WO2021220595A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2021220595A1
WO2021220595A1 PCT/JP2021/006600 JP2021006600W WO2021220595A1 WO 2021220595 A1 WO2021220595 A1 WO 2021220595A1 JP 2021006600 W JP2021006600 W JP 2021006600W WO 2021220595 A1 WO2021220595 A1 WO 2021220595A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
stylus
measuring device
thermal expansion
arm portion
Prior art date
Application number
PCT/JP2021/006600
Other languages
English (en)
French (fr)
Inventor
秀樹 森井
拓也 井上
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to CN202180029321.2A priority Critical patent/CN115461593B/zh
Priority to JP2022518620A priority patent/JP7203312B2/ja
Priority to DE112021002520.1T priority patent/DE112021002520T5/de
Publication of WO2021220595A1 publication Critical patent/WO2021220595A1/ja
Priority to US17/976,612 priority patent/US11859969B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/004Scales; Graduations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/56Gauges for measuring angles or tapers, e.g. conical calipers
    • G01B3/563Protractors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a measuring device, and more particularly to a measuring device for measuring the shape, roughness, contour, etc. of the surface of an object to be measured.
  • a measuring device for measuring the shape, roughness, contour, etc. of the surface of the object to be measured is known.
  • a stylus projecting from the tip of a measuring arm is brought into contact with a measurement target surface of an object to be measured and scanned, and a minute vertical movement of the stylus is detected to measure the object to be measured.
  • a surface texture measuring device for measuring the surface texture of a target surface is disclosed.
  • the measuring arm is supported so as to be swingable (circular motion) in the vertical direction with the rotation axis as a fulcrum. Then, using a scale having a scale scale along the direction in which the measuring arm swings, the rotation angle due to the swing of the measuring arm is detected.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a measuring device capable of suppressing the influence of the environmental temperature on the measurement result.
  • the measuring device is provided with a stylus for measuring the surface of the object to be measured, depending on the shape of the surface of the object to be measured.
  • a stylus part that is swingably attached around the center of swing, a scale for measuring the displacement due to the swing of the stylus part, a scale head for reading the scale of the scale, and a stylus part are attached.
  • It is an arm part that is oscillatingly attached around the swing center integrally with the stylus part, and includes an arm part to which a scale is attached, and thermal expansion of the stylus part, the arm part, and the scale.
  • the measuring device is an arc scale formed in an arc shape along the swing direction of the arm portion in the first or second aspect.
  • At least one of the stylus portion, the arm portion and the scale is formed by a plurality of members having different coefficients of thermal expansion. The materials and lengths of the plurality of members are adjusted so as to satisfy the above conditions.
  • the measuring device is provided with a stylus for measuring the surface of the object to be measured, and swings around the swing center according to the shape of the surface of the object to be measured.
  • a tentacle part that can be attached, a scale for measuring the displacement due to the swing of the tentacle part, a scale head for reading the scale of the scale, and a tentacle part are attached and integrated with the tentacle part.
  • An arm that is swingably mounted around the center of swing, with a scale attached, a temperature sensor for measuring the ambient temperature, and the heat of the stylus, arm, and scale.
  • the expansion coefficients are alpha, and ⁇ and gamma, measured values x F of displacement of the tip of the stylus portion, the amount of change in ambient temperature during the measurement of the measured values x F in the case of the [Delta] T, the following equation A control unit for calculating the actual displacement x T of the tip of the stylus is provided.
  • the influence of the environmental temperature on the measurement result can be suppressed.
  • FIG. 1 is a diagram showing a measuring device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a case where the coefficient of thermal expansion of the arm portion and the scale are equal.
  • FIG. 3 is a diagram for explaining the effect of thermal expansion when the coefficient of thermal expansion of the arm portion and the scale are different.
  • FIG. 4 is a diagram showing a measuring device according to the second modification.
  • FIG. 5 is a diagram showing a measuring device according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a measuring device according to a third embodiment of the present invention.
  • FIG. 1 is a diagram showing a measuring device according to the first embodiment of the present invention.
  • a three-dimensional Cartesian coordinate system in which the XY plane is the horizontal plane and the Z direction is the vertical direction (vertical direction) is used.
  • the measuring device 10 is a device for measuring the shape, roughness, contour, etc. of the surface of the object W to be measured.
  • the measuring device 10 is attached to a column (not shown) and can be moved in the XYZ direction with respect to the column by an actuator (not shown) provided on the column.
  • the column to which the measuring device 10 is attached is fixed to a table (not shown) on which the object W to be measured is placed.
  • the measuring device 10 includes a stylus portion 14, an arm portion 16, a swing shaft 20, a scale 22, a swing shaft fixing portion 24, and a scale head 26.
  • the exterior (housing, etc.) of the measuring device 10 is not shown.
  • the stylus portion 14 is fixed so as to be substantially linear with respect to the arm portion 16, and the stylus portion 14 and the arm portion 16 are around the swing shaft 20 fixed to the swing shaft fixing portion 24. It is integrally swingably attached to.
  • the mounting angle of the swing shaft 20 with respect to the column of the measuring device 10 is adjusted so as to be substantially parallel to the XY plane.
  • the stylus portion 14 and the arm portion 16 will be referred to as a swing portion 18.
  • the configuration of the swing portion 18 is not limited to the substantially linear example shown in FIG. 1.
  • the stylus portion 14 or the arm portion 16 has an L-shaped bent portion, and the stylus portion 18 has a stylus.
  • the portion 14 may be attached so that the arm portion 16 is substantially parallel to the portion 14.
  • a stylus 12 is provided at the tip of the stylus portion 14.
  • the stylus 12 extends downward (-Z direction) in the figure.
  • the swinging portion 18 swings according to the height and unevenness of the surface of the object to be measured W at the contact position. Swing around 20.
  • the configuration of the stylus portion 14 is not limited to the example shown in FIG. For example, even if the stylus portion 14 is a T-shaped stylus in which the stylus is provided in the vertical direction in the drawing, or an L-shaped stylus in which the amount of protrusion of the stylus downward in the drawing is longer than that shown in FIG. good.
  • a scale 22 is attached to the scale attachment position 16B on the base end side of the arm portion 16, and the scale 22 is displaced according to the swing of the swing portion 18.
  • the arm portion 16 is a member that connects the swing center 20C of the swing shaft 20 and the scale head 26 (defines the distance between the swing center 20C of the swing shaft 20 and the scale head 26).
  • the scale 22 is an arc scale (angle scale) formed in an arc shape along the swing direction of the arm portion 16, and the rotation angle of the scale 22 (scale head detection angle in FIG. 2) along the arc direction of the scale 22.
  • a scale scale indicating (corresponding to ⁇ ) is formed.
  • the scale 22 coincides with the scale head reading point (reading position) read by the scale head 26 at the center (zero point) of the scale scale of the scale 22 when the swing portion 18 is horizontal (hereinafter referred to as a reference position). It is installed like this.
  • the scale head 26 is a device that reads the displacement of the scale 22 in response to the swing of the swing portion 18.
  • the type of the scale head 26 is not particularly limited, but as the scale head 26, for example, a photoelectric sensor for reading the scale scale or a non-contact type sensor including an image sensor can be used.
  • a control device 50 is connected to the measuring device 10, and the displacement of the scale 22 read by the scale head 26 is output to the control device 50.
  • the control device 50 controls an actuator provided on the column to relatively move the object W to be measured and the stylus 12 of the measurement device 10 while transmitting a displacement detection signal for each position on the surface of the object W to be measured. get. Thereby, the shape, roughness, contour and the like of the surface of the object W to be measured can be measured.
  • the control device 50 includes a control unit 52, an input unit 54, and a display unit 56.
  • a control device 50 for example, a personal computer, a workstation, or the like can be used.
  • the control unit 52 includes a CPU (Central Processing Unit) for controlling each unit of the control device 50, a memory (for example, ROM (Read Only Memory), etc.) in which a control program for the control device 50 and the like is stored, and various types. It is provided with a storage (for example, HDD (Hard Disk Drive)) in which data is stored.
  • the control unit 52 outputs a control signal for controlling each unit of the control device 50 and moves the control signal for controlling the measuring device 10 and the measuring device 10 in response to the operation input from the input unit 54. It outputs a control signal or the like for controlling the actuator or the like for making the actuator.
  • the input unit 54 is a device for receiving an operation input from an operator, and includes, for example, a keyboard, a mouse, a touch panel, and the like.
  • the display unit 56 is a device for displaying an image, for example, an LCD (Liquid Crystal Display).
  • a GUI Graphic User Interface
  • the control device 50 for example, a keyboard, a mouse, a keyboard, a mouse, a keyboard, and the like.
  • measurement results such as the surface shape, roughness, and contour of the object W to be measured are displayed. Will be done.
  • FIG. 2 shows the operation of each part of the measuring device 10 in a simplified manner.
  • the swing portion 18 is tilted by an angle ⁇ from the reference position, and the stylus portion 14, the arm portion 16 and
  • the scale head detection angle ⁇ is equal to the rotation angle ⁇ of the arm portion 16 from the reference position.
  • the displacement x 1 of the tip portion 14E of the stylus portion 14 is represented by the following equation (1).
  • FIG. 3 is a diagram for explaining the effect of thermal expansion when the coefficients of thermal expansion of the arm portion 16 and the scale 22 are different ( ⁇ ⁇ ⁇ ).
  • the coefficient of thermal expansion ⁇ of the arm portion 16 and the coefficient of thermal expansion ⁇ of the scale 22 are different ( ⁇ ⁇ ⁇ ), and the scale 22 is attached to the base end portion of the arm portion 16. .. Therefore, the angle reference center 22C, which is the reference of the angle of the scale 22, deviates from the swing center 20C. That is, ⁇ ⁇ ⁇ .
  • the distance M from the swing center 20C of the swing portion 18 to the scale mounting position 16B of the arm portion 16 ( ⁇ length of the arm portion 16) M is expressed by the following equation (6).
  • ⁇ + ⁇
  • (1-cos ⁇ ) ⁇ 1. Therefore, by selecting the material of each member so as to satisfy the condition of ⁇ ⁇ + ⁇ , the error x err between the true value x T and the calculated value x F of the displacement of the tip portion 14E of the stylus portion 14 can be significantly reduced. It can be made smaller. Thereby, the influence of the environmental temperature T on the measurement result of the measuring device 10 can be suppressed.
  • equation (12) By transforming equation (12), the following equation (14) can be obtained.
  • the stylus portion 14, the scale 22, and the swing shaft fixing portion 24 are each made of a single material, but by combining a plurality of materials, the coefficients of thermal expansion ⁇ , ⁇ , and It is also possible to adjust ⁇ .
  • FIG. 4 is a diagram showing a measuring device according to the second modification.
  • the stylus portion 14 is formed by connecting members 14A, 14B, and 14C made of three materials having different coefficients of thermal expansion.
  • the coefficients of thermal expansion of the members 14A, 14B and 14C are ⁇ 1 , ⁇ 2 and ⁇ 3
  • the lengths are l 1 , l 2 and l 3 , respectively
  • the coefficient of thermal expansion ⁇ of the entire stylus portion 14 is as follows. It is represented by (17).
  • FIG. 5 is a diagram showing a measuring device according to a second embodiment of the present invention.
  • the same components as those in the above embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the measuring device 10-2 includes a replaceable stylus 30 that can be attached to and detached from the measuring device 10-2 instead of the stylus portion 14.
  • the replaceable stylus 30 includes a first member 30A on which the stylus 12 is provided and a second member 30B.
  • the base end portion of the second member 30B has a shape that allows it to be attached (for example, engaged, fitted, etc.) to the stylus mounting base portion 16A.
  • the replaceable stylus 30 and the stylus mounting base 16A are combined to form the stylus portion 32, and the stylus portion 32 and the arm portion 16 are combined to form the swing portion 34.
  • the coefficient of thermal expansion ⁇ of the entire stylus portion 32 including the replaceable stylus 30 and the stylus mounting base 16A is represented by the following equation (18).
  • the coefficient of thermal expansion ⁇ can be adjusted to an arbitrary value depending on the combination of the members constituting the replaceable stylus 30 and the length thereof. Further, since the coefficient of thermal expansion ⁇ can be adjusted only by the replaceable stylus 30, the environmental temperature T can be adjusted even in an existing measuring device (a measuring device in which ⁇ and ⁇ are not adjusted). Can suppress the effect of In this embodiment, a margin may be added to ⁇ as in the first modification.
  • the shape of the stylus mounting base 16A is set to a shape (for example, diameter, fitting hole shape, etc.) to which only the replaceable stylus 30 satisfying the condition of the formula (19) can be mounted. Is preferable. This makes it possible to prevent the interchangeable stylus, which is not suitable for suppressing the influence of the environmental temperature T on the measurement result, from being attached to the measuring device.
  • the thermal expansion coefficient ⁇ of the stylus portion 14, the thermal expansion coefficient ⁇ of the arm portion 16, and the thermal expansion coefficient ⁇ of the scale 22 are satisfied in order to suppress the influence of the change in the environmental temperature on the measurement result. It is also possible to measure the temperature change amount ⁇ T of the environmental temperature T and correct the measurement result by using the temperature change amount ⁇ T.
  • FIG. 6 is a diagram showing a measuring device according to a third embodiment of the present invention.
  • the same components as those in the above embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the measuring device 10-3 includes a temperature sensor 60.
  • the temperature sensor 60 is for measuring the environmental temperature (air temperature) of the environment in which the measurement is performed using the measuring device 10-3, and is provided on the surface of the housing of the measuring device 10-3, for example.
  • the temperature sensor 60 is a contact-type or non-contact-type temperature sensor (for example, a radiation thermometer) for measuring at least one temperature (for example, surface temperature) of the stylus portion 14 and the arm portion 16 as an environmental temperature.
  • a thermistor or the like can be used.
  • the control unit 52 acquires the measured value of the environmental temperature T from the temperature sensor 60 at the time of measuring the displacement x F of the tip portion 14E of the stylus unit 14, and obtains the displacement x F and the environmental temperature T. Associate and store in storage. Then, the control unit 52 calculates the actual displacement x T of the tip portion 14E of the stylus portion 14 based on the displacement x F (measured value) and the temperature change amount ⁇ T of the environmental temperature T. Specifically, the actual displacement x T of the tip portion 14E of the stylus portion 14 is calculated from the displacement x F (measured value) using the correction coefficient c shown in the following equation (20).
  • the correction coefficient c is the coefficient of thermal expansion ⁇ of the stylus portion 14, the coefficient of thermal expansion ⁇ of the arm portion 16, the coefficient of thermal expansion ⁇ of the scale 22, and the environmental temperature T. It is obtained by the amount of temperature change ⁇ T.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

環境温度が測定結果に及ぼす影響を抑制することができる測定装置を提供する。測定装置(10、10-1、10-2)は、被測定物の表面の測定を行うための触針(12)が設けられており、被測定物の表面の形状に応じて揺動中心の回りに揺動可能に取り付けられた触針部(14)と、触針部の揺動による変位を測定するためのスケールと、スケールの目盛りを読み取るためのスケールヘッド(26)と、触針部が取り付けられ、触針部と一体的に揺動中心の回りに揺動可能に取り付けられたアーム部(16)であって、スケールが取り付けられたアーム部とを備え、触針部、アーム部及びスケールの熱膨張係数をそれぞれ、α、β及びγとした場合に、(α+γ)-1/2α≦β≦(α+γ)+1/2αの条件を満たす。

Description

測定装置
 本発明は測定装置に係り、特に被測定物の表面の形状、粗さ又は輪郭等を測定するための測定装置に関する。
 被測定物の表面の形状、粗さ又は輪郭等を測定するための測定装置が知られている。例えば、特許文献1には、測定アームの先端に突設されたスタイラスを被測定物の測定対象面に当接させて走査し、スタイラスの微小上下動を検出することにより、被測定物の測定対象面の表面性状を測定する表面性状測定装置が開示されている。特許文献1に記載の表面性状測定装置では、測定アームが回転軸を支点として上下方向に揺動(円弧運動)可能に支持されている。そして、測定アームが揺動する方向に沿うスケール目盛りを有するスケールを用いて、測定アームの揺動による回転角を検出するようになっている。
特開2020-003436号公報
 上記のような測定装置では、環境温度が変化すると、測定アームの長さが熱膨張により変化してしまう。そのため、スタイラスの変位の測定結果が環境温度に起因して変動してしまうという問題があった。
 本発明はこのような事情に鑑みてなされたもので、環境温度が測定結果に及ぼす影響を抑制することができる測定装置を提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様に係る測定装置は、被測定物の表面の測定を行うための触針が設けられており、被測定物の表面の形状に応じて揺動中心の回りに揺動可能に取り付けられた触針部と、触針部の揺動による変位を測定するためのスケールと、スケールの目盛りを読み取るためのスケールヘッドと、触針部が取り付けられ、触針部と一体的に揺動中心の回りに揺動可能に取り付けられたアーム部であって、スケールが取り付けられたアーム部とを備え、触針部、アーム部及びスケールの熱膨張係数をそれぞれα、β及びγとした場合に、(α+γ)-1/2α≦β≦(α+γ)+1/2αの条件を満たす。
 本発明の第2の態様に係る測定装置は、第1の態様において、触針部、アーム部及びスケールの熱膨張係数が、β=α+γの条件を満たす。
 本発明の第3の態様に係る測定装置は、第1又は第2の態様において、スケールは、アーム部の揺動方向に沿って円弧状に形成された円弧スケールである。
 本発明の第4の態様に係る測定装置は、第1から第3の態様のいずれかにおいて、触針部、アーム部及びスケールのうちの少なくとも1つが、熱膨張係数が異なる複数の部材により形成されており、上記の条件を満たすように、上記の複数の部材の材料及び長さが調整されている。
 本発明の第5の態様に係る測定装置は、被測定物の表面の測定を行うための触針が設けられており、被測定物の表面の形状に応じて揺動中心の回りに揺動可能に取り付けられた触針部と、触針部の揺動による変位を測定するためのスケールと、スケールの目盛りを読み取るためのスケールヘッドと、触針部が取り付けられ、触針部と一体的に揺動中心の回りに揺動可能に取り付けられたアーム部であって、スケールが取り付けられたアーム部と、環境温度を測定するための温度センサと、触針部、アーム部及びスケールの熱膨張係数をそれぞれα、β及びγとし、触針部の先端部の変位の測定値をx、測定値xの測定時の環境温度の変化量をΔTとした場合に、下記の式により、触針部の先端部の実際の変位xを算出する制御部とを備える。
 x=cx
 c=(1+αΔT)/{1+(β-γ)ΔT}
 本発明によれば、環境温度が測定結果に及ぼす影響を抑制することができる。
図1は、本発明の第1の実施形態に係る測定装置を示す図である。 図2は、アーム部とスケールの熱膨張係数が等しい場合を示す図である。 図3は、アーム部とスケールの熱膨張係数が異なる場合の熱膨張の影響を説明するための図である。 図4は、変形例2に係る測定装置を示す図である。 図5は、本発明の第2の実施形態に係る測定装置を示す図である。 図6は、本発明の第3の実施形態に係る測定装置を示す図である。
 以下、添付図面に従って本発明に係る測定装置の実施の形態について説明する。
 [第1の実施形態]
 (測定装置)
 まず、本発明の第1の実施形態に係る測定装置の構成について、図1を参照して説明する。図1は、本発明の第1の実施形態に係る測定装置を示す図である。以下の説明では、XY平面を水平面とし、Z方向を垂直方向(鉛直方向)とする3次元直交座標系を用いる。
 測定装置10は、被測定物Wの表面の形状、粗さ又は輪郭等を測定するための装置である。測定装置10は、コラム(不図示)に取り付けられ、コラムに設けられたアクチュエータ(不図示)により、コラムに対してXYZ方向に移動可能となっている。測定装置10が取り付けられるコラムは、被測定物Wが載置されるテーブル(不図示)に固定されている。
 図1に示すように、測定装置10は、触針部14、アーム部16、揺動軸20、スケール22、揺動軸固定部24及びスケールヘッド26を備える。なお、測定装置10の外装(筐体等)については図示を省略する。
 触針部14は、アーム部16に対して略一直線状になるように固定されており、触針部14及びアーム部16は、揺動軸固定部24に固定された揺動軸20の回りに一体的に揺動可能に取り付けられている。揺動軸20は、XY平面に略平行となるように測定装置10のコラムに対する取付角度が調整されている。以下、触針部14及びアーム部16を揺動部18という。なお、揺動部18の構成は図1に示した略一直線状の例に限定されるものではなく、例えば、触針部14又はアーム部16がL字状の折れ曲がり部を有し、触針部14とがアーム部16が略平行になるように取り付けられていてもよい。
 触針部14の先端には、触針12が設けられている。触針12は、図中下方(-Z方向)に伸びている。テーブルに載置された被測定物Wの表面に触針12を所定の圧力で接触させると、接触位置における被測定物Wの表面の高さ及び凹凸に応じて揺動部18が揺動軸20の回りに揺動する。なお、触針部14の構成は図1に示した例に限定されるものではない。例えば、触針部14の図中上下方向に触針が設けられたT字スタイラス、又は図中下方への触針の突き出し量が図1に示した例よりも長いL字スタイラスであってもよい。
 アーム部16の基端部側のスケール取付位置16Bには、スケール22が取り付けられており、スケール22は、揺動部18の揺動に応じて変位する。アーム部16は、揺動軸20の揺動中心20Cとスケールヘッド26とをつなぐ(揺動軸20の揺動中心20Cとスケールヘッド26との間の距離を規定する)部材である。
 スケール22は、アーム部16の揺動方向に沿って円弧状に形成された円弧スケール(角度スケール)であり、スケール22の円弧方向に沿ってスケール22の回転角度(図2のスケールヘッド検出角度φに相当)を示すスケール目盛りが形成されている。スケール22は、揺動部18が水平な場合に(以下、基準位置という。)、スケール22のスケール目盛りの中心(ゼロ点)スケールヘッド26によって読み取られるスケールヘッド読み取り点(読み取り位置)に一致するように取り付けられている。
 スケールヘッド26は、揺動部18の揺動に応じてスケール22の変位を読み取る装置である。スケールヘッド26の種類は特に限定されないが、スケールヘッド26としては、例えば、スケール目盛りを読み取るための光電センサ又は撮像素子を備える非接触式のセンサを用いることができる。
 本実施形態では、触針部14、アーム部16及びスケール22の熱膨張係数(線熱膨張係数)をそれぞれα、β及びγとした場合に、β=α+γの条件を満たすように各部材の材料が選定されている(詳細後述)。
 測定装置10には、制御装置50が接続されており、スケールヘッド26によって読み取られたスケール22の変位は、制御装置50に出力される。制御装置50は、コラムに設けられたアクチュエータを制御して、被測定物Wと測定装置10の触針12とを相対移動させながら、被測定物Wの表面の位置ごとの変位の検出信号を取得する。これにより、被測定物Wの表面の形状、粗さ又は輪郭等を測定することができる。
 図1に示すように、制御装置50は、制御部52、入力部54及び表示部56を備える。制御装置50としては、例えば、パーソナルコンピュータ又はワークステーション等を用いることができる。
 制御部52は、制御装置50の各部を制御するためのCPU(Central Processing Unit)、制御装置50等のための制御プログラムが格納されるメモリ(例えば、ROM(Read Only Memory)等)及び各種のデータが格納されるストレージ(例えば、HDD(Hard Disk Drive)等)を備える。制御部52は、入力部54からの操作入力に応じて、制御装置50の各部を制御するための制御信号を出力し、かつ、測定装置10を制御するための制御信号及び測定装置10を移動させるためのアクチュエータ等を制御するための制御信号等を出力する。
 入力部54は、操作者からの操作入力を受け付けるための装置であり、例えば、キーボード、マウス、タッチパネル等を備える。
 表示部56は、画像を表示するための装置であり、例えば、LCD(Liquid Crystal Display)である。表示部56には、例えば、制御装置50、測定装置10及びアクチュエータ等の操作のためのGUI(Graphical User Interface)及び被測定物Wの表面の形状、粗さ又は輪郭等の測定結果等が表示される。
 (環境温度が測定結果に及ぼす影響)
 (アーム部16とスケール22の熱膨張係数が等しい場合(β=γ))
 次に、環境温度が測定結果に及ぼす影響を抑制するための構成について説明する。まず、アーム部16とスケール22の熱膨張係数が等しい場合(β=γ)、すなわち、本実施形態の条件β=α+γを満たさない例について、図2を参照して説明する。
 図2は、アーム部16とスケール22の熱膨張係数が等しい場合(β=γ)を示す図である。図2では、測定装置10の各部の動作を簡略化して示している。
 図2(a)は、揺動部18の軸AXが水平な状態(基準位置θ=0)を示しており、図2(b)及び図2(c)は、揺動部18が基準位置から角度θ傾いた状態を示している。そして、図2(c)は、図2(b)においてアーム部16及び揺動部18が熱膨張した状態を示している。
 環境温度Tが基準温度Tの場合の触針部14の先端部14E(被測定物Wの表面に接触する触針12の先端位置に対応する位置)から揺動部18の揺動中心20Cまでの距離LをL、揺動部18の揺動中心20Cからアーム部16のスケール取付位置16Bまでの距離MをMとする。
 図2(b)に示すように、環境温度Tが基準温度Tの場合(熱膨張がない場合)に、揺動部18が基準位置から角度θ傾いて触針部14、アーム部16及びスケール22がそれぞれ符号14R、16R及び22Rの位置まで移動すると、スケールヘッド検出角度φは、アーム部16の基準位置からの回転角度θと等しい。この場合、触針部14の先端部14Eの変位xは、下記の式(1)により表される。
 x=L・sinθ=L・sinφ ・・・(1)
 熱膨張を考慮せずに式(1)を一般化すると、触針部14の先端部14Eの変位xの計算式は、下記の式(2)により表される。
 x=L・sinφ ・・・(2)
 図2(c)に示すように、環境温度TがT=T+ΔTに変化すると、触針部14、アーム部16及びスケール22は、熱膨張によりそれぞれ符号14RE、16RE及び22REに示すようになる。この場合、先端部14Eから揺動部18の揺動中心20Cまでの距離Lは、下記の式(3)のように変化する。
 L=L(1+αΔT) ・・・(3)
 このとき、触針部14の先端部14Eの実際の変位xは、下記の式(4)により表される。
 x=L・sinθ=L・sinθ(1+αΔT) ・・・(4)
 式(2)及び式(4)から、環境温度TがT=T+ΔTに変化したことによる触針部14の先端部14Eの変位の真の値xと計算値xとの誤差xerrは、下記の式(5)により表される。
 xerr=x-x
 xerr=L・αΔT・sinθ ・・・(5)
 (アーム部16とスケール22の熱膨張係数が異なる場合(β≠γ))
 次に、アーム部16とスケール22の熱膨張係数が異なる場合(β≠γ)の熱膨張の影響について、図3を参照して説明する。図3は、アーム部16とスケール22の熱膨張係数が異なる場合(β≠γ)の熱膨張の影響を説明するための図である。
 図3に示すように、アーム部16の熱膨張係数βとスケール22の熱膨張係数γが異なっており(β≠γ)、かつ、スケール22がアーム部16の基端部に取り付けられている。このため、スケール22の角度の基準となる角度基準中心22Cは、揺動中心20Cからずれる。つまり、φ≠θとなる。
 熱膨張を考慮すると、揺動部18の揺動中心20Cからアーム部16のスケール取付位置16Bまでの距離(≒アーム部16の長さ)Mは、下記の式(6)により表される。
 M=M(1+βΔT) ・・・(6)
 一方、スケール22の位置は、スケール22の取付位置を基準にスケール22の熱膨張係数γで膨張する。よって、アーム部16のスケール取付位置16Bから角度基準中心22C間での距離Rは、下記の式(7)により表される。
 R=M(1+γΔT) ・・・(7)
 揺動中心20Cと角度基準中心22Cとの間の距離をΔMとすると、式(6)及び式(7)から下記の式(8)が得られる。
 ΔM=M-R
 ΔM=M(β-γ)ΔT ・・・(8)
 図3に示すように、角度ρを定義すると、角度θ、φ及びρは、φ=θ+ρの関係を満たす。M=M-ΔMcosθであるので、下記の式(9)が得られる。
 tanρ=ΔM・sinθ/M
 tanρ=ΔM・sinθ/(M-ΔM・cosθ) ・・・(9)
 ρ及びθが微小角の近似を用いると、下記の式(10)が得られる。
 ρ≒ΔM・sinθ/M=(β-γ)ΔT ・・・(10)
 式(10)を用いて、触針部14の先端部14Eの変位xの計算式(2)を変形すると、下記のようになる。
 x=L・sinφ
 x=L・sin(θ+ρ)
 x=L(sinθcosρ+cosθsinρ)
 ρが微小角の近似を用いると、下記の式(11)が得られる。
 x≒L(sinθ+ρ・cosθ)
 x≒L・sinθ{1+(β-γ)ΔT・cosθ} ・・・(11)
 一方、実際の変位xは式(4)により求められるため、誤差xerrは、下記の式(12)により表される。
 xerr=x-x
 xerr=L・sinθ(1+αΔT)-L・sinθ{1+(β-γ)ΔT・cosθ}
 xerr=LΔT・sinθ{α-(β-γ)cosθ} ・・・(12)
 ここで、β=α+γの条件を満たすとすると、下記の式(13)が得られる。
 xerr=LΔTα・sinθ{1-cosθ} ・・・(13)
 したがって、本実施形態の条件β=α+γを満たさない場合(式(5))の誤差xerrは、xerr=L・αΔT・sinθ(β=γの場合)であるのに対して、上記の条件を満たす場合のxerrは、xerr=LΔTα・sinθ{1-cosθ}となる。
 一般に、測定装置10における検出範囲は、θ=0°近傍である。このとき、(1-cosθ)≪1である。したがって、β=α+γの条件を満たすように各部材の材料を選定することにより、触針部14の先端部14Eの変位の真の値xと計算値xとの誤差xerrを格段に小さくすることができる。これにより、環境温度Tが測定装置10の測定結果に及ぼす影響を抑制することができる。
 (実施例)
 触針部14の材料として、カーボンファイバー(CFRP:Carbon Fiber Reinforced Plastics)、スケール22の材料として鉄、アーム部16の材料としてガラスを用いた場合、熱膨張係数α、β及びγは、α=3.6×10-6、γ=8.5×10-6、β=12.1×10-6となる。上記の材料の組み合わせによれば、β=α+γの条件を満たすことができる。
 (変形例1)
 なお、本実施形態では、触針部14、アーム部16及びスケール22の熱膨張係数α、β及びγが、β=α+γの条件を満たすようにしたが、本発明はこれに限定されない。
 式(12)を変形すると、下記の式(14)が得られる。
 xerr=LΔTα・sinθ{1-{(β-γ)/α}cosθ} ・・・(14)
 式(5)と式(14)とを比較すると、式(14)における誤差xerrは、式(5)に{1-{(β-γ)/α}cosθ}を乗算した値となる。
 実用上、環境温度Tの変化に起因する誤差xerrを1/2以下にすることができれば、環境温度Tの変化に対して有意に耐性があるとすることができる。
 実用上有用な熱膨張係数の条件は、下記の式(15a)により表される。
 |1-{(β-γ)/α}cosθ|≦1/2 ・・・(15a)
 ここで、測定装置10における検出範囲は、θ=0°近傍であることから、cosθ≒1と近似すると、下記の式(15b)が得られる。
 |1-(β-γ)/α|≦1/2 ・・・(15b)
 式(15b)をβについて解くと、下記の式(16)が得られる。
 (α+γ)-1/2α≦β≦(α+γ)+1/2α ・・・(16)
 したがって、アーム部16の熱膨張係数βは、(α+γ)を基準として±1/2αの範囲にあれば、実用上、環境温度Tの変化に対して有意に耐性があるとすることができる。
 (変形例2)
 なお、本実施形態では、触針部14、スケール22及び揺動軸固定部24をそれぞれ単一の材料からなるものとしたが、それぞれ複数の材料を組み合わせることにより、熱膨張係数α、γ及びβを調整することも可能である。
 図4は、変形例2に係る測定装置を示す図である。図4に示す測定装置10-1において、触針部14は、熱膨張係数が異なる3つの材料からなる部材14A、14B及び14Cをつなぎ合わせることにより形成されている。部材14A、14B及び14Cの熱膨張係数をそれぞれα、α及びα、長さをl、l及びlとすると、触針部14全体の熱膨張係数αは、下記の式(17)により表される。
 α=(α+α+α)/(l+l+l) ・・・(17)
 一般に、熱膨張係数は材料に固有の値であり、これを任意の値に調整することは困難である。そこで、複数の材料を組み合わせて、各材料の長さを調整することにより、触針部14、スケール22及び揺動軸固定部24の熱膨張係数を任意の値に調整することが可能になる。これにより、β=α+γの条件を満たす測定装置の作成が容易になる。
 [第2の実施形態]
 図5は、本発明の第2の実施形態に係る測定装置を示す図である。以下の説明において、上記の実施形態と同様の構成については、同一の符号を付して説明を省略する。
 本実施形態に係る測定装置10-2は、触針部14に代えて、測定装置10-2に対して着脱可能な交換式触針30を備えている。
 交換式触針30は、触針12が設けられる第1部材30Aと、第2部材30Bとを備える。第2部材30Bの基端部は、触針取付基部16Aに取り付け(例えば、係合、嵌合等)可能な形状となっている。本実施形態では、交換式触針30と触針取付基部16Aとを合わせて触針部32とし、触針部32とアーム部16とを合わせて揺動部34とする。
 第1部材30A及び第2部材30Bの熱膨張係数をそれぞれα及びα、長さをl及びlとし、触針取付基部16Aの熱膨張係数α、長さ(図中左端部から揺動軸20の揺動中心20Cとの間の長さ)をlとする。この場合、変形例2と同様に考えると、交換式触針30と触針取付基部16Aからなる触針部32全体の熱膨張係数αは、下記の式(18)により表される。
 α=(α+α+α)/(l+l+l) ・・・(18)
 したがって、満たすべき条件をβ=α+γとすると、下記の式(19)の条件を満たすようにすればよい。
 (α+α+α)/(l+l+l)=β-γ ・・・(19)
 本実施形態によれば、変形例2と同様に、交換式触針30を構成する部材の組み合わせ及びその長さにより熱膨張係数αを任意の値に調整することが可能になる。また、本実施形態によれば、交換式触針30のみにより熱膨張係数αを調整することができるので、既存の測定装置(γ及びβが調整されていない測定装置)においても、環境温度Tが測定結果に及ぼす影響を抑制することができる。なお、本実施形態において、変形例1と同様にβにマージンをつけてもよい。
 なお、本実施形態では、触針取付基部16Aの形状を、式(19)の条件を満たす交換式触針30のみが取り付け可能な形状(例えば、直径、嵌合穴の形状等)にすることが好ましい。これにより、環境温度Tが測定結果に及ぼす影響を抑制するのに適さない交換式触針が測定装置に取り付けられることを防止することができる。
 [第3の実施形態]
 上記の実施形態では、環境温度の変化が測定結果に及ぼす影響を抑制するために、触針部14の熱膨張係数α、アーム部16の熱膨張係数β及びスケール22の熱膨張係数γの満たすべき条件を求めたが、環境温度Tの温度変化量ΔTを測定し、温度変化量ΔTを用いて測定結果を補正することも可能である。
 図6は、本発明の第3の実施形態に係る測定装置を示す図である。以下の説明において、上記の実施形態と同様の構成については、同一の符号を付して説明を省略する。
 本実施形態に係る測定装置10-3は、温度センサ60を備えている。温度センサ60は、測定装置10-3を用いて測定が行われる環境の環境温度(気温)を測定するためのものであり、例えば、測定装置10-3の筐体の表面に設けられる。
 なお、温度センサ60としては、触針部14及びアーム部16の少なくとも一方の温度(例えば、表面温度)を環境温度として測定するための接触式又は非接触式の温度センサ(例えば、放射温度計又はサーミスタ等)を用いることも可能である。
 本実施形態では、制御部52は、触針部14の先端部14Eの変位xの測定時に、温度センサ60から環境温度Tの測定値を取得して、変位xと環境温度Tとを関連付けてストレージに格納する。そして、制御部52は、変位x(測定値)と環境温度Tの温度変化量ΔTに基づいて、触針部14の先端部14Eの実際の変位xを算出する。具体的には、下記の式(20)に示す補正係数cを用いて、変位x(測定値)から触針部14の先端部14Eの実際の変位xを算出する。
 cx=x ・・・(20)
 既述のように、熱膨張を考慮した場合の触針部14の先端部14Eの変位xは、式(11)により求められる。
 x≒L・sinθ{1+(β-γ)ΔT・cosθ} ・・・(11)
 一方、触針部14の先端部14Eの実際の変位xは、式(4)により求められる。
 x=L・sinθ=L・sinθ(1+αΔT) ・・・(4)
 式(11)及び式(4)を式(20)に代入して、θを微小角とする近似(cosθ≒1)を用いると、下記の式(21)が得られる。
 c=x/x
  =(1+αΔT)/{1+(β-γ)ΔT・cosθ}
  ≒(1+αΔT)/{1+(β-γ)ΔT} ・・・(21)
 すなわち、θを微小角とする近似を用いると、補正係数cは、触針部14の熱膨張係数α、アーム部16の熱膨張係数β及びスケール22の熱膨張係数γと、環境温度Tの温度変化量ΔTにより求められる。
 式(21)により表される補正係数cを式(20)に代入して、触針部14の先端部14Eの変位x(測定値)を補正することにより、先端部14Eの実際の変位xを算出することが可能になる。これにより、環境温度の変化が測定結果に及ぼす影響を抑制することができる。
 10、10-1、10-2、10-3…測定装置、12…触針、14…触針部、16…アーム部、18…揺動部、20…揺動軸、22…スケール、24…揺動軸固定部、26…スケールヘッド、26P…スケールヘッド読み取り点、30…交換式触針、32…触針部、34…揺動部、50…制御装置、52…制御部、54…入力部、56…表示部、60…温度センサ

Claims (5)

  1.  被測定物の表面の測定を行うための触針が設けられており、前記被測定物の表面の形状に応じて揺動中心の回りに揺動可能に取り付けられた触針部と、
     前記触針部の揺動による変位を測定するためのスケールと、
     前記スケールの目盛りを読み取るためのスケールヘッドと、
     前記触針部が取り付けられ、前記触針部と一体的に前記揺動中心の回りに揺動可能に取り付けられたアーム部であって、前記スケールが取り付けられたアーム部とを備え、
     前記触針部、前記アーム部及び前記スケールの熱膨張係数をそれぞれα、β及びγとした場合に、
     (α+γ)-1/2α≦β≦(α+γ)+1/2α
     の条件を満たす、測定装置。
  2.  前記触針部、前記アーム部及び前記スケールの熱膨張係数が、β=α+γの条件を満たす、請求項1記載の測定装置。
  3.  前記スケールは、前記アーム部の揺動方向に沿って円弧状に形成された円弧スケールである、請求項1又は2記載の測定装置。
  4.  前記触針部、前記アーム部及び前記スケールのうちの少なくとも1つが、熱膨張係数が異なる複数の部材により形成されており、前記条件を満たすように、前記複数の部材の材料及び長さが調整されている、請求項1から3のいずれか1項記載の測定装置。
  5.  被測定物の表面の測定を行うための触針が設けられており、前記被測定物の表面の形状に応じて揺動中心の回りに揺動可能に取り付けられた触針部と、
     前記触針部の揺動による変位を測定するためのスケールと、
     前記スケールの目盛りを読み取るためのスケールヘッドと、
     前記触針部が取り付けられ、前記触針部と一体的に前記揺動中心の回りに揺動可能に取り付けられたアーム部であって、前記スケールが取り付けられたアーム部と、
     環境温度を測定するための温度センサと、
     前記触針部、前記アーム部及び前記スケールの熱膨張係数をそれぞれα、β及びγとし、前記触針部の先端部の変位の測定値をx、前記測定値xの測定時の前記環境温度の変化量をΔTとした場合に、下記の式により、前記触針部の先端部の実際の変位xを算出する制御部と、
     を備える測定装置。
     x=cx
     c=(1+αΔT)/{1+(β-γ)ΔT}
PCT/JP2021/006600 2020-04-30 2021-02-22 測定装置 WO2021220595A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180029321.2A CN115461593B (zh) 2020-04-30 2021-02-22 测量装置
JP2022518620A JP7203312B2 (ja) 2020-04-30 2021-02-22 測定装置
DE112021002520.1T DE112021002520T5 (de) 2020-04-30 2021-02-22 Messvorrichtung
US17/976,612 US11859969B2 (en) 2020-04-30 2022-10-28 Measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080058 2020-04-30
JP2020080058 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/976,612 Continuation US11859969B2 (en) 2020-04-30 2022-10-28 Measurement device

Publications (1)

Publication Number Publication Date
WO2021220595A1 true WO2021220595A1 (ja) 2021-11-04

Family

ID=78331941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006600 WO2021220595A1 (ja) 2020-04-30 2021-02-22 測定装置

Country Status (5)

Country Link
US (1) US11859969B2 (ja)
JP (1) JP7203312B2 (ja)
CN (1) CN115461593B (ja)
DE (1) DE112021002520T5 (ja)
WO (1) WO2021220595A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230052870A1 (en) * 2020-04-30 2023-02-16 Tokyo Seimitsu Co., Ltd. Measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709045B1 (en) * 2022-02-19 2023-07-25 National Institute Of Metrology, China Surface texture probe and measurement apparatus with a vibrational membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021304A (ja) * 1999-07-09 2001-01-26 Mitsutoyo Corp 変位測定装置
JP2004069510A (ja) * 2002-08-07 2004-03-04 Tokyo Seimitsu Co Ltd デジタル測定ヘッド
JP2012053033A (ja) * 2010-08-02 2012-03-15 Mitsutoyo Corp 産業機械

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3316081A1 (de) * 1983-05-03 1984-11-08 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Messeinrichtung
US4761887A (en) * 1986-08-29 1988-08-09 Control Gaging, Inc. Temperature insensitive gauge
CH679334A5 (ja) * 1989-09-11 1992-01-31 Weber Hans R
JPH0754241B2 (ja) * 1991-03-27 1995-06-07 株式会社島津製作所 重量・変位測定装置
DE19534425A1 (de) * 1995-09-16 1997-03-20 Zeiss Carl Fa Koordinatenmeßgerät, dessen Taster über mehrere Drehachsen beweglich gelagert ist
US6772529B1 (en) * 1999-11-10 2004-08-10 The United States Of America As Represented By The Secretary Of The Navy Contact comparator and method of operation
JP3967274B2 (ja) * 2003-02-27 2007-08-29 株式会社ミツトヨ 測定装置
JP5776080B2 (ja) * 2011-06-30 2015-09-09 株式会社ミツトヨ 円形状特性測定方法、装置及びプログラム
JP5301061B1 (ja) 2012-01-04 2013-09-25 株式会社東京精密 輪郭形状表面粗さ測定装置および輪郭形状表面粗さ測定方法
WO2013128183A1 (en) * 2012-02-27 2013-09-06 Taylor Hobson Limited Surface measurement apparatus and method
GB2499660B (en) * 2012-02-27 2018-10-03 Taylor Hobson Ltd Surface measurement apparatus and method
DE102015209193A1 (de) * 2015-05-20 2016-11-24 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Erfassung dynamischer Schwingungen eines Rauheitssensors, Verfahren zur Vermessung der Rauheit einer Werkstückoberfläche, Computerprogrammprodukt sowie Messgerät eingerichtet zur Durchführung der Verfahren.
CN109154494A (zh) * 2016-03-16 2019-01-04 海克斯康测量技术有限公司 具有防撞保护的探针和探针夹
JP6445492B2 (ja) * 2016-07-12 2018-12-26 新潟精機株式会社 段差ゲージ
DE202017007030U1 (de) * 2017-04-06 2019-03-22 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
JP7073211B2 (ja) 2018-06-30 2022-05-23 株式会社ミツトヨ 表面性状測定装置の制御方法
DE102020108182A1 (de) * 2019-05-07 2020-11-12 Jenoptik Industrial Metrology Germany Gmbh Oberflächenmessgerät
WO2021220595A1 (ja) * 2020-04-30 2021-11-04 株式会社東京精密 測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021304A (ja) * 1999-07-09 2001-01-26 Mitsutoyo Corp 変位測定装置
JP2004069510A (ja) * 2002-08-07 2004-03-04 Tokyo Seimitsu Co Ltd デジタル測定ヘッド
JP2012053033A (ja) * 2010-08-02 2012-03-15 Mitsutoyo Corp 産業機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230052870A1 (en) * 2020-04-30 2023-02-16 Tokyo Seimitsu Co., Ltd. Measurement device
US11859969B2 (en) * 2020-04-30 2024-01-02 Tokyo Seimitsu Co., Ltd. Measurement device

Also Published As

Publication number Publication date
JP7203312B2 (ja) 2023-01-13
DE112021002520T5 (de) 2023-02-23
CN115461593B (zh) 2023-08-29
US11859969B2 (en) 2024-01-02
JPWO2021220595A1 (ja) 2021-11-04
CN115461593A (zh) 2022-12-09
US20230052870A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2021220595A1 (ja) 測定装置
US8096061B2 (en) Instrument for measuring dimensions and height gauge
JP3926793B2 (ja) 表面形状測定装置
CN102227607B (zh) 用于测量工件的方法、校准方法以及坐标测量仪其中考虑探测器的与方向相关的柔性
US7779553B2 (en) Oscillating scanning probe with constant contact force
JP3967274B2 (ja) 測定装置
JP5570722B2 (ja) 計量装置の較正
JP4474443B2 (ja) 形状測定装置および方法
JP2012026865A (ja) 形状測定装置
US20040027331A1 (en) Pointing device and electronic apparatus provided with the pointing device
JP4570437B2 (ja) 表面粗さ/輪郭形状測定装置
JP2001108408A (ja) レーザ干渉装置
JP2021173719A (ja) 測定装置
JP4931867B2 (ja) 可変端度器
JPH07178689A (ja) ロボットアームの位置ずれ測定方法およびその位置ずれ補正方法およびその位置ずれ補正システム
JPH11190617A (ja) 三次元測定機
JP2000193449A (ja) プローブ装置及び形状測定装置
JP2004108959A (ja) 形状測定装置
JPS5958504A (ja) 関節形ロボツトの原点オフセツト調整方法
EP4215869A1 (en) Structural system design for the verification and calibration of measuring instruments
KR100416225B1 (ko) 정밀 기기의 기구교정 방법 및 그 장치
TW202334611A (zh) 晶圓厚度測定裝置及該方法
JP2015068648A (ja) 真円度測定装置
JPH1047944A (ja) 位置検出装置
JP2001194102A (ja) シーミングチャックハイト測定装置およびその治具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518620

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21795545

Country of ref document: EP

Kind code of ref document: A1