のイオン化に用いられる試料支持体であって、第1表面、及び第1表面とは反対側の第2表面、並びに、第1表面及び第2表面に開口する複数の貫通孔を有する基板と、少なくとも第1表面に設けられた導電層と、複数の貫通孔に設けられ、成分を誘導体化するための誘導体化剤と、を備える。
 この試料支持体は、第1表面、及び第1表面とは反対側の第2表面、並びに、第1表面及び第2表面に開口する複数の貫通孔を有する基板を備えている。これにより、複数の貫通孔に試料の成分が導入されると、成分が第1表面側に留まる。さらに、導電層に電圧が印加されつつ基板の第1表面に対してレーザ光等のエネルギー線が照射されると、第1表面側における成分にエネルギーが伝達される。このエネルギーによって、成分がイオン化されることで、試料イオンが生じる。ここで、試料支持体は、複数の貫通孔に設けられ、成分を誘導体化するための誘導体化剤を備えている。そのため、成分は、誘導体化剤の一部と混合した状態で第1表面側に留まる。これにより、成分を第1表面側に留まらせた状態で誘導体化することができ、誘導体化された成分をイオン化することができる。したがって、イオン化された試料イオンが検出されやすくなるため、試料イオンの信号の強度が低下するのが抑制される。よって、この試料支持体によれば、高感度な質量分析が可能となる。
 本開示の試料支持体では、誘導体化剤は、塗布乾燥膜として設けられていてもよい。この構成によれば、誘導体化剤を容易に設けることができる。
 本開示の試料支持体では、誘導体化剤は、蒸着膜又はスパッタ膜として設けられていてもよい。この構成によれば、誘導体化剤の結晶の平均粒径を相対的に小さくすると共に誘導体化剤の結晶の分布を均一にすることができる。そのため、成分と混合した誘導体化剤の一部が第1表面側において、均一に分布することになる。これにより、第1表面側のそれぞれの位置において、成分を均一に誘導体化することができ、質量分析における空間分解能を高めることができる。
 本開示の試料支持体では、誘導体化剤は、ピリリウム化合物、カルバメート化合物、イソチオシアネート化合物、N‐ヒドロキシスクシンイミドエステル及びヒドラジド化合物から選択される少なくとも一つを含んでもよい。この構成によれば、試料の種類に応じて、当該試料の成分の誘導体化に適した誘導体化剤を適用することで、成分の誘導体化を効率的に行うことができる。
 本開示の試料支持体は、成分が誘導体化される環境を塩基性にするための塩基性化剤を更に備えてもよい。この構成によれば、成分が誘導体化される環境を容易に塩基性にすることができ、成分の誘導体化を容易に行うことができる。
 本開示の試料支持体では、誘導体化剤は、第2表面側に設けられ、塩基性化剤は、第1表面側に設けられていてもよい。この構成によれば、塩基性化剤との接触に起因する誘導体化剤の損傷又は副反応を抑制することができる。また、試料の成分を第2表面側から複数の貫通孔に導入することによって、成分と塩基性化剤との接触を抑制することができる。これにより、塩基性化剤との接触に起因する成分の損傷又は副反応を抑制することができる。
 本開示の試料支持体では、誘導体化剤は、第1表面側に設けられ、塩基性化剤は、第2表面側に設けられていてもよい。この構成によれば、塩基性化剤との接触に起因する誘導体化剤の損傷又は副反応を抑制することができる。また、試料の成分を第1表面側から複数の貫通孔に導入することによって、成分と塩基性化剤との接触を抑制することができる。これにより、塩基性化剤との接触に起因する成分の損傷又は副反応を抑制することができる。
 本開示の試料支持体では、塩基性化剤は、塗布乾燥膜として設けられていてもよい。この構成によれば、塩基性化剤を容易に設けることができる。
 本開示の試料支持体では、塩基性化剤は、蒸着膜又はスパッタ膜として設けられていてもよい。この構成によれば、塩基性化剤の結晶の平均粒径を相対的に小さくすると共に塩基性化剤の結晶の分布を均一にすることができる。これにより、成分が誘導体化される環境を容易に塩基性にすることができる。
 本開示の試料支持体では、塩基性化剤は、アミン類、イミン類、無機塩基類、アミン類緩衝剤、イミン類緩衝剤及び無機塩基類緩衝剤から選択される少なくとも一つを含んでもよい。この構成によれば、試料の種類及び誘導体化剤の種類に応じて、当該試料の成分の誘導体化に適した塩基性化剤を適用することで、成分の誘導体化を効率的に行うことができる。
 本開示の試料支持体では、複数の貫通孔のそれぞれの幅は、1~700nmであってもよい。この構成によれば、基板の第1表面側において試料の成分を適切に保持することができる。
 本開示の試料支持体では、基板は、バルブ金属又はシリコンを陽極酸化することにより形成されていてもよい。この構成によれば、複数の貫通孔を有する基板を容易に且つ確実に得ることができる。
 本開示の試料支持体では、基板には、それぞれが複数の貫通孔を含む複数の測定領域が形成されていてもよい。この構成によれば、複数の測定領域ごとに試料の成分のイオン化を行うことができる。
 本開示の試料支持体は、試料の成分のイオン化に用いられる試料支持体であって、第1表面、及び第1表面とは反対側の第2表面、並びに、第1表面及び第2表面に開口する複数の貫通孔を有する導電性の基板と、複数の貫通孔に設けられ、成分を誘導体化するための誘導体化剤と、を備える。
 この試料支持体によれば、導電層を省略することができると共に、上述したように導電層を備える試料支持体と同様の効果を得ることができる。
 本開示のイオン化方法は、誘導体化剤を備える試料支持体を用意する第1工程と、試料の成分を複数の貫通孔に導入する第2工程と、成分が導入された試料支持体を塩基性環境で加熱することにより、成分を誘導体化する第3工程と、導電層に電圧を印加しつつ第1表面に対してエネルギー線を照射することにより、成分をイオン化する第4工程と、を備える。
 このイオン化方法では、複数の貫通孔に試料の成分が導入されると、成分が第1表面側に留まる。さらに、導電層に電圧が印加されつつ基板の第1表面に対してエネルギー線が照射されると、第1表面側における成分にエネルギーが伝達される。このエネルギーによって、成分がイオン化されることで、試料イオンが生じる。ここで、試料支持体は、複数の貫通孔に設けられ、成分を誘導体化するための誘導体化剤を備えている。そのため、成分は、誘導体化剤の一部と混合した状態で第1表面側に留まる。これにより、成分を第1表面側に留まらせた状態で試料支持体を塩基性環境で加熱することで、成分を誘導体化することができ、誘導体化された成分をイオン化することができる。したがって、イオン化された試料イオンが検出されやすくなるため、試料イオンの信号の強度が低下するのが抑制される。よって、この試料支持体によれば、高感度な質量分析が可能となる。
 本開示のイオン化方法では、第2工程においては、第2表面が試料に対向するように試料上に試料支持体を配置してもよい。これにより、イメージング質量分析を高感度にすることができる。すなわち、試料の成分が、第2表面側から各貫通孔を介して第1表面側に移動するため、第1表面側に移動した成分においては、試料の位置情報(試料を構成する分子の二次元分布情報)が維持されている。この状態で、導電層に電圧が印加されつつ第1表面に対してエネルギー線が照射されると、試料の位置情報が維持されつつ成分がイオン化される。これにより、イメージング質量分析における画像の解像度を向上させることができる。
 本開示のイオン化方法では、第2工程においては、成分を含む溶液を第2表面側から複数の貫通孔に対して滴下してもよい。これにより、誘導体化剤及び基板の方が導電層よりも溶液に対する親和性が高い場合に、溶液を基板の第1表面側から複数の貫通孔に対して滴下する場合よりもスムーズに溶液を複数の貫通孔に導入することができる。
 本開示のイオン化方法では、第2工程においては、成分を含む溶液を第1表面側から複数の貫通孔に対して滴下してもよい。これにより、溶液の導入及びエネルギー線の照射の両方を、第1表面側から行うことができるため、各工程において試料支持体を反転しなくてもよい。そのため、各工程における作業が容易となる。
 本開示のイオン化方法は、誘導体化剤及び塩基性化剤を備える試料支持体を用意する第1工程と、試料の成分を複数の貫通孔に導入する第2工程と、成分が導入された試料支持体を加熱することにより、成分を誘導体化する第3工程と、導電層に電圧を印加しつつ第1表面に対してエネルギー線を照射することにより、成分をイオン化する第4工程と、を備える。
 このイオン化方法では、第1工程においては、塩基性化剤を備える試料支持体を用意する。これにより、成分が誘導体化される環境を容易に塩基性にすることができ、成分の誘導体化を容易に行うことができる。
 本開示のイオン化方法では、第1工程においては、誘導体化剤が第2表面側に設けられ、塩基性化剤が第1表面側に設けられた試料支持体を用意し、第2工程においては、第2表面が試料に対向するように試料上に試料支持体を配置してもよい。これにより、塩基性化剤との接触に起因する誘導体化剤の損傷又は副反応を抑制することができる。また、試料の成分が第2表面側から複数の貫通孔に導入されるため、成分と塩基性化剤との接触を抑制することができ、塩基性化剤との接触に起因する成分の損傷又は副反応を抑制することができる。
 本開示のイオン化方法では、第1工程においては、誘導体化剤が第2表面側に設けられ、塩基性化剤が第1表面側に設けられた試料支持体を用意し、第2工程においては、成分を含む溶液を第2表面側から複数の貫通孔に対して滴下してもよい。これにより、塩基性化剤との接触に起因する誘導体化剤の損傷又は副反応を抑制することができる。また、試料の成分が第2表面側から複数の貫通孔に導入されるため、成分と塩基性化剤との接触を抑制することができ、塩基性化剤との接触に起因する成分の損傷又は副反応を抑制することができる。
 本開示のイオン化方法では、第1工程においては、誘導体化剤が第1表面側に設けられ、塩基性化剤が第2表面側に設けられた試料支持体を用意し、第2工程においては、成分を含む溶液を第1表面側から複数の貫通孔に対して滴下してもよい。これにより、塩基性化剤との接触に起因する誘導体化剤の損傷又は副反応を抑制することができる。また、試料の成分が第1表面側から複数の貫通孔に導入されるため、成分と塩基性化剤との接触を抑制することができ、塩基性化剤との接触に起因する成分の損傷又は副反応を抑制することができる。
 本開示のイオン化方法は、導電性の基板を備える試料支持体を用意する第1工程と、試料の成分を複数の貫通孔に導入する第2工程と、成分が導入された試料支持体を塩基性環境で加熱することにより、成分を誘導体化する第3工程と、基板に電圧を印加しつつ第1表面に対してエネルギー線を照射することにより、成分をイオン化する第4工程と、を備える。
 このイオン化方法によれば、導電層を省略することができると共に、上述したように導電層を備える試料支持体を用いる場合と同様の効果を得ることができる。
 本開示の質量分析方法は、上記のイオン化方法の各工程と、イオン化された成分を検出する第5工程と、を備える。
 この質量分析方法によれば、上述したように、高感度な質量分析が可能となる。
 本開示によれば、高感度な質量分析を可能にする試料支持体、イオン化方法及び質量分析方法を提供することができる。
図1は、第1実施形態の試料支持体の平面図である。 図2は、図1に示されるII-II線に沿っての試料支持体の断面図である。 図3は、図1に示される試料支持体の基板の拡大像である。 図4は、図1に示される試料支持体を用いた質量分析方法の工程を示す図である。 図5は、図1に示される試料支持体を用いた質量分析方法の工程を示す図である。 図6は、第2実施形態の試料支持体の平面図及び断面図である。 図7は、図6に示される試料支持体の断面図である。 図8は、図6に示される試料支持体を用いた質量分析方法の工程を示す図である。 図9は、比較例、第1実施例及び第2実施例のそれぞれの質量分析方法によって得られたマススペクトルを示す図である。 図10は、変形例の試料支持体の断面図である。 図11は、変形例の試料支持体の断面図である。 図12は、第3実施例の質量分析方法によって得られた特定イオンの二次元分布像を示す図である。 図13は、変形例の試料支持体の断面図である。 図14は、変形例の試料支持体の断面図である。 図15は、変形例の試料支持体の断面図である。 図16は、変形例の質量分析方法の工程を示す図である。 図17は、変形例の質量分析方法の工程を示す図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
[試料支持体の構成]
 図1及び図2に示されるように、試料の成分のイオン化に用いられる試料支持体1は、基板2と、フレーム3と、導電層5と、誘導体化剤6と、塩基性化剤7と、を備えている。基板2は、例えば、絶縁性材料によって長方形板状に形成されている。基板2の一辺の長さは、例えば数cm程度である。基板2の厚さは、例えば1~50μmである。基板2は、第1表面2a及び第2表面2b並びに複数の貫通孔2cを有している。第2表面2bは、第1表面2aとは反対側の表面である。
 複数の貫通孔2cは、基板2の厚さ方向(第1表面2a及び第2表面2bに垂直な方向)に沿って延在しており、第1表面2a及び第2表面2bのそれぞれに開口している。本実施形態では、複数の貫通孔2cは、基板2に一様に(均一な分布で)形成されている。基板2の厚さ方向から見た場合における貫通孔2cの形状は、例えば略円形である。複数の貫通孔2cのそれぞれの幅は、例えば1~700nmである。
 貫通孔2cの幅は、以下のようにして取得される値である。まず、基板2の第1表面2a及び第2表面2bのそれぞれの画像を取得する。図3は、基板2の第1表面2aの一部のSEM画像の一例を示している。当該SEM画像において、黒色の部分は貫通孔2cであり、白色の部分は貫通孔2c間の隔壁部である。続いて、取得した第1表面2aの画像に対して例えば二値化処理を施すことで、測定領域R内の複数の第1開口(貫通孔2cの第1表面2a側の開口)に対応する複数の画素群を抽出し、1画素当たりの大きさに基づいて、第1開口の平均面積を有する円の直径を取得する。同様に、取得した第2表面2bの画像に対して例えば二値化処理を施すことで、測定領域R内の複数の第2開口(貫通孔2cの第2表面2b側の開口)に対応する複数の画素群を抽出し、1画素当たりの大きさに基づいて、第2開口の平均面積を有する円の直径を取得する。そして、第1表面2aについて取得した円の直径と第2表面2bについて取得した円の直径との平均値を貫通孔2cの幅として取得する。
 図3に示されるように、基板2には、略一定の幅を有する複数の貫通孔2cが一様に形成されている。測定領域Rにおける貫通孔2cの開口率(基板2の厚さ方向から見た場合に測定領域Rに対して全ての貫通孔2cが占める割合)は、実用上は10~80%であり、特に20~40%であることが好ましい。複数の貫通孔2cの大きさは互いに不揃いであってもよいし、部分的に複数の貫通孔2c同士が互いに連結していてもよい。
 図3に示される基板2は、Al(アルミニウム)を陽極酸化することにより形成されたアルミナポーラス皮膜である。具体的には、Al基板に対して陽極酸化処理を施し、酸化された表面部分をAl基板から剥離することにより、基板2を得ることができる。なお、基板2は、Ta(タンタル)、Nb(ニオブ)、Ti(チタン)、Hf(ハフニウム)、Zr(ジルコニウム)、Zn(亜鉛)、W(タングステン)、Bi(ビスマス)、Sb(アンチモン)等のAl以外のバルブ金属を陽極酸化することにより形成されてもよいし、Si(シリコン)を陽極酸化することにより形成されてもよい。
 図1及び図2に示されるように、フレーム3は、基板2の厚さ方向から見た場合に基板2とほぼ同じ外形を有している。フレーム3は、第3表面3a及び第4表面3b、並びに、開口3c及び開口3qを有している。第4表面3bは、第3表面3aとは反対側の表面であり、基板2側の表面である。開口3c及び開口3qは、第3表面3a及び第4表面3bのそれぞれに開口している。基板2の厚さ方向から見た場合に、開口3qの面積(幅)は、開口3cの面積(幅)よりも小さい。フレーム3は、基板2に取り付けられている。本実施形態では、基板2の第1表面2aと、フレーム3の第4表面3bとが、接着層4によって互いに固定されている。接着層4の材料は、例えば、放出ガスの少ない接着材料(低融点ガラス、真空用接着剤等)である。
 試料支持体1では、基板2のうちフレーム3の開口3cに対応する部分が、複数の貫通孔2cを介して第2表面2b側から第1表面2a側に試料の成分を移動させるための測定領域Rとして機能する。つまり、測定領域Rは、複数の貫通孔2cを含んでいる。試料支持体1では、基板2のうちフレーム3の開口3qに対応する部分が、定量質量分析を行うための定量領域Qとして機能する。定量領域Qは、複数の貫通孔2cを含んでいる。基板2の厚さ方向から見た場合に、定量領域Qの面積(幅)は、測定領域Rの面積(幅)よりも小さい。このようなフレーム3によって、試料支持体1のハンドリングが容易化すると共に、温度変化等に起因する基板2の変形が抑制される。
 導電層5は、基板2の第1表面2a側に設けられている。導電層5は、第1表面2aに直接的に(すなわち、別の膜等を介さずに)設けられている。具体的には、導電層5は、基板2の第1表面2aのうちフレーム3の開口3c及び開口3qに対応する領域(すなわち、測定領域R及び定量領域Qに対応する領域)、開口3c及び開口3qのそれぞれの内面、及びフレーム3の第3表面3aに一続きに(一体的に)形成されている。導電層5は、測定領域R及び定量領域Qのそれぞれにおいて、基板2の第1表面2aのうち貫通孔2cが形成されていない部分を覆っている。つまり、測定領域Rにおいては、各貫通孔2cが開口3cに露出し、定量領域Qにおいては、各貫通孔2cが開口3qに露出している。なお、導電層5は、第1表面2aに間接的に(すなわち、別の膜等を介して)設けられていてもよい。
 導電層5は、導電性材料によって形成されている。ただし、導電層5の材料としては、以下に述べる理由により、試料との親和性(反応性)が低く且つ導電性が高い金属が用いられることが好ましい。
 例えば、タンパク質等の試料と親和性が高いCu(銅)等の金属によって導電層5が形成されていると、試料のイオン化の過程において、試料分子にCu原子が付着した状態で試料がイオン化された結果、イオン化された試料がCu付加分子として検出されるため、検出結果がずれるおそれがある。したがって、導電層5の材料としては、試料との親和性が低い貴金属が用いられることが好ましい。
 一方、導電性の高い金属ほど一定の電圧を容易に且つ安定して印加し易くなる。そのため、導電性が高い金属によって導電層5が形成されていると、測定領域R及び定量領域Qのそれぞれにおいて基板2の第1表面2aに均一に電圧を印加することが可能となる。また、導電層5の材料としては、基板2に照射されたエネルギー線(例えば、レーザ光等)のエネルギーを、導電層5を介して試料に効率的に伝えることが可能な金属であることが好ましい。例えば、MALDI(Matrix-Assisted Laser Desorption/Ionization)等で使用される標準的なレーザ光(例えば波長が355nm程度の三倍高調波Nd、YAGレーザ又は波長が337nm程度の窒素レーザ等)が照射される場合には、導電層5の材料としては、紫外域における吸収性の高いAl、Au(金)又はPt(白金)等であることが好ましい。
 以上の観点から、導電層5の材料としては、例えば、Au、Pt等が用いられることが好ましい。本実施形態では、導電層5の材料は、Ptである。導電層5は、例えば、メッキ法、原子層堆積法(ALD:Atomic Layer Deposition)、蒸着法、スパッタ法等によって、厚さ1nm~350nm程度に形成される。本実施形態では、導電層5の厚さは、例えば20nm程度である。なお、導電層5の材料としては、例えば、Cr(クロム)、Ni(ニッケル)、Ti(チタン)等が用いられてもよい。
 誘導体化剤6は、複数の貫通孔2cに設けられている。誘導体化剤6が複数の貫通孔2cに設けられているとは、誘導体化剤6が各貫通孔2cの周辺に設けられていることを意味する。本実施形態では、誘導体化剤6は、基板2の第2表面2b側に設けられている。誘導体化剤6は、第2表面2bに直接的に設けられている。誘導体化剤6は、第2表面2bのうち複数の貫通孔2cが形成されていない領域を覆っている。誘導体化剤6の一部は、試料の成分又は溶媒等に融ける(混合する)ことが可能である。
 誘導体化剤6は、試料の成分と誘導体化反応することによって試料の成分を誘導体化する。誘導体化剤6は、ピリリウム化合物、カルバメート化合物、イソチオシアネート化合物、N‐ヒドロキシスクシンイミドエステル及びヒドラジド化合物から選択される少なくとも一つを含んでいる。ピリリウム化合物は、例えばピリリウム塩である。ピリリウム化合物は、例えば、ピリリウムのテトラフルオロホウ酸塩、ピリリウムのスルホ酢酸塩、又はピリリウムのトリフルオロメタンスルホン酸塩等である。また、ピリリウム化合物は、例えば、2,4,6‐トリメチルピリリウムテトラフルオロホウ酸塩、又は2,4,6‐トリエチル-3.5‐ジメチルピリリウムトリフルオロメタンスルホン酸塩等である。カルバメート化合物は、例えば、6‐アミノキノリル‐N‐ヒドロキシスクシイミジルカルバメート(AQC)、p‐ジメチルアミノアニリル‐N‐ヒドロキシスクシンイミジルカルバメート(DAHS)、3‐アミノピリジル‐N‐ヒドロキシスクシンイミジルカルバメート(APDS)、p‐トリメチルアンモニウムアニリル‐N‐ヒドロキシスクシンイミジルカルバメートアイオダイド(TAHS)、アミノピラジル‐N‐ヒドロキシスクシンイミジルカルバメート、9‐アミノアクリジル‐N‐ヒドロキシスクシンイミジルカルバメート、又は1‐ナフチルアミノ‐N‐ヒドロキシスクシンイミジルカルバメート等である。イソチオネート化合物は、例えば、フェニルイソチオシアネート、フロオロセインイソチオシアネート等である。ヒドラジド化合物は、例えば、2,4‐ジニトロフェニルヒドラジン、ダンシルヒドラジン、4‐(N,N‐ジメチルアミノスルホニル)‐7‐ヒドラジノ‐2,1,3‐ベンゾオキサジアゾール、4‐ヒドラジノ‐7‐ニトロ‐2,1,3‐ベンゾオキサジアゾールヒドラジン、トリメチルアセトヒドラジドアンモニウムクロリド、1‐(ヒドラジノカルボニルメチル)ピリジニウムクロリド、N,N‐ジメチルグリシンヒドラジドジヒドロクロリド等である。また、誘導体化剤6は、電荷を有し試料の成分(分析対象物)との反応性の高い低分子の化合物(例えば、2,4,6‐トリメチルピリリウムテトラフルオロホウ酸塩、又は2,4,6‐トリエチル‐3.5‐ジメチルピリリウムトリフルオロメタンスルホン酸塩等)であることがより好ましい。これによれば、質量分析の感度を向上させることができる。誘導体化剤6は、塗布乾燥膜として設けられている。具体的には、誘導体化剤6は、例えば誘導体化剤6を含む液状の材料をスプレー等によって基板2に塗布した後、乾燥させることによって形成されている。誘導体化剤6の厚さは、例えば50~100μm程度である。誘導体化剤6は、結晶性を有している。誘導体化剤6の結晶の平均粒径は、例えば20~100μm程度である。
 誘導体化剤6の結晶の平均粒径は、SEMによって取得される値である。具体的には、まず、誘導体化剤6のSEM画像を取得する。続いて、取得した誘導体化剤6の画像に対して例えば二値化処理を施すことで、誘導体化剤6の複数の結晶に対応する複数の画素群を抽出し、1画素当たりの大きさに基づいて、複数の結晶の平均面積を有する円の直径を複数の結晶の平均粒径として取得する。
 塩基性化剤7は、基板2の第1表面2a側に設けられている。塩基性化剤7は、第1表面2aに間接的に設けられている。塩基性化剤7は、導電層5を介して第1表面2aに設けられている。塩基性化剤7は、導電層5における基板2とは反対側の表面に直接的に設けられている。具体的には、塩基性化剤7は、測定領域R及び定量領域Qのそれぞれに対応する領域に形成された導電層5の表面5c、開口3c及び開口3qのそれぞれの内面に形成された導電層5の表面5b、及びフレーム3の第3表面3aに形成された導電層5の表面5aに一続きに(一体的に)設けられている。塩基性化剤7は、測定領域R及び定量領域Qのそれぞれにおいて、導電層5の表面5cのうち貫通孔2cが形成されていない部分を覆っている。つまり、測定領域Rにおいては、各貫通孔2cが開口3cに露出し、定量領域Qにおいては、各貫通孔2cが開口3qに露出している。
 塩基性化剤7は、試料の成分が誘導体化される環境(反応場)を塩基性にする。塩基性化剤7が例えば水と共に加熱されると、塩基性化剤7の一部は、水蒸気と混合し、試料支持体1の周囲の雰囲気(少なくとも試料の成分が誘導体化される空間)を塩基性にする。塩基性化剤7としては、製造又は保管時の温度で揮発し難く、化合物安定性が優れた塩基性化剤が用いられるのが好ましい。具体的には、塩基性化剤7は、アミン類、イミン類、無機塩基類、アミン類緩衝剤、イミン類緩衝剤及び無機塩基類緩衝剤から選択される少なくとも一つを含んでいる。塩基性化剤7は、例えば、ほう酸緩衝剤又はN,N‐ジメチルアミピリジンである。塩基性化剤7は、塗布乾燥膜として設けられている。具体的には、塩基性化剤7は、例えば塩基性化剤7を含む液状の材料をスプレー等によって導電層5に塗布した後、乾燥させることによって形成されている。塩基性化剤7の厚さは、例えば50~100μm程度である。塩基性化剤7は、結晶性を有している。塩基性化剤7の結晶の平均粒径は、例えば20~100μm程度である。塩基性化剤7の結晶の平均粒径は、誘導体化剤6と同様に、SEMによって取得される値である。なお、図1においては、導電層5及び塩基性化剤7の図示が省略されている。
[イオン化方法及び質量分析方法]
 次に、試料支持体1を用いたイオン化方法及び質量分析方法について説明する。まず、試料支持体1を用意する(第1工程)。試料支持体1は、イオン化方法及び質量分析方法の実施者によって製造されることにより用意されてもよいし、試料支持体1の製造者又は販売者等から譲渡されることにより用意されてもよい。
 続いて、図4の(a)及び(b)に示されるように、試料Sの成分S1(図4の(c)参照)を試料支持体1の複数の貫通孔2cに導入する(第2工程)。具体的には、スライドグラス(載置部)8の載置面8aに試料Sを配置する。スライドグラス8は、ITO(Indium Tin Oxide)膜等の透明導電膜が形成されたガラス基板であり、載置面8aは、透明導電膜の表面である。なお、スライドグラス8に代えて、導電性を確保し得る部材(例えば、ステンレス等の金属材料等からなる基板等)を載置部として用いてもよい。試料Sは、例えば組織切片等の薄膜状の生体試料(含水試料)であり、凍結された状態にある。本実施形態では、試料Sは、マウスの脳S0をスライスすることによって取得される。続いて、試料支持体1の第2表面2b(図2参照)が試料Sに対向し且つ誘導体化剤6(図2参照)が試料Sに接触するように、試料S上に試料支持体1を配置する。このとき、基板2の厚さ方向から見た場合に試料Sが測定領域R内に位置するように、試料支持体1を配置する。
 続いて、導電性を有するテープ(例えば、カーボンテープ等)を用いて、スライドグラス8に試料支持体1を固定する。続いて、図4の(c)に示されるように、指Fによってスライドグラス8の裏面(載置面8aとは反対側の面)8bに接触する。これにより、指Fの熱Hがスライドグラス8を介して試料Sに伝わり、試料Sが解凍される。試料Sが解凍されると、試料Sの成分S1は、誘導体化剤6の一部61と混合すると共に、例えば毛細管現象によって、複数の貫通孔2cを介して第2表面2b側から第1表面2a側に移動し、例えば表面張力によって第1表面2a側に留まる。つまり、試料Sの成分S1は、誘導体化剤6の一部61と混合した状態で第1表面2a側に留まる。なお、定量領域Qには、定量質量分析を行うための測定試料を含む溶液が滴下される。
 続いて、図5の(a)に示されるように、成分S1が導入された試料支持体1を加熱することにより、成分S1を誘導体化する(第3工程)。具体的には、試料S及び試料支持体1が配置されたスライドグラス8を恒温槽80の内部空間に搬入する。恒温槽80は、例えばカラム恒温槽であり、内部空間を所定の温度範囲に維持することが可能である。恒温槽80の内部空間には、所定量(例えば1ml程度)の水(図示省略)が配置される。当該水は、例えば、キムワイプ(登録商標)等のウエス等に吸収された状態で配置されている。
 続いて、恒温槽80の内部空間の温度が例えば70℃程度となるように、恒温槽80を例えば15分間程度稼働させる。これにより、キムワイプに吸収された水が蒸発し、恒温槽80の内部空間が水蒸気雰囲気となる。また、塩基性化剤7の一部が水蒸気と混合し、塩基性化剤7の周囲の雰囲気(少なくとも基板2の第1表面2aを含む空間であって、成分S1が誘導体化される空間)が塩基性となる。恒温槽80の内部空間では、試料支持体1が水蒸気雰囲気中で加熱される。これにより、誘導体化剤6の一部61と混合した状態で第1表面2a側に留まっている成分S1の誘導体化反応が進行する。
 続いて、図5の(b)に示されるように、試料S及び試料支持体1が配置されたスライドグラス8を恒温槽80から搬出し、成分S1をイオン化する(第4工程)。具体的には、試料S及び試料支持体1が配置されたスライドグラス8を質量分析装置の支持部(例えば、ステージ)上に配置する。続いて、質量分析装置の電圧印加部を動作させて、スライドグラス8の載置面8a及びテープを介して試料支持体1の導電層5に電圧を印加しつつ、質量分析装置のレーザ光照射部を動作させて、基板2の第1表面2aのうち測定領域Rに対応する領域に対してレーザ光(エネルギー線)Lを照射する。このとき、支持部及びレーザ光照射部の少なくとも1つを動作させることにより、測定領域Rに対応する領域に対してレーザ光Lを走査する。
 以上のように導電層5に電圧が印加されつつ基板2の第1表面2aに対してレーザ光Lが照射されると、第1表面2a側に移動し且つ誘導体化された成分S1にエネルギーが伝達されて、成分S1がイオン化されることで、試料イオンS2(イオン化された成分S1)が生じる。以上の工程が、試料支持体1を用いたイオン化方法(本実施形態では、レーザ脱離イオン化方法)に相当する。
 続いて、放出された試料イオンS2を質量分析装置のイオン検出部において検出する(第5工程)。具体的には、放出された試料イオンS2が、電圧が印加された導電層5とグランド電極との間に生じる電位差によって、試料支持体1とイオン検出部との間に設けられた当該グランド電極に向かって加速しながら移動し、イオン検出部によって検出される。そして、イオン検出部が、レーザ光Lの走査位置に対応するように試料イオンS2を検出することにより、試料Sを構成する分子の二次元分布が画像化される。質量分析装置は、飛行時間型質量分析方法(TOF-MS:Time-of-Flight Mass Spectrometry)を利用する走査型質量分析装置である。以上の工程が、試料支持体1を用いた質量分析方法に相当する。
[作用及び効果]
 以上説明したように、試料支持体1は、第1表面2a、及び第1表面2aとは反対側の第2表面2b、並びに、第1表面2a及び第2表面2bに開口する複数の貫通孔2cを有する基板2を備えている。これにより、複数の貫通孔2cに成分S1が導入されると、成分S1が第1表面2a側に留まる。さらに、導電層5に電圧が印加されつつ基板2の第1表面2aに対してレーザ光L等のエネルギー線が照射されると、第1表面2a側における成分S1にエネルギーが伝達される。このエネルギーによって、成分S1がイオン化されることで、試料イオンS2が生じる。ここで、試料支持体1は、複数の貫通孔2cに設けられ、成分S1を誘導体化するための誘導体化剤6を備えている。そのため、成分S1は、誘導体化剤6の一部61と混合した状態で第1表面2a側に留まる。これにより、成分S1を第1表面2a側に留まらせた状態で誘導体化することができ、誘導体化された成分S1をイオン化することができる。したがって、イオン化された試料イオンS2が検出されやすくなるため、試料イオンS2の信号の強度が低下するのが抑制される。よって、試料支持体1によれば、高感度な質量分析が可能となる。具体的には、例えば、試料Sの濃度の限界を広げることができる。すなわち、基板2の第1表面2aに留まる成分S1の量が相対的に少ない場合においても、試料イオンS2の信号の強度が低下するのを抑制することができ、質量分析の感度を向上させることができる。
 また、試料支持体1では、誘導体化剤6が、塗布乾燥膜として設けられている。この構成によれば、誘導体化剤6を容易に設けることができる。すなわち、例えば誘導体化剤6が蒸着膜等として設けられている場合に比べ、蒸着膜等を設けるための設備等を省略することができる。
 また、試料支持体1では、誘導体化剤6が、ピリリウム化合物、カルバメート化合物、イソチオシアネート化合物、N-ヒドロキシスクシンイミドエステル及びヒドラジド化合物から選択される少なくとも一つを含んでいる。この構成によれば、試料Sの種類に応じて、試料Sの成分S1の誘導体化に適した誘導体化剤6を適用することで、成分S1の誘導体化を効率的に行うことができる。
 また、試料支持体1は、成分S1が誘導体化される環境を塩基性にするための塩基性化剤7を備えている。この構成によれば、成分S1が誘導体化される環境を容易に塩基性にすることができ、成分S1の誘導体化を容易に行うことができる。ところで、試料支持体が塩基性化剤7を備えていない場合には、試料Sの成分S1を誘導体化する際に、例えば試料が配置された試料支持体をトリエチルアミン等の揮発性の塩基性試薬と共に加熱することで、恒温槽80の内部空間の全体を塩基性雰囲気にする。その場合には、恒温槽80を例えばドラフトチャンバー内に配置して稼働させる。これは、恒温槽80から試料支持体1を搬出するとき、内部空間から放出する塩基性の水蒸気を質量分析方法の実施者が吸入するおそれがあるためである。上記の構成によれば、試料支持体1が塩基性化剤7を(微量に)備えているため、試料Sの成分S1を誘導体化する際に恒温槽80の内部空間の全体が塩基性雰囲気となるのが抑制される。したがって、恒温槽80をドラフトチャンバー内に配置しなくても、塩基性の水蒸気を質量分析方法の実施者が吸入するのを抑制することができる。よって、試料Sの誘導体化の容易化及びコストの削減を実現することができる。
 また、試料支持体1では、誘導体化剤6が、第2表面2b側に設けられ、塩基性化剤7が、第1表面2a側に設けられている。試料S及び誘導体化剤6は、塩基性化剤7と接触すると損傷し又は副反応が生じる場合がある。上記の構成によれば、塩基性化剤7との接触に起因する誘導体化剤6の損傷又は副反応を抑制することができる。また、成分S1を第2表面2b側から複数の貫通孔2cに導入することによって、成分S1と塩基性化剤7との接触を抑制することができる。これにより、塩基性化剤7との接触に起因する成分S1の損傷又は副反応を抑制することができる。
 また、試料支持体1では、塩基性化剤7が、塗布乾燥膜として設けられている。この構成によれば、塩基性化剤7を容易に設けることができる。すなわち、例えば塩基性化剤7が蒸着膜等として設けられている場合に比べ、蒸着膜等を設けるための設備等を省略することができる。
 また、試料支持体1では、塩基性化剤7が、アミン類、イミン類、無機塩基類、アミン類緩衝剤、イミン類緩衝剤及び無機塩基類緩衝剤から選択される少なくとも一つを含んでいる。この構成によれば、試料Sの種類及び誘導体化剤6の種類に応じて、試料Sの成分S1の誘導体化に適した塩基性化剤7を適用することで、成分S1の誘導体化を効率的に行うことができる。
 また、試料支持体1では、複数の貫通孔2cのそれぞれの幅が、1~700nmである。この構成によれば、基板2の第1表面2a側において成分S1を適切に保持することができる。
 また、試料支持体1では、基板2が、バルブ金属又はシリコンを陽極酸化することにより形成されている。この構成によれば、複数の貫通孔2cを有する基板2を容易に且つ確実に得ることができる。
 また、イオン化方法及び質量分析方法によれば、上述したように、高感度な質量分析が可能となる。
 また、イオン化方法では、第2工程においては、第2表面2bが試料Sに対向するように試料S上に試料支持体1を配置している。これにより、イメージング質量分析を高感度にすることができる。すなわち、成分S1が、第2表面2b側から各貫通孔2cを介して第1表面2a側に移動するため、第1表面2a側に移動した成分S1においては、試料Sの位置情報(試料Sを構成する分子の二次元分布情報)が維持されている。この状態で、導電層5に電圧が印加されつつ第1表面2aに対してレーザ光Lが照射されると、試料Sの位置情報が維持されつつ成分S1がイオン化される。これにより、イメージング質量分析における画像の解像度を向上させることができる。
 また、イオン化方法では、第1工程においては、塩基性化剤7を備える試料支持体1を用意している。これにより、成分S1が誘導体化される環境を容易に塩基性にすることができ、成分S1の誘導体化を容易に行うことができる。
 また、イオン化方法では、第1工程においては、誘導体化剤6が第2表面2b側に設けられ、塩基性化剤7が第1表面2a側に設けられた試料支持体1を用意し、第2工程においては、第2表面2bが試料Sに対向するように試料S上に試料支持体1を配置している。これにより、塩基性化剤7との接触に起因する誘導体化剤6の損傷又は副反応を抑制することができる。また、成分S1が第2表面2b側から複数の貫通孔2cに導入されるため、成分S1と塩基性化剤7との接触を抑制することができ、塩基性化剤7との接触に起因する成分S1の損傷又は副反応を抑制することができる。
[第2実施形態]
[試料支持体の構成]
 図6の(a)、図6の(b)及び図7に示されるように、第2実施形態の試料支持体1Aは、フレーム3に代えてフレーム3Aを備えている点において、第1実施形態の試料支持体1と主に相違している。
 試料支持体1Aは、基板2と、フレーム3Aと、導電層5と、誘導体化剤6と、塩基性化剤7と、を備えている。フレーム3Aは、第3表面3d及び第4表面3e並びに複数の開口3fを有している。複数の開口3fのそれぞれは、複数の測定領域Rを画定している。つまり、基板2には、複数の測定領域Rが形成されている。それぞれの測定領域Rには、試料Sが配置される。
 塩基性化剤7は、基板2の第1表面2a側に設けられている。塩基性化剤7は、第1表面2aに間接的に設けられている。塩基性化剤7は、導電層5を介して第1表面2aに設けられている。塩基性化剤7は、導電層5における基板2とは反対側の表面に直接的に設けられている。具体的には、塩基性化剤7は、各測定領域Rに対応する領域に形成された導電層5の表面5c、各開口3fの内面に形成された導電層5の表面5b、及びフレーム3の第3表面3dに形成された導電層5の表面5aに一続きに(一体的に)設けられている。塩基性化剤7は、各測定領域Rにおいて、導電層5の表面5cのうち貫通孔2cが形成されていない部分を覆っている。つまり、各測定領域Rにおいては、各貫通孔2cが開口3fに露出している。なお、図6の(a)及び(b)においては、接着層4、導電層5、誘導体化剤6及び塩基性化剤7の図示が省略されている。
[イオン化方法及び質量分析方法]
 次に、試料支持体1Aを用いたイオン化方法及び質量分析方法について説明する。まず、図8の(a)に示されるように、試料支持体1Aを用意する(第1工程)。続いて、試料Sの成分を試料支持体1Aの複数の貫通孔2c(図7参照)に導入する(第2工程)。具体的には、試料支持体1Aの各測定領域Rに試料Sを配置する。本実施形態では、例えばピペット9によって、試料Sの成分を含む溶液を基板2の第2表面2b(図7参照)側から各測定領域Rの複数の貫通孔2cに対して滴下する。つまり、試料Sの成分を含む溶液は、誘導体化剤6が設けられた表面に対して滴下される。具体的には、第1表面2a(誘導体化剤6)に対して第2表面2bが上側に位置するように試料支持体1が支持された状態で、第2表面2bに対して溶液が滴下される。
 続いて、第1表面2aに対して第2表面2bが上側に位置するように試料支持体1が支持された状態で、溶液が第2表面2b側から複数の貫通孔2c内に移動させられる。具体的には、第1表面2aに対して第2表面2bが上側に位置する状態が維持されることにより、溶液が重力及び毛細管現象によって貫通孔2c内に移動する。これにより、溶液は、誘導体化剤6の一部と混合すると共に、複数の貫通孔2cを介して基板2の第2表面2b側から第1表面2a側に移動する。溶液は、誘導体化剤6の一部と混合した状態で第1表面2a側に留まる。ここで、誘導体化剤6及び基板2の両方が塩基性化剤7及び導電層5の両方よりも水に対する親和性が高い場合には、第2表面2bに対して溶液を滴下することにより、第1表面2aに対して溶液を滴下する場合よりもスムーズに試料溶液を貫通孔2c内に流入させることができる。
 続いて、図8の(b)に示されるように、試料支持体1が、第2表面2bに対して第1表面2a(塩基性化剤7)が上側に位置するように反転させられ、第2表面2bに対して第1表面2aが上側に位置する状態で、スライドグラス8の載置面8aに載置され、スライドグラス8と共に恒温槽80の内部空間に搬入される。試料支持体1は、載置面8aに第2表面2bが対向するように載置面8aに載置される。続いて、試料Sの成分を誘導体化する(第3工程)。続いて、図8の(c)に示されるように、試料支持体1が配置されたスライドグラス8を恒温槽80から搬出し、第2表面2bに対して第1表面2aが上側に位置する状態で、試料Sの成分をイオン化する(第4工程)。以上の工程が、試料支持体1Aを用いたイオン化方法に相当する。続いて、放出された試料イオンS2を質量分析装置のイオン検出部において検出する(第5工程)。イオン検出部は、試料イオンS2を検出することにより、試料Sを構成する分子のマススペクトルを取得する。以上の工程が、試料支持体1Aを用いた質量分析方法に相当する。
 以上説明したように、試料支持体1Aによれば、試料支持体1と同様に、高感度な質量分析が可能となる。図9の(a)は、比較例の質量分析方法によって得られたマススペクトルを示す図である。図9の(b)及び(c)のそれぞれは、第1実施例及び第2実施例のそれぞれの質量分析方法によって得られたマススペクトルを示す図である。比較例の質量分析方法において用いられた試料支持体は、誘導体化剤6及び塩基性化剤7を備えていない点で試料支持体1Aと相違している。比較例では、誘導体化された試料の成分を含む溶液を試料支持体の複数の貫通孔2cに対して滴下した後、試料の成分をイオン化した。第1実施例では、試料の成分を含む溶液を試料支持体1Aの複数の貫通孔2cに対して滴下し、成分を誘導体化した後、成分をイオン化した。第2実施例では、試料の成分を含む溶液を基板2の第2表面2b側から複数の貫通孔2cに吸い上げ、成分を誘導体化した後、成分をイオン化した。第1実施例及び第2実施例では、それぞれ、試料Sとしては、グリシンが用いられ、誘導体化剤6としては、2,4,6‐トリメチルピリリウムテトラフルオロホウ酸塩が用いられ、塩基性化剤7としては、ほう酸緩衝剤が用いられた。図9の(a)~(c)に示されるように、第1実施例及び第2実施例の質量分析方法でのイオンの検出強度は、比較例の質量分析方法でのイオンの検出強度よりも大きい。
 また、試料支持体1Aでは、基板2には、それぞれが複数の貫通孔2cを含む複数の測定領域Rが形成されている。この構成によれば、複数の測定領域Rごとに試料Sの成分のイオン化を行うことができる。
 また、イオン化方法では、第1工程においては、誘導体化剤6が第2表面2b側に設けられ、塩基性化剤7が第1表面2a側に設けられた試料支持体1Aを用意し、第2工程においては、試料Sの成分を含む溶液を第2表面2b側から複数の貫通孔2cに対して滴下している。これにより、塩基性化剤7との接触に起因する誘導体化剤6の損傷又は副反応を抑制することができる。また、溶液が第2表面2b側から複数の貫通孔2cに導入されるため、試料Sの成分と塩基性化剤7との接触を抑制することができ、塩基性化剤7との接触に起因する試料Sの成分の損傷又は副反応を抑制することができる。
[変形例]
 本開示は、上述した各実施形態に限定されない。第1実施形態では、試料支持体1が塩基性化剤7を備えている例を示したが、試料支持体は、塩基性化剤7を備えていなくてもよい。以下、塩基性化剤7を備えていない試料支持体1B~1Eについて説明する。試料支持体1B~1Eは、塩基性化剤7を備えていない点において、試料支持体1と主に相違している。図10に示されるように、試料支持体1Bでは、第2表面2b側には誘導体化剤6が設けられ、第1表面2a側には塩基性化剤7が設けられていなくてもよい。
 また、図11に示されるように、試料支持体1Cでは、誘導体化剤6が、第1表面2a側に設けられていてもよい。誘導体化剤6は、第1表面2aに間接的に設けられている。誘導体化剤6は、導電層5を介して第1表面2aに設けられている。誘導体化剤6は、導電層5における基板2とは反対側の表面に直接的に設けられている。具体的には、誘導体化剤6は、測定領域R及び定量領域Qのそれぞれに対応する領域に形成された導電層5の表面5c、開口3c及び開口3qのそれぞれの内面に形成された導電層5の表面5b、及びフレーム3の第3表面3aに形成された導電層5の表面5aに一続きに(一体的に)設けられている。誘導体化剤6は、測定領域R及び定量領域Qのそれぞれにおいて、導電層5の表面5cのうち貫通孔2cが形成されていない部分を覆っている。つまり、測定領域Rにおいては、各貫通孔2cが開口3cに露出し、定量領域Qにおいては、各貫通孔2cが開口3qに露出している。
 図12は、第3実施例の質量分析方法によって得られた特定イオンの二次元分布像を示す図である。第3実施例では、試料支持体1Cを用いて、上述した試料支持体1を用いた質量分析方法(図4及び図5参照)と同様に質量分析を行った。第3実施例では、誘導体化剤6としては、2,4,6‐トリメチルピリリウムテトラフルオロホウ酸塩が用いられた。なお、第3実施例では、成分S1(ここでは、グリシン)が導入された試料支持体1Cが、揮発性を有する塩基性試薬(塩基性化剤)であるトリエチルアミン等が吸収されたキムワイプ等と共に、恒温槽80の内部空間に搬入される。これにより、恒温槽80が稼働すると、キムワイプに吸収された塩基性試薬が気化し、恒温槽80の内部空間が塩基性環境(塩基性雰囲気)となる。更に、試料支持体1Cが当該塩基性環境中で加熱されると、誘導体化剤6の一部61と混合した状態で第1表面2a側に留まっている成分S1の誘導体化反応が進行する。第3実施例では、図12に示されるように、試料Sの分子量(m/z208)の二次元分布の画像を取得した結果、分子量の分布が確認できた。
 また、図13に示されるように、試料支持体1Dでは、誘導体化剤6が、試料支持体1Bと同様に第2表面2b側に設けられ、且つ、試料支持体1Cと同様に第1表面2a側に設けられていてもよい。
 また、図14に示されるように、試料支持体1Eでは、誘導体化剤6が、試料支持体1Bと同様に第2表面2b側に設けられ、試料支持体1Cと同様に第1表面2a側に設けられ、且つ、複数の貫通孔2cの内面に設けられていてもよい。誘導体化剤6は、複数の貫通孔2cの内面に直接的に設けられている。この場合、誘導体化剤6は、貫通孔2cを塞がない程度の厚さを有している。つまり、誘導体化剤6の厚さが十分に小さいため、導電層5を適切に機能させることができる。また、誘導体化剤6は、複数の貫通孔2cの内面にのみに設けられていてもよい。なお、誘導体化剤6は、例えば導電層等を介して複数の貫通孔2cの内面に間接的に設けられていてもよい。また、誘導体化剤6は、ディップコーティングによって形成されてもよい。
 第2実施形態でも、試料支持体が試料支持体1B~1Eと同様に、塩基性化剤7を備えていなくてもよい。
 塩基性化剤7を備えていない試料支持体を用いた質量分析方法では、第3工程においては、上述した第3実施例と同様に、成分S1が導入された試料支持体1Cが、揮発性を有する塩基性試薬(塩基性化剤)であるトリエチルアミン等が吸収されたキムワイプ等と共に、恒温槽80の内部空間に搬入される。これにより、恒温槽80が稼働すると、キムワイプに吸収された塩基性試薬が気化し、恒温槽80の内部空間が塩基性環境(塩基性雰囲気)となる。更に、試料支持体が当該塩基性環境中で加熱されると、誘導体化剤6の一部と混合した状態で第1表面2a側に留まっている成分S1の誘導体化反応が進行する。これにより、試料支持体1,1Aを用いた質量分析方法と同様に、高感度な質量分析が可能となる。
 また、塩基性化剤7を備えていない試料支持体を用いた質量分析方法では、第2工程においては、試料支持体1を用いた質量分析方法(第1実施形態)と同様に、第2表面2bが試料Sに対向するように試料S上に試料支持体1を配置してもよい。これにより、試料支持体1を用いた質量分析方法と同様に、イメージング質量分析を高感度にすることができる。
 また、塩基性化剤7を備えていない試料支持体を用いた質量分析方法では、第2工程においては、試料支持体1Aを用いた質量分析方法(第2実施形態)と同様に、試料Sの成分を含む溶液を第2表面2b側から複数の貫通孔2cに対して滴下してもよい。これにより、試料支持体1Aを用いた質量分析方法と同様に、誘導体化剤6及び基板2の方が導電層5よりも溶液に対する親和性が高い場合に、溶液を基板2の第1表面2a側から複数の貫通孔2cに対して滴下する場合よりもスムーズに溶液を複数の貫通孔2cに導入することができる。
 また、塩基性化剤7を備えていない試料支持体を用いた質量分析方法では、第2工程においては、成分を含む溶液を第1表面2a側から複数の貫通孔2cに対して滴下してもよい。これにより、溶液の導入及びレーザ光Lの照射の両方を、第1表面2a側から行うことができるため、各工程において試料支持体1を反転しなくてもよい。そのため、各工程における作業が容易となる。
 また、誘導体化剤6が塗布乾燥膜として設けられている例を示したが、誘導体化剤6は、例えば、蒸着膜又はスパッタ膜として設けられていてもよい。この場合、誘導体化剤6の結晶の平均粒径は、例えば1~50μmである。誘導体化剤6の結晶の平均粒径は、SEMによって測定した場合の値である。この構成によれば、誘導体化剤6の結晶の平均粒径を相対的に小さくすると共に誘導体化剤6の結晶の分布を均一にすることができる。そのため、成分S1と混合した誘導体化剤6の一部61が第1表面2a側において、均一に分布することになる。これにより、第1表面2a側のそれぞれの位置において、成分S1を均一に誘導体化することができ、質量分析(ここでは、イメージング質量分析)における空間分解能を高めることができる。
 また、塩基性化剤7が塗布乾燥膜として設けられている例を示したが、塩基性化剤7は、例えば、蒸着膜又はスパッタ膜として設けられていてもよい。この場合、塩基性化剤7の結晶の平均粒径は、例えば1~50μmである。塩基性化剤7の結晶の平均粒径は、SEMによって測定した場合の値である。この構成によれば、塩基性化剤7の結晶の平均粒径を相対的に小さくすると共に塩基性化剤7の結晶の分布を均一にすることができる。これにより、成分S1が誘導体化される環境を容易に塩基性にすることができる。また、塩基性化剤7が結晶性を有している例を示したが、塩基性化剤7は、揮発性を有していてもよい。
 また、第2実施形態では、誘導体化剤6が第2表面2b側に設けられ、塩基性化剤7が第1表面2a側に設けられている例を示したが、図15に示されるように、試料支持体1Fでは、誘導体化剤6が第1表面2a側に設けられ、塩基性化剤7が第2表面2b側に設けられていてもよい。質量分析方法の第1工程においては、試料支持体1Fを用意し、第2工程においては、試料Sの成分を含む溶液を第1表面2a側から複数の貫通孔2cに対して滴下してもよい。これにより、塩基性化剤7との接触に起因する誘導体化剤6の損傷又は副反応を抑制することができる。また、試料Sの成分が第1表面2a側から複数の貫通孔2cに導入されるため、成分と塩基性化剤7との接触を抑制することができ、塩基性化剤7との接触に起因する成分の損傷又は副反応を抑制することができる。
 また、第1実施形態では、試料Sは、含水試料に限定されず、乾燥試料であってもよい。試料Sが乾燥試料である場合には、試料Sの粘性を低くするための溶液(例えばアセトニトリル混合液等)が試料Sに加えられる。これにより、例えば毛細管現象によって、複数の貫通孔2cを介して基板2の第1表面2a側に試料Sの成分S1を移動させることができる。
 具体的には、まず、試料支持体1を用意する。続いて、図16の(a)及び(b)に示されるように、試料Sの成分を試料支持体1の複数の貫通孔2c(図2参照)に導入する。具体的には、スライドグラス8の載置面8aに試料Sを配置する。試料Sは、例えば組織切片等の薄膜状の生体試料(乾燥試料)であり、生体試料S9をスライスすることによって取得される。続いて、試料Sに試料支持体1の第2表面2b(図2参照)が試料Sに対向し且つ誘導体化剤6(図2参照)が試料Sに接触するように、載置面8aに試料支持体1を配置する。続いて、導電性を有するテープを用いて、スライドグラス8に試料支持体1を固定する。続いて、図16の(c)に示されるように、例えば、ピペット9によって、溶媒90を測定領域Rに滴下する。これにより、試料Sの成分は、溶媒90及び誘導体化剤6の一部と混合すると共に、複数の貫通孔2cを介して基板2の第2表面2b側から第1表面2a(図2参照)側に移動する。試料Sの成分は、誘導体化剤6の一部と混合した状態で第1表面2a側に留まる。続いて、図17の(a)に示されるように、試料Sの成分を誘導体化する。続いて、図17の(b)に示されるように、試料の成分をイオン化する。続いて、放出された試料イオンS2を質量分析装置のイオン検出部において検出する。
 また、導電層5は、少なくとも基板2の第1表面2aに設けられていれば、基板2の第2表面2b及び各貫通孔2cの内面に設けられていてもよいし、設けられていなくてもよい。
 また、基板2は、導電性を有していてもよい。質量分析方法において基板2に電圧が印加されつつ第1表面2aに対してレーザ光Lが照射されてもよい。基板2が導電性を有する場合には、導電層5を省略することができると共に、上述した導電層5を備える試料支持体1~1Fを用いる場合と同様の効果を得ることができる。なお、レーザ光Lを第1表面2aに対して照射するとは、試料支持体1が導電層5を備えている場合には、導電層5にレーザ光Lを照射することをいい、基板2が導電性を有している場合には、基板2の第1表面2aにレーザ光Lを照射することをいう。
 また、誘導体化剤6が第2表面2bに直接的に設けられている例を示したが、誘導体化剤6は、例えば導電層等を介して第2表面2bに間接的に設けられていてもよい。
 また、基板2の全体に複数の貫通孔2cが形成されている例を示したが、基板2のうち少なくとも測定領域R及び定量領域Qのそれぞれに対応する部分に複数の貫通孔2cが形成されていればよい。
 また、第1実施形態では、質量分析装置は、走査型の質量分析装置であってもよいし、投影型の質量分析装置であってもよい。走査型の場合、照射部による1回のレーザ光Lの照射毎に、レーザ光Lのスポット径に対応する大きさの1画素の信号が取得される。つまり、1画素毎にレーザ光Lの走査(照射位置の変更)及び照射が行われる。一方、投影型の場合、照射部による1回のレーザ光Lの照射毎に、レーザ光Lのスポット径に対応する画像(複数の画素)の信号が取得される。投影型の場合においてレーザ光Lのスポット径に測定領域Rの全体が含まれる場合には、1回のレーザ光Lの照射によってイメージング質量分析を行うことができる。なお、投影型の場合においてレーザ光Lのスポット径に測定領域Rの全体が含まれない場合には、走査型と同様にレーザ光Lの走査及び照射を行うことにより、測定領域R全体の信号を取得することができる。
 また、第1実施形態では、基板2の厚さ方向から見た場合に、開口3q(定量領域Q)の面積(幅)が、開口3c(測定領域R)の面積(幅)よりも小さい例を示したが、これに限定されない。基板2の厚さ方向から見た場合に、開口3q(定量領域Q)の面積(幅)は、例えば開口3c(測定領域R)の面積(幅)と略同じであってもよい。また、第2実施形態の試料支持体1Aのように、フレーム3Aが複数の開口3fを有している場合には、基板2のうち一つの開口3fによって画定された領域が定量領域として用いられてもよい。
 また、第1実施形態では、フレーム3が、基板2の厚さ方向から見た場合に基板2とほぼ同じ外形を有している例を示したが、試料支持体1は、基板2に代えて、フレーム3の厚さ方向から見た場合に開口3cよりも一回り大きい第1基板と、フレーム3の厚さ方向から見た場合に開口3qよりも一回り大きい第2基板と、を備えていてもよい。第1基板及び第2基板のそれぞれは、円形板状を呈していてもよい。
 1,1A,1B,1C,1D,1E,1F…試料支持体、2…基板、2a…第1表面、2b…第2表面、2c…貫通孔、5…導電層、6…誘導体化剤、7…塩基性化剤、L…レーザ光(エネルギー線)、R…測定領域、S…試料、S1…成分、S2…試料イオン。

Claims (24)

  1.  試料の成分のイオン化に用いられる試料支持体であって、
     第1表面、及び前記第1表面とは反対側の第2表面、並びに、前記第1表面及び前記第2表面に開口する複数の貫通孔を有する基板と、
     少なくとも前記第1表面に設けられた導電層と、
     前記複数の貫通孔に設けられ、前記成分を誘導体化するための誘導体化剤と、を備える、試料支持体。
  2.  前記誘導体化剤は、塗布乾燥膜として設けられている、請求項1に記載の試料支持体。
  3.  前記誘導体化剤は、蒸着膜又はスパッタ膜として設けられている、請求項1に記載の試料支持体。
  4.  前記誘導体化剤は、ピリリウム化合物、カルバメート化合物、イソチオシアネート化合物、N‐ヒドロキシスクシンイミドエステル及びヒドラジド化合物から選択される少なくとも一つを含む、請求項1~3のいずれか一項に記載の試料支持体。
  5.  前記成分が誘導体化される環境を塩基性にするための塩基性化剤を更に備える、請求項1~4のいずれか一項に記載の試料支持体。
  6.  前記誘導体化剤は、前記第2表面側に設けられ、
     前記塩基性化剤は、前記第1表面側に設けられている、請求項5に記載の試料支持体。
  7.  前記誘導体化剤は、前記第1表面側に設けられ、
     前記塩基性化剤は、前記第2表面側に設けられている、請求項5に記載の試料支持体。
  8.  前記塩基性化剤は、塗布乾燥膜として設けられている、請求項5~7のいずれか一項に記載の試料支持体。
  9.  前記塩基性化剤は、蒸着膜又はスパッタ膜として設けられている、請求項5~7のいずれか一項に記載の試料支持体。
  10.  前記塩基性化剤は、アミン類、イミン類、無機塩基類、アミン類緩衝剤、イミン類緩衝剤及び無機塩基類緩衝剤から選択される少なくとも一つを含む、請求項5~9のいずれか一項に記載の試料支持体。
  11.  前記複数の貫通孔のそれぞれの幅は、1~700nmである、請求項1~10のいずれか一項に記載の試料支持体。
  12.  前記基板は、バルブ金属又はシリコンを陽極酸化することにより形成されている、請求項1~11のいずれか一項に記載の試料支持体。
  13.  前記基板には、それぞれが複数の前記貫通孔を含む複数の測定領域が形成されている、請求項1~12のいずれか一項に記載の試料支持体。
  14.  試料の成分のイオン化に用いられる試料支持体であって、
     第1表面、及び前記第1表面とは反対側の第2表面、並びに、前記第1表面及び前記第2表面に開口する複数の貫通孔を有する導電性の基板と、
     前記複数の貫通孔に設けられ、前記成分を誘導体化するための誘導体化剤と、を備える、試料支持体。
  15.  請求項1~4のいずれか一項に記載の試料支持体を用意する第1工程と、
     前記試料の前記成分を前記複数の貫通孔に導入する第2工程と、
     前記成分が導入された前記試料支持体を塩基性環境で加熱することにより、前記成分を誘導体化する第3工程と、
     前記導電層に電圧を印加しつつ前記第1表面に対してエネルギー線を照射することにより、前記成分をイオン化する第4工程と、を備える、イオン化方法。
  16.  前記第2工程においては、前記第2表面が前記試料に対向するように前記試料上に前記試料支持体を配置する、請求項15に記載のイオン化方法。
  17.  前記第2工程においては、前記成分を含む溶液を前記第2表面側から前記複数の貫通孔に対して滴下する、請求項15に記載のイオン化方法。
  18.  前記第2工程においては、前記成分を含む溶液を前記第1表面側から前記複数の貫通孔に対して滴下する、請求項15に記載のイオン化方法。
  19.  請求項5~10のいずれか一項に記載の試料支持体を用意する第1工程と、
     前記試料の前記成分を前記複数の貫通孔に導入する第2工程と、
     前記成分が導入された前記試料支持体を加熱することにより、前記成分を誘導体化する第3工程と、
     前記導電層に電圧を印加しつつ前記第1表面に対してエネルギー線を照射することにより、前記成分をイオン化する第4工程と、を備える、イオン化方法。
  20.  前記第1工程においては、請求項6に記載の試料支持体を用意し、
     前記第2工程においては、前記第2表面が前記試料に対向するように前記試料上に前記試料支持体を配置する、請求項19に記載のイオン化方法。
  21.  前記第1工程においては、請求項6に記載の試料支持体を用意し、
     前記第2工程においては、前記成分を含む溶液を前記第2表面側から前記複数の貫通孔に対して滴下する、請求項19に記載のイオン化方法。
  22.  前記第1工程においては、請求項7に記載の試料支持体を用意し、
     前記第2工程においては、前記成分を含む溶液を前記第1表面側から前記複数の貫通孔に対して滴下する、請求項19に記載のイオン化方法。
  23.  請求項14に記載の試料支持体を用意する第1工程と、
     前記試料の前記成分を前記複数の貫通孔に導入する第2工程と、
     前記成分が導入された前記試料支持体を塩基性環境で加熱することにより、前記成分を誘導体化する第3工程と、
     前記基板に電圧を印加しつつ前記第1表面に対してエネルギー線を照射することにより、前記成分をイオン化する第4工程と、を備える、イオン化方法。
  24.  請求項15~23のいずれか一項に記載のイオン化方法の各工程と、
     イオン化された前記成分を検出する第5工程と、を備える、質量分析方法。
PCT/JP2021/015636 2020-05-01 2021-04-15 試料支持体、イオン化方法及び質量分析方法 WO2021220835A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/921,189 US20230170201A1 (en) 2020-05-01 2021-04-15 Sample support, ionization method, and mass spectrometry method
CN202180032076.0A CN115485548A (zh) 2020-05-01 2021-04-15 试样支承体、离子化方法和质量分析方法
EP21796331.3A EP4135004A4 (en) 2020-05-01 2021-04-15 SAMPLE CARRIER, IONIZATION METHODS AND MASS SPECTROMETRY METHODS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-081184 2020-05-01
JP2020081184A JP7365024B2 (ja) 2020-05-01 2020-05-01 試料支持体、イオン化方法及び質量分析方法

Publications (1)

Publication Number Publication Date
WO2021220835A1 true WO2021220835A1 (ja) 2021-11-04

Family

ID=78300413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015636 WO2021220835A1 (ja) 2020-05-01 2021-04-15 試料支持体、イオン化方法及び質量分析方法

Country Status (5)

Country Link
US (1) US20230170201A1 (ja)
EP (1) EP4135004A4 (ja)
JP (1) JP7365024B2 (ja)
CN (1) CN115485548A (ja)
WO (1) WO2021220835A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069591A1 (ja) * 2005-12-16 2007-06-21 Ajinomoto Co., Inc. 質量分析計によるアミノ酸分析方法
JP2007526446A (ja) * 2003-06-06 2007-09-13 ウオーターズ・インベストメンツ・リミテツド シリコン誘導体上でイオン化脱離を実施する方法、構成および装備
US20080305555A1 (en) * 2005-08-17 2008-12-11 Waters Investments Limited Methods, Compositions and Devices For Performing Ionization Desorption on Silicon Derivatives
JP2009504161A (ja) * 2005-08-11 2009-02-05 バイオトローブ インコーポレイティッド アッセイ、合成及び保管のための装置、並びにその製造法、使用法及び操作法
WO2013031797A1 (ja) * 2011-08-31 2013-03-07 公益財団法人野口研究所 Maldi質量分析法
US20150087550A1 (en) * 2000-02-18 2015-03-26 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and Methods for Parallel Processing of Micro-Volume Liquid Reactions
JP6093492B1 (ja) 2015-09-03 2017-03-08 浜松ホトニクス株式会社 試料支持体、及び試料支持体の製造方法
US20180284124A1 (en) * 2017-04-01 2018-10-04 Michael Joseph Pugia Method for reductive and oxidative mass labeling
WO2019058790A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 レーザ脱離イオン化法、質量分析方法、試料支持体、及び試料支持体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907334B2 (ja) * 2006-03-15 2012-03-28 公益財団法人野口研究所 微量質量分析法
WO2011027819A1 (ja) * 2009-09-02 2011-03-10 公益財団法人野口研究所 質量分析法
US10079139B2 (en) * 2011-03-17 2018-09-18 Kent J. Voorhees Metal oxide laser ionization-mass spectrometry
JP2014006142A (ja) * 2012-06-25 2014-01-16 Shimadzu Corp 糖ペプチドの糖鎖結合位置決定法
JP6233843B2 (ja) * 2014-04-02 2017-11-22 国立研究開発法人産業技術総合研究所 ガス状アルデヒド検出用質量分析用マトリックス
JP2016148641A (ja) * 2015-02-13 2016-08-18 国立研究開発法人産業技術総合研究所 ステロイドホルモン検出用質量分析用マトリックス
JP7285218B2 (ja) * 2017-04-20 2023-06-01 メタボロン,インコーポレイテッド 有機酸代謝物を検出かつ定量する質量分析法
JP6539801B1 (ja) * 2017-09-21 2019-07-03 浜松ホトニクス株式会社 試料支持体
JP6962831B2 (ja) * 2018-02-09 2021-11-05 浜松ホトニクス株式会社 イオン化方法及び試料支持体
WO2019172830A1 (en) * 2018-03-07 2019-09-12 Andren Per Pyridinium, quinolinium, acridinium, pyrylium, chromenylium or xanthylizum reactive desorption and/or laser ablation ionization matrices and use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150087550A1 (en) * 2000-02-18 2015-03-26 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and Methods for Parallel Processing of Micro-Volume Liquid Reactions
JP2007526446A (ja) * 2003-06-06 2007-09-13 ウオーターズ・インベストメンツ・リミテツド シリコン誘導体上でイオン化脱離を実施する方法、構成および装備
JP2009504161A (ja) * 2005-08-11 2009-02-05 バイオトローブ インコーポレイティッド アッセイ、合成及び保管のための装置、並びにその製造法、使用法及び操作法
US20080305555A1 (en) * 2005-08-17 2008-12-11 Waters Investments Limited Methods, Compositions and Devices For Performing Ionization Desorption on Silicon Derivatives
WO2007069591A1 (ja) * 2005-12-16 2007-06-21 Ajinomoto Co., Inc. 質量分析計によるアミノ酸分析方法
WO2013031797A1 (ja) * 2011-08-31 2013-03-07 公益財団法人野口研究所 Maldi質量分析法
JP6093492B1 (ja) 2015-09-03 2017-03-08 浜松ホトニクス株式会社 試料支持体、及び試料支持体の製造方法
US20180284124A1 (en) * 2017-04-01 2018-10-04 Michael Joseph Pugia Method for reductive and oxidative mass labeling
WO2019058790A1 (ja) * 2017-09-21 2019-03-28 浜松ホトニクス株式会社 レーザ脱離イオン化法、質量分析方法、試料支持体、及び試料支持体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135004A4

Also Published As

Publication number Publication date
EP4135004A1 (en) 2023-02-15
CN115485548A (zh) 2022-12-16
US20230170201A1 (en) 2023-06-01
JP7365024B2 (ja) 2023-10-19
EP4135004A4 (en) 2024-08-14
JP2021175950A (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
JP6899295B2 (ja) レーザ脱離イオン化法及び質量分析方法
JP7007845B2 (ja) レーザ脱離イオン化法、質量分析方法、試料支持体、及び試料支持体の製造方法
US11335546B2 (en) Laser desorption/ionization method, mass spectrometry method, sample support body, and manufacturing method of sample support body
WO2020189005A1 (ja) 試料支持体、試料支持体の製造方法、イオン化法及び質量分析方法
WO2021220835A1 (ja) 試料支持体、イオン化方法及び質量分析方法
WO2021176856A1 (ja) 試料支持体、イオン化方法及び質量分析方法
JP6895552B1 (ja) 試料支持体、イオン化方法及び質量分析方法
US11139155B2 (en) Laser desorption/ionization method and mass spectrometry method
JP7041685B2 (ja) レーザ脱離イオン化法及び質量分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021796331

Country of ref document: EP

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE