WO2021220537A1 - 耐圧低減回路、回転機、および、インバータ電源装置 - Google Patents

耐圧低減回路、回転機、および、インバータ電源装置 Download PDF

Info

Publication number
WO2021220537A1
WO2021220537A1 PCT/JP2020/042486 JP2020042486W WO2021220537A1 WO 2021220537 A1 WO2021220537 A1 WO 2021220537A1 JP 2020042486 W JP2020042486 W JP 2020042486W WO 2021220537 A1 WO2021220537 A1 WO 2021220537A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching element
coil
switching
supply line
Prior art date
Application number
PCT/JP2020/042486
Other languages
English (en)
French (fr)
Inventor
力也 阿部
孝彦 伊東
Original Assignee
力也 阿部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力也 阿部 filed Critical 力也 阿部
Publication of WO2021220537A1 publication Critical patent/WO2021220537A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a withstand voltage reduction circuit, a rotating machine, and an inverter power supply device.
  • DC motors are excellent in speed control, so they have been used for electric vehicles and cranes for large vehicles, and for electric tools and automobiles for small vehicles.
  • the DC motor is equipped with a brush and a commutator, and when the motor is operating, the brush is pressed against the rectifier and wear occurs, so maintenance of the brush and commutator is essential.
  • electrical noise and mechanical noise are generated due to the mechanical switch.
  • a brushless motor having a three-phase coil is, in principle, the same as a three-phase permanent magnet type synchronous motor that supplies a three-phase AC current to each coil by using an inverter.
  • the current flowing through each coil of a brushless motor having a three-phase coil has a period of zero in, for example, the most common 120-degree energization drive, and there is a problem that the utilization rate of the current flowing through the coil is low. .. Further, even when the sine wave drive is performed, the current flowing through the coil increases and decreases in a sine wave shape, so that the utilization rate of the current flowing through the coil is lower than that when the direct current is passed.
  • FIG. 17 is a diagram showing an outline of the conventional DC motor disclosed in Patent Document 1, and FIG. 18 shows an equivalent circuit excluding the rotor, the position detection sensor, and the control circuit of the DC motor shown in FIG. It is a figure which shows.
  • the DC motor 100 includes a stator 10, a rotor 20, a switching circuit 130, a position detection sensor 40, and a control circuit 50, and a DC power supply 60 is connected to the switching circuit 130.
  • NS Each slot of the stator core 11 is provided with a stator winding 12 composed of nine distributed coils A to I, and each coil side of the nine coils A to I is 2 ⁇ / n, respectively. It is stored in the slot with the phase of.
  • the coil constituting the stator winding 12 includes a coil side that is housed in a slot and generates an electromagnetic force, a coil end that connects the coil sides in the slot, and mouths at both ends of the coil. Has a line. As will be described in detail later, in the present specification, the coil having the coil side A and the coil side a is referred to as the coil A.
  • each of the nine coils A to I is connected in series, forming an annular closed loop as a whole.
  • the connection points of the coils A to I are connected to the positive side main power supply line 61 and the negative side main power supply line 62 of the DC power supply 60 via the transistors TA1 to TI2 which are the switching elements of the switching circuit 130 and constitute the half bridge. It is connected.
  • the DC motor 100 has one of the transistors TA1 to TI1 of the upper arm of the switching circuit 130 and the transistors TA2 to TI2 of the lower arm according to the position of the magnetic pole of the rotor 20 detected by the position detection sensor 40. It is controlled so that any one of them is turned on. For example, when the transistor TA1 on the upper arm and the transistor TE2 on the lower arm are in the on state, all the other transistors are in the off state. Therefore, the power supply voltage Vdc of the DC power supply 60 is applied to the transistor TA2 of the lower arm and the transistor TE1 of the upper arm.
  • a voltage corresponding to the voltage drop of the current flowing through the coil A is applied to the transistor TB1
  • a voltage obtained by subtracting the voltage corresponding to the voltage drop of the current flowing through the coil A from the power supply voltage Vdc is applied to the transistor TB2. Will be applied.
  • the DC machine disclosed in Patent Document 1 is provided with a plurality of half bridges as the switching circuit 130, and each switching element is required to have a withstand voltage that can withstand the magnitude of the power supply voltage. Since each coil is connected in series, it is necessary to increase the power supply voltage Vdc in order to increase the output torque of the DC machine, and it is also necessary to increase the withstand voltage required for the switching element to be used. Further, since a switching element having twice the number of coils is required, it is necessary to use a large number of expensive transistors having a large withstand voltage in order to obtain a high output.
  • the present invention has been made in view of these circumstances, and provides a withstand voltage reduction circuit that enables the use of a switching element having a low withstand voltage when supplying power from a DC power supply to a load via a plurality of half bridges. It is an object of the present invention to provide a rotating machine and an inverter power supply device provided with this withstand voltage reducing circuit as a switching circuit.
  • the first technical means of the present invention is a withstand voltage reducing circuit for a power supply device that supplies a current from a DC power supply to a load via a plurality of half bridges, and a plurality of withstand voltage reduction circuits.
  • the half bridge is divided into a group of k switches (k is an integer of 2 or more) each having a plurality of the half bridges, and a plurality of first switching elements and a plurality of upper arms of the half bridges of the half bridges of each of the switch groups.
  • the first switching element of the lower arm is connected to the positive side sub power supply line and the negative side sub power supply line provided in each of the switch groups, respectively, and each of the positive side sub power supply lines and each of the negative side of each of the switch groups.
  • the sub power supply lines are connected to the positive side main power supply line and the negative side main power supply line of the DC power supply via the second switching element, respectively, and further, any of the switches in the switch group via a resistor. It is characterized in that it is connected to the connection point of the half bridge or is directly connected via a resistor.
  • the second technical means is to conduct the first switching element of the upper arm of one switch group and the first switching element of the lower arm of the other switch group, and to conduct the upper arm.
  • the first switching element of the arm and the second switching element of the switch group to which the first switching element of the lower arm belongs are made conductive so that the other first and second switching elements are non-conducting.
  • the first and second switching elements are provided with a control circuit for switching between conduction and non-conduction.
  • the third technical means has a stator with a number of poles of 2 m (m is an integer) having n coils provided by shifting the phase of 2 ⁇ / n (n is an integer of 4 or more), and a switching circuit.
  • the outlet wires of the adjacent coils are sequentially connected, each of the coils is connected in series in an annular shape, and the connection point of the outlet wire of each of the coils is a half composed of two first switching elements of the switching circuit.
  • a rotating machine connected to a connection point of a bridge, wherein the half bridges connected to the outlet wire of the adjacent coil in the switching circuit each have a plurality of the half bridges (k is 2).
  • the first switching element of the plurality of upper arms and the first switching element of the plurality of lower arms of the half bridge of each of the above switch groups are provided in each of the switch groups.
  • the positive side sub power supply line and the negative side sub power supply line are connected to each other, and the positive side sub power supply line and the negative side sub power supply line of each of the switch groups are connected to the positive side of the DC power supply via the second switching element, respectively. It is connected to the main power line and the negative main power line, and is further connected to the connection point of the half bridge of any of the switches in the switch group via a resistor, or directly via a resistor. It is characterized by being connected.
  • the fourth technical means is characterized in that, in the third technical means, the n coils have a coil pitch substantially equal to the magnetic pole pitch (2 ⁇ / 2 m) of the stator. ..
  • a fifth technical means is characterized in that, in the third technical means, the stator has n slots, and each of the n coils is housed in two adjacent slots. Is.
  • the sixth technical means is that in any one of the third to fifth technical means, the rotor is a permanent magnet rotor or a rotor having an exciting coil, and the north pole and the south pole are poles. It is characterized by having a magnetic pole of several 2 m.
  • the seventh technical means is characterized in that, in the sixth technical means, a control circuit for switching conduction / non-conduction of the first and second switching elements according to the position of the magnetic pole of the rotor is provided. It is a thing.
  • the eighth technical means is characterized in that, in any one of the third to fifth technical means, the rotor is a cage rotor or a winding rotor.
  • the ninth technical means is characterized in that, in the eighth technical means, a control circuit for switching between conduction and non-conduction of the first and second switching elements is provided at a predetermined cycle.
  • the control circuit is connected to the connection points of the outlet wires of the two coils separated by substantially equal to the magnetic pole pitch of the stator.
  • the first switching element of the upper arm of one of the switch groups and the first switching element of the lower arm of the other switch group are conducted and conducted.
  • the first switching element of the upper arm and the second switching element of the switch group to which the first switching element of the lower arm belongs are made conductive, so that the other first and second switching elements are non-conducting.
  • it is characterized in that the conduction / non-conduction of the first and second switching elements is switched.
  • the eleventh technical means is the first or second switching element in which the control circuit switches from the conductive state to the non-conducting state, and then the first switching element from the non-conducting state to the conductive state in the tenth technical means.
  • both of the second switching element and the second switching element are kept in a conductive state together for a predetermined minute time.
  • the twelfth technical means is characterized in that, in any one of the third to eleventh technical means, the withstand voltage of the first switching element is lower than the withstand voltage of the second switching element.
  • the thirteenth technical means is an inverter power supply device that converts a DC power supply into an AC, and has n (n is an integer of 4 or more) slots and n primary side coils housed in the two adjacent slots.
  • Q (q is an integer of 2 or more) in which the primary coil is magnetically coupled to the n first salient poles formed by the slots of the primary core and the secondary coil is rotated.
  • a secondary core having a second salient pole and a switching circuit, the outlet wires of adjacent primary coils are sequentially connected, and each primary coil is connected in series in an annular shape, and each primary coil is connected in series.
  • connection point of the outlet wire of the side coil is connected to the connection point of the half bridge composed of two first switching elements of the switching circuit, respectively, and is connected to the outlet wire of the adjacent primary side coil in the switching circuit.
  • the connected half bridges are divided into k switch groups (k is an integer of 2 or more) each having a plurality of the half bridges, and the first of the plurality of upper arms of the half bridges of each of the switch groups.
  • the switching element and the first switching element of the plurality of lower arms are connected to the positive side sub power supply line and the negative side sub power supply line provided in each of the switch groups, respectively, and the positive side sub power supply line and the positive side sub power supply line of each of the switch groups are provided.
  • the negative side sub power supply line is connected to the positive side main power supply line and the negative side main power supply line of the DC power supply via the second switching element, respectively, and further, the switch group of the switch group is connected to each other via a resistor. It is characterized in that it is connected to the connection point of any of the half bridges, or is directly connected via a resistor.
  • the fourteenth technical means further comprises a control circuit in the thirteenth technical means, wherein the control circuit includes the first switching element of the upper arm of one switch group and the control circuit of the other switch group.
  • the first switching element of the lower arm is made conductive, and the first switching element of the upper arm and the second switching element of the switch group to which the first switching element of the lower arm belongs are made conductive. It is characterized in that the conduction / non-conduction of the first and second switching elements is periodically switched so that the other first and second switching elements become non-conducting.
  • a circuit withstand voltage reduction circuit that enables the use of a switching element having a low withstand voltage is obtained, and the withstand voltage reduction circuit is switched.
  • FIG. 4B is a diagram showing a configuration example of a control circuit of a DC motor according to the first and second embodiments, together with FIG. 4B. Along with FIG. 4A, it is a diagram showing a configuration example of a control circuit of a DC motor according to the first and second embodiments.
  • an inner rotor type rotating machine having a slot formed in a stator will be described as an example, but the rotating machine of the present invention is an outer rotor type or an axial gap type rotating machine. It may be configured as. Further, a rotating machine that does not have a slot as a constituent requirement may be configured as a slotless rotating machine.
  • the DC motor described below also functions as a generator in the same way as the conventional brushed DC motor, and its structure is the same as that of the DC motor.
  • the induction motor described below also functions as a conventional induction generator operated in a state where the slip s is negative, and its configuration is the same as that of the induction motor.
  • FIG. 1 is a diagram showing an outline of a DC motor according to the first embodiment of the present invention
  • FIG. 2 is a diagram showing the development of a switching circuit and a stator winding of the DC motor according to the present embodiment. be.
  • FIG. 3 is a diagram showing an equivalent circuit of the coil of the DC motor and the switching circuit according to the present embodiment.
  • the DC motor 101 of the present embodiment includes a stator 10, a rotor 20, a switching circuit 30, a position detection sensor 40, and a control circuit 50
  • the switching circuit 30 includes a DC power supply. 60 is connected.
  • the transistor is represented as a switch symbol or a square block for simplification, but these transistors are similar to the transistor provided with the free foil diode shown in FIG. The representation of the transistor is the same for other drawings.
  • FIG. 1 since the DC motor 101 is schematically drawn, the rotor 20 and the stator 10 are separated from each other. However, in manufacturing, the gap between the rotor 20 and the stator 10 is magnetically coupled. The length should be sufficient. This point is the same in other drawings.
  • a stator winding 12 composed of 15 coils A to O housed in each slot of the core 11 is provided.
  • the stator winding 12 of the present embodiment is a two-layer winding distributed winding.
  • the reference numeral of "A" is used for both “coil A” and “coil side A", but in the case of distributed winding, as shown in FIGS. 1 and 2, "coil A" is used.
  • coil side A a coil side A and a coil side a housed in two slots separated by a magnetic pole pitch of the rotor 20, a coil end connecting these two coil sides A and a, and two outlet wires.
  • coil side A it means one of the two coil sides of the coil A.
  • the coil side is a coil portion where the magnetic force lines of the magnetic field of the rotor 20 intersect at right angles.
  • the magnetic pole pitch of the stator 10 means the distance (angle) between the magnetic poles adjacent to each other of the stator 10. For example, in the case of a two-pole machine in which two magnetic poles of N pole and S pole are formed on the stator 10, the magnetic pole pitch of the stator 10 is 180 °. In this case, since the number of poles of the rotor 20 is equal to the number of poles of the stator 10, the magnetic pole pitch of the rotor 20 is also 180 °. Further, when the stator 10 is a 4-pole machine in which four magnetic poles of N pole, S pole, N pole, and S pole are formed, for example, the magnetic pole pitches of the rotor 20 and the stator 10 are both 90 °. It becomes.
  • Each coil side of the 15 coils A to O is stored in the slot with a phase shift of 2 ⁇ / n.
  • the number of slots is also odd.
  • each coil side of the 15 coils A to O is placed in the slot containing one coil side and the slot closest to the magnetic pole pitch within the magnetic pole pitch (180 °) of the stator 10 from this slot.
  • the coil side is stored.
  • the two coil sides of each coil will be stored in slots 180 ° apart. That is, when the number of slots is an even number, all nodes are wound and the coil pitch is equal to the magnetic pole pitch. Further, when the number of slots is an odd number, the winding is short-circuited, and the coil pitch is provided so as to be shorter than the magnetic pole pitch but closest to the magnetic pole pitch.
  • the coil pitch in the case of a stator having a slot, is substantially equal to the magnetic pole pitch, including both the case where the coil pitch is equal to the magnetic pole pitch and the case where the coil pitch is shorter than the magnetic pole pitch but closest to the magnetic pole pitch. That is.
  • the DC motor 101 shown in FIG. 1 corresponds to a brushed DC motor including a two-pole rotor, coils A to O housed in 15 slots, and 15 commutator pieces.
  • the coil A has a slot in which the coil side A is housed and a coil side a housed in a slot seven slots separated from the slot. ..
  • the coil B has a coil side B housed in a slot adjacent to a slot in which the coil side A is housed, and a coil side b housed in a slot separated from this slot by seven slots. ..
  • the coil side I housed in a slot separated from the slot in which the coil side A is housed by eight slots and the coil side A are housed in the coil side A. It has a coil side i housed in the same slot as the slot.
  • Coil side G and coil side o, coil side H and coil side a, ..., And coil side O and coil side h are sequentially housed in the same slot.
  • the 15 coils A to O are connected in series, respectively, and as a whole, they are connected in series.
  • One circular closed loop is formed.
  • the magnetic flux generated in the coil B and the coil C when a current is passed from the outlet wire of the coil side B to the outlet wire of the coil side c is the two coils.
  • a magnetic field in the same direction is generated in the region commonly surrounded by B and C.
  • the switching circuit 30 in FIGS. 1, 2 and 3 corresponds to the withstand voltage reducing circuit of the present invention and is a component of the DC motor 101 of the first embodiment.
  • the connection points of the coils A to O consist of two transistors TA1 and TA2, transistors TB1 and TB2, ..., Transistors TO1 and TO2, which are the first switching elements of the upper arm and the lower arm, respectively. It is connected to the connection points of 15 half bridges TA, TB, ..., TO.
  • the half bridge composed of the transistors TA1 and TA2 of the first switching element is referred to as a half bridge TA. The same applies to the other half bridges.
  • the half bridge composed of the transistors TH1 and TH2 of the first switching element is a half bridge. Called TH.
  • the circuit connected to the positive power supply side of the half bridge and supplying the current to the load is called the upper arm, and is connected to the negative power supply side of the half bridge, and the current from the load is the main power supply on the negative side.
  • the circuit that draws into the wire is called the lower arm.
  • the switching elements of the upper arms belonging to the first to third switch groups 31 to 33 are connected to the positive side sub power supply lines 31H to 33H common to each switch group, and the first to third switch groups 31 to 31 to The switching element of the lower arm belonging to 33 is connected to the minus side sub power supply lines 31L to 33L common to each switch group.
  • the outlet wire on the coil side o side of the coil O and the outlet wire on the coil side A side of the adjacent coil A are connected, and the connection point is the first switching element. It is connected to the positive side sub power supply line 31H via a certain transistor TA1 and is connected to the negative side sub power supply line 31L via the transistor TA2 which is the first switching element. Further, the outlet wire on the coil side a side of the coil A and the outlet wire on the coil side B side of the adjacent coil B are connected, and the connection point is the positive side sub power supply via the transistor TB1 which is the first switching element. It is connected to the line 31H and is connected to the minus side sub power supply line 31L via the transistor TB2 which is the first switching element.
  • each connection point from the outlet wire on the coil side b side of the coil B to the outlet wire on the coil side E side of the coil E is also positive via the transistors TC1 to TE1 which are the first switching elements on the upper arm side. It is connected to the side sub power supply line 31H and is connected to the minus side sub power supply line 31L via the transistors TC2 to TE2 which are the first switching elements on the lower arm side.
  • the transistors TA1 to TE1 which are the first switching elements of the upper arm belonging to the first switch group 31 are connected to the positive side sub power supply line 31H, and the first switching element of the lower arm belonging to the first switch group 31.
  • the transistors TA2 to TE2 are connected to the negative side sub power supply line 31L.
  • the transistors TD1 to TH1 which are the first switching elements of the upper arm belonging to the second switch group 32 are connected to the positive side sub power supply line 32H, and the transistors which are the first switching elements of the lower arm belonging to the second switch group 32.
  • TD2 to TH2 are connected to the negative side sub power supply line 32L.
  • the transistors TK1 to TO1 which are the first switching elements of the upper arm are connected to the common positive sub power supply line 33H, and the transistors TK2 to TO2 which are the first switching elements of the lower arm. Is connected to the common negative sub power line 33L.
  • the positive side sub power supply lines 31H to 33H of the first to third switch groups 31 to 33 are connected to the positive side main power supply line 61 of the DC power supply 60 via the transistors T11 to T31, which are the second switching elements, respectively.
  • the negative side sub power supply lines 31L to 33L of the first to third switch groups 31 to 33 are connected to each other via the transistors T12 to T32 which are the second switching elements, respectively, and the negative side main power supply of the DC power supply 60. It is connected to line 62.
  • the positive side sub power supply line 31H of the first switch group 31 is connected to the positive side main power supply line 61 of the DC power supply 60 via the transistor T11 which is the second switching element, and the negative side sub power supply line 61 is connected.
  • the power supply line 31L is connected to the negative side main power supply line 62 of the DC power supply 60 via the transistor T12 which is the second switching element. This configuration is the same for the other second switch group 32 and the third switch group 33.
  • the positive side sub power lines 31H to 33H of the first to third switch groups 31 to 33 are connected to any of the half bridges of the first to third switch groups 31 to 33 via resistors R11 to R31, respectively. It is connected to the connection point, and similarly, the negative side sub power lines 31L to 33L of the first to third switch groups 31 to 33 are connected to the first to third switch groups 31 via resistors R12 to R32, respectively. It is connected to the connection point of any of the half bridges of to 33. Specifically, for example, the positive side sub power supply line 31H of the first switch group 31 is connected to the connection point of any one half bridge of the first switch group 31, for example, the half bridge TA via the resistor R11.
  • the negative sub power supply line 31L of the first switch group 31 is connected to the connection point of the same half bridge TA of the first switch group 31 via the resistor R12. This configuration is the same for the positive side sub power supply lines 32H and 33H and the negative side sub power supply lines 32L and 33L of each of the other switch groups.
  • the resistors R11 and R12 are connected to the same connection point of the half bridge TA, but may be connected to different connection points of the half bridge as long as they are in the same switch group. ..
  • the positive side sub power supply line 31H may be connected to the connection point of the half bridge TB via the resistor R11
  • the negative side sub power supply line 31L may be connected to the connection point of the half bridge TD via the resistor R12.
  • the configuration of this connection is the same for the other switches and the same for the other embodiments.
  • these resistors R11 to R32 have a resistance value so high that the current flowing through the resistors R11 to R32 can be ignored as compared with the current flowing through the coils A to O.
  • each half bridge is a plurality of halves. It is divided into a plurality of first to third switch groups 31 to 33 composed of bridges, and a plurality of upper arm switching elements and a plurality of lower arm switching elements of the half bridge of each switch group are common to each switch group. It is connected to the positive side sub power supply line and the negative side sub power supply line, and each positive side sub power supply line and each negative side sub power supply line of each switch group are the second switching element on the upper arm side and the second switching element on the lower arm side, respectively. It is connected to the positive side main power supply line and the negative side main power supply line of the DC power supply via a switching element, and is also connected to the connection point of any half bridge of the switch group via a resistor.
  • transistors T11 to T32 connected to the DC power supply 60 transistors having a standard different from that of the first switching element are used as the second switching element.
  • each coil A In (O), one outlet wire and the other outlet wire are connected to adjacent commutator pieces.
  • Each coil A to O of the DC motor 101 of the present embodiment has a stator winding structure similar to that of the lap winding in the DC motor with a commutator.
  • the rotor 20 is rotatably provided around an axis (not shown), and is provided with a permanent magnet in this embodiment.
  • the rotor 20 is not limited to the permanent magnet rotor, and may be provided with an exciting coil.
  • the number of poles of the stator 10 and the rotor 20 is set to 2 poles, but the number of poles may be larger than 2 poles.
  • 15 coils may be arranged for each of the two poles (N station and S pole) of the rotor 20.
  • the stator winding 12 may have 30 coils housed in the slots, and the stator 10 may be composed of four poles. However, it is not necessary to double the number of transistors in the switching circuit 30 and the number of sensors in the position detection sensor 40 described later.
  • the outlet wires of the two coils that are spatially symmetrical at 180 ° may be connected to the connection points of the two transistor elements of the same half bridge.
  • the switching circuit 30, the position detection sensor 40, and the control circuit 50 described later can be common.
  • Sensors Sa to So are used.
  • the sensors Sa to So are shown to be located at the slot of the stator 10, but in reality, they can be provided at positions separated from the stator 10 in the axial direction.
  • Sensors Sa to So composed of Hall elements are an example of detecting the magnetic field of the rotor 20, and if it is a sensor using a saturable coil or a sensor that can detect the position of the rotor 20 in a non-contact manner, it is absolute by a photodetection element.
  • An encoder may be used.
  • the sensors Sa to So are adjusted so that, for example, the logical value "H” is output when the north poles of the rotor 20 are opposed to each other, and the logical value "L” is output when the south poles of the rotor 20 are opposed to each other. Has been done.
  • the rotation angle of the rotor 20 may be calculated using a resolver to detect the position of the rotor 20.
  • the control circuit 50 receives the position signal of the rotor 20 from the position detection sensor 40, and receives the position signals of the rotor 20 and the transistors T11 to T31 on the upper arm side connected to the positive side main power supply line 61 of the switching circuit 30 and the negative side main power supply.
  • the on / off states of the transistors T12 to T32 on the lower arm side connected to the wire 62 are switched, and the transistors TA1 to TO1 of the upper arm and the transistors TA2 to TO2 of the lower arm constituting each half bridge TA to TO are switched.
  • the on / off state the direction of the current flowing through each of the coils A to O is switched.
  • any one of the transistors TA1 to TO1 of the upper arm, which is the first switching element, is turned on, and the transistor in the on state and the transistor are turned on.
  • the transistors TA2 to TO2 are different lower arm transistors TA2 to TO2, and the transistors connected to the coil to which the upper arm transistor in the on state is connected and the coil at a position approximately 180 ° away corresponding to the magnetic pole pitch are turned on.
  • it is connected to any one of the transistors T11 to T31 of the second switching element on the upper arm side, which is the second switching element connected to the transistor of the upper arm in the on state, and the transistor of the lower arm in the on state.
  • Any one of the transistors T12 to T32 on the lower arm side, which is the second switching element is turned on. Further, the first switching element and the other transistors of the second switching element are all turned off.
  • FIG. 4A is a diagram showing a configuration example of the DC motor control circuit 50 shown in FIG. 1 together with FIG. 4B
  • FIG. 4B is a configuration example of the DC motor control circuit 50 shown in FIG. 1 together with FIG. 4A. It is a figure which shows.
  • FIG. 5 is a diagram showing a transition of an on / off state of the switching element of the DC motor according to the present embodiment.
  • t1 to t9 indicate the time, and the time elapses from the top to the bottom.
  • the transistors that are on at each time are surrounded by a thick frame and hatched.
  • the control circuit 50 shown in FIGS. 4A and 4B receives signals from 15 sensors Sa to So, and receives 30 transistors TA1 to TO2 which are first switching elements and transistors T11 to T32 which are second switching element transistors. Sends on / off signals to each gate of.
  • the logic circuit constituting the control circuit 50 has 15 XORs (exclusive OR) of the first stage 51 shown in FIG. 4A when the sensors Sa to So side are the upstream side and the transistors TA1 to TO2 side are the downstream side.
  • Circuits 15 XOR circuits in the 2nd stage 52, 15 NOT (negative) circuits in the 3rd stage 53, 30 AND (logical product) circuits in the 4th stage 54, and , 30 amplifiers of the 5th stage 55, 6 OR (logical sum) circuits of the 6th stage 56 shown in FIG. 4B, and 6 amplifiers of the 7th stage 57 are provided.
  • the AND circuit of the fourth stage 54 is a pair corresponding to the transistors of the upper arm and the transistor of the lower arm of 15 coils and each half bridge, and the output signal of the AND circuit of the fourth stage 54 is the fourth stage 54. It is amplified by the amplifier of the fifth stage 55 and supplied to the gates of the transistors TA1 to TO2 of the first switching element. That is, the outputs from the pair of AND circuits form a pair of half bridges connected to the positive side sub power supply lines 31H to 33H and the negative side sub power supply lines 31L to 33L of the first to third switch groups 31 to 33, respectively. It is input to each gate of the transistor of.
  • two adjacent Hall elements for example, a sensor
  • the signals from Sc and Sd are input to the XOR circuit of the first stage 51, and the output thereof is input to the paired AND circuit of the fourth stage 54 connected to the transistors TD1 and TD2, respectively.
  • the signal from the sensor Sc and the forward / reverse signal Q from the forward / reverse rotation control input terminal 70 are input to the XOR circuit of the second stage 52, and the output is the AND circuit of the paired fourth stage 54.
  • the sensors Sa to So are arranged at the positions shown in FIG. 4A so that torque acts on the rotor 20 when a current is passed through the coils A to O by switching the transistors.
  • the output of the sensors Sh to So becomes “H” and the sensor.
  • the output of Sa to Sg is “L”.
  • the gate signal to the transistors T11 to T32, which are the second switching elements shown in FIG. 4A, is obtained from the logical sum signal of the predetermined output signal of the AND circuit of the fourth stage 54.
  • the gate signal S11 of the transistor T11 which is the second switching element provided on the upper arm side of the first switch group 31, is the upper arm belonging to the first switch group 31. It is obtained from the logical sum signal of the signals A1, B1, C1, D1, E1 which are the gate signals of the transistors TA1, TB1, TC1, TD1, TE1.
  • This configuration is the same for the gate signals S21 and S31 of the transistors T21 and T31 which are the second switching elements provided on the upper arm side of the other second and third switch groups 32 and 33.
  • the gate signal S12 of the transistor T12 which is the second switching element provided on the lower arm side of the first switch group 31, is the gate of the transistors TA2, TB2, TC2, TD2, TE2 of the lower arm belonging to the first switch group 31. It is obtained from the OR signal of the signals A2, B2, C2, D2, and E2 that serve as signals.
  • This configuration is the same for the gate signals S22 and S32 of the transistors T22 and T32 which are the second switching elements provided on the lower arm side of the other second and third switch groups 32 and 33.
  • the gate of the transistors TA1 to TO2 of either the upper arm or the lower arm of the half bridge, which is the first switching element connected to the coil becomes a logical value “H”
  • the gate Is configured so that the gates of the transistors T11 to T32, which are the second switching elements of the switch group to which the transistor, which is the first switching element, has the logical value “H”, have the logical value “H”. Therefore, the upper arm transistors TA1 to TO1 whose gate has a logical value “H” are connected to the positive main power supply line 61, and the lower arm transistors TA2 to TO2 whose gate has a logical value “H” are connected. , Connected to the negative side main power line 62. Further, the gate signals of all the other first and second switching elements are configured to have a logical value "L".
  • control circuit 50 turns on one of the first switching elements on the upper arm side and the second switching element belonging to one switch group, and at the same time, the first switching element on the lower arm side belonging to the other switch group. Turn on one of the two and the second switching element.
  • FIG. 5 shows the transition of the on / off state of the first switching element and the second switching element.
  • the transistor TA1 of the upper arm is turned on at time t1
  • the transistor T11 which is the second switching element on the upper arm side of the first switch group 31 to which the transistor TA1 belongs is turned on.
  • the transistor TH2 of the lower arm is turned on
  • the transistor T22 which is the second switching element on the lower arm side of the second switch group 32 to which the transistor TH2 belongs, is turned on. Therefore, in the present embodiment, the current flowing through the coils A to O can be obtained by paying attention to the on / off states of the transistors TA1 to TO2 constituting the half bridge which is the first switching element.
  • the north pole of the rotor 20 faces the sensors Sh to So
  • the south pole of the rotor 20 faces the sensors Sa to Sg
  • the upper arm side is the first.
  • the transistor TA1 which is a switching element and the transistor T11 which is a second switching element are in the ON state
  • the transistor TH2 which is the first switching element and the transistor T22 which is the second switching element are in the ON state on the lower arm side.
  • the current from the DC power supply 60 passes through the positive side main power supply line 61, the transistor T11, the positive side sub power supply line 31H, and the transistor TA1, and then the coil A, the coil B, and so on.
  • the coil H is divided into a flow path through another coil group connected in series in this order, and further flows to the minus side main power supply line 62 via the transistor TH2, the minus side sub power supply line 32L, and the transistor T22.
  • FIG. 6A to 6C are diagrams for explaining the current flowing through each coil side of the DC motor shown in FIG. 1, FIG. 6A shows the state at time t1 in FIG. 5, and FIG. 6B is shown in FIG. The state at time t2 is shown, and FIG. 6C shows the state at time t3 in FIG.
  • a magnetic field is generated in the direction toward the intermediate position between the coil side a and the slot accommodating the coil sides a and H.
  • the magnetic field of the stator 10 and the magnetic field of the rotor 20 have a phase difference of approximately 90 °, and a force is applied to the rotor 20 so that the direction of the magnetic field of the rotor 20 is aligned with the direction of the magnetic field of the stator 10. It works. As a result, torque in the counterclockwise direction acts on the rotor 20, and the rotor 20 rotates in the counterclockwise direction, which is the forward rotation direction.
  • the current from the DC power supply 60 is the coil group of the paths of coil A, coil B, coil C, coil D, coil E, coil F, coil G, and coil H, and coil O, coil N, and coil M.
  • Coil L, coil K, coil J, and coil I Coil L, coil K, coil J, and coil I. Therefore, as shown in FIG. 6B, coil sides A, B, C, D, E, F, G, H, i, j, For k, l, m, n, o, from the front to the back of the paper, and the coil sides I, J, K, L, M, N, O, a, b, c, d, e, f, g A current flows through , h from the back to the front of the paper.
  • the current from the DC power supply 60 is the coil group in the path of coil B, coil C, coil D, coil E, coil F, coil G, and coil H, and coil A, coil O, coil N, and coil M.
  • Coil L, coil K, coil J, and coil I Therefore, as shown in FIG. 6C, coil sides B, C, D, E, F, G, H, i, j, k, For l, m, n, o, a, from the front to the back of the paper, and the coil sides I, J, K, L, M, N, O, A, b, c, d, e, f, g A current flows through , h from the back to the front of the paper.
  • the signal output of each sensor Sa to So of the position detection sensor 40 changes, and the signal output of each sensor Sa to So changes accordingly.
  • the transistors in the ON state of the upper arm transistors TA1 to TO1 and the lower arm transistors TA2 to TO2, which are the first switching elements shown in 2 are switched.
  • the on / off states of the transistors T11 to T32, which are the second switching elements are switched in conjunction with the switching of the on / off states of the first switching element.
  • the rotor 20 continues to rotate in the counterclockwise direction, which is the forward rotation direction.
  • the upper arm transistors TA1 to TO1 are switched on and the lower arm transistors TA2 to TO2 are turned on.
  • the state switching is performed alternately. That is, at time t2, the transistor TI2 is turned on instead of the transistor TH2 of the lower arm from the state of time t1, the transistor TB1 is turned on instead of the transistor TA1 of the upper arm at time t3, and further, the transistor TB1 is turned on instead of the transistor TA1 of the upper arm. Then, the transistor TJ2 is turned on instead of the transistor TI2 of the lower arm.
  • the number of slots of the stator 10 is an even number, the upper arm transistor and the lower arm transistor are switched on at the same timing.
  • the DC motor 101 of the present embodiment the current flowing through all the coils of the stator 10 gives the rotor 20 a rotational torque. Therefore, the DC motor 101 is a DC motor having a high coil current utilization rate.
  • the rotor 20 shown in FIG. 1 rotates clockwise. do. For example, as shown in FIG. 4A, assuming that the north pole of the rotor 20 faces the sensors Sh to So and the south pole of the rotor 20 faces the sensors Sa to Sg, the outputs of the sensors Sh to So Is "H", and the outputs of the sensors Sa to Sg are "L”.
  • the current from the DC power supply 60 passes through the positive side main power supply line 61, the transistor T21, the positive side sub power supply line 32H, and the transistor TH1, and then the coil H, the coil I, and the coil H.
  • the coil A is divided into a flow path through another coil group connected in series in this order, and further flows to the minus side main power supply line 62 via the transistor TA2, the minus side sub power supply line 31L, and the transistor T12.
  • the current flowing through each coil side is in the opposite direction to the current flowing through each coil side A to o shown in FIG. 6A.
  • the direction along the boundary line of the magnetic pole NS of the rotor 20 shown in FIG. 6A (intermediate between the slot containing the coil sides o and G and the slot containing the coil sides a and H).
  • a magnetic field is generated (in the direction from the position toward the slot position where the coil sides h and O are stored).
  • the magnetic field of the stator 10 and the magnetic field of the rotor 20 have a phase difference of approximately 90 °, and a force is applied to the rotor 20 so that the direction of the magnetic field of the rotor 20 is aligned with the direction of the magnetic field of the stator 10. It works.
  • the current flowing between the coil side of the coil facing the north pole of the rotor and the coil side of the coil facing the south pole of the rotor 20 depends on the position of the magnetic pole of the rotor 20.
  • the control circuit 50 switches between conduction and non-conduction of the transistors TA1 to TI2, which are switching elements, so that the directions of the above are different.
  • the DC motor 101 of the present embodiment is substantially equal to the rotor and the magnetic pole pitch of 2 m (m is an integer) of poles as compared with the DC motor 100 shown as a conventional example in FIGS. 17 and 18. It has a coil pitch and includes n coils provided with a 2 ⁇ / n (n is an integer of 4 or more) out of phase, and each coil has two lead wires, which are adjacent coils. It is common in that the outlet wires are sequentially connected, each coil is connected in series in an annular shape, and the connection point of each outlet wire is connected to the connection point of a half bridge composed of two first switching elements. There is. However, the configuration is different from the conventional example in the following points.
  • the half bridges connected to the outlet wires of adjacent coils are divided into k switch groups (k is an integer of 2 or more) each having a plurality of half bridges, and a plurality of half bridges of each switch group are provided.
  • the point that the first switching element of the upper arm and the first switching element of the plurality of lower arms are connected to the plus side sub power supply line and the minus side sub power supply line provided in each switch group, respectively.
  • Each positive side sub power supply line and each negative side sub power supply line of each switch group are connected to the positive side main power supply line and the negative side main power supply line of the DC power supply via the second switching element, respectively. point.
  • the positive side sub power supply line and the negative side sub power supply line of each switch group are connected to the connection point of any half bridge of the switch group via a resistor, or directly via a resistor. The point of being connected.
  • the transistor T11 which is the second switching element on the upper arm side of the first switch group 31, the transistor TA1 of the upper arm of the first switch group 31, and the lower arm of the second switch group 32
  • the four transistors TH2 and the transistor T22 which is the second switching element on the lower arm side of the second switch group 32, are in the on state, and all the other transistors are in the off state.
  • the equivalent circuit shown in FIG. 3 shows the state at time t1 shown in FIG.
  • the transistor T11 which is the second switching element is in the on state, but the transistor T12 which is the second switching element is in the off state, so that the transistor T12 is the DC power supply 60. It is necessary to use a transistor with a high withstand voltage that can withstand the power supply voltage Vdc of.
  • the transistor T22 which is the second switching element is in the on state, but the transistor T21 which is the second switching element is in the off state, so that the transistor T21 is set to the power supply voltage Vdc of the DC power supply 60. It is necessary to use a transistor with a high withstand voltage that can withstand it.
  • the transistors T11 to T32 which are the second switching elements connected to the positive side main power supply line 61 or the negative side main power supply line 62, have a high power supply voltage Vdc. It is necessary to use a withstand voltage transistor.
  • the transistors TA1 to TO1 of the upper arms of the first to third switch groups 31 to 33 are connected to the positive side sub power lines 31H to 33H, respectively, and the lower arm.
  • Transistors TA2 to TO2 are connected to the negative side sub power supply lines 31L to 33L.
  • the current from the DC power supply 60 passes through the positive side main power supply line 61, the transistor T11 which is the second switching element, the positive side sub power supply line 31H, and the transistor TA1 which is the first switching element.
  • Coil A, B, C, D, E, F, G flows through the series circuit.
  • the potential of the connection point of the outlet wire of each coil that is, the potential of each half bridge connection point is the potential obtained by subtracting the voltage component corresponding to the voltage drop of the coils connected in series from the potential of the connection point of the half bridge TA. It becomes. Therefore, the voltage related to the transistors TA1 to TE2, which are the first switching elements of the first switch group 31, is as follows.
  • the applied voltage of the transistor TA1 becomes zero, and the positive side sub power supply line 31H and the half bridge TA
  • the connection point has substantially the same potential as the positive side main power supply line 61. Therefore, a voltage corresponding to the voltage drop of the current flowing through the coil A is applied to the transistor TB1 of the upper arm, and corresponds to the voltage drop of the current flowing through the coils A and B to the transistor TC1 of the upper arm. A voltage is applied. Further, a voltage corresponding to the voltage drop of the current flowing through the coils A to D is applied to the transistor TE1 of the upper arm.
  • the negative side sub power supply line 31L does not have the same potential as the negative side main power supply line 62, but becomes substantially the same potential as the positive side main power supply line 61 through the resistors R12 and R11 having high resistance values of several M ⁇ . ing.
  • the applied voltage of the transistor TA2 becomes zero, and the transistor TB2 of the lower arm corresponds to the voltage drop of the current flowing through the coil A.
  • a voltage is applied, and a voltage corresponding to the voltage drop of the current flowing through the coils A and B is applied to the transistor TC2 of the lower arm. Further, for example, a voltage corresponding to a voltage drop of the current flowing through the coils A to D is applied to the transistor TE2 of the lower arm.
  • the transistor T21 which is the second switching element on the lower arm side of the first switch group 31 is subject to a high power supply voltage Vdc, but the transistors TA1 to TE2 which are the first switching elements of the first switch group 31 are subjected to. Only applies a voltage lower than the power supply voltage Vdc.
  • the applied voltage of the transistor TH2 becomes zero and the minus side sub power supply line.
  • the connection points of 32L and the half bridge TH have substantially the same potential as the negative side main power supply line 62. Therefore, for example, a voltage corresponding to the voltage drop of the current flowing through the coils F and G is applied to the lower arm transistor TF2, and for example, the lower arm transistor TG2 is subjected to the voltage of the current flowing through the coil G. A voltage corresponding to the voltage drop is applied, and a voltage corresponding to the voltage drop of the current flowing through the coil H is applied to the transistor TI2 of the lower arm.
  • the transistor T21 which is the first switching element on the upper arm side is in the off state, a voltage substantially equal to the power supply voltage Vdc is applied to the transistor T21 on the upper arm side. Since the transistor T22, which is the second switching element, is in the ON state of the positive side sub power supply line 32H, the potential is not the same as that of the positive side main power supply line 61, and the resistance value R21 having a high resistance value of several M ⁇ is passed through. , The potential is the same as the connection point of the half bridge TF.
  • the applied voltage of the transistor TF1 of the upper arm becomes zero. Further, a voltage corresponding to the voltage drop of the current flowing through the coil F is applied to the transistor TG1 which is the first switching element of the upper arm, and the applied voltage of the transistor TH1 of the upper arm is the voltage of the current flowing through the coils F and G. A voltage corresponding to the voltage drop is applied, and a voltage corresponding to the difference between the voltage drop of the current flowing through the coils F and G and the voltage drop of the current flowing through the coil H is applied to the transistor TI1 of the upper arm. NS.
  • the transistor T32 which is the second switching element on the lower arm side of the third switch group 33, is subject to a high power supply voltage Vdc, but the transistors TG1 to TI2, which are the first switching elements of the third switch group 33, are subjected to. Only applies a voltage lower than the power supply voltage Vdc.
  • the power supply voltage Vdc is applied to the transistors T31, the resistors R21, R22, and the transistor T32. Will be done.
  • the potentials of the positive side sub power supply line 32H and the negative side sub power supply line 32L of the second switch group 32 are the connection points of the half bridge TK (the connection between the coil side j and the coil side K) via the resistors R31 and R32, respectively. It is the potential of the point).
  • the transistors TK1 and TK2 of the first switching element no voltage is applied to the transistors TK1 and TK2 of the first switching element, a voltage corresponding to the voltage drop of the current flowing through the coil K is applied to the transistors TL1 and TL2, and the transistors TM1 and TM2 are charged. A voltage corresponding to the voltage drop of the current flowing through the coils K and L is applied.
  • the transistors T31 and T32 which are the second switching elements on the upper arm side and the lower arm side, are subjected to a high voltage (1/2 of the power supply voltage Vdc, respectively), but the third switch. Only a low voltage is applied to the transistors TK1 to TO2, which are the first switching elements of the group 33.
  • the present embodiment it is necessary to use high withstand voltage transistors for the six transistors T11 to T32, which are the second switching elements on the upper arm side and the lower arm side of each switch group.
  • the 30 transistors of the transistors TA1 to TO2 which are the first switching elements constituting each half bridge, low withstand voltage transistors can be used. This is the same even when the switching elements in the ON state are sequentially switched.
  • the relationship between the power supply voltage Vdc and the voltage applied to the first switching element will be described.
  • the number of coils is n and the number of switch groups is k, and the number of coils n is even and the number of coils of each k coil group is the same, the current flowing through the coils is divided into two paths.
  • the voltage of (n / 2) is applied.
  • one switch group includes n / k coils, and since any one of the switching elements is connected to the sub power supply line, the first switching element has a maximum of (n / k-1) coils. The voltage corresponding to the voltage drop of the coil is applied.
  • the withstand voltage of the switching element is 2Vdc ⁇ (n / k-1) / n. Further, when the number of coils n is an odd number and the number of coils in each coil group is the same, a maximum voltage of Vdc / ((n-1) / 2) is applied to each coil, so that the first switching is performed.
  • the withstand voltage of the element is 2Vdc ⁇ (n / k-1) / (n-1).
  • the withstand voltage of the low withstand voltage transistor which is the first switching element is 2Vdc ⁇ (n / k-1) / n as compared with the withstand voltage of the high withstand voltage transistor which is the second switching element. Alternatively, it can be reduced to 2Vdc ⁇ (n / k-1) / (n-1).
  • the withstand voltage of the second switching element can be lowered by increasing the number k of the switch group, and the withstand voltage reducing circuit of the DC motor 101 is used by using 2k high withstand voltage transistors and 2n low withstand voltage transistors.
  • the switching circuit 30 can be configured as. Then, it is practically desirable to select a transistor having a withstand voltage performance of 100 V or less as the first switching element by selecting the number of coils n and the number of switch groups k. For example, when the power supply voltage Vdc is 250V, the number of coils n is 16, and the number of switch groups k is 4, the switching circuit 30 can be composed of eight transistors having a withstand voltage of 250V and 32 transistors having a withstand voltage of 100V or less. can.
  • the total number of transistors is increased, the number of high withstand voltage transistors required can be significantly reduced as compared with the conventional example, and the cost of the switching element can be significantly reduced as a whole. Is possible.
  • the transistor TI2 when the transistor TI2 of the lower arm is turned from the off state to the on state, the transistor TI2 is not turned off at the same time, but the transistor TI2 is turned on.
  • the transistor TH2 when the transistor TH2 is turned on, it is desirable that the transistor TH2 be kept on for a short time, and then the transistor TH2 is turned off. As a result, the coil H is short-circuited for a short time when the transistor is switched.
  • FIG. 7 is a diagram showing an outline of a modification of the DC motor according to the first embodiment of the present invention.
  • the positive side sub power supply lines 31H to 33H of the first to third switch groups 31'to 33' and the first to third switches are said.
  • the negative side sub power supply lines 31L to 33L of the three switch groups 31'to 33' are directly connected via resistors R1 to R3, respectively.
  • resistors R1 to R3 a high resistance of several M ⁇ or more is used.
  • Other configurations are the same as those of the DC motor 100 of the first embodiment.
  • the transistor T11 which is the second switching element on the upper arm side of the first switch group 31, the transistor TA1 of the upper arm of the first switch group 31, and the lower arm of the second switch group 32
  • the four transistors TH2 and the transistor T22, which is the second switching element on the lower arm side of the second switch group 32, are in the on state, and all the other transistors are in the off state.
  • the potentials of the positive side sub power supply line 31H and the negative side sub power supply line 31L of the first switch group 31' are substantially equal to the potentials of the positive side main power supply line 61. It has become. Therefore, only the voltage corresponding to the voltage drop of the current flowing through the coils B to D is applied to the transistors TB1 to TE1 of the upper arm and the transistors TB2 to TE2 of the lower arm, respectively.
  • the potentials of the positive side sub power supply line 32H and the negative side sub power supply line 32L of the second switch group 32' are substantially equal to the potential of the negative side main power supply line 62. Therefore, no voltage is applied to the transistor TH1 of the upper arm and the transistor TH2 of the lower arm. Further, only the voltage corresponding to the voltage drop of the current flowing through the coils F and G is applied to the transistors TF1 and TG1 of the upper arm and the transistors TF2 and TG2 of the lower arm, respectively. A voltage corresponding to the voltage drop flowing through the coils H and I is also applied to the transistors TI1 and TJ1 on the upper arm and the transistors TI2 and TI2 on the lower arm.
  • both the transistor T31 on the upper arm side and the transistor T32 on the lower arm side, which are the second switching elements, are in the off state. Therefore, the potentials of the positive side sub power supply line 33H and the negative side sub power supply line 33L of the third switch group 33 are not fixed. Therefore, the upper arm transistors TK1 to TO1 and the lower arm transistors TK2, which are the first switching elements, are not determined. No voltage is applied to ⁇ TO2.
  • a part of the configuration of the switching circuit 30'as the withstand voltage reducing circuit is different from the switching circuit 30 of the DC motor 100, and the positive side sub power supply line of each switch group and the positive side sub power supply line and Instead of connecting the negative sub power lines to the connection points of any of the half bridges of the switch group via resistors, they are directly connected via resistors, which is the same as the switching circuit 30 of the DC motor 100.
  • the withstand voltage of the first switching element can be lowered.
  • the total number of transistors in the switching circuit 30' is increased, the number of high withstand voltage transistors required can be significantly reduced as compared with the conventional example, and the cost of the switching element can be significantly reduced as a whole.
  • the switching circuit 30 as the withstand voltage reduction circuit the positive side sub power supply line and the negative side sub power supply line of each switch group are directly resisted as in the modification of the present embodiment. A configuration connected via a device can be adopted.
  • FIG. 8 is a diagram showing an outline of a DC motor according to a second embodiment of the present invention
  • FIG. 9 is a diagram showing the development of a switching circuit and a stator winding of the DC motor shown in FIG. .
  • the DC motor 102 of the present embodiment includes a stator 10', a rotor 20, a switching circuit 30 as a withstand voltage reducing circuit, a position detection sensor 40, and a control circuit 50.
  • a DC power supply 60 is connected to the circuit 30.
  • the stator winding 12 composed of the coils A to O is a two-layer winding distributed winding, but in the DC motor 102 of the present embodiment, the coils A to O are used. However, it is a concentrated volume.
  • the arrangement of the coils A to O of the DC motor 102 having the stator 10'of the centralized winding and the arrangement of the half bridges TA to TO of the present embodiment is the DC having the stator 10 of the distributed winding.
  • the direction of the magnetic field generated in the stator 10'of the centralized winding deviates by approximately 90 ° from the direction of the magnetic field generated in the stator 10 of the distributed winding.
  • the DC motor 102 of the present embodiment switches the on / off of the first switching element and the second switching element according to the position of the magnetic pole of the rotor 20. Then, in order to apply rotational torque to the rotor 20, in the DC motor 102 of the present embodiment, the positions of the sensors Sa to So of the position detection sensors 40 with respect to the coils A to O are set to the DC motor 101 of the first embodiment. It is different from that, and it is shifted by almost 90 °. Regarding other configurations, the DC motor 102 of the present embodiment has the same configuration as the DC motor 101 of the first embodiment. Therefore, the diagram showing the equivalent circuit of the coil of the DC motor and the switching circuit shown in FIG. 3, the diagram showing the configuration of the control circuit shown in FIGS. 4A and 4B, and the ON / ON of the switching element of the DC motor shown in FIG. The diagram showing the transition of the off state is also applicable to the DC motor 102 according to the present embodiment.
  • the control circuit 50 is the upper arm of one of the two half bridges connected to the connection points of the outlet wires of the two coils separated by a coil pitch substantially equal to the magnetic pole pitch of the rotor 20. Conduct the first switching element and the first switching element of the lower arm of the other switch group. At the same time, the control circuit 50 conducts the first switching element of the upper arm and the second switching element of the switch group to which the first switching element of the lower arm belongs.
  • the transistor TA1 which is the first switching element and the transistor T11 which is the second switching element are turned on on the upper arm side, and the first on the lower arm side.
  • the transistor TH1 which is a switching element and the transistor T22 which is a second switching element are turned on.
  • the current from the DC power supply 60 passes through the positive side main power supply line 61, the transistor T11, the positive side sub power supply line 31H, and the transistor TA1, and the coil A, the coil B, and the coil C.
  • the arrows shown in FIG. 8 indicate the direction of the current flowing through the coils A to O at this time, and the salient poles P1 to P7 shown in FIG. 8 become S poles due to the current flowing through the coils A to O.
  • the salient poles P8 to P15 are N poles. in this way.
  • the direction of the magnetic field generated in the stator 10'of the concentrated winding is deviated by approximately 90 ° from the direction of the magnetic field generated in the stator 10 of the distributed winding as in the DC motor 101 of the first embodiment.
  • the magnetic field of the stator 10'and the magnetic field of the rotor 20 have a phase difference of approximately 90 °, and the north pole of the rotor 20 becomes the south pole of the stator 10'and the rotor 20 of the rotor 20.
  • a force acts on the rotor 20 so that the S pole is aligned with the N pole of the stator 10'.
  • torque in the counterclockwise direction acts on the rotor 20, and the rotor 20 rotates in the counterclockwise direction, which is the forward rotation direction.
  • the signal outputs of the sensors Sa to So of the position detection sensor 40 change, and accordingly, it is shown in FIG.
  • the transistors in the ON state of the upper arm transistors TA1 to TO1 and the lower arm transistors TA2 to TO2, which are the first switching elements, are switched as shown in the transition diagram of FIG.
  • the on / off states of the transistors T11 to T32, which are the second switching elements are switched in conjunction with the switching of the on / off states of the first switching element.
  • the rotor 20 continues to rotate in the counterclockwise direction, which is the forward rotation direction.
  • the DC motor 102 of the present embodiment also includes the switching circuit 30 as a withstand voltage reducing circuit like the DC motor 101 of the first embodiment, and although the total number of transistors is increased as compared with the conventional example, The number of high withstand voltage transistors required can be significantly reduced, and the cost of the switching element can be significantly reduced as a whole. Also in this embodiment, when switching the transistor in the ON state, it is desirable to keep both the two transistors to be switched in the ON state for a short time as in the first embodiment. Further, instead of the switching circuit 30, the switching circuit 30'of the modified example shown in FIG. 7 may be used.
  • the third embodiment constitutes the present invention as an induction motor.
  • an induction motor an induced current is generated in the rotor by a rotating magnetic field generated by the stator, and the rotor is rotated by the electromagnetic force of the induced current.
  • the induction motor has the simplest structure among the motors, and has high stability and durability.
  • FIG. 10 is a diagram showing an outline of an induction motor according to a third embodiment of the present invention
  • FIG. 11 is a diagram showing an outline of a stator of the induction motor shown in FIG.
  • the induction motor 103 includes a stator 10, a rotor 20, a switching circuit 30 which is a withstand voltage reducing circuit, and a control circuit 50'.
  • a DC power supply 60 is connected to the switching circuit 30.
  • the induction motor 103 of the present embodiment generally has a cage-shaped rotation as the rotor 21.
  • a child is used and does not include a position detection sensor 40 for detecting the position of the rotor 21. Therefore, the control circuit 50 does not switch the on / off state of the transistor of the switching circuit 30 according to the position of the rotor, but switches the on / off state of the transistor of the switching circuit 30 at a desired cycle.
  • the rotor 21 may be a wound type rotor to which an external resistor can be connected via a slip ring, in addition to the cage type rotor provided with the end ring and the rotor bar 22.
  • the induction motor 103 shown in FIGS. 10 and 11 when the number of poles of the stator 10 is 2 m (m is an integer) and m is 1, that is, the case of 2 poles is described.
  • the synchronous speed of the rotating magnetic field changes depending on the number of poles of the stator 10.
  • the stator 10 is generated with one set of north pole and south pole, it is two poles, and when two sets of north pole and south pole are generated, it is four poles.
  • the distance (angle) between adjacent magnetic poles is the magnetic pole pitch.
  • the present embodiment is a two-pole induction motor, and the magnetic pole pitch is 180 degrees.
  • the stator winding 12 of the distributed winding composed of 15 coils A to O housed in the slot is provided. Since the configuration of the stator including the stator core 11 and the stator winding 12 of the induction motor 103 is the same as that of the stator 10 of the DC motor 101 described in the first embodiment, the description thereof will be omitted.
  • connection relationship between the 15 coils A to O of the induction motor 103 and the switching circuit 30 is the same as that of the DC motor 101 of the first embodiment. That is, each of the 15 coils A to O is connected in series, and an annular closed loop is formed as a whole.
  • the positive side sub power supply lines 31H to 33H of the first to third switch groups 31 to 33 are connected to the positive side main power supply line 61 of the DC power supply 60 via the transistors T11 to T31 which are the second switching elements.
  • Each of the negative side sub power supply lines 31L to 33L of each of the first to third switch groups 31 to 33 is connected to the positive side main power supply of the DC power supply 60 via the transistors T12 to T32 which are the second switching elements. It is connected to the wire 61.
  • each positive side sub power supply line 31H to 33H is connected to a connection point of any half bridge of the first to third switch groups 31 to 33 via resistors R11 to R31, respectively, and each negative side The sub power supply lines 31L to 33L are connected to the connection points of any of the half bridges of the first to third switch groups 31 to 33 via resistors R12 to R32, respectively.
  • the control circuit 50 turns on the transistors T11 to T31 on the upper arm side connected to the positive side main power supply line 61 of the switching circuit 30 and the transistors T12 to T32 on the lower arm side connected to the negative side main power supply line 62.
  • the off state is switched, and the on / off states of the upper arm transistors TA1 to TO1 and the lower arm transistors TA2 to TO2 constituting each half bridge TA to TO are switched.
  • the induction motor 103 is capable of variable speed operation similar to the inverter control of the three-phase induction motor by making the cycle of switching the on / off state of each transistor, which is the first switching element and the second switching element, variable. be.
  • the equivalent circuit shown in FIG. 3 and the diagram showing the transition of the on / off state of the switching element shown in FIG. 5 are also applicable to the induction motor 103 of the third embodiment, respectively.
  • the control circuit 50' is the upper arm of one of the two half bridges connected to the connection points of the outlet wires of the two coils separated by a coil pitch substantially equal to the magnetic pole pitch of the stator 10.
  • the first switching element of the above and the first switching element of the lower arm of the other switch group are made conductive.
  • the current from the DC power supply 60 is mainly on the positive side.
  • the coil sides A, B, C, D, E, F, G, o, n, m, l, k, j, i, and h are arranged from the front to the back of the paper in FIG.
  • a current flows through L, K, J, I, and H from the back to the front of the paper in FIG.
  • the direction of this current is the same as the direction of the current flowing through each coil side of the DC motor 101 of the first embodiment shown in FIG. 6A.
  • the magnetic field inside the stator 10 is in the direction from the slot position where the coil sides h and O are stored to the intermediate position between the slot where the coil sides o and G are stored and the slot where the coil sides a and H are stored. Occurs.
  • the direction of the current flowing in the winding of the stator 10 of the induction motor 103 changes in the same manner as the direction of the current flowing in each coil side of the DC motor 101 of the first embodiment shown in FIGS. 6B and 6C. ..
  • control circuit 50 switches the on / off states of the first and second switching elements so that the currents flowing through the adjacent sets of coil side groups are in opposite directions. Then, as shown in FIG. 5, the control circuit 50'generates a rotating magnetic field in the stator 10 by periodically switching the on / off state of each switching element.
  • the DC motor 101 of the first embodiment switches on / off of each switching element according to the position of the rotor 20, whereas the induction motor 103 of the second embodiment has a desired switching time. The difference is that each switching element is switched on and off at intervals (cycles).
  • the current flowing through the coils A to O and the voltage applied to the transistors TA1 to TO2 which are the first switching elements and the transistors T11 to T32 which are the second switching elements are the same as in the case of the DC motor 101. Is.
  • the induction motor 103 of the present embodiment includes a switching circuit 30 as a withstand voltage reducing circuit like the DC motor 101 of the first embodiment, and each switch group is similar to the DC motor 101 of the first embodiment. It is necessary to use high withstand voltage transistors for the six transistors T11 to T32, which are the second switching elements on the upper arm side and the lower arm side, but they are the first switching elements constituting each half bridge. As for the 30 transistors of the transistors TA1 and TO2, low withstand voltage transistors can be used. As described above, the induction motor 103 of the present embodiment can reduce the withstand voltage of the transistor used for the half bridge.
  • both of the two transistors to be switched are in the ON state for a short time as in the first embodiment.
  • the switching circuit 30'of the modified example shown in FIG. 7 may be used instead of the switching circuit 30'of the modified example shown in FIG. 7.
  • FIG. 12 is a diagram showing an outline of an induction motor according to a fourth embodiment of the present invention
  • FIG. 13 is a diagram showing an outline of a stator of the induction motor shown in FIG.
  • the induction motor 104 of the present embodiment includes a stator 10', a rotor 20, a switching circuit 30, and a control circuit 50'.
  • a DC power supply 60 is connected to the switching circuit 30.
  • the induction motor 104 of the present embodiment is obtained by changing the stator winding 12 of the induction motor 103 of the third embodiment from a distributed winding to a centralized winding stator winding 12'. Since it is the same, detailed description thereof will be omitted.
  • the equivalent circuit shown in FIG. 3 and the diagram showing the transition of the on / off state of the switching element shown in FIG. 5 are also applicable to the induction motor 104 of the fourth embodiment, respectively.
  • the control circuit 50' is located above one of the two half bridges connected to the connection points of the outlet wires of two coils separated by a coil pitch substantially equal to the magnetic pole pitch of the stator 10'. Conduct the first switching element of the arm and the first switching element of the lower arm of the other switch group. At the same time, the control circuit 50'conducts the first switching element of the upper arm and the second switching element of the switch group to which the first switching element of the lower arm belongs.
  • the current from the DC power supply 60 shown in FIG. Coil A, B, C, D, E, F via the positive side main power supply line 61, the second switching element transistor T11, the positive side sub power supply line 31H, and the first switching element transistor TA1.
  • G series circuit and coils O, N. M. It is divided into a path that flows through a series circuit of L, K, J, I, and H, and is further divided into a first switching element transistor TH2, a negative side sub power supply line 31L, a second switching element transistor T22, and a negative side main power supply line. It flows via 62.
  • the first switching elements TA1 and TH2 are two half-bridge TAs connected to the connection points of the outlet wires of two coils separated by a coil pitch substantially equal to the magnetic pole pitch of the stator 10'.
  • the transistor TA1 is the first switching element of the upper arm of the first switch group 31 which is one switch group among the half bridges TA and TH
  • the transistor TH2 is the other switch group. It is the first switching element of the lower arm of a certain second switch group 32.
  • the control circuit 50' is one of two half bridges connected to the connection points of the outlet wires of the two coils separated by substantially equal to the magnetic pole pitch of the stator 10'.
  • the first switching element of the upper arm of the switch group and the first switching element of the lower arm of the other switch group are made conductive.
  • FIG. 12 is a diagram showing a polarity transition appearing at the salient pole of the stator of the induction motor according to the fourth embodiment, and is a diagram showing the transition of the on / off states of the first and second switching elements shown in FIG. The changes in polarity appearing at the salient poles P1 to P9 at times t1 to t9 are shown accordingly. As shown in FIG. 14, a rotating magnetic field is generated in the stator 10'.
  • the induction motor 104 of the present embodiment switches on / off of each switching element at a desired switching time interval (cycle) regardless of the position of the magnetic pole of the rotor. The point is different.
  • the induction motor 104 of the present embodiment includes a switching circuit 30 as a withstand voltage reducing circuit, and has six transistors T11 to T32, which are the second switching elements.
  • the induction motor 104 of the present embodiment can reduce the withstand voltage of the transistor used for the half bridge.
  • the switching circuit 30'of the modified example shown in FIG. 7 may be used.
  • the rotating machine of the present invention when the number of coils is an even number, the upper arm transistor and the lower arm transistor of the half bridge are switched at the same time. As a result, the electromagnetic reaction of the coil is increased, and the cogging torque is also increased.
  • the number of coils when the number of coils is odd, the upper arm transistor and the lower arm transistor of the half bridge are switched alternately in time. Therefore, in a DC motor or an induction motor having an odd number of coils, the electromagnetic reaction of the coils becomes small, and the cogging torque can be reduced.
  • the number of switch groups is preferably 3 or more, and since a plurality of coils are connected to the half bridge of each switch group, it is desirable to provide 6 or more coils.
  • the number of half bridges belonging to each switch group is preferably equal, but may be different for each switch group.
  • FIG. 15 is a diagram showing an outline of an inverter power supply device capable of obtaining a single-phase, three-phase, or multi-phase AC power supply from a DC power supply according to a fifth embodiment of the present invention
  • FIG. 16 is a diagram showing an outline of an inverter power supply device capable of obtaining a single-phase, three-phase, or multi-phase AC power supply. It is a figure which showed the equivalent circuit of the three-phase inverter power supply device shown in. Further, the diagram showing the transition of the on / off state of the switching element shown in FIG. 5 and the diagram showing the transition of the polarity appearing at the salient pole shown in FIG. 14 are also applicable to the present embodiment.
  • the inverter power supply device 105 of the present embodiment includes a transformer including a primary side unit 80 and a secondary side unit 90, a switching circuit 30, and a control circuit 50', and includes a switching circuit 30.
  • a DC power supply 60 is connected to the power supply 60.
  • an inverter for obtaining three-phase alternating current from a DC power supply will be described.
  • the transformer in order to make it easier to rotate the coil, an example is a transformer having a core in which the primary side core 81 and the secondary side core 91 are separately manufactured and magnetically coupled by bringing them into contact with each other. As described above, the primary side core 81 and the secondary side core 91 may be integrally formed. In FIG.
  • the boundary between the primary side core 81 and the secondary side core 91 is shown by a broken line.
  • the primary side core 81 and the secondary side core 91 are formed separately and the laminated cross section has a contact portion in which the comb-shaped ends of the comb-shaped cores are overlapped with each other, the primary side core 81 and the secondary side core 81 are formed.
  • the boundary of the secondary core 91 does not coincide with the actual contact portion.
  • the configuration of the primary side unit 80 is the same as the configuration of the stator 10'of the DC motor 102 of the second embodiment and the stator 10'of the induction motor 104 of the fourth embodiment, and detailed description thereof will be omitted. do.
  • the primary side core 81 has 15 primary side salient poles P1 to P15 formed by 15 slots. The salient pole on the primary side corresponds to the first salient pole of the present invention.
  • the primary side salient poles P1 to P15 of the primary side unit 80 and the secondary side salient poles Pu to Pw of the secondary side core 91 are five adjacent to one secondary side salient pole Pu to Pw.
  • the salient poles P1 to P15 on the primary side are brought into contact with each other to be magnetically coupled.
  • the inverter power supply device 105 of this embodiment is a three-phase power supply device, and the secondary coil 92u to 92w are connected to an external three-phase load.
  • the salient pole on the secondary side corresponds to the second salient pole of the present invention.
  • the laminated cross section of the contact portion of each electromagnetic steel sheet is formed so as to be comb-shaped, and the comb-shaped laminated core is formed. It is desirable to reduce the magnetic resistance of the contact portion by forming the contact portion in which the comb-shaped ends are overlapped with each other. Therefore, for example, the laminated cross section of the laminated steel plate at the tip of the salient poles P1 to P15 of the primary side core 81 is formed to be comb-shaped, and the primary side cores are formed from the salient poles Pu to Pw of the secondary core 91, respectively.
  • a protruding portion protruding toward the salient poles P1 to P15 of 81 is formed, and the laminated cross section of the protruding portion is formed so as to have a comb shape. Then, the comb-shaped ends of both are overlapped with each other to form a contact portion. Similarly, for the secondary core 91, the arcuate portion at the tip of the salient poles P1 to P15 and the secondary coil 92u to 92w are rotated in order to facilitate the rotation of the secondary coil 92u to 92w.
  • the comb-shaped ends of the core having a comb-shaped laminated cross section are overlapped with each other in the coil winding portion. It is desirable to form it as a contact part.
  • the switching elements of the upper arms belonging to the first to third switch groups 31 to 33 are connected to the positive side sub power supply lines 31H to 33H common to each switch group, and the first to third switch groups 31 to 31 to The switching element of the lower arm belonging to 33 is connected to the minus side sub power supply lines 31L to 33L common to each switch group.
  • the half bridges connected to the outlet wires of adjacent coils are divided into a group of k switches (k is an integer of 2 or more) each having a plurality of the half bridges.
  • the first switching element of the plurality of upper arms and the first switching element of the plurality of lower arms of the half bridge of each switch group are connected to the plus side sub power supply line and the minus side sub power supply line provided in each switch group, respectively.
  • the positive side sub power supply line and the negative side sub power supply line of each switch group are connected to the positive side main power supply line and the negative side main power supply line of the DC power supply 60 via the second switching element, respectively.
  • the positive side sub power supply line and the negative side sub power supply line of the switch group are each connected to the connection point of one of the half bridges of the switch group via a resistor.
  • the control circuit 50' is on the upper arm side connected to the positive side main power supply line 61 of the switching circuit 30 so that the two poles of the north pole and the south pole appear in the primary side unit 80.
  • the on / off states of the transistors T11 to T31 and the transistors T12 to T32 on the lower arm side connected to the negative main power supply line 62 are switched, and the transistors TA1 to TO1 of the upper arm constituting each half bridge TA to TO are switched.
  • the on / off state of the transistors TA2 to TO2 of the lower arm the direction of the current flowing through each of the coils A to O is switched.
  • the magnetic pole pitch of the primary side unit 80 is 180 °.
  • the control circuit 50' is one of two half bridges connected to the connection points of the outlet wires of two coils separated by a coil pitch substantially equal to the magnetic pole pitch (180 °) of the primary side unit 80.
  • the first switching element of the upper arm of the switch group and the first switching element of the lower arm of the other switch group are made conductive.
  • the control circuit 50' conducts the first switching element of the upper arm and the second switching element of the switch group to which the first switching element of the lower arm belongs. For example, a coil separated by a coil pitch substantially equal to 180 ° with respect to coil A becomes coil H or coil I.
  • FIG. 5 shows the transition of the switching element of the inverter power supply device 105 of the present embodiment in the on / off state
  • FIG. 14 shows the polarity appearing at the salient pole of the primary side unit 80 of the inverter power supply device 105 of the present embodiment. Shows the transition of.
  • the configuration of the control circuit 50', the switching circuit 30, and the primary side unit 80 of the inverter power supply device 105 of the present embodiment is the control circuit 50', the switching circuit 30, and the fixed circuit of the induction motor 104 of the fourth embodiment. This is the same as the configuration of the child 10. Therefore, in accordance with the transition of the on / off state of the first and second switching elements shown in FIG.
  • the salient poles P1 to P15 of the primary core 81 are shown in FIGS. 14 at time t1 to t9, respectively.
  • the polarity shown in is shown. That is, a two-pole rotating magnetic field is generated in the primary side unit 80 by switching the on / off state of the switching element.
  • the magnetic field flowing through the salient poles P1 to P15 of the primary core 81 causes the magnetic field due to the magnetic poles appearing in the cross sections of the salient poles P1 to P15 to become a rotating magnetic field.
  • the on / off state is switched periodically.
  • the primary side unit 80 and the secondary side unit 90 are fixed in contact with each other, but magnetically, the primary side unit 80 is a pseudo abduction type two pole around the secondary side unit 90. It is considered to be the same as when rotating as a permanent magnet rotor. Therefore, the magnetic flux flowing through the salient poles Pu to Pw on the secondary side of the secondary side unit 90 changes according to the change of the magnetic flux flowing through the salient poles P1 to P15 of the primary side unit 80. Thus, changes in magnetic flux interlinking to the secondary side coils 92U ⁇ 92w, the secondary coil 92U ⁇ 92w, alternating voltages of the voltage e u ⁇ e w occurs.
  • Salient poles Pu ⁇ Pw of each secondary winding of the secondary side unit 90 since it has a phase difference of 120 °, is insulated from the DC power source 60 as a voltage e u ⁇ e w A three-phase AC voltage can be obtained.
  • the inverter power supply device 105 of the present embodiment includes a switching circuit 30 as a withstand voltage reducing circuit, and has six transistors T11 to T32 which are second switching elements. As the transistor, it is necessary to use a transistor having a high withstand voltage, but it becomes possible to use a transistor having a low withstand voltage for the 30 transistors of the transistors TA1 to TO2 which are the first switching elements. As described above, the inverter power supply device 105 of the present embodiment can reduce the withstand voltage of the transistor used for the half bridge.
  • both of the two transistors to be switched are in the ON state for a short time as in the first embodiment.
  • the switching circuit 30'of the modified example shown in FIG. 7 may be used instead of the switching circuit 30'of the modified example shown in FIG. 7.
  • the secondary side unit 90 a secondary side core in which one secondary side winding 92 is wound between two salient poles is used, and each salient pole is in contact with a plurality of salient poles of the primary side core.
  • a single-phase AC voltage can be obtained as an output.
  • the number of salient poles of the primary core is an even number and the number of salient poles of the primary core in contact with each salient pole of the secondary core be equal.
  • the configuration of the switching circuit 30 described in each embodiment has a plurality of halves. It can be used as a withstand voltage reduction circuit when power is supplied to a load from a DC power supply via a bridge.
  • the plurality of half bridges of the withstand voltage reduction circuit are divided into k switch groups each having a plurality of half bridges (k is an integer of 2 or more), and the first of the plurality of upper arms of the half bridges of each switch group.
  • the one switching element and the first switching elements of the plurality of lower arms are connected to the plus side sub power supply line and the minus side sub power supply line provided in each switch group, respectively.
  • each positive side sub power supply line and each negative side sub power supply line of each switch group are connected to the positive side main power supply line and the negative side main power supply line of the DC power supply via the second switching element, respectively.
  • each is connected to the connection point of any half bridge of the switch group via a resistor, or is directly connected via a resistor.
  • the withstand voltage control circuit conducts the first switching element of the upper arm of one switch group and the first switching element of the lower arm of the other switch group, and also conducts the first switching element of the upper arm.
  • the second switching element of the switch group to which the first switching element of the lower arm belongs is made conductive, and the first and second switching elements are made conductive / non-conducting so that the other first and second switching elements become non-conducting.
  • a control circuit for switching the continuity may be provided.
  • the withstand voltage reducing circuit although the number of the second switching elements increases, the withstand voltage of the first switching element can be significantly reduced, so that the cost of the circuit can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

複数のハーフブリッジを介して直流電源から負荷に電力を供給する際に、耐圧の低いスイッチング素子の利用を可能にした耐圧低減回路、回転機、および、インバータ電源装置を提供する。 回転機の場合、隣接するコイルA~Oの口出線が順次接続されて各コイルが環状に直列接続され、各口出線の接続点がそれぞれハーフブリッジの接続点に接続されている。複数のハーフブリッジは、複数のスイッチ群に分けられ、各スイッチ群の上アームと下アームの第1スイッチング素子が、それぞれスイッチ群のプラス側サブ電源線とマイナス側サブ電源線に接続されている。プラス側サブ電源線および各前記マイナス側サブ電源線は、第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続され、抵抗を介して当該スイッチ群のいずれかの前記ハーフブリッジの接続点に接続されている。

Description

耐圧低減回路、回転機、および、インバータ電源装置
 本発明は、耐圧低減回路、回転機、および、インバータ電源装置に関する。
 回転機において、直流電動機は速度制御に優れるため、従来から、大型では電気車両用やクレーンなどに、また、小型では電動工具や自動車の電装用として用いられている。しかしながら、直流電動機は、ブラシと整流子(コミュテータ)が搭載されており、モータの動作時は、整流器にブラシが押し当てられて摩耗が発生するため、ブラシや整流子のメンテナンスが必須となるとともに、機械的スイッチによるために電気ノイズや機械ノイズが発生するという課題があった。
 このため、ブラシと整流子をインバータ回路に置き換えて、ブラシと整流子の除去を実現したブラシレスモータが開発されているが、現在、実用化されている多くのブラシレスモータは、三相のコイルを備えた同期モータであって、多数の整流子片を備えた直流電動機の無接点化を図ったものではない。三相のコイルを有するブラシレスモータは、原理的には、インバータを用いて各コイルに三相交流電流を供給する三相の永久磁石型同期モータと同じである。
 しかしながら、三相のコイルを有するブラシレスモータの各コイルに流れる電流は、例えば、最も一般的な120度通電駆動では、ゼロとなる期間があり、コイルに流す電流の利用率が低いという問題がある。また、正弦波駆動を行う場合も、コイルに流れる電流は正弦波状に増減するため、コイルに流せる電流の利用率は、直流を流す場合よりも低くなっている。
 このため、出願人は、多数の整流子片を有する直流機を無整流子化あるいはブラシレス化することによって、ブラシ付き直流電動機と同等のコイルの電流利用率が高い直流機を提案した(特許文献1参照。)。
特許第6610910号公報
 図17は、特許文献1で開示された従来の直流電動機の概略を示す図であり、図18は、図17で示す直流電動機の回転子、位置検出センサ、及び、制御回路を除く等価回路を示す図である。
 直流電動機100は、図17に示すように、固定子10、回転子20、スイッチング回路130、位置検出センサ40、および、制御回路50を備えており、スイッチング回路130には直流電源60が接続される。固定子コア11の各スロットには、分布巻した9個のコイルA~Iからなる固定子巻線12を備えており、9個のコイルA~Iの各コイル辺は、それぞれで2π/nの位相をずらせてスロットに収納されている。なお、固定子巻線12を構成するコイルは、スロットに収納されて電磁力を発生する部分であるコイル辺と、スロット内のコイル辺をつなぐ部分であるコイル端と、コイルの両端部分の口出線を有している。後で詳述するが、本明細書では、コイル辺Aとコイル辺aを有するコイルをコイルAと呼んでいる。
 図18に示す等価回路から明らかなように、9個の各コイルA~Iはそれぞれが直列接続されており、全体で環状の閉ループが形成されている。各コイルA~Iの接続点は、それぞれスイッチング回路130のスイッチング素子でありハーフブリッジを構成するトランジスタTA1~TI2を介して、直流電源60のプラス側メイン電源線61およびマイナス側メイン電源線62に接続されている。
 そして、直流電動機100は、位置検出センサ40で検出した回転子20の磁極の位置に応じて、スイッチング回路130の上アームのトランジスタTA1~TI1のいずれか1つと、下アームのトランジスタTA2~TI2のいずれか1つがオン状態になるように制御している。例えば、上アームのトランジスタTA1と下アームのトランジスタTE2がオン状態のときに、他のトランジスタは全てオフの状態となる。このため、下アームのトランジスタTA2と上アームのトランジスタTE1には直流電源60の電源電圧Vdcが印加される。また、トランジスタTB1には、コイルAを流れる電流の電圧降下分に相当する電圧が印加され、トランジスタTB2には、電源電圧VdcからコイルAを流れる電流の電圧降下分に相当する電圧を差し引いた電圧が印加されることになる。
 このように、特許文献1で開示された直流機は、スイッチング回路130として複数のハーフブリッジを備えており、個々のスイッチング素子には、電源電圧の大きさに耐えうる耐圧が求められる。そして、各コイルを直列接続しているため、直流機の出力トルクを大きくするためには、電源電圧Vdcを大きくする必要が生じ、使用するスイッチング素子に求められる耐圧も高くする必要がある。さらに、コイル数の2倍のスイッチング素子が必要となるため、高出力を得るためには、耐圧が大きく高価なトランジスタを数多く用いる必要がある。
 このことは、スイッチング回路として複数のハーフブリッジを介して直流電源から負荷に対して電流を供給する電気機器についても同様である。例えば、特許文献1で開示された直流電動機の回転子を、かご型回転子に置き換えて、回転子の磁極の位置に応じてスイッチング素子を導通・非導通を切り換える代わりに、所定の周期でスイッチング素子を導通・非導通する誘導伝導機として構成した場合も同様である。さらに、複数のハーフブリッジを介して直流電源から負荷に対して交流を供給するインバータ電源装置についても同様である。
 本発明は、これらの実情に鑑みてなされたものであり、複数のハーフブリッジを介して直流電源から負荷に電力を供給する際に、耐圧の低いスイッチング素子の利用を可能にした耐圧低減回路を提供するとともに、この耐圧低減回路をスイッチング回路として備えた回転機およびインバータ電源装置を提供することをその目的とする。
 上記課題を解決するために、本発明の第1の技術手段は、複数のハーフブリッジを介して直流電源から負荷に対して電流を供給する電源装置のための耐圧低減回路であって、複数の前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの第1スイッチング素子および複数の下アームの第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、各前記スイッチ群の各前記プラス側サブ電源線および各前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、前記直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とするものである。
 第2の技術手段は、一の前記スイッチ群の前記上アームの前記第1スイッチング素子と他の一の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を切り換える制御回路を備えたことを特徴とするものである。
 第3の技術手段は、2π/n(nは4以上の整数)位相をずらせて設けたn個のコイルを備えた極数2m(mは整数)の固定子と、スイッチング回路を有し、隣接する前記コイルの口出線が順次接続されて各前記コイルが環状に直列接続され、各前記コイルの前記口出線の接続点がそれぞれ前記スイッチング回路の2個の第1スイッチング素子からなるハーフブリッジの接続点に接続された回転機であって、前記スイッチング回路における隣接する前記コイルの前記口出線に接続された前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの前記第1スイッチング素子および複数の下アームの前記第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、各前記スイッチ群の前記プラス側サブ電源線および前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの前記接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とするものである。
 第4の技術手段は、第3の技術手段において、n個の前記コイルが、前記固定子の磁極ピッチ(2π/2m)に略等しいコイルピッチを有していることを特徴とするものである。
 第5の技術手段は、第3の技術手段において、前記固定子がn個のスロットを有し、n個の各前記コイルが隣接する2つの前記スロットに収納されていることを特徴とするものである。
 第6の技術手段は、第3から第5のいずれか1の技術手段において、前記回転子が、永久磁石回転子、あるいは、励磁コイルを有する回転子であって、N極とS極の極数2mの磁極を有することを特徴とするものである。
 第7の技術手段は、第6の技術手段において、前記回転子の前記磁極の位置に応じて、前記第1および第2スイッチング素子の導通・非導通を切り換える制御回路を備えることを特徴とするものである。
 第8の技術手段は、第3から第5のいずれか1の技術手段において、前記回転子が、かご形回転子、あるいは、巻線形回転子であることを特徴とするものである。
 第9の技術手段は、第8の技術手段において、所定の周期で、前記第1および第2スイッチング素子の導通・非導通を切り換える制御回路を備えることを特徴とするものである。
 第10の技術手段は、第7または第9の技術手段において、前記制御回路が、前記固定子の磁極ピッチに略等しい間隔離れた2個の前記コイルの口出線の接続点にそれぞれ接続される2個の前記ハーフブリッジの内、一の前記スイッチ群の前記上アームの前記第1スイッチング素子および他の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を切り換えることを特徴とするものである。
 第11の技術手段は、第10の技術手段において、前記制御回路が、導通状態から非導通状態に切り換える前記第1または第2スイッチング素子と、次に非導通状態から導通状態に切り換える前記第1または第2スイッチング素子との両者を、所定の微小時間だけ共に導通状態に保つことを特徴とするものである。
 第12の技術手段は、第3から第11のいずれか1の技術手段において、前記第1スイッチング素子の耐圧が、前記第2スイッチング素子の耐圧よりも低いことを特徴とするものである。
 第13の技術手段は、直流電源を交流に変換するインバータ電源装置であって、n(nは4以上の整数)個のスロットと、隣接する2つの前記スロットに収納されn個の一次側コイルを備えた一次側コアと、該一次側コアの前記スロットによって形成されたn個の第1突極と磁気結合し、二次側コイルが卷回されたq(qは2以上の整数)個の第2突極を備えた二次側コアと、スイッチング回路を有し、隣接する前記一次側コイルの口出線が順次接続されて各前記一次側コイルが環状に直列接続され、各前記一次側コイルの前記口出線の接続点がそれぞれ前記スイッチング回路の2個の第1スイッチング素子からなるハーフブリッジの接続点に接続され、前記スイッチング回路における隣接する前記一次側コイルの前記口出線に接続された前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの前記第1スイッチング素子および複数の下アームの前記第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、各前記スイッチ群の前記プラス側サブ電源線および前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、前記直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの前記接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とするものである。
 第14の技術手段は、第13の技術手段において、制御回路をさらに備え、該制御回路は、一の前記スイッチ群の前記上アームの前記第1スイッチング素子と他の一の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を周期的に切り換えることを特徴とするものである。
 本発明によれば、複数のハーフブリッジを介して直流電源から負荷に電力を供給する際に、耐圧の低いスイッチング素子の利用を可能にした回路耐圧低減回路を得るとともに、この耐圧低減回路をスイッチング回路として備得ることで、耐圧の低いスイッチング素子の利用を可能にした回転機およびインバータ電源装置を得ることができる。
本発明の第1の実施形態に係る直流電動機の概略を示す図である。 図1に示す直流電動機のスイッチング回路と固定子巻線の展開を示す図である。 本発明の第1~第4の実施形態に係る直流電動機または誘導電動機のコイルとスイッチング回路の等価回路を示す図である。 図4Bとともに、第1、第2の実施形態に係る直流電動機の制御回路の一構成例を示す図である。 図4Aとともに、第1、第2の実施形態に係る直流電動機の制御回路の一構成例を示す図である。 本発明の第1~第5の実施形態に係る直流電動機、誘導電動機、または、インバータ電源装置のスイッチング素子のオン・オフ状態の遷移を示す図である。 図1に示す直流電動機の各コイル辺に流れる電流を説明するための図である。 図1に示す直流電動機の各コイル辺に流れる電流を説明するための図である。 図1に示す直流電動機の各コイル辺に流れる電流を説明するための図である。 本発明の第1の実施形態に係る直流電動機の変形例の概略を示す図である。 本発明の第2の実施形態に係る直流電動機の概略を示す図である。 図8に示す直流電動機のスイッチング回路と固定子巻線の展開を示した図である。 本発明の第3の実施形態に係る誘導電動機の概略を示す図である。 図10に示す誘導電動機のスイッチング回路と固定子巻線の展開を示した図である。 本発明の第4の実施形態に係る誘導電動機の概略を示す図である。 図12に示す誘導電動機のスイッチング回路と固定子巻線の展開を示した図である。 第4、第5の実施形態に係る誘導電動機の固定子またはインバータ電源装置の一次側コアの突極に現れる極性の遷移を示す図である。 本発明の第5の実施形態に係るインバータ電源装置の概略を示す図である。 図15に示すインバータ電源装置の等価回路を示す図である。 従来の直流電動機の概略を示す図である。 図17に示す直流電動機の回転子、位置検出センサ、及び、制御回路を除く等価回路を示す図である。
 以下、図面を参照しながら、本発明の耐圧低減回路、回転機、および、インバータ電源装置に係る好適な実施形態として、直流電動機、誘導電動機、およびインバータ電源装置を例に説明する。以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。なお、本発明はこれらの実施形態での例示に限定されるものではなく、特許請求の範囲に記載された事項の範囲内および均等の範囲内におけるすべての変更を含む。また、回転機に関する以下の説明では、固定子にスロットを形成したインナーロータ型の回転機を例に説明するが、本発明の回転機は、アウターロータ型、あるいは、アキシャルギャップ型等の回転機として構成してもよい。また、スロットを構成要件としない回転機は、スロットレスの回転機として構成してもよい。
 さらに、以下で説明する直流電動機は、従来のブラシ付き直流電動機と同様に発電機としても機能するものであり、その構造は直流電動機と同様である。また、以下で説明する誘導電動機は、従来のすべりsが負の状態で運転される誘導発電機としても機能するものであり、その構成は誘導電動機と同様である。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る直流電動機の概略を示す図であり、図2は、本実施形態に係る直流電動機のスイッチング回路と固定子巻線の展開を示した図である。また、図3は、本実施形態に係る直流電動機のコイルとスイッチング回路の等価回路を示す図である。本実施形態の直流電動機101は、図1に示すように、固定子10、回転子20、スイッチング回路30、位置検出センサ40、および、制御回路50を備えており、スイッチング回路30には直流電源60が接続される。
 本実施形態を含む直流電動機の実施形態においては、説明の簡単化のため、回転子20の極数を2m(mは整数)とした場合に、mが1の場合、すなわち、回転子の磁極がN極とS極の2極の場合について説明する。また、図面によっては、簡略化のため、トランジスタをスイッチの記号あるいは方形のブロックとして表現しているが、これらのトランジスタは、図2に示すフリーホイルダイオードを備えたトランジスタと同様のものである。トランジスタの表現は、他の図面についても同様である。なお、図1では、直流電動機101を模式的に描いているため、回転子20と固定子10とが離れているが、製作上、回転子20と固定子10とのギャップは、磁気結合が十分確保できる長さとする。この点は、他の図面においても同様である。
 図1において、固定子10は、n(nは4m以上の整数であり、本実施形態ではn=15)個のスロット(溝)を形成した電磁鋼板を積層した固定子コア11と、固定子コア11の各スロットに収納した15個のコイルA~Oからなる固定子巻線12を備えている。本実施形態の固定子巻線12は2層巻きの分布巻となっている。以下の説明で、例えば、「A」の符号については、「コイルA」と「コイル辺A」の両者に用いるが、分布巻の場合、図1、図2に示すように、「コイルA」は、回転子20の磁極ピッチだけ隔てた2つのスロットに収納されたコイル辺Aおよびコイル辺aと、これらの2つのコイル辺A,aを接続するコイル端と、2本の口出線を有するものを意味し、「コイル辺A」と記す場合は、コイルAの2つのコイル辺の一方のコイル辺Aを示すものとする。他のコイルB~0についても同様である。分布巻の固定子10を有する実施形態において、コイル辺は、回転子20の磁界の磁力線が直角に交差するコイル部分である。
 本実施形態の直流電動機の場合、回転子20の磁極数と固定子10の磁極数とは等しくなる。したがって、直流電動機101の固定子10の極数は2(2mでm=1)である。
また、固定子10の磁極ピッチは、固定子10の隣接する磁極同士の間隔(角度)を意味する。例えば、固定子10に、N極、S極の2個の磁極が形成される2極機の場合は、固定子10の磁極ピッチは180°となる。この場合、回転子20の極数も固定子10の極数と等しいため、回転子20の磁極ピッチも180°となる。また、固定子10が、例えば、N極、S極、N極、S極の4個の磁極が形成される4極機の場合は、回転子20と固定子10の磁極ピッチはともに90°となる。
 15個のコイルA~Oの各コイル辺は、それぞれで2π/nの位相をずらせてスロットに収納されている。コイル数nが奇数の場合、スロット数も奇数となる。この場合、15個のコイルA~Oのそれぞれのコイル辺は、一方のコイル辺を収めたスロットとこのスロットから固定子10の磁極ピッチ(180°)内で最も磁極ピッチに近いスロットに他方のコイル辺が収められる。換言すれば、各コイルの2つのコイル辺は、n/2の商、すなわち、7(15÷2=7余り1)個離れたスロットに収納される。
 なお、2極機でスロット数が偶数の場合は、各コイルの2つのコイル辺は180°離れた位置のスロットに収められる。すなわち、スロット数が偶数の場合は、全節巻となり、コイルピッチは磁極ピッチと等しくなる。また、スロット数が奇数の場合は、短節巻となり、コイルピッチは磁極ピッチよりも短くなるが最も磁極ピッチに近くなるように設けられる。本発明では、スロットを有する固定子の場合に、コイルピッチが磁極ピッチと等しい場合および磁極ピッチよりも短いが最も磁極ピッチに近い場合の両者を含めて、コイルピッチが磁極ピッチに略等しいコイルピッチという。
 15個のスロットは位相差2π/n(n=15)を有して設けられているため、コイルA~Oは、2π/15の位相、すなわち24°の位相をずらせて各スロットに収納されている。コイルの数は、奇数、偶数を問わず4個以上であればよい。このため、スロットを有する固定子の場合、コイルが収納される固定子のスロット数も4個以上となる。図1に示す直流電動機101は、2極のロータと15個のスロットに収納したコイルA~Oと15個の整流子片を備えたブラシ付き直流電動機に相当する。
 固定子巻線12に関して、より具体的には、コイルAは、コイル辺Aが収納されるスロットとこのスロットから7個のスロット分離れたスロットに収納されるコイル辺aとを有している。また、コイルBは、コイル辺Aが収納されるスロットに隣接したスロットに収納されるコイル辺Bとこのスロットから7個のスロット分離れたスロットに収納されるコイル辺bとを有している。以降、コイルC~Oについても同様であり、例えば、コイルIは、コイル辺Aが収納されるスロットから8個のスロット分離れたスロットに収納されるコイル辺Iと、コイル辺Aが収納されるスロットと同じスロットに収納されるコイル辺iとを有している。
 これにより、コイル辺Aとコイル辺i、コイル辺Bとコイル辺j、コイル辺Cとコイル辺k、コイル辺Dとコイル辺l、コイル辺Eとコイル辺m、コイル辺Fとコイル辺n、コイル辺Gとコイル辺o、コイル辺Hとコイル辺a、・・・、および、コイル辺Oとコイル辺hが、順次同じスロット内に収納される。
 本実施形態では、図2に示す固定子巻線12の展開を示す図あるいは図3に示す等価回路から明らかなように、15個のコイルA~Oはそれぞれが直列接続されており、全体で環状の一つの閉ループが形成されている。これにより、本実施形態の直流電動機101は、隣接する2つのコイルに電流を流した際に、2つのコイルが共通に取り囲む領域において、同じ方向の磁界が発生するように、隣接するコイルの口出線が順次接続されて、各コイルが環状に直列接続されている。例えば、隣接する2つのコイルB,Cに注目すると、コイル辺Bの口出線からコイル辺cの口出線へ電流を流した際に、コイルBとコイルCに生じる磁束は、2つのコイルB,Cが共通に取り囲む領域に対しては同方向の磁界が発生する。
 図1、図2、図3におけるスイッチング回路30は、本発明の耐圧低減回路に相当するものであり、第1の実施形態の直流電動機101の構成要素となっている。具体的には、コイルA~Oの接続点は、それぞれ2個の上アームと下アームの第1スイッチング素子であるトランジスタTA1とTA2,トランジスタTB1とTB2,・・・,トランジスタTO1とTO2からなる15個のハーフブリッジTA,TB,・・・,TOの接続点に接続されている。以降、第1スイッチング素子のトランジスタTA1とTA2からなるハーフブリッジをハーフブリッジTAと呼ぶ、他のハーフブリッジについても同様であり、例えば、第1スイッチング素子のトランジスタTH1とTH2からなるハーフブリッジをハーフブリッジTHと呼ぶ。なお、本発明では、ハーフブリッジのプラス電源側に接続され、負荷に電流を供給する側の回路を上アームと呼び、ハーフブリッジのマイナス電源側に接続され、負荷からの電流をマイナス側メイン電源線に引き込む回路を下アームと呼ぶ。
 図2、図3に示すように、本実施形態では、スイッチング回路30の15個のハーフブリッジTA~TOは、それぞれ複数、例えば、5つのハーフブリッジからなるk個(kは2以上の整数で本実施形態ではk=3)のスイッチ群に分割されている。具体的は、ハーフブリッジTA~TEが第1スイッチ群31、ハーフブリッジTF~TJが第2スイッチ群32、ハーフブリッジTK~TOが第3スイッチ群33の3群に分割されている。そして、各第1~第3スイッチ群31~33に属する上アームのスイッチング素子は、それぞれ各スイッチ群で共通のプラス側サブ電源線31H~33Hに接続され、第1~第3スイッチ群31~33に属する下アームのスイッチング素子は、それぞれ各スイッチ群で共通のマイナス側サブ電源線31L~33Lに接続されている。
 例えば、第1スイッチ群31について説明すれば、コイルOのコイル辺o側の口出線と隣接するコイルAのコイル辺A側の口出線が接続され、その接続点は第1スイッチング素子であるトランジスタTA1を介してプラス側サブ電源線31Hに接続されるとともに、第1スイッチング素子であるトランジスタTA2を介してマイナス側サブ電源線31Lに接続されている。また、コイルAのコイル辺a側の口出線と隣接するコイルBのコイル辺B側の口出線が接続され、その接続点は第1スイッチング素子であるトランジスタTB1を介してプラス側サブ電源線31Hに接続されるとともに、第1スイッチング素子であるトランジスタTB2を介してマイナス側サブ電源線31Lに接続されている。コイルBのコイル辺b側の口出線からコイルEのコイル辺E側の口出線の各接続点についても同様に、上アーム側の第1スイッチング素子であるトランジスタTC1~TE1を介してプラス側サブ電源線31Hに接続されるとともに、下アーム側の第1スイッチング素子であるトランジスタTC2~TE2を介してマイナス側サブ電源線31Lに接続されている。
 具体的には、第1スイッチ群31に属する上アームの第1スイッチング素子であるトランジスタTA1~TE1がプラス側サブ電源線31Hに接続され、第1スイッチ群31に属する下アームの第1スイッチング素子であるトランジスタTA2~TE2がマイナス側サブ電源線31Lに接続されている。また、第2スイッチ群32に属する上アームの第1スイッチング素子であるトランジスタTD1~TH1がプラス側サブ電源線32Hに接続され、第2スイッチ群32に属する下アームの第1スイッチング素子であるトランジスタTD2~TH2がマイナス側サブ電源線32Lに接続されている。第3スイッチ群33についても同様であり、上アームの第1スイッチング素子であるトランジスタTK1~TO1が共通のプラス側サブ電源線33Hに接続され、下アームの第1スイッチング素子であるトランジスタTK2~TO2が共通のマイナス側サブ電源線33Lに接続されている。
 また、第1~第3スイッチ群31~33の各プラス側サブ電源線31H~33Hが、それぞれ第2スイッチング素子であるトランジスタT11~T31を介して、直流電源60のプラス側メイン電源線61に接続されており、第1~第3スイッチ群31~33の各マイナス側サブ電源線31L~33Lが、それぞれ第2スイッチング素子であるトランジスタT12~T32を介して、直流電源60のマイナス側メイン電源線62に接続されている。具体的には、例えば、第1スイッチ群31のプラス側サブ電源線31Hが第2スイッチング素子であるトランジスタT11を介して直流電源60のプラス側メイン電源線61に接続されており、マイナス側サブ電源線31Lが第2スイッチング素子であるトランジスタT12を介して、直流電源60のマイナス側メイン電源線62に接続されている。この構成は、他の第2スイッチ群32、第3スイッチ群33についても同様である。
 さらに、第1~第3スイッチ群31~33の各プラス側サブ電源線31H~33Hが、それぞれ抵抗R11~R31を介して当該第1~第3スイッチ群31~33のいずれかのハーフブリッジの接続点に接続されており、同様に、第1~第3スイッチ群31~33の各マイナス側サブ電源線31L~33Lが、それぞれ抵抗R12~R32を介して当該第1~第3スイッチ群31~33のいずれかのハーフブリッジの接続点に接続されている。具体的には、例えば、第1スイッチ群31のプラス側サブ電源線31Hが抵抗R11を介して当該第1スイッチ群31のいずれか1つのハーフブリッジ、例えば、ハーフブリッジTAの接続点に接続されており、第1スイッチ群31のマイナス側サブ電源線31Lが抵抗R12を介して当該第1スイッチ群31の同じハーフブリッジTAの接続点に接続されている。この構成は、他の各スイッチ群のプラス側サブ電源線32H、33Hおよびマイナス側サブ電源線32L、33Lについても同様である。
 なお、本実施形態では、抵抗R11と抵抗R12とは、それぞれ同じハーフブリッジTAの接続点に接続されているが、同じスイッチ群内であれば異なるハーフブリッジの接続点に接続されていてもよい。例えば、プラス側サブ電源線31Hが抵抗R11を介してハーフブリッジTBの接続点に接続され、マイナス側サブ電源線31Lが抵抗R12を介してハーフブリッジTDの接続点に接続されていてもよい。この接続の構成は、他のスイッチ群についても同様であり、他の実施形態においても同様である。また、これらの抵抗R11~R32は、抵抗R11~R32に流れる電流が各コイルA~Oを流れる電流に比べて無視しうる程度の高い抵抗値を有している。
 このように、本実施形態では、各コイルA~Oに電流を流すためのスイッチング回路30では、隣接するコイルの口出線の接続点にそれぞれハーフブリッジが接続され、各ハーフブリッジが複数のハーフブリッジからなる複数の第1~第3スイッチ群31~33に分けられ、各スイッチ群のハーフブリッジの複数の上アームのスイッチング素子および複数の下アームのスイッチング素子が、それぞれ各スイッチ群に共通のプラス側サブ電源線およびマイナス側サブ電源線に接続され、各スイッチ群の各プラス側サブ電源線および各マイナス側サブ電源線が、それぞれ上アーム側の第2スイッチング素子および下アーム側の第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されるとともに、それぞれ抵抗を介して当該スイッチ群のいずれかのハーフブリッジの接続点に接続されている。
 そして、各ハーフブリッジTA~TOを構成する第1スイッチング素子である30個のトランジスタTA1~TO2は、第1スイッチング素子として同じ規格のトランジスタが用いられ、第1スイッチング素子であるトランジスタTA1~TO2を直流電源60に接続する6個のトランジスタT11~T32は、第2スイッチング素子として第1スイッチング素子とは異なる規格のトランジスタが用いられる。
 図2に示すように、プラス電源側の上アームの複数のトランジスタTA1~TO1とマイナス電源側の下アームのトランジスタTA2~TO2の接続点を直流電動機の整流子片と仮定した場合、各コイルA~Oは、一方の口出線と他方の口出線とが隣接する整流子片に接続される。本実施形態の直流電動機101の各コイルA~Oは,整流子付き直流電動機における重ね巻と同様の固定子巻線構造となっている。
 図1に戻り、回転子20は図示しない軸を中心に回転可能に設けられており、本実施形態では永久磁石を備えている。回転子20は永久磁石回転子に限る必要はなく、励磁コイルを備えたものでもよい。また、説明を簡単にするために、本実施形態では、固定子10と回転子20の極数は2極としているが、2極より多くても構わない。例えば、回転子20を4極とし、本実施形態と同様の構成をとる場合は、例えば、回転子20の2極(N局とS極)当たりに15個のコイルを配置すればよく、30個のスロットに30個のコイルを収納した固定子巻線12とし、固定子10を4極で構成すればよい。但し、スイッチング回路30のトランジスタの数と後述する位置検出センサ40のセンサの数は2倍にする必要はない。直流電動機101を4極機として構成する場合は、空間的に180°の対称位置にある2本のコイルの口出線を、同じハーフブリッジの2個のトランジスタ素子の接続点に接続すればよく、スイッチング回路30、位置検出センサ40、後述する制御回路50は共通のものを用いることができる。
 位置検出センサ40は、図1に示すように、回転子20の回転位置を検出するためのものであり、本実施形態では、スロット数あるいはコイル数に等しいn個(n=15)のホール素子からなるセンサSa~Soが用いられる。図1では、固定子10のスロットの箇所にセンサSa~Soが位置するように図示しているが、実際は、固定子10から軸方向に離間させた位置に設けることができる。ホール素子からなるセンサSa~Soは回転子20の磁界を検出する一例であり、可飽和コイルを用いたセンサや、非接触で回転子20の位置を検出できるものであれば光検出素子によるアブソリュートエンコーダを用いてもよい。センサSa~Soは、例えば、回転子20のN極が対向している際に論理値“H”を出力し、S極が対向しているときに論理値“L”を出力するように調整されている。なお、回転子20の位置検出のためにレゾルバを用い回転子20の回転角を算出してもよい。
 制御回路50は、位置検出センサ40からの回転子20の位置信号を受けて、スイッチング回路30のプラス側メイン電源線61に接続された上アーム側のトランジスタT11~T31、および、マイナス側メイン電源線62に接続された下アーム側のトランジスタT12~T32のオン・オフ状態を切り換えるとともに、各ハーフブリッジTA~TOを構成する上アームのトランジスタTA1~TO1、および、下アームのトランジスタTA2~TO2のオン・オフ状態を切り換えることによって、各コイルA~Oに流れる電流の方向を切り換えている。
 本実施形態では、後述するスイッチング素子のオン・オフの切り換え時を除き、通常、第1スイッチング素子である上アームのトランジスタTA1~TO1のいずれか1つがオン状態になり、このオン状態のトランジスタとは異なる下アームのトランジスタTA2~TO2であって、オン状態にある上アームのトランジスタが接続されたコイルと磁極ピッチに相当する略180°離れた位置にあるコイルに接続されたトランジスタがオン状態になる。さらに、オン状態にある上アームのトランジスタに接続された第2スイッチング素子である上アーム側の第2スイッチング素子のトランジスタT11~T31のいずれか1つと、オン状態にある下アームのトランジスタに接続された第2スイッチング素子である下アーム側のトランジスタT12~T32のいずれか1つがオン状態になる。また、第1スイッチング素子および第2スイッチング素子の他のトランジスタは、全てオフ状態となる。
 次に、本実施形態の直流電動機の第1スイッチング素子および第2スイッチング素子のオン・オフを切り換えるための制御回路について説明する。
 図4Aは、図4Bとともに、図1に示す直流電動機の制御回路50の一構成例を示す図であり、図4Bは、図4Aとともに、図1に示す直流電動機の制御回路50の一構成例を示す図である。また、図5は、本実施形態に係る直流電動機のスイッチング素子のオン・オフ状態の遷移を示す図である。図5において、t1からt9は時刻を示しており、上から下にかけて時間が経過する。また、それぞれの時刻においてオン状態にあるトランジスタを太枠で囲みハッチングを施している。
 図4A、図4Bに示す制御回路50は、15個のセンサSa~Soの信号を受けて、第1スイッチング素子である30個のトランジスタTA1~TO2と第2スイッチング素子トランジスタであるトランジスタT11~T32の各ゲートへオン・オフ信号を送信する。制御回路50を構成する論理回路は、センサSa~So側を上流側、トランジスタTA1~TO2側を下流側とした場合、図4Aに示す第1段目51の15個のXOR(排他的論理和)回路と、第2段目52の15個のXOR回路と、第3段目53の15個のNOT(否定)回路と、第4段目54の30個のAND(論理積)回路、および、第5段目55の30個の増幅器と、図4Bに示す第6段目56の6個のOR(論理和)回路と、第7段目57の6個の増幅器を備えている。
 第4段目54のAND回路は15個のコイルおよび各ハーフブリッジの上アームのトランジスタと下アームのトランジスタに対応した対をなしており、第4段目54のAND回路の出力信号は、第5段目55の増幅器で増幅されて第1スイッチング素子の各トランジスタTA1~TO2のゲートに供給されている。すなわち、一対のAND回路からの出力は、それぞれ第1~第3スイッチ群31~33のプラス側サブ電源線31H~33Hとマイナス側サブ電源線31L~33Lに接続されたハーフブリッジを構成する一対のトランジスタの各ゲートに入力される。
 例えば、コイルCとコイルD(コイル辺cとコイル辺D)の口出線の接続点に接続されたハーフブリッジを構成するトランジスタTD1,TD2に注目すると、隣接する2つのホール素子、例えば、センサScとSdからの信号が、第1段目51のXOR回路に入力され、その出力は、トランジスタTD1,TD2に接続された第4段目54の対となるAND回路にそれぞれ入力される。また、センサScからの信号と正逆回転制御入力端子70からの正逆信号Qが、第2段目52のXOR回路に入力され、その出力は、対となる第4段目54のAND回路の一方に直接入力され、他方のAND回路には、第3段目53のNOT回路を介して入力される。このため、トランジスタTD1,TD2に接続された第4段目54の対となるAND回路の出力値は同時に“H”になることはない。
 また、センサSa~Soは、各トランジスタをスイッチングすることによって各コイルA~Oに電流を流した際に、回転子20にトルクが作用するように図4Aに示す位置に配設される。例えば、回転子20のN極がセンサSh~Soに対向し、回転子20のS極がセンサSa~Sgに対向している状態とすると、センサSh~Soの出力は“H”となり、センサSa~Sgの出力は“L”となる。そして、正逆回転制御入力端子70からの正逆信号Qが正回転の論理値“H”である場合、第1スイッチング素子であるトランジスタTA1のゲートに接続される第4段目54のAND回路とトランジスタTH2のゲートに接続される第4段目54のAND回路の出力値が“H”となり、他の第1スイッチング素子であるトランジスタのゲートに接続されたAND回路の出力は全て“L”となる。この状態は、図5に示すスイッチング素子のオン・オフ状態の遷移図において、時刻t1の状態を示している。
 図4Aに示した第2スイッチング素子であるトランジスタT11~T32へのゲート信号は、第4段目54のAND回路の所定の出力信号の論理和信号から得ている。具体的には、図4Bに示すように、例えば、第1スイッチ群31の上アーム側に設けた第2スイッチング素子であるトランジスタT11のゲート信号S11は、第1スイッチ群31に属する上アームのトランジスタTA1,TB1,TC1,TD1,TE1のゲート信号となる信号A1,B1,C1,D1,E1の論理和信号から得ている。この構成は、他の第2、第3スイッチ群32、33の上アーム側に設けた第2スイッチング素子であるトランジスタT21、T31のゲート信号S21、S31についても、同様である。
 また、第1スイッチ群31の下アーム側に設けた第2スイッチング素子であるトランジスタT12のゲート信号S12は、第1スイッチ群31に属する下アームのトランジスタTA2,TB2,TC2,TD2,TE2のゲート信号となる信号A2,B2,C2,D2,E2の論理和信号から得ている。この構成は、他の第2、第3スイッチ群32、33の下アーム側に設けた第2スイッチング素子であるトランジスタT22、T32のゲート信号S22、S32についても、同様である。
 これにより、本実施形態では、コイルに接続された第1スイッチング素子であるハーフブリッジの上アームまたは下アームのいずれかのトランジスタTA1~TO2のゲートが論理値“H”となった場合に、ゲートが論理値“H”となった第1スイッチング素子であるトランジスタが属するスイッチ群の第2スイッチング素子であるトランジスタT11~T32のゲートが論理値“H”となるように構成されている。このため、ゲートが論理値“H”となった上アームのトランジスタTA1~TO1は、プラス側メイン電源線61に接続され、ゲートが論理値“H”となった下アームのトランジスタTA2~TO2は、マイナス側メイン電源線62に接続される。また、他のすべての第1、第2スイッチング素子のゲート信号は論理値“L”となるように構成されている。
 これにより、制御回路50は、一つのスイッチ群に属する上アーム側の第1スイッチング素子の1つと第2スイッチング素子をオン状態にするととともに、他のスイッチ群に属する下アーム側の第1スイッチング素子の1つと第2スイッチング素子をオン状態にする。
 図5は、このような第1スイッチング素子と第2スイッチング素子のオン・オフ状態の遷移を示している。例えば、時刻t1において上アームのトランジスタTA1がオンしているときには、トランジスタTA1が属する第1スイッチ群31の上アーム側の第2のスイッチング素子であるトランジスタT11がオンする。また、下アームのトランジスタTH2がオンしているときには、トランジスタTH2が属する第2スイッチ群32の下アーム側の第2のスイッチング素子であるトランジスタT22がオンする。このため、本実施形態では、コイルA~Oに流れる電流は、第1スイッチング素子であるハーフブリッジを構成するトランジスタTA1~TO2のオン・オフ状態に注目することによって求まる。
 図5に示す時刻t1では、回転子20のN極がセンサSh~Soに対向し、回転子20のS極がセンサSa~Sgに対向している状態であり、上アーム側は、第1スイッチング素子であるトランジスタTA1と第2スイッチング素子であるトランジスタT11がオン状態にあり、下アーム側は、第1スイッチング素子であるトランジスタTH2と第2スイッチング素子であるトランジスタT22がオン状態にある。図3の等価回路を参照すれば、時刻t1において、直流電源60からの電流は、プラス側メイン電源線61、トランジスタT11、プラス側サブ電源線31H、トランジスタTA1を経て、コイルA、コイルB、コイルC、コイルD、コイルE、コイルF、コイルGの順に直列接続された1つのコイル群に流れる経路と、コイルO、コイルN、コイルM、コイルL、コイルK、コイルJ、コイルI、コイルH、の順に直列接続されたもう1つのコイル群に流れる経路に分かれ、さらに、トランジスタTH2、マイナス側サブ電源線32L、トランジスタT22を経由してマイナス側メイン電源線62に流れる。
 図6A~図6Cは、図1に示す直流電動機の各コイル辺に流れる電流を説明するための図であり、図6Aは、図5の時刻t1の状態を示し、図6Bは、図5の時刻t2の状態を示し、図6Cは、図5の時刻t3の状態を示している。
 時刻t1において、各コイル群に流れる電流によって、図6Aに示すように、コイル辺A,B,C,D,E,F,G,h,i,j,k,l,m,n,oには紙面手前から奥に向けて、また、コイル辺H、I,J,K,L,M,N,O,a,b,c,d,e,f,gには紙面奥から手前に向けて電流が流れる。なお、同じスロットに収納されたコイル辺Oとコイル辺hには互いに逆方向に電流が流れる。これにより、固定子10の内部には、図6Aに示す回転子20の磁極NSの境界線にほぼ沿った方向(コイル辺h,Oを収納したスロット位置からコイル辺o,Gを収納したスロットとコイル辺a、Hを収納したスロットとの中間位置に向かう方向)の磁界が発生する。固定子10の磁界と回転子20の磁界とはほぼ90°の位相差を有しており、回転子20の磁界の方向が固定子10の磁界の方向に揃うように回転子20に力が作用する。これにより、回転子20には反時計方向のトルクが作用し、回転子20は、正回転方向である反時計方向に回転する。
 図6Aに示す時刻t1の状態から、さらに回転子20が反時計方向に回転すると、図6Bに示すように、回転子20のN極がセンサSi~Soに対向し、回転子20のS極がセンサSa~Shに対向する。これにより、トランジスタTA1のゲートに接続される第4段目54のAND回路とトランジスタTI2のゲートに接続される第4段目54のAND回路の出力値が“H”となり、第2スイッチング素子であるトランジスタT11,T22のゲート信号が“H”となる。また、他のトランジスタのゲート信号は全て“L”となる。そして、図5の時刻t2に図示するように、第1スイッチング素子であるトランジスタTA1,TI2、および、第2スイッチング素子であるトランジスタT11,T22がオン状態となり、他のトランジスタは全てオフ状態となる。
 この状態では、直流電源60からの電流は、コイルA、コイルB、コイルC、コイルD、コイルE、コイルF、コイルG、コイルHの経路のコイル群と、コイルO、コイルN、コイルM、コイルL、コイルK、コイルJ、コイルIのコイル群に分かれて流れるため、図6Bに示すように、コイル辺A,B,C,D,E,F,G,H,i,j,k,l,m,n,oには紙面手前から奥に向けて、また、コイル辺I,J,K,L,M,N,O,a,b,c,d,e,f,g,hには紙面奥から手前に向けて電流が流れる。なお、同じスロットに収納されたコイル辺aとコイル辺Hには互いに逆方向に電流が流れる。このため、固定子10の内部には、図6Bに示す回転子20のNSの境界線にほぼ沿った方向(コイル辺i,Aを収納したスロットとコイル辺h,Oを収納したスロットとの中間位置からコイル辺a,Hを収納したスロット位置に向かう方向)の磁界が発生する。この磁界より、回転子20には反時計方向のトルクが作用し、反時計方向に回転する。
 さらに回転子20が反時計方向に回転すると、図6Cに示すように、回転子20のN極がセンサSi~So,Saに対向し、回転子20のS極がセンサSb~Shに対向する。これにより、図5の時刻t3に図示するように、第1スイッチング素子であるトランジスタTB1,TI2、および、第2スイッチング素子であるトランジスタT11,T22がオン状態となり、他のトランジスタは全てオフ状態となる。
 この状態では、直流電源60からの電流は、コイルB、コイルC、コイルD、コイルE、コイルF、コイルG、コイルHの経路のコイル群と、コイルA、コイルO、コイルN、コイルM、コイルL、コイルK、コイルJ、コイルIのコイル群に分かれて流れるため、図6Cに示すように、コイル辺B,C,D,E,F,G,H,i,j,k,l,m,n,o,aには紙面手前から奥に向けて、また、コイル辺I,J,K,L,M,N,O,A,b,c,d,e,f,g,hには紙面奥から手前に向けて電流が流れる。なお、同じスロットに収納されたコイル辺iとコイル辺Aには互いに逆方向に電流が流れる。このため、固定子10の内部には、図6Cに示す回転子20のNSの境界線にほぼ沿った方向の磁界が発生する。この磁界によって、回転子20には反時計方向のトルクが作用し、反時計方向に回転する。図5に示す第1スイッチング素子と第2スイッチング素子のオン・オフ状態の遷移によって、時刻t1から時刻t3の間に、図1に示す回転子20は、反時計方向に、2π/15、すなわち24°回転する。
 以降、同様に、回転子20が反時計方向のトルクを受けて、反時計方向に回転するにしたがって、位置検出センサ40の各センサSa~Soの信号出力が変化し、これに伴って、図2に示す第1スイッチング素子である上アームのトランジスタTA1~TO1と下アームのトランジスタTA2~TO2のオン状態にあるトランジスタが切り換わる。さらに、第1スイッチング素子のオン・オフ状態の切り換わりに連動して第2スイッチング素子であるトランジスタT11~T32のオン・オフ状態が切り換わる。これにより、回転子20は正回転方向である反時計方向に回転し続ける。
 図5に示すように、固定子巻線として奇数個(15個)のコイルA~Oがある場合、上アームのトランジスタTA1~TO1のオン状態の切り換えと、下アームのトランジスタTA2~TO2のオン状態の切り換えは、交互に行われる。すなわち、時刻t2では時刻t1の状態から、下アームのトランジスタTH2に代わってトランジスタTI2がオン状態になり、時刻t3では上アームのトランジスタTA1に代わってトランジスタTB1がオン状態になり、さらに、時刻t4では下アームのトランジスタTI2に代わってトランジスタTJ2がオン状態になる。なお、固定子10のスロットの数が偶数の場合は、上アームのトランジスタと下アームのトランジスタは、同じタイミングでオン状態が切り換わる。
 以上のように、本実施形態の直流電動機101は、固定子10のすべてのコイルに流れる電流が回転子20に回転トルクを与えることになる。このため、直流電動機101は、コイルの電流利用率の高い直流電動機となる。
 また、図4Aに示す制御回路において、正逆回転制御入力端子70からの正逆信号Qを逆回転の論理値“L”にした場合は、図1に示す回転子20は、時計方向に回転する。例えば、図4Aに示すように、回転子20のN極がセンサSh~Soに対向し、回転子20のS極がセンサSa~Sgに対向している状態とすると、センサSh~Soの出力は“H”となり、センサSa~Sgの出力は“L”となる。そして、正逆回転制御入力端子70からの正逆信号Qが正回転の論理値“L”である場合、第1スイッチング素子であるトランジスタTH1のゲートに接続される第4段目54のAND回路とトランジスタTA2のゲートに接続される第4段目54のAND回路の出力値が“H”となり、他の第1スイッチング素子であるトランジスタのゲートに接続されたAND回路の出力は全て“L”となる。これにともない、第2スイッチング素子であるトランジスタT21とトランジスタT12のゲート信号が“H”となる。
 この状態において、図3の等価回路を参照すれば、直流電源60からの電流は、プラス側メイン電源線61、トランジスタT21、プラス側サブ電源線32H、トランジスタTH1を経て、コイルH、コイルI、コイルJ、コイルK、コイルL、コイルM、コイルN、コイルOの順に直列接続された1つのコイル群に流れる経路と、コイルG、コイルF、コイルE、コイルD、コイルC、コイルB、コイルAの順に直列接続されたもう1つのコイル群に流れる経路に分かれ、さらに、トランジスタTA2、マイナス側サブ電源線31L、トランジスタT12を経由してマイナス側メイン電源線62に流れる。
 このため、各コイル辺に流れる電流は、図6Aで示した各コイル辺A~oに流れる電流とは反対方向となる。そして、固定子10の内部には、図6Aに示す回転子20の磁極NSの境界線に沿った方向(コイル辺o,Gを収納したスロットとコイル辺a、Hを収納したスロットとの中間位置からコイル辺h,Oを収納したスロット位置に向かう方向)の磁界が発生する。固定子10の磁界と回転子20の磁界とはほぼ90°の位相差を有しており、回転子20の磁界の方向が固定子10の磁界の方向に揃うように回転子20に力が作用する。これにより、回転子20には時計方向のトルクが作用し、回転子20は、逆回転方向である時計方向に回転する。以降、正回転方向の場合と同様に、回転子20は逆回転方向である時計方向に回転を続ける。
 このように、本実施形態の直流電動機100は、回転子20の磁極の位置に応じて、回転子のN極に対向するコイルのコイル辺とS極に対向するコイルのコイル辺とに流れる電流の方向が異なる方向となるように、制御回路50がスイッチング素子である各トランジスタTA1~TI2の導通・非導通を切り換えている。
 以上のように、本実施形態の直流電動機101は、図17、図18で従来例として示した直流電動機100と比べて、回転子と、極数2m(mは整数)の磁極ピッチに略等しいコイルピッチを有し、2π/n(nは4以上の整数)位相をずらせて設けたn個のコイルを備え、各コイルはそれぞれ2本の口出線を有しており、隣接するコイルの口出線が順次接続されて各コイルが環状に直列接続され、各口出線の接続点がそれぞれ2個の第1スイッチング素子からなるハーフブリッジの接続点に接続されている点で共通している。しかしながら、従来例と比べて、次の点でその構成が異なっている。
(1)隣接するコイルの口出線に接続されたハーフブリッジが、それぞれ複数のハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各スイッチ群のハーフブリッジの複数の上アームの第1スイッチング素子および複数の下アームの第1スイッチング素子が、それぞれ各スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続されている点。
(2)各スイッチ群の各プラス側サブ電源線および各マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されている点。
(3)各スイッチ群のプラス側サブ電源線およびマイナス側サブ電源線が、それぞれ抵抗を介して当該スイッチ群のいずれかのハーフブリッジの接続点に接続されているか、あるいは、直接抵抗を介して接続されている点。
 上記の(1)~(3)の構成による作用効果について、以下に説明する。例えば、図5に示す時刻t1では、第1スイッチ群31の上アーム側の第2スイッチング素子であるトランジスタT11、第1スイッチ群31の上アームのトランジスタTA1、第2スイッチ群32の下アームのトランジスタTH2、および、第2スイッチ群32の下アーム側の第2スイッチング素子であるトランジスタT22の4つのトランジスタがオン状態にあり、他のすべてのトランジスタがオフ状態にある。図3に示した等価回路は、図5に示す時刻t1での状態を示している。
 図3を参照すれば、第1スイッチ群31において、第2スイッチング素子であるトランジスタT11はオン状態にあるが、第2スイッチング素子であるトランジスタT12はオフ状態にあるため、トランジスタT12は直流電源60の電源電圧Vdcに耐え得る高耐圧のトランジスタを用いる必要がある。また、第2スイッチ群32において、第2スイッチング素子であるトランジスタT22はオン状態にあるが、第2スイッチング素子であるトランジスタT21はオフ状態にあるため、トランジスタT21は直流電源60の電源電圧Vdcに耐え得る高耐圧のトランジスタを用いる必要がある。第1スイッチング素子のオン状態の切り換えを考慮すれば、プラス側メイン電源線61またはマイナス側メイン電源線62に接続される第2スイッチング素子であるトランジスタT11~T32は、電源電圧Vdcに耐え得る高耐圧のトランジスタを用いる必要がある。
 各コイルA~Oに接続されるハーフブリッジTA~TOにおいて、それぞれ第1~第3スイッチ群31~33の上アームのトランジスタTA1~TO1はプラス側サブ電源線31H~33Hに接続され、下アームのトランジスタTA2~TO2はマイナス側サブ電源線31L~33Lに接続されている。図3に示す状態では、直流電源60からの電流は、プラス側メイン電源線61、第2スイッチング素子であるトランジスタT11、プラス側サブ電源線31H、第1スイッチング素子であるトランジスタTA1を経由して、コイルA,B,C,D,E、F,Gの直列回路を流れる。
 各コイルの口出線の接続点の電位、すなわち各ハーフブリッジ接続点の電位は、ハーフブリッジTAの接続点の電位から、直列接続されたコイルの電圧降下分に相当する電圧分を差し引いた電位となる。このため、第1スイッチ群31の第1スイッチング素子であるトランジスタTA1~TE2に係る電圧は次のようになる。
 第1スイッチ群31の第2スイッチング素子であるトランジスタT11と第1スイッチング素子であるトランジスタTA1がオン状態にあるため、トランジスタTA1の印加電圧は零となり、プラス側サブ電源線31HとハーフブリッジTAの接続点は、プラス側メイン電源線61とほぼ同電位となっている。このため、上アームのトランジスタTB1には、コイルAを流れる電流の電圧降下分に相当する電圧が印加され、上アームのトランジスタTC1には、コイルA,Bを流れる電流の電圧降下分に相当する電圧が印加される。また、上アームのトランジスタTE1には、コイルA~Dを流れる電流の電圧降下分に相当する電圧が印加される。
 一方、下アーム側の第2スイッチング素子であるトランジスタT12はオフ状態であるため、トランジスタT12には、ほぼ電源電圧Vdcに等しい電圧が印加される。そして、マイナス側サブ電源線31Lは、マイナス側メイン電源線62とは同電位とはならず、数MΩの高い抵抗値の抵抗R12、R11を通じて、プラス側メイン電源線61とほぼ同電位となっている。
 このため、第1スイッチ群31の下アームの第1スイッチング素子に注目すれば、トランジスタTA2の印加電圧は零となり、下アームのトランジスタTB2には、コイルAを流れる電流の電圧降下分に相当する電圧が印加され、下アームのトランジスタTC2には、コイルA,Bを流れる電流の電圧降下分に相当する電圧が印加される。また、例えば、下アームのトランジスタTE2には、コイルA~Dを流れる電流の電圧降下分に相当する電圧が印加される。このように、第1スイッチ群31の下アーム側の第2スイッチング素子であるトランジスタT21には高い電源電圧Vdcがかかるが、第1スイッチ群31の第1スイッチング素子である各トランジスタTA1~TE2には電源電圧Vdcよりも低い電圧しかかからない。
 また、第2スイッチ群32に注目すれば、第2スイッチング素子であるトランジスタT22と第1スイッチング素子であるトランジスタTH2がオン状態になるため、トランジスタTH2の印加電圧は零となり、マイナス側サブ電源線32LおよびハーフブリッジTHの接続点は、マイナス側メイン電源線62とほぼ同電位となっている。このため、例えば、下アームのトランジスタTF2には、コイルF,Gを流れる電流の電圧降下分に相当する電圧が印加され、また、例えば、下アームのトランジスタTG2には、コイルGを流れる電流の電圧降下分に相当する電圧が印加され、下アームのトランジスタTI2には、コイルHを流れる電流の電圧降下分に相当する電圧が印加される。
 一方、上アーム側の第1スイッチング素子であるトランジスタT21はオフ状態であるため、上アーム側のトランジスタT21には、ほぼ電源電圧Vdcに等しい電圧が印加される。そして、プラス側サブ電源線32Hは、第2スイッチング素子であるトランジスタT22がオン状態にあるため、プラス側メイン電源線61とは同電位とはならず、数MΩの高い抵抗値の抵抗R21を通じて、ハーフブリッジTFの接続点と同じ電位になっている。
 このため、上アームのトランジスタTF1の印加電圧は零となる。また、上アームの第1スイッチング素子であるトランジスタTG1には、コイルFを流れる電流の電圧降下分に相当する電圧が印加され、上アームのトランジスタTH1の印加電圧はコイルF,Gを流れる電流の電圧降下分に相当する電圧が印加され、上アームのトランジスタTI1には、コイルF,Gを流れる電流の電圧降下分とコイルHを流れる電流の電圧降下分との差分に相当する電圧が印加される。このように、第3スイッチ群33の下アーム側の第2スイッチング素子であるトランジスタT32には高い電源電圧Vdcがかかるが、第3スイッチ群33の各第1スイッチング素子であるトランジスタTG1~TI2には電源電圧Vdcよりも低い電圧しかかからない。
 また、第3スイッチ群33に注目すれば、第2スイッチング素子であるトランジスタT21とトランジスタT22がともにオフ状態になるため、トランジスタT31、抵抗R21,R22、および、トランジスタT32には電源電圧Vdcが印加される。また、第2スイッチ群32のプラス側サブ電源線32Hおよびマイナス側サブ電源線32Lの電位は、それぞれ抵抗R31およびR32を介して、ハーフブリッジTKの接続点(コイル辺jとコイル辺Kの接続点)の電位となっている。このため、第1スイッチング素子のトランジスタTK1,TK2には電圧が印加されず、トランジスタTL1,TL2にはコイルKを流れる電流の電圧降下分に相当する電圧が印加され、トランジスタTM1,TM2には、コイルK,Lを流れる電流の電圧降下分に相当する電圧が印加される。このように、第3スイッチ群33では、上アーム側と下アーム側の第2スイッチング素子であるトランジスタT31、T32には高電圧(それぞれ電源電圧Vdcの1/2)がかかるが、第3スイッチ群33の各第1スイッチング素子であるトランジスタTK1~TO2には低い電圧しかかからない。
 以上のように、本実施形態では、各スイッチ群の上アーム側と下アーム側の第2スイッチング素子であるトランジスタT11~T32の6個のトランジスタについては、高耐圧のトランジスタを用いる必要があるが、各ハーフブリッジを構成する第1スイッチング素子であるトランジスタTA1~TO2の30個のトランジスタについては、低耐圧のトランジスタを用いることが可能になる。このことは、オン状態にあるスイッチング素子が順次切り換わった場合においても、同様である。
 直流電動機の出力トルクを大きくするためには、コイルA~Oに流す電流の値を大きくする必要があり、直流電源60の電源電圧Vdcの値を大きくする必要が生じる。このため、使用するスイッチング素子に求められる耐圧も高くする必要がある。また、直列接続したコイルの電磁的なリアクションを軽減し、回転子20のコギングトルクを小さくするためには、固定子10のスロット数を多くしコイル数を増やすことが望ましい。このため、図17、図18で従来例として示した直流電動機100では、コイルの電流効率は高くできるものの、コイル数の2倍のスイッチング素子が必要となり、高出力を得るためには、耐圧は大きいが高価なトランジスタを用いる必要がある。例えば、直流電源60の電源電圧Vdcが250Vで、コイル数が15個として構成した場合、少なくとも耐圧性能が250Vのトランジスタがコイル数の2倍の30個必要となる。
 ここで、第1の実施形態における直流電動機において、電源電圧Vdcと第1スイッチング素子に印加される電圧の関係について説明する。コイル数n、スイッチ群数kとし、コイル数nが偶数でk個の各コイル群のコイル数が同じである場合、コイルを流れる電流は2つの経路に分かれるため、各コイルには、Vdc/(n/2)の電圧が印加される。また1つのスイッチ群にはn/k本のコイルが含まれ、各スイッチング素子のいずれかはサブ電源線に接続されているため、第1スイッチング素子には最大で(n/k-1)本のコイルの電圧降下分の電圧がかかる。したがって、スイッチング素子の耐圧は、2Vdc×(n/k-1)/nとなる。また、コイル数nが奇数で各コイル群のコイル数が同じである場合は、各コイルには最大でVdc/((n-1)/2)の電圧がかかることになるため、第1スイッチング素子の耐圧は、2Vdc×(n/k-1)/(n-1)となる。このように、本実施形態では、第1スイッチング素子である低耐圧のトランジスタの耐圧は、第2スイッチング素子である高耐圧のトランジスタの耐圧に比べて、2Vdc×(n/k-1)/nまたは2Vdc×(n/k-1)/(n-1)まで引き下げることができる。
 したがって、スイッチ群の数kを多くするほど第2スイッチング素子の耐圧を低くすることができ、2k個の高耐圧のトランジスタと2n個の低耐圧のトランジスタを用いて、直流電動機101の耐圧低減回路としてのスイッチング回路30を構成することができる。そして、コイル数nとスイッチ群数kを選択することにより、第1スイッチング素子として耐圧性能が100V以下のトランジスタを選ぶことが実用上望ましい。例えば、電源電圧Vdcが250Vで、コイル数nを16、スイッチ群数kを4とした場合、耐圧が250Vのトランジスタ8個と、耐圧100V以下のトランジスタ32個でスイッチング回路30を構成することができる。このように、本実施形態の直流電動機101では、トランジスタの総数は増えるものの、従来例と比べて必要な高耐圧のトランジスタの数を大幅に減らすことができ、全体としてスイッチング素子の大幅なコストダウンが可能となる。
[スイッチング素子切り換え方法]
 次に、第1スイッチング素子である上アームのトランジスタTA1~TO1あるいは下アームのトランジスタTA2~TO2について、オン状態にあるトランジスタを切り換える際の方法について説明する。例えば、図5に示す時刻t1から時刻t2にかけて、下アームのトランジスタTH2がオン状態からオフ状態に、また、これに伴い、下アームのトランジスタTI2がオフ状態からオン状態に切り換わる。これによって、コイルHに流れる電流の方向が、時刻t1と時刻t2とでは反対方向に切り換わることになる。このため、コイルHを流れる電流による電磁的なリアクションがトランジスタのスイッチングに問題となる場合がある。
 この場合、トランジスタTH2からTI2へオン状態の切り換え方法として、下アームのトランジスタTI2をオフ状態からオン状態にする際に、同時にオン状態にあるトランジスタTH2をオフ状態にするのではなく、トランジスタTI2をオン状態にした際に、トランジスタTH2については微小時間だけオン状態を保つようにし、その後、トランジスタTH2をオフ状態にすることが望ましい。これにより、コイルHは、トランジスタの切り換え時に微小時間だけ短絡された状態となる。これは、ブラシ付き直流電動機において、ブラシが隣接する整流子片に跨って接触した際に、コイルが短絡される現象と同じであり、トランジスタTH2とトランジスタTI2とを同時に開閉する場合よりも、安定的にコイルに流れる電流を切り換えることができる。
 このように、第1スイッチング素子のオン状態を順次切り換える際は、オン状態の切り換えの対象となる2つのトランジスタを微小時間だけ両者ともオン状態に保つことが望ましい。これにより、例えば、スイッチ群を跨って第1スイッチング素子のオン状態を切り換える際は、第1スイッチング素子が属するスイッチ群に対応する第2のスイッチング素子についても、切り換える2つのトランジスタをともに微小時間だけオン状態に保つことが望ましい。
[第1の実施形態の変形例]
 図7は、本発明の第1の実施形態に係る直流電動機の変形例の概略を示す図である。本実施形態の直流電動機101’は、耐圧低減回路を構成するスイッチング回路30’において、第1~第3スイッチ群31’~33’の各プラス側サブ電源線31H~33Hと当該第1~第3スイッチ群31’~33’のマイナス側サブ電源線31L~33Lとが、それぞれ抵抗R1~R3を介して直接接続されている。抵抗R1~R3については数MΩ以上の高抵抗が用いられる。他の構成については、第1の実施形態の直流電動機100と同じである。
 直流電動機101’において、第1~第3スイッチ群31’~33’の第2スイッチング素子については、上アーム側または下アーム側のいずれかの第2スイッチング素子がオン状態になるか、あるいは、両者がオフ状態になるため、第2スイッチング素子のトランジスタT11~T32は、電源電圧Vdcが印加されるため、高い耐電圧のトランジスタを用いる必要がある。
 例えば、図5に示す時刻t1では、第1スイッチ群31の上アーム側の第2スイッチング素子であるトランジスタT11、第1スイッチ群31の上アームのトランジスタTA1、第2スイッチ群32の下アームのトランジスタTH2、および、第2スイッチ群32の下アーム側の第2スイッチング素子であるトランジスタT22の4つのトランジスタがオン状態にあり、他のすべてのトランジスタがオフ状態にある。
 この状態において、第1スイッチ群31’に注目すれば、第1スイッチ群31’のプラス側サブ電源線31Hとマイナス側サブ電源線31Lの電位は、プラス側メイン電源線61の電位とほぼ等しくなっている。このため、上アームのトランジスタTB1~TE1および下アームのトランジスタTB2~TE2には、それぞれコイルB~Dを流れる電流の電圧降下分に応じた電圧しか印加されない。
 また、第2スイッチ群32’については、第2スイッチ群32’のプラス側サブ電源線32Hとマイナス側サブ電源線32Lの電位は、マイナス側メイン電源線62の電位とほぼ等しくなっている。このため、上アームのトランジスタTH1と下アームのトランジスタTH2には電圧がかからない。また、上アームのトランジスタTF1,TG1と下アームのトランジスタTF2,TG2には、それぞれコイルF,Gを流れる電流の電圧降下分に応じた電圧しか印加されない。上アームのトランジスタTI1,TJ1と下アームのトランジスタTI2,TI2についても、コイルH,Iを流れる電圧降下分に応じた電圧が印加されることになる。
 第3スイッチ群33’については、第2スイッチング素子である上アーム側のトランジスタT31と下アーム側のトランジスタT32がともにオフの状態にある。このため、第3スイッチ群33のプラス側サブ電源線33Hとマイナス側サブ電源線33Lの電位は定まらない、このため、第1スイッチング素子である上アームのトランジスタTK1~TO1と下アームのトランジスタTK2~TO2については、電圧が印加されない。
 このように、本実施形態の直流電動機101’では、耐圧低減回路としてのスイッチング回路30’の一部の構成が、直流電動機100のスイッチング回路30と異なり、各スイッチ群のプラス側サブ電源線およびマイナス側サブ電源線を、それぞれ抵抗を介して当該スイッチ群のいずれかのハーフブリッジの接続点に接続する代わりに、直接抵抗を介して接続しているが、直流電動機100のスイッチング回路30と同様に、第1スイッチング素子の耐圧を低くすることができる。このため、スイッチング回路30’のトランジスタの総数は増えるものの、従来例と比べて必要な高耐圧のトランジスタの数を大幅に減らすことができ、全体としてスイッチング素子の大幅なコストダウンが可能となる。なお、他のすべての実施形態において、耐圧低減回路としてのスイッチング回路30として、本実施形態の変形例と同様に、各スイッチ群のプラス側サブ電源線およびマイナス側サブ電源線を、直接抵抗を介して接続した構成を採用することができる。
[第2の実施形態]
 図8は、本発明の第2の実施形態に係る直流電動機の概略を示す図であり、図9は、図8に示す直流電動機のスイッチング回路と固定子巻線の展開を示した図である。本実施形態の直流電動機102は、図8に示すように、固定子10’、回転子20、耐圧低減回路としてのスイッチング回路30、位置検出センサ40、および、制御回路50を備えており、スイッチング回路30には直流電源60が接続される。
 固定子10’は、n(nは4m以上の整数であり、本実施形態ではn=15)個のスロット(溝)を形成した電磁鋼板を積層した固定子コア11と、固定子コア11の各スロットに収納した15個のコイルA~Oからなる固定子巻線12’を備えている。各コイルA~Oは、隣接するスロット間にコイル収納された、いわゆる集中巻となっており、隣接するコイルがそれぞれ直列接続されており、全体で環状の一つの閉ループを形成している。したがって、コイルA~Oは、15個のスロットに位相差2π/n(n=15)を有して設けられる。
 第1の実施形態の直流電動機101では、各コイルA~Oからなる固定子巻線12は、2層巻きの分布巻であったが、本実施形態の直流電動機102では、各コイルA~Oが、集中巻となっている。後述するように、本実施形態の集中巻の固定子10’を有する直流電動機102の各コイルA~Oの配置と各ハーフブリッジTA~TOの配置関係が、分布巻の固定子10を有する直流電動機101のそれらの配置関係と同じ場合に、集中巻の固定子10’内に生じる磁界の方向は、分布巻の固定子10内に生じる磁界の方向と、ほぼ90°ずれる。本実施形態の直流電動機102は、回転子20の磁極の位置に応じて、第1スイッチング素子と第2スイッチング素子のオン・オフを切り換えている。そして、回転子20に回転トルクを与えるために、本実施形態の直流電動機102では、各コイルA~Oに対する位置検出センサ40の各センサSa~Soの位置を第1の実施形態の直流電動機101と異ならせており、ほぼ90°ずらしている。その他の構成については、本実施形態の直流電動機102は、第1の実施形態の直流電動機101と同じ構成となっている。このため、図3に示す直流電動機のコイルとスイッチング回路の等価回路を示す図、図4Aと図4Bに示す制御回路の構成を示す図、および、図5に示す直流電動機のスイッチング素子のオン・オフ状態の遷移を示す図は、本実施形態に係る直流電動機102にも、適用可能である。
 制御回路50は、回転子20の磁極ピッチに略等しいコイルピッチ離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジの内、一のスイッチ群の上アームの第1スイッチング素子および他のスイッチ群の下アームの第1スイッチング素子を導通させる。同時に、制御回路50は、導通させた上アームの第1スイッチング素子および下アームの第1スイッチング素子が属するスイッチ群の第2スイッチング素子を導通させる。
 例えば、図8に示すように、回転子20のN極がセンサSh~Soに対向し、回転子20のS極がセンサSa~Sgに対向している場合、第1の実施形態において説明したように、図4A,図5Bに示す制御回路50によって、上アーム側は、第1スイッチング素子であるトランジスタTA1と、第2スイッチング素子であるトランジスタT11がオン状態となり、下アーム側は、第1スイッチング素子であるトランジスタTH1と第2スイッチング素子であるトランジスタT22がオン状態となる。
 これにより、図9に示す展開図において、直流電源60からの電流は、プラス側メイン電源線61、トランジスタT11、プラス側サブ電源線31H、トランジスタTA1を経て、コイルA、コイルB、コイルC、コイルD、コイルE、コイルF、コイルGの順に直列接続された1つのコイル群に流れる経路と、コイルO、コイルN、コイルM、コイルL、コイルK、コイルJ、コイルI、コイルH、の順に直列接続されたもう1つのコイル群に流れる経路に分かれ、さらに、トランジスタTH2、マイナス側サブ電源線32L、トランジスタT22を経由してマイナス側メイン電源線62に流れる。
 図8に示した矢印は、この時に各コイルA~Oを流れる電流の方向を示したものであり、各コイルA~Oを流れる電流によって、図8に示す突極P1~P7はS極となり、突極P8~P15はN極となる。このように。集中巻の固定子10’内に発生する磁界の方向は、第1の実施形態の直流電動機101のように分布巻の固定子10内に発生する磁界の方向とほぼ90°ずれている。そして、固定子10’の磁界と回転子20の磁界とはほぼ90°の位相差を有しており、回転子20のN極が固定子10’のS極に、また、回転子20のS極が固定子10’のN極に揃うように回転子20に力が作用する。これにより、回転子20には反時計方向のトルクが作用し、回転子20は、正回転方向である反時計方向に回転する。
 以降、回転子20が反時計方向のトルクを受けて、反時計方向に回転するにしたがって、位置検出センサ40の各センサSa~Soの信号出力が変化し、これに伴って、図9に示す第1スイッチング素子である上アームのトランジスタTA1~TO1と下アームのトランジスタTA2~TO2のオン状態にあるトランジスタが図5の遷移図に示すように、切り換わる。さらに、第1スイッチング素子のオン・オフ状態の切り換わりに連動して第2スイッチング素子であるトランジスタT11~T32のオン・オフ状態が切り換わる。これにより、回転子20は正回転方向である反時計方向に回転し続ける。
 そして、本実施形態の直流電動機102においても、第1の実施形態の直流電動機101と同様に、耐圧低減回路としてスイッチング回路30を備えており、従来例と比べて、トランジスタの総数は増えるものの、必要な高耐圧のトランジスタの数を大幅に減らすことができ、全体としてスイッチング素子の大幅なコストダウンが可能となる。なお、本実施形態においても、オン状態にあるトランジスタを切り換える際は、第1の実施形態と同様に、切り換える2つのトランジスタをともに微小時間だけオン状態に保つことが望ましい。また、スイッチング回路30の代わりに図7で示した変形例のスイッチング回路30’を用いてもよい。
[第3の実施形態]
 第3の実施形態は、本発明を誘導電動機として構成したものである。誘導電動機は、固定子が作る回転磁界によって回転子に誘導電流を発生させ、その誘導電流の電磁力によって回転子を回転させるものである。誘導電動機は、電動機の中でも構造が簡単であり、高い安定性と耐久性を持っている。図10は、本発明の第3の実施形態に係る誘導電動機の概略を示す図であり、図11は、図10に示す誘導電動機の固定子の概略を示す図である。
 誘導電動機103は、固定子10、回転子20、耐圧低減回路であるスイッチング回路30、および、制御回路50’を備えている。スイッチング回路30には直流電源60が接続される。図10、図11に示す本実施形態の誘導電動機103と第1の実施形態で説明した直流電動機101と比較すると、本実施形態の誘導電動機103では、回転子21として、一般的にかご形回転子が用いられ、回転子21の位置検出のための位置検出センサ40を備えていない。このため、制御回路50は、回転子の位置に応じてスイッチング回路30のトランジスタのオン・オフ状態を切り換えるのではなく、所望の周期でスイッチング回路30のトランジスタのオン・オフ状態を切り換えることによって、固定子10に回転磁界を発生させている。回転子21は、エンドリングとロータバー22を備えたかご型回転子以外に、スリップリングを介して外部抵抗が接続可能な巻線形回転子であってもよい。
 図10、図11に示す誘導電動機103では、固定子10の極数を2m(mは整数)とした場合に、mが1の場合、すなわち2極の場合について記載している。誘導電動機103は、固定子10の極数によって回転磁界の同期速度が変化する。固定子10にN極とS極の磁極を1組発生させる場合は2極となり、N極とS極の磁極を2組発生させる場合は4極となる。また、中心から見た場合、隣接する磁極同士の間隔(角度)が磁極ピッチとなる。本実施形態は、2極の誘導電動機であり、磁極ピッチは180度となる。
 固定子10は、n(nは4m以上の整数であり、本実施形態ではn=15)個のスロット(溝)を形成した電磁鋼板を積層した固定子コア11と、固定子コア11の各スロットに収納した15個のコイルA~Oからなる分布巻の固定子巻線12を備えている。誘導電動機103の固定子コア11と固定子巻線12からなる固定子の構成は、第1の実施形態で説明した直流電動機101の固定子10と同じであるため、その説明を省略する。
 図11において、誘導電動機103の15個のコイルA~Oとスイッチング回路30の接続関係は、第1実施形態の直流電動機101と同じである。すなわち、15個のコイルA~Oはそれぞれが直列接続されており、全体で環状の閉ループが形成されている。そしてコイルA~Oの接続点は、それぞれ2個の上アームと下アームの第1スイッチング素子であるトランジスタTA1とTA2,トランジスタTB1とTB2,・・・,トランジスタTO1とTO2からなる15個のハーフブリッジTA,TB,・・・,TOの接続点に接続されている。また、15個のハーフブリッジTA~TOは、それぞれ5つのハーフブリッジからなる3個(k=3)のスイッチ群に分割されている。
 そして、各第1~第3スイッチ群31~33の各プラス側サブ電源線31H~33Hが、第2スイッチング素子であるトランジスタT11~T31を介して、直流電源60のプラス側メイン電源線61に接続されており、各第1~第3スイッチ群31~33の各マイナス側サブ電源線31L~33Lが、第2スイッチング素子であるトランジスタT12~T32を介して、直流電源60のプラス側メイン電源線61に接続されている。さらに、各プラス側サブ電源線31H~33Hが、それぞれ抵抗R11~R31を介して当該第1~第3スイッチ群31~33のいずれかのハーフブリッジの接続点に接続されており、各マイナス側サブ電源線31L~33Lが、それぞれ抵抗R12~R32を介して当該第1~第3スイッチ群31~33のいずれかのハーフブリッジの接続点に接続されている。
 制御回路50は、スイッチング回路30のプラス側メイン電源線61に接続された上アーム側のトランジスタT11~T31、および、マイナス側メイン電源線62に接続された下アーム側のトランジスタT12~T32のオン・オフ状態を切り換えるとともに、各ハーフブリッジTA~TOを構成する上アームのトランジスタTA1~TO1、および、下アームのトランジスタTA2~TO2のオン・オフ状態を切り換えている。これにより、各コイルA~Oに流れる電流の方向が切り換わり、固定子10に回転磁界が発生する。誘導電動機103は、第1スイッチング素子と第2スイッチング素子である各トランジスタのオン・オフ状態の切り換えの周期を可変とすることにより、三相誘導電動機のインバータ制御と同様の可変速運転が可能である。
 図3に示した等価回路および図5に示したスイッチング素子のオン・オフ状態の遷移を示す図は、それぞれ、第3の実施形態の誘導電動機103についても適用可能である。制御回路50’は、固定子10の磁極ピッチに略等しいコイルピッチ離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジの内、一のスイッチ群の上アームの第1スイッチング素子および他のスイッチ群の下アームの第1スイッチング素子を導通させる。同時に、制御回路50’は、導通させた上アームの第1スイッチング素子および下アームの第1スイッチング素子が属するスイッチ群の第2スイッチング素子を導通させる。
 例えば、図3に示す場合と同様に、第1スイッチング素子であるTA1とTH2,および、第2スイッチング素子であるT11とT22がオン状態にあるとき、直流電源60からの電流は、プラス側メイン電源線61、第2スイッチング素子であるトランジスタT11、プラス側サブ電源線31H、第1スイッチング素子であるトランジスタTA1を経由して、コイルA,B,C,D,E、F,Gの直列回路を流れる経路とコイルO,N.M.L,K,J,I,Hの直列回路を流れる経路に分かれ、さらに、第1スイッチング素子であるトランジスタTH2、マイナス側サブ電源線31L、第2スイッチング素子であるトランジスタT22、マイナス側メイン電源線62を経由して流れる。
 これにより、コイル辺A,B,C,D,E、F,G,o,n,m,l,k,j、i,hには、図10の紙面手前から奥に向けて、また、コイル辺a,b,c,d,e、f,g,O,N.M.L,K,J,I,Hには、図10の紙面奥から手前に向けて電流が流れる。この電流の方向は、図6Aに示した第1の実施形態の直流電動機101の各コイル辺に流れる電流の方向と同じである。これにより、固定子10の内部には、コイル辺h,Oを収納したスロット位置からコイル辺o,Gを収納したスロットとコイル辺a、Hを収納したスロットとの中間位置に向かう方向の磁界が発生する。以降、誘導電動機103の固定子10の巻線に流れる電流の方向は、図6B、図6Cに示した第1の実施形態の直流電動機101の各コイル辺に流れる電流の方向と同様に変化する。このように、本実施形態の誘導電動機103では、n個(本実施形態ではn=15)のコイルの隣接するコイル辺を2m(本実施形態ではm=1)組のコイル辺群に分割した際に、隣接する組のコイル辺群を流れる電流が互いに反対方向となるように、制御回路50’が第1および第2のスイッチング素子のオン・オフ状態を切り換えている。そして、制御回路50’は、図5に示すように、各スイッチング素子のオン・オフ状態を周期的に切り換えることによって、固定子10内に回転磁界を発生させている。
 第1の実施形態の直流電動機101は、回転子20の位置に応じて各スイッチング素子のオン・オフを切り換えているのに対して、第2の実施形態の誘導電動機103は、所望のスイッチング時間間隔(周期)で各スイッチング素子のオン・オフを切り換えている点が異なる。誘導電動機103において、各コイルA~Oに流れる電流や第1スイッチング素子であるトランジスタTA1~TO2や第2スイッチング素子である各トランジスタT11~T32に印加される電圧は、直流電動機101の場合と同様である。
 本実施形態の誘導電動機103では、第1の実施形態の直流電動機101と同様に、耐圧低減回路としてスイッチング回路30を備えており、第1の実施形態の直流電動機101と同様に、各スイッチ群の上アーム側と下アーム側の第2スイッチング素子であるトランジスタT11~T32の6個のトランジスタについては、高耐圧のトランジスタを用いる必要があるが、各ハーフブリッジを構成する第1スイッチング素子であるトランジスタTA1~TO2の30個のトランジスタについては、低耐圧のトランジスタを用いることが可能になる。このように、本実施形態の誘導電動機103は、ハーフブリッジに用いるトランジスタの耐圧を低減することができる。なお、本実施形態においても、オン状態にあるトランジスタを切り換える際は、第1の実施形態と同様に、切り換える2つのトランジスタをともに微小時間だけオン状態にすることが望ましい。また、スイッチング回路30の代わりに図7で示した変形例のスイッチング回路30’を用いてもよい。
[第4の実施形態]
 図12は、本発明の第4の実施形態に係る誘導電動機の概略を示す図であり、図13は、図12に示す誘導電動機の固定子の概略を示す図である。本実施形態の誘導電動機104は、固定子10’、回転子20、スイッチング回路30、および、制御回路50’を備えている。スイッチング回路30には直流電源60が接続される。本実施形態の誘導電動機104は、第3の実施形態の誘導電動機103の固定子巻線12を、分布巻から集中巻の固定子巻線12’に変更したものであり、その他の構成については同様であるので、詳細な説明は省略する。
 図3に示した等価回路および図5に示したスイッチング素子のオン・オフ状態の遷移を示す図は、それぞれ、第4の実施形態の誘導電動機104についても適用可能である。制御回路50’は、固定子10’の磁極ピッチに略等しいコイルピッチ離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジの内、一のスイッチ群の上アームの第1スイッチング素子および他のスイッチ群の下アームの第1スイッチング素子を導通させる。同時に、制御回路50’は、導通させた上アームの第1スイッチング素子および下アームの第1スイッチング素子が属するスイッチ群の第2スイッチング素子を導通させる。
 例えば、図5の時刻t1で示すように、第1スイッチング素子であるTA1とTH2,および、第2スイッチング素子であるT11とT22がオン状態にあるとき、図13に示す直流電源60からの電流は、プラス側メイン電源線61、第2スイッチング素子であるトランジスタT11、プラス側サブ電源線31H、第1スイッチング素子であるトランジスタTA1を経由して、コイルA,B,C,D,E、F,Gの直列回路を流れる経路とコイルO,N.M.L,K,J,I,Hの直列回路を流れる経路に分かれ、さらに、第1スイッチング素子であるトランジスタTH2、マイナス側サブ電源線31L、第2スイッチング素子であるトランジスタT22、マイナス側メイン電源線62を経由して流れる。
 ここで、第1スイッチング素子であるTA1とTH2は、固定子10’の磁極ピッチに略等しいコイルピッチ離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジTAとTHに属しており、トランジスタTA1は、ハーフブリッジTA,THの内、一のスイッチ群である第1スイッチ群31の上アームの第1スイッチング素子であり、トランジスタTH2は、他のスイッチ群である第2スイッチ群32の下アームの第1スイッチング素子である。本実施形態では、制御回路50’は、固定子10’の磁極ピッチに略等しい間隔離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジの内、一の前記スイッチ群の上アームの第1スイッチング素子および他のスイッチ群の下アームの第1スイッチング素子を導通させている。
 図12に示した矢印は、この時に各コイルA~Oを流れる電流を示したものであり、各コイルA~Oを流れる電流によって、図12に示す突極P1~P7はS極となり、突極P8~P15はN極となる。そして、制御回路50’は、図5の遷移図に示すように、各スイッチング素子のオン・オフ状態を周期的に切り換えることによって、固定子10内に回転磁界を発生させている。図14は、第4の実施形態に係る誘導電動機の固定子の突極に現れる極性の遷移を示す図であり、図5に示した第1、第2のスイッチング素子のオン・オフ状態の遷移に応じて、それぞれ時刻t1~t9において各突極P1~P9に現れる極性の変化を示している。図14に示すように、固定子10’内には回転磁界が発生する。
 本実施形態の誘導電動機104は、第3の実施形態の直流電動機102と比べて、回転子の磁極の位置によらず、所望のスイッチング時間間隔(周期)で各スイッチング素子のオン・オフを切り換えている点が異なる。
 本実施形態の誘導電動機104では、他の実施形態の直流電動機や誘導電動機と同様に、耐圧低減回路としてスイッチング回路30を備えており、第2スイッチング素子であるトランジスタT11~T32の6個のトランジスタについては、高耐圧のトランジスタを用いる必要があるが、第1スイッチング素子であるトランジスタTA1~TO2の30個のトランジスタについては、低耐圧のトランジスタを用いることが可能になる。このように、本実施形態の誘導電動機104は、ハーフブリッジに用いるトランジスタの耐圧を低減することができる。なお、本実施形態においても、オン状態にあるトランジスタを切り換える際は、第1の実施形態と同様に、切り換える2つのトランジスタをともに微小時間だけオン状態にすることが望ましい。また、スイッチング回路30の代わりに図7で示した変形例のスイッチング回路30’を用いてもよい。
 本発明の回転機では、コイル数が偶数の場合は、ハーフブリッジの上アームのトランジスタと下アームのトランジスタのスイッチングを同時に行うことになる。これにより、コイルの電磁的なリアクションが大きくなり、コギングトルクも増加する。これに対して、コイル数が奇数の場合は、ハーフブリッジの上アームのトランジスタと下アームのトランジスタのスイッチングが時間的に交互に行われる。このため、コイル数を奇数とした直流電動機や誘導電動機は、コイルの電磁的なリアクションが小さくなり、コギングトルクを低減できる。
 また、スイッチ群の数は3以上が望ましく、各スイッチ群のハーフブリッジには複数のコイルが接続されるため、コイルの数は6個以上を設けるのが望ましい。なお、各スイッチ群に属するハーフブリッジの数は、等しいことが望ましいが、各スイッチ群で異なっていてもよい。
[第5の実施形態]
 図15は、本発明の第5の実施形態に係る、直流電源から単相、三相、多相交流電源を得ることのできるインバータ電源装置の概略を示す図であり、図16は、図15に示す三相インバータ電源装置の等価回路を示した図である。また、図5に示したスイッチング素子のオン・オフ状態の遷移を示す図、および、図14に示した突極に現れる極性の遷移を示す図は、本実施形態においても適用可能である。
 本実施形態のインバータ電源装置105は、図15に示すように、一次側ユニット80、二次側ユニット90からなるトランスと、スイッチング回路30、および、制御回路50’を備えており、スイッチング回路30には直流電源60が接続される。以下の説明では、直流電源から三相交流を得るためのインバータについて説明する。なお、トランスについては、コイルを卷回しやすくするために、一次側コア81と二次側コア91とを別体に作製し、両者を接触させることで磁気的に結合したコアを有するトランスを例に説明するが、一次側コア81と二次側コア91とは、一体に形成されていてもよい。図15では、一次側コア81と二次側コア91とを一体に形成した場合における、一次側コア81と二次側コア91との境界を破線で示している。なお、後述するように、一次側コア81と二次側コア91を別体に形成し、積層断面が櫛形のコアの櫛形端部を互いに重ねた接触部を有する場合は、一次側コア81と二次側コア91の境界は、実際の接触部と一致しない。
 一次側ユニット80は、環状のコアの内側にn(nは4以上の整数であり、本実施形態ではn=15)個のスロット(溝)を形成した電磁鋼板を複数枚積層した一次側コア81と、一次側コア81の各スロットに収納した15個のコイル(一次側コイル)A~Oからなる一次側巻線82を備えている。一次側ユニット80の構成は、第2の実施形態の直流電動機102の固定子10’および第4の実施形態の誘導電動機104の固定子10’の構成と同じであり、その詳細な説明は省略する。一次側コア81は、15個のスロットによって形成された15個の一次側の突極P1~P15を有している。なお、一次側の突極は、本発明の第1突極に相当する。
 二次側ユニット90は、中心のコア部分からq(qは2以上の整数であり、本実施形態ではq=3)個の二次側の突極Pu~Pwを備えた電磁鋼板を複数枚積層した二次側コア91と、3個の突極Pu~Pwのそれぞれに卷回された二次側コイル92u~92wからなる二次側巻線92とを備えている。一次側ユニット80の一次側の突極P1~P15と二次側コア91の二次側の突極Pu~Pwは、1個の二次側の突極Pu~Pwに対して隣接する5個の一次側の突極P1~P15が接触することで磁気的に結合している。本実施形態のインバータ電源装置105は、三相の電源装置であり、二次側コイル92u~92wは外部の三相負荷に接続される。なお、二次側の突極は、本発明の第2突極に相当する。
 図15において破線で示した、一次側コア81と二次側コア91との境界付近の接触部では、それぞれの電磁鋼板の接触部の積層断面が櫛形となるように形成し、櫛形積層コアの櫛形端部を互いに重ねてた接触部とすることによって、接触部の磁気抵抗を低減することが望ましい。このため、例えば、一次側コア81の突極P1~P15の先端部分の積層鋼板の積層断面が櫛形となるように形成するとともに、二次側コア91の突極Pu~Pwからそれぞれ一次側コア81の突極P1~P15に向けて突出した突出部分を形成し、この突出部分の積層断面が櫛形となるように形成する。そして、両者の櫛形端部を互いに重ねてた接触部とする。また、二次側コア91についても同様に、二次側コイル92u~92wを卷回しやすくするために、突極P1~P15の先端の円弧状部分と二次側コイル92u~92wを卷回したコイル卷回部分を別体で形成し、円弧状部分とコイル卷回部分の接触部における磁気抵抗を小さくするために、コイル卷回部分において、積層断面が櫛形のコアの櫛形端部を互いに重ねた接触部として形成することが望ましい。
 一次側コア81の各スロットに収納した15個のコイルA~Oは、隣接するスロット間にコイル収納された、いわゆる集中巻となっており、隣接するコイルがそれぞれ直列接続されており、全体で環状の一つの閉ループを形成している。このため、コイルA~Oは、15個のスロットに位相差2π/n(n=15)を有して設けられている。各コイルA~Oの口出線の接続点は、図16の等価回路に示すように、スイッチング回路30の15個のハーフブリッジTA~TOの各接続点に接続されている。
 本実施形態のスイッチング回路30は、耐圧低減回路になっており、第1~第4の実施形態のスイッチング回路30とその構成が同じである。すなわち、スイッチング回路30の15個のハーフブリッジTA~TOは、それぞれ複数、例えば、5つのハーフブリッジからなるk個(kは2以上の整数で本実施形態ではk=3)のスイッチ群に分割されている。具体的には、ハーフブリッジTA~TEが第1スイッチ群31、ハーフブリッジTF~TJが第2スイッチ群32、ハーフブリッジTK~TOが第3スイッチ群33の3群に分割されている。そして、各第1~第3スイッチ群31~33に属する上アームのスイッチング素子は、それぞれ各スイッチ群で共通のプラス側サブ電源線31H~33Hに接続され、第1~第3スイッチ群31~33に属する下アームのスイッチング素子は、それぞれ各スイッチ群で共通のマイナス側サブ電源線31L~33Lに接続されている。
 このように、スイッチング回路30は、隣接するコイルの口出線に接続された前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各スイッチ群のハーフブリッジの複数の上アームの第1スイッチング素子および複数の下アームの第1スイッチング素子が、それぞれ各スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、各スイッチ群のプラス側サブ電源線およびマイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、直流電源60のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、各スイッチ群のプラス側サブ電源線およびマイナス側サブ電源線が、それぞれ抵抗を介して当該スイッチ群のいずれかのハーフブリッジの接続点に接続されている。
 本実施形態では、制御回路50’は、一次側ユニット80内にN極とS極の2極の磁極が現れるように、スイッチング回路30のプラス側メイン電源線61に接続された上アーム側のトランジスタT11~T31、および、マイナス側メイン電源線62に接続された下アーム側のトランジスタT12~T32のオン・オフ状態を切り換えるとともに、各ハーフブリッジTA~TOを構成する上アームのトランジスタTA1~TO1、および、下アームのトランジスタTA2~TO2のオン・オフ状態を切り換えることによって、各コイルA~Oに流れる電流の方向を切り換えている。
 一次側ユニット80内に、N極、S極の2個の磁極を形成する場合、一次側ユニット80の磁極ピッチは180°となる。制御回路50’は、一次側ユニット80の磁極ピッチ(180°)に略等しいコイルピッチ離れた2個のコイルの口出線の接続点にそれぞれ接続される2個のハーフブリッジの内、一のスイッチ群の上アームの第1スイッチング素子および他のスイッチ群の下アームの第1スイッチング素子を導通させる。同時に、制御回路50’は、導通させた上アームの第1スイッチング素子および下アームの第1スイッチング素子が属するスイッチ群の第2スイッチング素子を導通させる。例えば、コイルAに対して180°に略等しいコイルピッチ離れたコイルは、コイルHまたはコイルIとなる。
 図5は、本実施形態のインバータ電源装置105のスイッチング素子のオン・オフ状態の遷移を示しており、図14は、本実施形態のインバータ電源装置105の一次側ユニット80の突極に現れる極性の遷移を示している。本実施形態のインバータ電源装置105の制御回路50’、スイッチング回路30、および、一次側ユニット80の構成は、第4の実施形態の誘導電動機104の制御回路50’、スイッチング回路30、および、固定子10の構成と同様である。このため、図5に示した第1、第2のスイッチング素子のオン・オフ状態の遷移に応じて、それぞれ時刻t1~t9において、一次側コア81の各突極P1~P15には、図14に示す極性が現れる。すなわち、スイッチング素子のオン・オフ状態の切り換えによって、一次側ユニット80内には2極の回転磁界が発生する。制御回路50’は、一次側コア81の突極P1~P15を流れる磁束によって、突極P1~P15の断面に現れる磁極による磁界が回転磁界となるように、第1、第2のスイッチング素子のオン・オフ状態を周期的に切り換えている。
 一次側ユニット80と二次側ユニット90とは互いに接触して固定されているが、磁気的には、二次側ユニット90の周囲を、一次側ユニット80が疑似的に外転型の2極永久磁石回転子として回転している場合と同じと考えられる。このため、一次側ユニット80の各突極P1~P15を流れる磁束の変化に応じて、二次側ユニット90の各二次側の突極Pu~Pwを流れる磁束が変化する。これにより、二次側コイル92u~92wに鎖交する磁束が変化し、二次側コイル92u~92wには、それぞれ電圧e~eの交流電圧が発生する。二次側ユニット90の各二次側の突極Pu~Pwは、本実施形態の場合、それぞれ120°の位相差を有しているため、電圧e~eとして直流電源60と絶縁された三相交流電圧が得られる。
 本実施形態のインバータ電源装置105では、他の実施形態の直流電動機や誘導電動機と同様に、耐圧低減回路としてスイッチング回路30を備えており、第2スイッチング素子であるトランジスタT11~T32の6個のトランジスタについては、高耐圧のトランジスタを用いる必要があるが、第1スイッチング素子であるトランジスタTA1~TO2の30個のトランジスタについては、低耐圧のトランジスタを用いることが可能になる。このように、本実施形態のインバータ電源装置105は、ハーフブリッジに用いるトランジスタの耐圧を低減することができる。なお、本実施形態においても、オン状態にあるトランジスタを切り換える際は、第1の実施形態と同様に、切り換える2つのトランジスタをともに微小時間だけオン状態にすることが望ましい。また、スイッチング回路30の代わりに図7で示した変形例のスイッチング回路30’を用いてもよい。
 なお、二次側ユニット90として、2つの突極間に1本の二次側巻線92を卷回した二次側コアを用い、各突極をそれぞれ一次側コアの複数の突極に接触させた場合は、出力として単相交流電圧を得ることができる。この場合、一次側コアの突極数は偶数とし、二次側コアの各突極に接触する一次側コアの突極数を等しくすることが望ましい。
 以上、耐圧低減回路としてスイッチング回路30を用いた直流電動機、誘導電動機、および、インバータ電源装置に係る好適な実施形態について説明したが、各実施形態で説明したスイッチング回路30の構成は、複数のハーフブリッジを介して直流電源から負荷に対して電力を供給する際の耐圧低減回路として利用可能である。
 この場合、耐圧低減回路の複数のハーフブリッジは、それぞれ複数のハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各スイッチ群のハーフブリッジの複数の上アームの第1スイッチング素子および複数の下アームの第1スイッチング素子が、それぞれ各スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続される。そして、各スイッチ群の各プラス側サブ電源線および各マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該スイッチ群のいずれかのハーフブリッジの前記接続点に接続されているか、あるいは、直接抵抗を介して接続されている。
 また、耐圧制御回路は、一のスイッチ群の上アームの記第1スイッチング素子と他の一のスイッチ群の下アームの第1スイッチング素子を導通させるとともに、導通させた上アームの第1スイッチング素子および下アームの第1スイッチング素子が属するスイッチ群の第2スイッチング素子を導通させ、他の第1および第2スイッチング素子が非導通となるように、第1および第2のスイッチング素子の導通・非導通を切り換える制御回路を備えていてもよい。
 そして、本発明に係る耐圧低減回路では、第2スイッチング素子の数は増えるものの、第1スイッチング素子の耐圧を大幅に減少することが可能となるため、回路のコストダウンを図ることができる。
10,10’…固定子、11…固定子コア、12、12’…固定子巻線、20,21…回転子、22…ロータバー、30,30’,130…スイッチング回路、31~33,31’~33’…第1~第3スイッチ群、31H~33H…プラス側サブ電源線、31L~33L…マイナス側サブ電源線、40…位置検出センサ、50,50'…制御回路、51…第1段目(XOR回路)、52…第2段目(XOR回路)、53…第3段目(NOT回路)54…第4段目(AND回路)、55…第5段目(増幅器)、56…第6段目(OR回路)、57…第7段目(増幅器)、60…直流電源、61…プラス側メイン電源線、62…マイナス側メイン電源線、70…正逆回転制御入力端子、80…一次側ユニット、81…一次側コア、82…一次側巻線、90…二次側ユニット、91…二次側コア、92…二次側巻線、92u,92v,92w…二次側コイル、100,101’,102…直流電動機、103,104…誘導電動機、105…インバータ電源装置。

Claims (14)

  1.  複数のハーフブリッジを介して直流電源から負荷に対して電流を供給する電源装置のための耐圧低減回路であって、
     複数の前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの第1スイッチング素子および複数の下アームの第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、
     各前記スイッチ群の各前記プラス側サブ電源線および各前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、前記直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とする、耐圧低減回路。
  2.  一の前記スイッチ群の前記上アームの前記第1スイッチング素子と他の一の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、
     他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を切り換える制御回路を備えたことを特徴とする、請求項1に記載の耐圧低減回路。
  3.  回転子と、
     2π/n(nは4以上の整数)位相をずらせて設けたn個のコイルを備えた極数2m(mは整数)の固定子と、
     スイッチング回路を有し、
     隣接する前記コイルの口出線が順次接続されて各前記コイルが環状に直列接続され、
     各前記コイルの前記口出線の接続点がそれぞれ前記スイッチング回路の2個の第1スイッチング素子からなるハーフブリッジの接続点に接続された回転機であって、
     前記スイッチング回路における隣接する前記コイルの前記口出線に接続された前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの前記第1スイッチング素子および複数の下アームの前記第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、
     各前記スイッチ群の前記プラス側サブ電源線および前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの前記接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とする、回転機。
  4.  n個の前記コイルが、前記固定子の磁極ピッチ(2π/2m)に略等しいコイルピッチを有していることを特徴とする、請求項3に記載の回転機。
  5.  前記固定子がn個のスロットを有し、n個の各前記コイルが隣接する2つの前記スロットに収納されていることを特徴とする、請求項3に記載の回転機。
  6.  前記回転子が、永久磁石回転子、あるいは、励磁コイルを有する回転子であって、N極とS極の極数2mの磁極を有することを特徴とする、請求項3から5のいずれか1項に記載の回転機。
  7.  前記回転子の前記磁極の位置に応じて、前記第1および第2スイッチング素子の導通・非導通を切り換える制御回路を備えることを特徴とする、請求項6項に記載の回転機。
  8.  前記回転子が、かご形回転子、あるいは、巻線形回転子であることを特徴とする、請求項3から5のいずれか1項に記載の回転機。
  9.  所定の周期で、前記第1および第2スイッチング素子の導通・非導通を切り換える制御回路を備えることを特徴とする、請求項8に記載の回転機。
  10.  前記制御回路が、前記固定子の磁極ピッチに略等しい間隔離れた2個の前記コイルの口出線の接続点にそれぞれ接続される2個の前記ハーフブリッジの内、一の前記スイッチ群の前記上アームの前記第1スイッチング素子および他の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、
     他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を切り換えることを特徴とする、請求項7または9に記載の回転機。
  11.  前記制御回路が、導通状態から非導通状態に切り換える前記第1または第2スイッチング素子と、次に非導通状態から導通状態に切り換える前記第1または第2スイッチング素子との両者を、所定の微小時間だけ共に導通状態に保つことを特徴とする、請求項10に記載の回転機。
  12.  前記第1スイッチング素子の耐圧が、前記第2スイッチング素子の耐圧よりも低いことを特徴とする、請求項3から11のいずれか1項に記載の回転機。
  13.  直流電源を交流に変換するインバータ電源装置であって、
     n(nは4以上の整数)個のスロットと、隣接する2つの前記スロットに収納されn個の一次側コイルを備えた一次側コアと、
     該一次側コアの前記スロットによって形成されたn個の第1突極と磁気結合し、二次側コイルが卷回されたq(qは2以上の整数)個の第2突極を備えた二次側コアと、
     スイッチング回路を有し、
     隣接する前記一次側コイルの口出線が順次接続されて各前記一次側コイルが環状に直列接続され、
     各前記一次側コイルの前記口出線の接続点がそれぞれ前記スイッチング回路の2個の第1スイッチング素子からなるハーフブリッジの接続点に接続され、
     前記スイッチング回路における隣接する前記一次側コイルの前記口出線に接続された前記ハーフブリッジが、それぞれ複数の前記ハーフブリッジを有するk個(kは2以上の整数)のスイッチ群に分けられ、各前記スイッチ群の前記ハーフブリッジの複数の上アームの前記第1スイッチング素子および複数の下アームの前記第1スイッチング素子が、それぞれ各前記スイッチ群に設けたプラス側サブ電源線およびマイナス側サブ電源線に接続され、
     各前記スイッチ群の前記プラス側サブ電源線および前記マイナス側サブ電源線が、それぞれ第2スイッチング素子を介して、前記直流電源のプラス側メイン電源線およびマイナス側メイン電源線に接続されており、さらに、それぞれ抵抗を介して当該前記スイッチ群のいずれかの前記ハーフブリッジの前記接続点に接続されているか、あるいは、直接抵抗を介して接続されていることを特徴とする、インバータ電源装置。
  14.  制御回路をさらに備え、
     該制御回路は、一の前記スイッチ群の前記上アームの前記第1スイッチング素子と他の一の前記スイッチ群の前記下アームの前記第1スイッチング素子を導通させるとともに、導通させた前記上アームの前記第1スイッチング素子および前記下アームの前記第1スイッチング素子が属する前記スイッチ群の前記第2スイッチング素子を導通させ、
     他の前記第1および前記第2スイッチング素子が非導通となるように、前記第1および第2のスイッチング素子の導通・非導通を周期的に切り換えることを特徴とする、請求項13に記載のインバータ電源装置。
PCT/JP2020/042486 2020-04-27 2020-11-13 耐圧低減回路、回転機、および、インバータ電源装置 WO2021220537A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020078689A JP7486712B2 (ja) 2020-04-27 2020-04-27 耐圧低減回路、回転機、および、インバータ電源装置
JP2020-078689 2020-04-27

Publications (1)

Publication Number Publication Date
WO2021220537A1 true WO2021220537A1 (ja) 2021-11-04

Family

ID=78280155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042486 WO2021220537A1 (ja) 2020-04-27 2020-11-13 耐圧低減回路、回転機、および、インバータ電源装置

Country Status (2)

Country Link
JP (1) JP7486712B2 (ja)
WO (1) WO2021220537A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023064873A (ja) 2021-10-27 2023-05-12 セイコーエプソン株式会社 搬送装置、記録装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023821A (ja) * 2010-07-13 2012-02-02 Nissan Motor Co Ltd 電力変換システム
WO2014147904A1 (ja) * 2013-03-21 2014-09-25 本田技研工業株式会社 発電電動ユニット、および発電電動機の制御方法
JP2019187084A (ja) * 2018-04-10 2019-10-24 株式会社ジェイテクト モータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023821A (ja) * 2010-07-13 2012-02-02 Nissan Motor Co Ltd 電力変換システム
WO2014147904A1 (ja) * 2013-03-21 2014-09-25 本田技研工業株式会社 発電電動ユニット、および発電電動機の制御方法
JP2019187084A (ja) * 2018-04-10 2019-10-24 株式会社ジェイテクト モータ駆動装置

Also Published As

Publication number Publication date
JP2021175299A (ja) 2021-11-01
JP7486712B2 (ja) 2024-05-20

Similar Documents

Publication Publication Date Title
Pollock et al. The flux switching motor, a DC motor without magnets or brushes
JP6477256B2 (ja) 回転電機
JP4781666B2 (ja) バリアブルリラクタンス型角度検出器
JP3693100B2 (ja) 多相トラバース磁束機械
KR20080027366A (ko) 교류 모터 및 그의 제어장치
WO2009056879A1 (en) Permanent magnet reluctance machines
JP2003009486A (ja) 可変速電動機
CN104335464A (zh) 同步电机
WO2021220537A1 (ja) 耐圧低減回路、回転機、および、インバータ電源装置
JP4107614B2 (ja) モータ駆動システム
JP2009291069A (ja) 円筒リニアモータ及びそれを用いた車両
JP6610910B1 (ja) 直流機
JP5885423B2 (ja) 永久磁石式回転電機
JP7001483B2 (ja) アキシャルギャップ型トランスバースフラックス式回転電機
WO2021106323A1 (ja) 誘導機
WO2007007833A1 (ja) モータ駆動システム
JP4172482B2 (ja) 結線パターン切換装置
JP5021247B2 (ja) 多重巻線交流モータ
JP2011064710A (ja) バリアブルリラクタンス型角度検出器
JP5971841B2 (ja) 永久磁石モータとその運転方法
RU2720493C1 (ru) Синхронная электрическая машина с сегментированным статором и двухконтурной магнитной системой на постоянных магнитах
JP2022055731A (ja) 電力変換装置
CN216086270U (zh) 一种电机及包括该电机的设备
JP5350979B2 (ja) バリアブルリラクタンス型角度検出器
CN101465588A (zh) 一种磁阻电动机及提高电动机有效功率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933091

Country of ref document: EP

Kind code of ref document: A1