JP3926793B2 - 表面形状測定装置 - Google Patents

表面形状測定装置 Download PDF

Info

Publication number
JP3926793B2
JP3926793B2 JP2003527395A JP2003527395A JP3926793B2 JP 3926793 B2 JP3926793 B2 JP 3926793B2 JP 2003527395 A JP2003527395 A JP 2003527395A JP 2003527395 A JP2003527395 A JP 2003527395A JP 3926793 B2 JP3926793 B2 JP 3926793B2
Authority
JP
Japan
Prior art keywords
measured
measurement probe
measurement
probe
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003527395A
Other languages
English (en)
Other versions
JP2005502876A (ja
Inventor
康成 長池
泰 中村
義晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JP2005502876A publication Critical patent/JP2005502876A/ja
Application granted granted Critical
Publication of JP3926793B2 publication Critical patent/JP3926793B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures

Description

【0001】
【発明の属する技術分野】
本発明は、接触式の測定プローブを有する表面形状測定装置に関する。
【0002】
【従来の技術】
被測定物体の表面形状を測定する装置の従来例としては、例えば、特開平7−260471号公報に記載されているものがある。この装置について図12を参照して以下に説明する。
【0003】
この従来技術の測定装置は、装置本体30に配置されたY座標系駆動部31によりY方向に駆動される被測定物体32に対して、垂直上方から接触する触針部41aを備えた測定プローブ41と、この測定プローブ41をX,Z方向に駆動するX−Z座標系駆動部42及び測定プローブ41の座標を測定する座標測定部43と、前記触針部41aの被測定面32aに対する接触測定点の傾斜角度情報を入力する入力手段44と、入力手段44により入力された傾斜角度情報に基づいて、測定プロープ41の接触による該測定プローブ41と被測定物体32との接触変形量の和を被測定面32aに対して垂直な方向で一定になるように、前記測定プローブ41の被測定物体表面に対する測定圧を制御する制御手段45とを有する。
【0004】
このような従来の測定装置の構成によれば、入力手段44から入力される被測定物体表面の測定プローブ41による接触測定点の傾斜角度情報に基づき、制御手段45によって測定プローブ41の測定圧を制御しながら被測定物体32の被測定面32aの表面形状を測定することができる。このように測定プローブ41の測定圧を制御することで、被測定物体表面に対して垂直方向の接触変形量を常に一定にし、接触変形量の変動に起因する測定誤差を回避している。
【0005】
上述した従来の装置において、前記測定圧の制御は、測定プローブ41の測定圧が微小になるように、もしくは被測定物体32の表面上で常に接触力が一定となるように、例えば板バネや圧縮コイルなどが用いられている。
【0006】
【発明が解決しようとする課題】
従来の測定装置のような構成であると、測定プローブ41が所定の押圧力で被測定物体32の表面に接触し、特に測定プローブ41の押圧力を全方向にわたって一定に保つように測定プローブ41が保持される必要がある。このような安定した押圧力を得るためには、各部における摩擦抵抗もしくはバネ等におけるヒステリシス特性が著しく減少されなければならない。
【0007】
従って、本発明の目的は、被測定物体面上の各点における接触力を一定のものとし、また、極めて微小な接触力で表面形状の測定を可能とする表面形状測定装置を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様に係われば、被測定物体の表面に接触するように位置された測定プローブと、
この測定プローブを測定プローブの軸方向に支持かつ案内するための案内手段と、
前記測定プローブが被測定物体と所定の接触角で接触するように、前記案内手段を水平方向に対して所定の傾斜角で傾斜させるための傾斜角調整手段と、
前記測定プローブが被測定物体の面を走査するように、測定プローブと被測定物体との少なくとも一方を相対的に駆動するための駆動手段とを具備し、
接触力が、測定プローブが傾斜されたときに発生される測定プローブの重力の傾斜方向成分から与えられる、被測定物体の表面形状測定装置が提供される。
【0009】
好ましくは、前記傾斜角は、0.0005〜5度、より好ましくは、0.03〜0.2度であり、また、前記接触力は、5〜300mgf、より好ましくは30〜90mgfである。
【0010】
装置がこのような構成を有することによって、被測定物体の表面に加えられる測定プローブの接触力は、測定プローブの重力の傾斜方向成分から与えられる。このため、前記ヒステリシス特性を考慮する必要がない。また、前記測定プローブは、傾斜角調整手段によって、極めて容易に、所定の傾斜角で傾斜されることが可能であるので、被測定物体面上の各点において一定の接触力を与えることができ、また、微小な接触力を得ることが可能となる。このように微小な接触力とすることで、接触式あるにも関わらず、被測定物体の表面形状が高精度で測定されることが可能であり、非接触で被測定物体の表面形状を測定する非破壊測定に類似した測定結果を得ることができる。
【0011】
本発明の第2の態様に係われば、前記案内手段は、測定プローブを移動可能に支持しており、案内手段と測定プローブとの間の所定の摩擦力で測定プローブを案内するための案内機構を有し、前記摩擦力が前記測定プローブの重力の傾斜方向成分より小さい、被測定物体の表面形状測定装置が提供される。
【0012】
本発明によれば、案内手段として、例えばリニアガイド、好ましくはエアスライダなど、前記測定プローブとの摩擦が極めて小さい手段をもちいることによって、接触式であるにも関わらず、被測定物体の表面形状が、高精度で測定され得る。
【0013】
本発明の第3の態様に係われば、前記第1もしくは第2の態様に記載の表面形状測定装置において、前記傾斜角調整手段が、前記測定プローブと前記被測定物体との両方を所定の傾斜角で傾斜させ、この傾斜角を任意に調整可能である、被測定物体の表面形状測定装置が提供される。
【0014】
本発明によれば、測定プローブと被測定物体との両方に傾斜角を与えることによって、被測定物体の表面形状が測定されるので、測定時に、測定プローブと被測定物体との間に角度差が生じない。従って、傾斜角の補正処理を行なう必要が無くなり、接触式であるにも関わらず、被測定物体の表面形状が、高精度で測定され得る。
【0015】
本発明の他の態様に係われば、前記被測定物体は、所定の面粗さRyと走査長φとを有し、前記測定プローブによって、接触最大角度αmaxで前記所定の接触力Fθが加えられるとき、前記測定プローブが前記被測定物体の表面を走査する最大速度Vmaxは、
Vmax ∝ (Fθ・φ)/(Ry・αmax)
の式で表される関係を有する被測定物体の表面形状測定装置が提供される。
【0016】
本発明によれば、前記被測定物体が、測定によって損傷され得る非常に柔軟な物質から形成されている場合、前記接触力Fθを小さくすることによって、この被測定物体が損傷しないように測定され得る。逆に、前記被測定物体が損傷する可能性がない場合、接触力Fθを大きくすることによって、前記最大速度Vmaxが大きくなるので、前記被測定物体の表面形状の測定時間が短縮され得る。
【0017】
本発明の更なる目的と効果とは、以下の記載で説明され、部分的には記載から明らか、もしくは発明の実際により学び得るであろう。本発明の目的と効果とは、特に以下に指摘された手段並びに組合せにより実現並びに得られるであろう。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。尚、以下の実施の形態において、図1に示されたX−Y−Z軸直交座標系が、本発明の全ての実施の形態で使用され、また、Z軸の負方向を先端側、正方向を基端側と定義されている。
【0019】
(第1の実施の形態)
第1の実施の形態において、表面形状測定装置は、図1に示されているように、平坦な基台20を有し、この基台20上には、被測定物体支持体1と支持基台7とが固定されている。この支持基台7には、傾斜角調整手段3を介して支持板10が設けられている。この支持板10上に、案内手段4が取着されている。また、前記被測定物体支持体1には、被測定物体2が支持されている。前記案内手段4には、この被測定物体2に接触可能なように位置された測定プローブ6が支持されている。第1及び第2の位置検出素子5,9が、それぞれ前記支持板10と、前記基台20とに設けられている。
【0020】
第1の実施の形態において、前記案内手段4は、エアスライダであり、図3に示されているように、この案内手段4は、スライダ支持部4aと、スライダ移動部4bとを有する。このスライダ支持部4aには開口部が形成されている。前記スライダ移動部4bは、スライダ支持部4aの開口部を移動可能に貫通し、浮動して支持されている。また、このエアスライダ4は、前記スライダ支持部4aとスライダ移動部4bとの間のスペース210にエアを送るエア供給セクショョン(図示せず)を有する。前記スペース210は非常に狭く、100μm以下、好ましくは20μm以下の幅を有する。前記エアスライダ4の材料は、セラミックス、鉄などの金属材料、もしくはガラス材料である。また、前記案内手段4は、リニアガイドで良い。
【0021】
前記測定プローブ6は、円筒状、もしくは角柱状の胴体部6bと、この胴体部6bの先端に設けられ、球状、もしくはクサビ型形状の触針部6aとから構成されている。この測定プローブ6の胴体部6bは、前記案内手段4のスライダ移動部4bに取着されており、このスライダ移動部4bと一体的に、図1の矢印A,B方向に移動可能である。また、前記触針部6aは、前記被測定物体2の表面に接触するように位置されている。
【0022】
この場合、図1に示されているA,B方向は、図2に示されているように、Z方向に対して所定の傾斜角θ(0<θ<90°)で傾斜した方向(以下、傾斜方向)であり、前記測定プローブ6の軸方向に平行である。
【0023】
第1の実施の形態において、前記第1及び第2の位置検出素子5,9は、光学スケール、もしくはレーザ測長器などである。第1の位置検出素子5は、前記測定プローブ6の傾斜方向変位量lを検出するように位置されている。前記第2の位置検出素子9は、前記触針部6aのX軸方向位置を検出するように位置されている。
【0024】
図4に概略的に示されているように、前記角度調整手段3は、第1及び第2の角度調整部材3a,3bを有する。これら角度調整部材3a,3bは、それぞれの下端部において、ねじなどによって前記支持基台7に結合されている。これら角度調整部材3a,3bのどちらか一方は、ジョイントもしくは枢支部材によって前記支持板10に枢支されている。
【0025】
これら角度調整部材3a、3bの少なくとも1つは、前記支持板10が前記X−Z平面に対して傾斜可能なように、即ち、前記測定プローブ6が前記Z軸に対して所定の傾斜角で傾斜するように、前記Y軸方向に平行な矢印C,Dに沿って、正逆方向に以下のように移動可能な構造を有する。このような移動は、前記ねじなどの機械的手段で実行されるが、モータなどの電気的な手段などによってなされてもよい。また、前記角度調整部材3a,3bは、前記支持板10の先端部と基端部とに少なくとも1つずつ設けられ、互いに独立的に動作することが可能である。
【0026】
具体例として、前記第1の角度調整部材3aは、枢支ピンによって、前記支持板10を回動可能に支持している。一方、前記第2の角度調整部材3bは、上部にホイールが設けられ、下部にねじが形成されている。この第2の角度調整部材3bは、前記ねじにより調節されて、前記支持基台7に対してY軸方向で変化させる。このとき、前記ホイールが前記支持板10の下面で回転することによって、前記第2の角度調整部材3bは、前記支持板10に対して自由に動くことができる。従って、これら2つの角度調整部材3a,3bは、前記支持板10が所定の傾斜角で傾斜可能なように、互いに協働する。また、前記支持板10は、前記ねじの調整によって、前記傾斜角で傾斜された状態に保たれている。
【0027】
図5ないし図7には、前記角度調整手段3の変形例が示されている。図5に示された第1の変形例において、図4の先端側の前記第1の角度調整部材3aは、X軸と平行な中心軸と円形断面とを有する枢支部材211により構成されている。この枢支部材211は、例えば、円筒状部材、もしくは球状部材などの枢支可能な部材である。また、前記第2の角度調整部材3bは、三角柱形状を有する傾斜付け部材212により構成されている。この場合、この傾斜付け部材212は、これの斜面が前記支持板10に向いて挿入されている。
【0028】
前記両部材211,212は、前記支持板10の先端側が基端側よりも下になることができるように、互いに協働する。即ち、前記支持板10は、前記枢支部材211を中心にして矢印E方向に回動可能なように、前記傾斜付け部材212の斜面に沿って移動可能に支持されている。
【0029】
図5に示された第1の変形例において、前記傾斜角を変化させるために、前記傾斜付け部材212は、矢印F方向に移動される。そして、この傾斜付け部材212は、固定部材(図示せず)によって固定され、かくして、支持板10は、前記所定の傾斜角で傾斜された状態に保たれる。
【0030】
図6に示された第2の変形例において、図5の先端側の枢支部材211は、前記支持板10と前記支持基台7とに接続された板状の弾性部材213により構成されている。この弾性部材213は、例えば板ばねなどである。また、基端側の角度調整機構214は、前記第の角度調整部材3と前記傾斜付け部材212とのどちらであってもよい。いずれの場合であっても、前記支持板10は、前記板状の弾性部材213を支点にして矢印G方向に回動されるように、基端側の前記角度調整機構214に接続、もしくは支持されている。
【0031】
図6に示された第2の変形例において、前記傾斜角を変化させる動作は、基本的に、図4もしくは図5に示された角度調整手段とほぼ同様である。また、引張り部材(図示せず)が、前記支持基台7と前記支持板10との間の先端側に挿入される、並びに/もしくは突っ張り部材が、基端側に挿入されることによって、前記支持板10は、前記傾斜角で傾斜された状態で保持される。
【0032】
図7に示された第3の変形例において、前記角度調整手段3は、周状面もしくは球状面を有する傾斜発生部材215と、凹部とから構成されている。この凹部は、傾斜発生部材215の周状面もしくは球状面と相補的な形状を有し、また、前記支持基台7の上面に形成されている。前記傾斜角を変化させるために、前記傾斜発生部材215は、矢印I方向に回転される。また、傾斜固定部材216a,216bが、前記傾斜発生部材215の上面に当接されており、かくして、前記支持板10は、前記傾斜角で傾斜された状態で保持されている。前記固定部材216a,216bの代わりに、ゴニオステージが使用され得る。
【0033】
図4ないし図7に示された上記4つの形式の角度調整手段3は、適宜、組み合されてもよい。前記支持板10は、これに取着された前記案内手段4及び位置検出素子5とが、角度調整手段3により、一体的に傾斜され得る。前記角度調整手段3は、上記記載に限定されない。
【0034】
以上のように、前記測定プローブ6は、前記案内手段4に支持されており、前記角度調整手段3が調整されることによって、Z軸方向に対して極めて微小な傾斜角で傾斜される(図2参照)。また、前記測定プローブ6は、傾斜により発生した前記触針部6aの重力の傾斜方向成分によって、前記被測定物体2の表面に所定の接触力で接触するように位置されている。即ち、本発明に係る表面形状測定装置は、前記測定プローブ6の設定される傾斜角θに応じて接触力が比例的に変化され得るように構成されている。
【0035】
図8は、第1の実施の形態の表面形状測定装置を制御する制御系を模式的に示しているブロック図である。この制御系は、前記表面形状測定装置全体を制御する制御手段11を有する。この制御手段11は、例えば、モータ、もしくは圧電アクチュエータである。この制御手段11は、前記第1及び第2の位置検出素子5,9と、前記被測定物体2をX軸方向に駆動する駆動手段12とを制御するように構成されている。また、前記制御手段11には、後述するような演算処理を行なう演算部13が接続されている。
【0036】
以下に、上記構成を有する装置の動作が説明される。
【0037】
図1及び図2から理解されるように、上記構成の装置において、前記角度調整手段3を操作することによって、前記支持板10に取着された前記エアスライダ4に、Z軸方向に対する所定の傾斜角θが与えられる。上述のように、前記エアスライダ4は、前記測定プローブ6に連動している。前記スライダ移動部4bは、前記触針部6aの重力の傾斜方向成分によって、前記スライダ支持部4a内を矢印A方向に移動する。かくして、測定プローブ6の前記触針部6aは、前記被測定物体2の表面に接触する。被測定物体2は、限定されないが、例えば、レンズ、金型、もしくは光学素子で良い。
【0038】
前記スライダ支持部4aと前記スライダ移動部4bとの間には、エアが供給されるので、これらの間の摩擦力fは、供給される前記エアの粘性係数τに依存する。一般的に、前記エアの摩擦力は、通常の潤滑油の摩擦力に比べて、約1/1000程度である。従って、前記エアスライダ4を用いる測定は、静油圧のスライダを用いる測定より微小な前記傾斜角θで実行され得る。また、エアスライダ4を用いる測定は、潤滑油に関わる構成を必要としないので、測定装置全体をコンパクトにすることができる。
【0039】
この表面形状測定装置において、被測定物体2の表面に対する触針部6aの接触力Fθは、この触針部6aに働く重力の傾斜方向成分と、前記摩擦力fとに依存して測定される。この場合、傾斜角をθ、触針部6aに作用する測定プローブ6の重力をF=mgとすると、以下の関係で示される。
【0040】
θ=F・sinθ−f=mg・sinθ−f
第1の実施の形態においては、エアスライダが用いられ、前記摩擦力は、f=τmgで表される。実際には、摩擦力fは、非常に小さいので、無視され得る。従って、接触力は、Fθ=mg・sinθの式により表される。
【0041】
実際の測定には、前記接触力Fθの他に、以下の要素が影響する。これら要素は、装置と被測定物体とのX軸方向の相対的な走査最大速度Vmaxと、被測定物体の面粗さRyと、被測定物体の走査長φと、接触最大角αmax(図9参照)とである。これら要素には、以下の関係がある。
【0042】
Vmax ∝ (Fθ・φ)/(Ry・αmax)
即ち、前記接触力Fθが大きいほど、また、前記被測定物体の走査長φが大きいほど、前記走査最大速度Vmaxは大きくなる。逆に、前記面粗さRyが大きいほど、また、前記接触最大角αmaxが大きいほど、前記走査最大速度Vmaxは小さくなる。
【0043】
また、前記走査最大速度Vmaxは、測定中に、前記支持体1並びに基台20に与えられる振動により影響される。前記基台20が、除振台に載置された場合、外部からの振動は、防止、もしくは軽減され得る。このために、比較的大きい走査最大速度Vmaxでの測定が可能である。
【0044】
前記被測定物体2が、測定によって損傷され得る非常に柔軟な物質から形成されている場合、前記接触力Fθを小さくすることによって、この被測定物体が損傷しないように測定され得る。逆に、前記被測定物体2が損傷する可能性がない場合、接触力Fθを大きくすることによって、前記走査最大速度Vmaxが大きくなる。このために、前記被測定物体2の表面形状の測定時間が短縮され得る。
【0045】
上述のように、Fθ=mg・sinθの関係があるので、前記走査最大速度Vmaxは、前記測定プローブ6の自重mに比例する。また、0<θ<90°の関係があるので、前記走査最大速度Vmaxは、同様に、前記傾斜角θに比例する。即ち、前記測定プローブ6の自重mと前記傾斜角θとの少なくとも1つの値を大きくすることによって、大きな前記走査最大速度Vmaxの値が得られる。
【0046】
従って、例えば、前記接触力Fθを比較的小さな値に設定するように軽い測定プローブ6が用いられている場合であっても、必要に応じて前記傾斜を大きくすることによって、瞬時に前記接触力Fθ、即ち、前記走査最大速度Vmaxを大きくすることができる。具体例として、前記測定プローブの自重mを3.5gと設定されている場合に、傾斜角θを4.9°とすることによって、300mgfの接触力が得られる。
【0047】
逆に、前記接触力Fθを比較的大きな値に設定するように重い測定プローブ6が用いられている場合であっても、必要に応じて前記傾斜を小さくすることによって、瞬時に前記接触力を小さくすることができ、かくして、前記被測定物体2への損傷を防止、もしくは軽減するような測定が実行され得る。具体例として、前記測定プローブの自重mを500gと設定されている場合に、傾斜角θを0.00057°とすることによって、5mgfの接触力Fθが得られる。
【0048】
前記測定プローブ6の自重mは、前記案内部材4と胴体部6bとの間におもりを装着することによって調整され得る。
【0049】
以上のように、本発明に係る装置は、前記測定プローブ6の傾斜角θのみによって、前記接触力Fθの値が変化され得る構成を有する。このために、適当な測定が、被測定物体2の特性に瞬時に対応してなされ得る。従って、測定が効率的に行なわれ得る。
【0050】
前記被測定物体2を支持している支持部材1は、モータや圧電アクチュエータなどの前記駆動手段12によって、X方向に駆動される。前記測定プローブ6の触針部6aは、前記被測定物体2の表面形状に沿ってX軸方向に走査する。このような動作において、触針部6aの傾斜方向変位量lは、被測定物体2の表面形状深さに相当する。この前記触針部6aの位置情報は、前記第1の位置検出素子5によって検出され得る。
【0051】
前記触針部6aの傾斜方向変位量lは、装置と前記被測定物体2との相対的変位量である。従って、これら装置と被測定物体2との少なくとも1つが相対的に移動されることによって、前記被測定物体2の表面形状データが得られる。
【0052】
X軸方向への走査は、エアなどの気体、もしくは油などの液体を用いた精密な静圧スライドなどの案内部材(図示せず)を用いて行なわれる。この案内部材は、DCモータ、サーボモータ、リニアモータ、ステッピングモータ、圧電アクチュエータ、もしくはボイスコイルモータのような駆動装置によって駆動され得る。この駆動装置により発生される振動は、以下の方法により防止される。即ち、前記駆動装置と前記第2の位置検出素子9とを分離された状態で位置されるか、電流制御による振動の少ない駆動方式が、使用される。また、外部からの振動は、以下の方法で防止される。即ち、装置全体が、除振台上に載置される。
【0053】
上記構成において、測定値lは、傾斜方向での値なので、傾斜角θは、被測定物体2の実際の表面形状(表面粗さ)のデータを得るように補正されなければならない。
【0054】
前記測定プローブ6のZ軸方向に対する傾斜角θに関して、前記第1の位置検出素子5の測定値lにcosθを乗じることによって、被測定物体2の実際の表面形状の補正値Lが得られる。第1の実施の形態では、前記演算部13において、L=l・cosθの演算処理が行なわれる。前記測定値lは、演算により補正値Lに変換される。前記被測定物体2のX方向位置データは、前記第2の位置検出素子9によって測定される。前記補正値LとX方向位置データとは、グラフ形式でプロットされ、かくして、前記被測定物体2の表面形状が測定される。
【0055】
上記第1の実施の形態によれば、前記角度調整手段3が調整されることによって、前記測定プローブ6の被測定物体2に対する接触力Fθは、極めて容易に調節され得る。従って、微小な接触力Fθが得られ得るので、接触式の表面形状測定装置であるにも関わらず、非接触で被測定物体2の表面形状を測定する非破壊測定に類似した効果を得ることができる。
【0056】
(第2の実施の形態)
本発明の第2の実施の形態が、図10を参照して説明される。図10は、本発明の表面形状測定装置の第2の実施の形態を概略的に示す図である。第2の実施の形態において、第1の実施の形態と同じ部材には同じ参照符号が付されている。
【0057】
第2の実施の形態に係る装置は、平坦な床基台21を有し、この床基台21上には、傾斜角度調整手段23を介して、前記基台20が設けられている。前記傾斜角度調整手段23は、複数の角度調整部材23a,23bから構成されており、前記変形例を含む第1の実施の形態の傾斜角度調整手段3に相当する。図10に示されている装置のその他の構成は、前記傾斜角度調整手段3が固定部材24に代わっていることを除いて、第1の実施の形態の場合と同様である。即ち、支持基台7、支持板10上の測定プローブ6、被測定物体2を支持する被測定物体支持体1、並びに第1及び第2の位置検出素子5,9のすべてに、水平方向に対する傾斜角θを与えることができるように構成されている。
【0058】
第1の実施の形態の部材と同じ部材の機能は第1の実施の形態と基本的に同様である。また、測定プローブ6が被測定物体2の表面形状を測定する原理も第1の実施の形態の場合と同様である。
【0059】
上記第2の実施の形態によれば、前記測定プローブ6と、被測定物体支持体1に支持されている前記被測定物体2とは、前記傾斜角度調整手段23により同一の傾斜角θが与えられる。従って、本実施に形態に係る装置は、第1の実施の形態に係る装置と同様な効果が得られる。さらに、前記第1の位置検出素子5の測定値lに対する傾斜角θの補正が必要なくなるので、実際の表面形状データLが、直接測定され得る。
【0060】
(第3の実施の形態)
本発明の第3の実施の形態が、図11を参照して説明される。図11は、本発明に係る表面形状測定装置の第3の実施の形態を示す図である。この第3の実施の形態において、第1の実施の形態と同じ部材には同じ参照符号が付されている。第3の実施の形態において、この装置は、レンズ、金型、もしくは光学素子を加工する加工機上に搭載されている。
【0061】
前記加工機は、加工機ベース206を有し、この加工機ベース206上には、X軸の移動量を検出するX軸位置検出素子204と、Z軸の移動量を検出するZ軸位置検出素子205とが設けられている。また、前記加工機ベース206上には、Z軸移動部材203と、X軸移動部材202とが設けられている。このZ軸移動部材203は、前記Z軸位置検出素子205と協働するように位置されている。また、前記X軸移動部材202は、X軸方向に移動し、かつ、表面形状測定装置を支持している。前記Z軸移動部材203には、被測定物体2を回転可能に支持しているワーク回転部201が取着されている。このワーク回転部201に支持された被測定物体2と、測定プローブ6とは、前記X軸移動部材202によって相対的にX軸方向に移動され、前記Z軸移動部材203によって相対的にZ軸方向に移動されるように位置されている。
【0062】
上記構成を有する加工機は、前記バイト、砥石部材、もしくは研磨部材などの加工ツール(図示せず)を用いて、前記被測定物体2を所望の形状に加工する。
【0063】
前記表面形状測定装置は、基本的な構成は、第1の実施の形態と同様である。しかし、装置は、カバー207によって、全体的に覆われている。このカバー207の先端側には、開口部(図示せず)が形成されている。装置の測定プローブ6は、この開口部を通って前記カバー207の外へ延出しており、この測定プローブ6の触針部6aは、前記ワーク回転部201に支持された被測定物体2に接触できるように位置されている。
【0064】
前記カバー207の基端側には、第1の位置検出素子5のケーブル208と、前記カバー207内を陽圧にするためのパージエア供給ホース209とが通っている別の開口部が形成されている。
【0065】
第1の実施の形態と同一の部材の機能は、基本的に同様である。また、測定プローブ6が被測定物体2の表面形状を測定する原理も、第1の実施の形態の場合と同様である。
【0066】
第3の実施の形態において、表面形状測定装置は、前記カバー207によって、全体的に覆われているので、前記被測定物体2の加工中に、加工液によるミスト、並びに/もしくは被加工物体の切粉などごみが附着するのを防止することができる。また、前記パージエア供給ホース209によって前記カバー207内を陽圧にすることができるので、前記ミスト、並びに/もしくはごみなどの混入が防止され得る。
【0067】
第3の実施の形態によれば、第1の実施の形態の表面形状測定装置が、前記加工機に搭載されているので、前記加工機上での前記被測定物体2の表面形状を測定することができる。従って、表面形状の測定工程と、被測定物体2の加工工程とを交互に行なうような場合であっても、前記被測定物体2が着脱されることなく、測定・評価されることが可能である。また、前記着脱や、測定環境の変化による測定誤差を低減することを可能にしている。さらに、前記着脱にともなう表面形状測定装置の調整時間を削減することを可能にしている。
【0068】
さらなる効果と変更とは、この分野の者にとって容易に得られるであろう。かくして、広い意味での本発明は、ここで示されかつ説明された具体的な詳細や代表的な実施の形態に規定されるものではない。従って、種々の変形が請求項並びにその均等物により規定された本発明の精神並びに範囲から逸脱しないで、可能である。
【図面の簡単な説明】
【図1】 図1は、本発明の表面形状測定装置の第1の実施の形態を概略的に示す図である。
【図2】 図2は、本発明の表面形状測定装置の第1の実施の形態において、測定プローブの触針部が、被測定物体の表面に所定の傾斜角で接触している状態を示す部分拡大図である。
【図3】 図3は、案内手段の構成を詳細に示す部分拡大斜視図である。
【図4】 図4は、第1の実施の形態における角度調整機構を概略的に示す図である。
【図5】 図5は、第1の実施の形態における角度調整機構の第1の変形例を概略的に示す図である。
【図6】 図6は、第1の実施の形態における角度調整機構の第2の変形例を概略的に示す図である。
【図7】 図7は、第1の実施の形態における角度調整機構の第3の変形例を概略的に示す図である。
【図8】 図8は、本発明に係る表面形状測定装置の制御系を示すブロック図である。
【図9】 図9は、被測定物体と、前記測定プローブの触針部との接触状態を示す部分拡大上面図である。
【図10】 図10は、本発明の表面形状測定装置の第2の実施の形態を概略的に示す図である。
【図11】 図11は、本発明の表面形状測定装置の第3の実施の形態を概略的に示す図である。
【図12】 図12は、被測定物体の表面形状を測定する装置の従来例を概略的に示す図である。

Claims (6)

  1. 被測定物体(2)の表面に接触するように位置された測定プローブ(6)と、
    この測定プローブ(6)を測定プローブ(6)の軸方向に支持かつ案内するための案内手段(4)と、
    前記測定プローブ(6)が被測定物体(2)と所定の接触力で接触するように、前記案内手段(4)を水平方向に対して所定の傾斜角で傾斜させるための傾斜角調整手段(3,23)と、
    前記測定プローブが被測定物体(2)の面を走査するように、測定プローブ(6)と被測定物体(2)との少なくとも一方を相対的に駆動するための駆動手段(12)とを具備し、
    前記接触力が、測定プローブ(6)が傾斜されたときに発生される測定プローブ(6)の重力の傾斜方向成分から与えられ、
    前記傾斜角調整手段(3,23)は、前記傾斜角を任意に調整可能であることを特徴とする被測定物体(2)の表面形状測定装置。
  2. 前記案内手段(4)は、測定プローブ(6)を移動可能に支持しており、案内手段(4)と測定プローブ(6)との間の所定の摩擦力で測定プローブ(6)を案内するための案内機構を有し、前記摩擦力が前記測定プローブ(6)の重力の傾斜方向成分より小さい、ことを特徴とする請求項1に記載の装置。
  3. 前記傾斜角調整手段(3,23)は、前記測定プローブ(6)と前記被測定物体(2)との両方を、水平方向に対して所定の傾斜角で傾斜させることを特徴とする請求項1もしくは2に記載の装置。
  4. 前記傾斜角は、0.0005〜5度の範囲であることを特徴とする請求項1ないし3のいずれか1に記載の装置。
  5. 前記接触力は、5〜300mgfの範囲であることを特徴とする請求項1ないし4のいずれか1に記載の装置。
  6. 前記被測定物体(2)は、所定の面粗さRyと走査長φとを有し、前記測定プローブ(6)によって、接触最大角度αmaxで前記所定の接触力Fθが加えられるとき、前記測定プローブ(6)が前記被測定物体(2)の表面を走査する最大速度Vmaxは、
    Vmax ∝ (Fθ・φ)/(Ry・αmax)
    の式で表される関係を有することを特徴とする請求項1ないしのいずれか1に記載の装置。
JP2003527395A 2001-09-07 2002-09-05 表面形状測定装置 Expired - Fee Related JP3926793B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001271500 2001-09-07
PCT/JP2002/009058 WO2003023369A2 (en) 2001-09-07 2002-09-05 Apparatus for measuring a surface profile

Publications (2)

Publication Number Publication Date
JP2005502876A JP2005502876A (ja) 2005-01-27
JP3926793B2 true JP3926793B2 (ja) 2007-06-06

Family

ID=19096998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003527395A Expired - Fee Related JP3926793B2 (ja) 2001-09-07 2002-09-05 表面形状測定装置

Country Status (7)

Country Link
US (1) US6758085B2 (ja)
EP (1) EP1423677B1 (ja)
JP (1) JP3926793B2 (ja)
CN (1) CN100395537C (ja)
DE (1) DE60216123T2 (ja)
TW (1) TW550375B (ja)
WO (1) WO2003023369A2 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853056B1 (fr) * 2003-03-28 2005-07-15 Snecma Moteurs Dispositif et procede de mesure de profil
JP4281904B2 (ja) * 2003-08-11 2009-06-17 株式会社フコク 等速ジョイント用ブーツの大径側端部における内径寸法測定方法および寸法測定装置
JP4519449B2 (ja) * 2003-11-12 2010-08-04 オリンパス株式会社 形状測定機
JP5032741B2 (ja) * 2003-11-18 2012-09-26 オリンパス株式会社 3次元形状測定方法及び3次元形状測定装置
EP1730465B1 (en) * 2004-03-18 2015-05-20 Renishaw plc Scanning an object
US7140119B2 (en) * 2004-04-23 2006-11-28 Corning Incorporated Measurement of form of spherical and near-spherical optical surfaces
JP4529562B2 (ja) * 2004-07-06 2010-08-25 横浜ゴム株式会社 接触特性の評価方法及び接触状態の評価用コンピュータプログラム
WO2006059351A1 (en) * 2004-12-01 2006-06-08 Pirelli Tyre S.P.A. Method and apparatus for controlling a manufacturing process of components of a tyre for vehicle wheels
ATE383223T1 (de) * 2005-03-23 2008-01-15 Asphericon Gmbh Verfahren zur bearbeitung und vermessung von rotationssymmetrischen werkstücken
JP4836478B2 (ja) * 2005-03-31 2011-12-14 カヤバ工業株式会社 クロージング加工方法及びクロージング加工機
JP4923441B2 (ja) 2005-05-26 2012-04-25 株式会社ジェイテクト 形状測定器
JP2007038305A (ja) * 2005-07-29 2007-02-15 Metrol Ltd 工具折損検出装置
JP5292668B2 (ja) * 2006-01-06 2013-09-18 コニカミノルタ株式会社 形状測定装置及び方法
CN101354246B (zh) * 2007-07-27 2010-09-29 鸿富锦精密工业(深圳)有限公司 物体表面形貌测量方法
TWI393855B (zh) * 2007-09-21 2013-04-21 Hon Hai Prec Ind Co Ltd 透鏡測厚儀
JP4480769B2 (ja) * 2008-01-11 2010-06-16 パナソニック株式会社 形状測定方法
JP5465848B2 (ja) * 2008-07-28 2014-04-09 株式会社ミツトヨ 昇降傾斜調整装置
JP5270246B2 (ja) * 2008-07-28 2013-08-21 株式会社ミツトヨ 表面性状測定機および測定方法
JP5301412B2 (ja) * 2009-10-21 2013-09-25 株式会社ミツトヨ 測定力制御装置
JP5663274B2 (ja) * 2010-11-10 2015-02-04 オリンパス株式会社 形状測定センサ
CN102095366A (zh) * 2010-12-14 2011-06-15 苏州大学 一种大梯度非球面的轮廓测量方法
RU2464527C1 (ru) * 2011-05-23 2012-10-20 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет дизайна и технологии" Устройство для измерения неровностей листовых вязкоупругих материалов
DE102011116339A1 (de) * 2011-10-19 2013-04-25 Spieth-Maschinenelemente Gmbh & Co. Kg Verfahren zur Vermessung eines dreidimensionalen Objekts
DE102012205184B4 (de) * 2012-03-30 2015-07-09 Aktiebolaget Skf Messvorrichtung zur Längenmessung an einem Werkstück
CN103264318B (zh) * 2013-04-19 2015-11-18 湖北三江航天险峰电子信息有限公司 一种立体型面的在线检测方法
TW201445119A (zh) * 2013-05-27 2014-12-01 Hon Hai Prec Ind Co Ltd 承載裝置
CN103481122B (zh) * 2013-08-08 2016-05-04 哈尔滨理工大学 面向自由曲面的接触式测量误差补偿方法
CN103594129B (zh) * 2013-10-22 2016-01-20 中广核检测技术有限公司 核电站反应堆压力容器内管状部件表面智能扫查方法
JP6448242B2 (ja) * 2014-07-18 2019-01-09 株式会社ミツトヨ 形状測定装置の測定誤差の補正方法及び形状測定装置
CN104655078B (zh) * 2015-02-13 2016-10-26 青岛玉兰祥商务服务有限公司 通过风扇散热的电力行业汽轮机主轴轴承的检测装置及检测方法
JP6472299B2 (ja) * 2015-03-31 2019-02-20 株式会社ミツトヨ 形状測定機の姿勢調整器
CN105387810A (zh) * 2015-10-20 2016-03-09 四川大学 一种测量力可控的电磁轴承自倾斜式微位移传感器系统
DE102017103938A1 (de) * 2017-02-24 2018-08-30 Carl Zeiss Industrielle Messtechnik Gmbh Vorrichtung zum Messen der Rauheit einer Werkstückoberfläche
CN108132022A (zh) * 2017-12-05 2018-06-08 航天材料及工艺研究所 一种大直径薄壁箱体的形变测量装置
CN108278950B (zh) * 2018-01-22 2023-09-22 中国人民解放军第五七二一工厂 一种飞行器风挡玻璃总成调整装置及调整方法
CN109084722B (zh) * 2018-06-20 2019-08-13 华中科技大学 一种自适应采样的复杂曲面接触式测量方法
JP7072990B2 (ja) * 2018-06-22 2022-05-23 株式会社ミツトヨ 測定装置および測定方法
TWI705036B (zh) * 2019-01-22 2020-09-21 鈺皓實業有限公司 搬運載具之夾持裝置
JP7328134B2 (ja) 2019-12-11 2023-08-16 株式会社ディスコ ブラケット
JP7298896B2 (ja) 2019-12-20 2023-06-27 オールグッド株式会社 被検体の状態測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795132A (en) * 1972-05-30 1974-03-05 Caterpillar Tractor Co Curved surface finish analyzer
GB1597842A (en) * 1977-02-07 1981-09-09 Rolls Royce Indexing mechanism
US4103542A (en) * 1977-09-09 1978-08-01 Tencor Instruments Metrology instrument for measuring vertical profiles of integrated circuits
US4391044A (en) * 1981-09-28 1983-07-05 Tencor Instruments Metrology instrument for measuring vertical profiles of integrated circuits and the like
US4495703A (en) * 1981-11-25 1985-01-29 Mitutoyo Mfg. Co., Ltd. Coordinate measuring instrument
US4679326A (en) * 1984-11-21 1987-07-14 Mitutoyo Mfg. Co., Ltd. Height gauge
FR2645638A1 (fr) * 1989-04-11 1990-10-12 Inst Superieur Etat Surfaces Procede et dispositif de mesurage profilometrique de large echelle et leurs applications a la mesure de l'etat de surfaces de forme quelconque
US5309755A (en) * 1992-10-02 1994-05-10 Tencor Instruments Profilometer stylus assembly insensitive to vibration
DE4238139C2 (de) * 1992-11-12 2002-10-24 Zeiss Carl Koordinatenmeßgerät
JPH07260471A (ja) * 1994-03-16 1995-10-13 Nikon Corp 表面形状測定装置
US5705741A (en) * 1994-12-22 1998-01-06 Tencor Instruments Constant-force profilometer with stylus-stabilizing sensor assembly, dual-view optics, and temperature drift compensation
DE10035714B4 (de) * 1999-07-23 2011-06-09 Mitutoyo Corp. Oberflächengestalt-Messverfahren

Also Published As

Publication number Publication date
WO2003023369A2 (en) 2003-03-20
EP1423677A2 (en) 2004-06-02
TW550375B (en) 2003-09-01
CN1484760A (zh) 2004-03-24
DE60216123T2 (de) 2007-03-01
CN100395537C (zh) 2008-06-18
US6758085B2 (en) 2004-07-06
US20030217592A1 (en) 2003-11-27
JP2005502876A (ja) 2005-01-27
DE60216123D1 (de) 2006-12-28
EP1423677B1 (en) 2006-11-15
WO2003023369A3 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
JP3926793B2 (ja) 表面形状測定装置
JP3075981B2 (ja) 形状測定装置
EP1875158B1 (en) Surface sensing device with optical sensor
JP5124579B2 (ja) 表面感知デバイス
US9829303B2 (en) Shape measuring apparatus
EP1650527A1 (en) Apparatus for measuring the surface roughness or the contour of an object
JP2006300823A (ja) 表面粗さ/輪郭形状測定装置
JP5143931B2 (ja) 三次元形状測定装置
JP3602310B2 (ja) 平面度測定装置
US7353616B2 (en) Shape measuring instrument
KR20120026444A (ko) 삼차원 형상 측정장치
JP5171108B2 (ja) 三次元形状測定装置
JP4714820B2 (ja) 微細加工装置
KR102228711B1 (ko) 형상 측정용 프로브
JP2000193449A (ja) プローブ装置及び形状測定装置
JP4171615B2 (ja) 形状測定方法
WO2007023605A1 (ja) 表面粗さ/輪郭形状測定装置
JP4909562B2 (ja) 表面性状測定装置
JP6617039B2 (ja) 測定装置
JP4918700B2 (ja) レンズ振れ測定装置、レンズ芯取り装置、形状測定装置
JP2006125934A (ja) 測定用プローブと測定方法
JP2003156323A (ja) 三次元形状測定装置
JP2017173004A (ja) 形状測定装置
JP2007218881A (ja) 形状測定装置
JP2013181817A (ja) 表面形状測定方法及びその装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R151 Written notification of patent or utility model registration

Ref document number: 3926793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees