WO2021220340A1 - 電源制御方法及び電源制御装置 - Google Patents

電源制御方法及び電源制御装置 Download PDF

Info

Publication number
WO2021220340A1
WO2021220340A1 PCT/JP2020/017955 JP2020017955W WO2021220340A1 WO 2021220340 A1 WO2021220340 A1 WO 2021220340A1 JP 2020017955 W JP2020017955 W JP 2020017955W WO 2021220340 A1 WO2021220340 A1 WO 2021220340A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
state
relay
power supply
battery
Prior art date
Application number
PCT/JP2020/017955
Other languages
English (en)
French (fr)
Inventor
慎治 中島
寿幸 小出
健一 後藤
裕貴 小山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN202080100266.7A priority Critical patent/CN115461243A/zh
Priority to JP2022518438A priority patent/JP7447996B2/ja
Priority to PCT/JP2020/017955 priority patent/WO2021220340A1/ja
Priority to BR112022021672A priority patent/BR112022021672A2/pt
Priority to EP20934104.9A priority patent/EP4144561A4/en
Priority to MX2022013368A priority patent/MX2022013368A/es
Priority to US17/920,671 priority patent/US20230150366A1/en
Publication of WO2021220340A1 publication Critical patent/WO2021220340A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply control method and a power supply control device.
  • Patent Document 1 an invention for controlling a power mode of an electric vehicle has been known (Patent Document 1).
  • the invention described in Patent Document 1 keeps the power supply mode on even after the charging of the drive battery is stopped when the electrical components mounted on the electric vehicle are in operation.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power supply control method and a power supply control device capable of preventing a transition to a high power state again after releasing a high power state. ..
  • the power supply state is a state in which power is supplied from the high-power battery to the low-power battery via a relay
  • the relay when the first signal is received, the relay is turned on. Switch off and then prohibit the relay from switching from off to on.
  • FIG. 1 is a block diagram of a power supply control device 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a power supply position according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating on / off of the relay 13 according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an energization state in the electric vehicle in each state of the power supply position.
  • FIG. 5 is a timing chart illustrating an operation example of the power supply control device 100 according to the embodiment of the present invention.
  • FIG. 6 is a timing chart illustrating another operation example of the power supply control device 100 according to the embodiment of the present invention.
  • FIG. 7 is a timing chart illustrating another operation example of the power supply control device 100 according to the embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an operation example of the power supply control device 100 according to the embodiment of the present invention.
  • the power supply control device 100 includes a controller 10, a power switch 11, a high-power battery 12, a relay 13, a DCDC converter 14, a light-power battery 15, and an electrical component 16.
  • the vehicle in this embodiment is an electric vehicle that uses electricity as an energy source.
  • the controller 10 is an electronic control unit (ECU) Electronic control unit (ECU) having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a CAN (Control Area Network) communication circuit, and the like.
  • the controller 10 controls each function of the electric vehicle. As an example, the controller 10 controls the on / off of the relay 13 based on the received signals (first signal to third signal).
  • the power switch 11 is a pressing type switch installed in the vehicle.
  • the installation location of the power switch 11 is not particularly limited, but it is usually installed at a position where the user sitting in the driver's seat can easily operate the power switch 11.
  • the power switch 11 is installed near the steering wheel. Each time the user presses the power switch 11, the power state is switched. Such a state of the power supply is expressed as a "power supply position" in the present embodiment. The details of the power supply position will be described later.
  • the power switch 11 is provided with an indicator indicating on / off.
  • the high-power battery 12 is a drive battery mainly used as a power source for a motor (not shown).
  • the high-power battery 12 is a large-capacity secondary battery composed of a plurality of battery modules.
  • An external power source 30 is used to charge the high-power battery 12. The user charges the high-power battery 12 by connecting the external power supply 30 and the electric vehicle with a dedicated charging cable.
  • the light battery 15 is used as a power source for the electrical component 16 mounted in the vehicle.
  • the light electric battery 15 is, for example, a lead storage battery that stores electric power at a voltage of 12V to 15V.
  • the electrical components 16 to which the light battery 15 supplies electric power are a navigation device, an audio device, and the like.
  • a relay 13 and a DCDC converter 14 are connected between the high-power battery 12 and the low-power battery 15.
  • the light battery 15 is electrically connected to the high battery 12 by the relay 13.
  • the on / off of the relay 13 is controlled by the controller 10. When the power switch 11 is not off, the relay 13 is usually on.
  • the DCDC converter 14 steps down the power of the high-power battery 12 to supply power to the low-power battery 15.
  • the electrical component 16 and the DCDC converter 14 are shown separately in FIG. 1, the DCDC converter 14 is also a kind of the electrical component 16.
  • the intelligence key 20 is used to remotely control the unlocking and locking of the door.
  • the function of the intelligence key 20 is not limited to this.
  • the door is unlocked even when the user presses the switch on the door handle or trunk.
  • an antenna for transmitting radio waves and a receiver for receiving radio waves are provided to both the electric vehicle and the intelligence key 20.
  • radio waves are transmitted from the antenna of the electric vehicle, and the intelligence ski 20 that receives the radio waves automatically returns the radio waves.
  • the door is unlocked when the receiver of the electric vehicle receives this radio wave.
  • the intelligence key 20 is sometimes called a smart key.
  • the first signal shown in FIG. 1 is a signal transmitted from the power switch 11 to the controller 10.
  • the second signal is a signal transmitted to the controller 10 when the external power supply 30 and the electric vehicle are connected by a dedicated charging cable.
  • the third signal is a signal transmitted from the intelligence key 20 to the controller 10. When the controller 10 receives the first signal to the third signal, the controller 10 controls the on / off of the relay 13 according to the received signal.
  • the power supply position includes four states of power off (first state), second state, third state, and fourth state. Further, the power supply position includes a fifth fifth state.
  • first state the first state
  • second state the second state
  • third state the fourth state
  • fourth state the power supply position
  • fifth state the fifth state
  • Power off is a state in which the power switch 11 is off.
  • the power position is power off, only some devices operate. Some functions are door locks (including unlocks), communication devices, and security devices. Further, even when the power supply position is off, a minute current (so-called dark current) flows through the electrical component 16 for function backup and the like. This dark current is supplied from the light electric battery 15. When the power position is off, the indicator of the power switch 11 is off.
  • the second state is the state in which the power switch 11 is on, and the indicator of the power switch 11 is lit.
  • the relay 13 is on, and power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13. More specifically, when the power supply position is in the second state, power is supplied from the high-power battery 12 to the low-power battery 15 via the DCDC converter 14 by turning on the relay 13.
  • the user can use many electrical components 16 except for a part. Specifically, in the second state, the user can operate the navigation device to set a route or operate the audio device to listen to the radio.
  • the meter and blower motor do not operate. This is because the power supply position automatically shifts from the second state to the power off when a predetermined time (for example, about 1 to 10 minutes) elapses in the second state without any user operation.
  • the blower motor is a motor for sending the air from the air conditioner into the passenger compartment, and is equipped with a fan. In this mechanism, if a predetermined time elapses without user operation, the blower motor stops and the air blower stops, that is, the air conditioner turns off. Users may be dissatisfied if the air conditioner is turned off automatically. Therefore, the blower motor does not operate in the second state.
  • the meter is an electrical component that provides various information to the user, the user may find it inconvenient if the meter is automatically turned off. Therefore, the meter does not operate in the second state. No user operation means that there is no input from the user to the electrical component 16.
  • the second state may be called AUTOACC.
  • the third state is the state in which the power switch 11 is on as in the second state, and the indicator of the power switch 11 is lit.
  • the relay 13 is on as in the second state, and power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13.
  • the third state and the second state differ in the following points. That is, in the second state, the meter and the blower motor do not operate, whereas in the third state, all the electrical components including the meter and the blower motor operate.
  • the third state may be called IGN-ON.
  • the power position changes in the order of power off (first state), second state, and third state. If the user presses the power switch 11 while the power supply position is in the third state, the power supply position transitions to the second state.
  • the power supply position is in the second state, as described above, if a predetermined time elapses without user operation, the power supply position automatically shifts to power off.
  • the transition from the power off to the second state is not limited to the operation of the power switch 11.
  • the power position also transitions from the power off to the second state when the user presses the unlock switch of the intelligence key 20.
  • the third signal is transmitted from the intelligence key 20 to the controller 10 (see FIG. 1).
  • the controller 10 shifts the power supply position from the power off to the second state.
  • the user can use the navigation device, the audio device, etc. immediately after boarding.
  • the time for which the electric power is supplied from the light electric battery 15 to the electrical component 16 becomes long, and the remaining capacity (SOC: START OF CHARGE) of the battery may decrease.
  • the controller 10 turns on the relay 13 to supply electric power from the high-power battery 12 to the low-power battery 15 via the relay 13.
  • the predetermined operation means an operation of pressing the power switch 11 while depressing the brake pedal. This operation can be performed regardless of whether the power supply position is the power off, the second state, or the third state.
  • the power position changes from the power off, the second state, or the third state to the fourth state as shown in FIG.
  • the electric vehicle can run in the fourth state.
  • the power switch 11 is on, and the indicator of the power switch 11 is lit.
  • the relay 13 is on, and power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13.
  • all the electrical components including the meter and the blower motor operate as in the third state.
  • the meter displays an icon indicating that the vehicle can run.
  • the power position changes from the fourth state to the second state. This is because there is a need to use an audio device or the like even after the running is finished.
  • the fourth state may be called READY-ON.
  • the state in which power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13 may be referred to as a “high-power state”.
  • the second state, the third state, and the fourth state shown in FIG. 2 are high electric power states.
  • the table shown in FIG. 3 shows how the on / off of the relay 13 is controlled according to the power supply position.
  • the relay 13 when the power supply position is power off, the relay 13 is normally off. When the power position is in the second state, the relay 13 is normally on. When the power position is in the third state, the relay 13 is normally on. When the power position is in the fourth state, the relay 13 is normally on.
  • the controller 10 switches the relay 13 from on to off. More specifically, when the power switch 11 is pressed and held for a predetermined time or longer, a first signal (see FIG. 1) is transmitted from the power switch 11 to the controller 10. Upon receiving this first signal, the controller 10 switches the relay 13 from on to off. As a result, the light electric battery 15 is separated from the high electric battery 12, and the power supply from the high electric battery 12 is stopped. As a result, the high electric state is released.
  • a predetermined time for example, 2 seconds
  • One of the reasons for releasing the high power state when the power switch 11 is pressed and held for a predetermined time or longer in this way is to respond to an unexpected event. In the event of an unexpected event and rescue is required, a prompt release of the high power condition is required. Therefore, when the controller 10 of the present embodiment receives the first signal, the relay 13 is switched from on to off. Since the first signal is transmitted by pressing and holding the power switch 11 (for example, for 2 seconds or longer), according to the present embodiment, the high electric state can be easily and quickly released.
  • the above-mentioned predetermined time is not limited to 2 seconds and can be changed as appropriate.
  • the controller 10 switches the relay 13 from on to off when the power switch 11 is pressed and held for a predetermined time or longer, as in the case of the second state.
  • the first signal is transmitted from the power switch 11 only when the power position is in the second or third state.
  • the first signal is not transmitted from the power supply switch 11 even if the power switch 11 is pressed and held for a predetermined time or longer. Therefore, when the power supply position is the power off or the fourth state, the state of the relay 13 does not change as shown in FIG. 3 even if the power switch 11 is pressed and held for a predetermined time or longer.
  • the release of the high power state is required for factory work, software update work for controllers mainly related to high power, etc.
  • prompt release of the strong electric state is required.
  • the high electric state can be released only by pressing and holding the power switch 11, so that the high electric state can be easily and quickly released. This makes the work in the factory, mainly the software update work in the controller related to high power, smooth.
  • power is supplied from the light electric battery 15 to the electrical component 16 even in the state where the high electric power state is released (second state and third state).
  • the table of FIG. 4 shows the energization status of the door lock, the communication device, the security device, the dark current, the electrical component 16, and the EV system as the energization status in the electric vehicle.
  • the electrical component 16 is classified into a navigation device, an audio device, a meter, a blower motor, a power window, and a DCDC converter 14.
  • EV systems are classified into heaters, compressors, and inverters. The heater is used to heat the high-power battery 12.
  • Power is supplied from the light battery 15 to the navigation device, audio device, meter, blower motor, power window, and DCDC converter 14. Electric power is supplied to the heater, compressor, and inverter from the high-power battery 12.
  • the power supply position is classified into power off (first state), second state, third state, fourth state, and fifth state.
  • the power off, the second state, the third state, and the fourth state have already been described.
  • the fifth state is a state in which the power switch 11 is pressed and held for a predetermined time or longer when the power supply position is in the second state or the third state.
  • the power supply position when the power supply position is in the second state, power is supplied from the light electric battery 15 to the navigation device, the audio device, the power window, and the DCDC converter 14. Further, when the power supply position is in the second state, since it is in the high electric power state as described above, the heater, the compressor, and the inverter are supplied with electric power from the high electric power battery 12.
  • the power supply position when the power supply position is in the second state, power is not supplied from the light battery 15 to the meter and the blower motor.
  • the second state has a mechanism (so-called time limit) for automatically transitioning to the power off under a predetermined condition.
  • the user may be dissatisfied if the air conditioner is automatically turned off. Since the meter is an electrical component that provides various information to the user, the user may find it inconvenient if the meter is automatically turned off. Therefore, in the second state, power is not supplied from the light battery 15 to the meter and the blower motor.
  • the third state When the power supply position is in the third state, power is supplied to all the devices shown in FIG. Unlike the second state, the third state has no time limit. That is, even if a predetermined time elapses without any user operation in the third state, the power supply position does not automatically transition to power off.
  • the high electric power state is released as described above, so that the heater, the compressor, and the inverter are not supplied with electric power from the high electric power battery 12.
  • the transition from the 3rd state to the 5th state is supplemented.
  • the power supply position when the power supply position is in the third state, the power supply position transitions to the fifth state when the power supply switch 11 is pressed and held for a predetermined time or longer.
  • the power supply position first transitions to the second state, and when the power supply switch 11 is pressed and held for a predetermined time or longer, the power supply position transitions to the fifth state.
  • the strong electric state can be released by the same operation (holding down the power switch 11). It is possible to prevent the operation from becoming complicated as compared with the case of making the switch.
  • the initial state (time: 0) in FIG. 5 indicates the second state. That is, the timing chart shown in FIG. 5 starts from the scene where the controller 10 receives the third signal (see FIG. 1) and shifts the power supply position from the power off to the second state.
  • the system requirement is on.
  • the system request is on, it means the request in the high power state.
  • the controller 10 turns on the relay 13 to supply power from the high-power battery 12 to the low-power battery 15 via the relay 13.
  • the power switch 11 is pressed and held at time T1 in FIG.
  • a person who presses and holds the power switch 11 for a long time is assumed to be a user of an electric vehicle, a rescue worker, a factory worker, a dealer, or the like.
  • a timer one of the functions of the controller 10) is activated to measure the time when the power switch 11 is pressed and held for a long time.
  • time T2 When the time that the power switch 11 is held down exceeds the threshold value (time T2), the controller 10 switches the relay 13 from on to off. As a result, the light electric battery 15 is separated from the high electric battery 12, and the power supply from the high electric battery 12 is stopped. As a result, the high electric state is released. At time T2, the power supply position transitions from the second state to the fifth state.
  • the threshold value here has the same meaning as the above-mentioned predetermined time.
  • the prohibition flag is a flag used to prohibit the controller 10 from switching the relay 13 from off to on.
  • the prohibition flag is set to 0, the controller 10 can switch the relay 13 from off to on.
  • the prohibition flag is set to 1, the controller 10 cannot switch the relay 13 from off to on.
  • the controller 10 switches the relay 13 from on to off when the power switch 11 is pressed and held for a predetermined time or longer in order to quickly release the high electric state.
  • the controller 10 switches the relay 13 from off to on again.
  • the state shifts to the high electric state again. Therefore, it is necessary to prevent the transition to the high electric state again after the high electric state is released.
  • the prohibition flag is switched from 0 to 1 when the power switch 11 is pressed and held for a predetermined time or longer.
  • the controller 10 when the power switch 11 is held down for less than the threshold value (1.5 seconds), the controller 10 does not switch the relay 13 from on to off. Further, the controller 10 does not switch the prohibition flag from 0 to 1.
  • the initial state (time: 0) in FIG. 7 shows the state after the prohibition flag is switched from 0 to 1. That is, the timing chart shown in FIG. 7 starts from the state after the time T2 in FIG.
  • the high electric state is released, and the power supply position is the fifth state.
  • the system requirement remains on because the electrical component 16 operates even when the power position is in the fifth state.
  • the controller 10 switches the prohibition flag from 1 to 0 and switches the relay 13 from off to on.
  • the controller 10 releases the high power state and prevents the transition to the high power state again. If the cause (rescue, factory work, software update work, etc.) that caused the high power state to be released is resolved, it may be necessary to return to the high power state again depending on the situation.
  • the case of charging the high-power battery 12 or the case of running an electric vehicle For example, the case of charging the high-power battery 12 or the case of running an electric vehicle.
  • the high-power battery 12 it is necessary to return to the high-power state in order to charge the low-power battery 15 at the same time.
  • the electric vehicle When the electric vehicle is driven, it is necessary to return to the high electric state in order to prevent the SOC of the low electric battery 15 from deteriorating.
  • Other requirements at time T3 in FIG. 7 include a request for charging the high-power battery 12 and a request for running an electric vehicle.
  • the other request is turned on when a second signal (see FIG. 1) indicating that the high-power battery 12 has started charging is transmitted to the controller 10, or when the power switch 11 is pressed while depressing the brake pedal. This means that the indicated signal is transmitted to the controller 10.
  • Other requirements are different from system requirements.
  • Another requirement may be a requirement for controlling an air conditioner mounted on an electric vehicle.
  • the other request is turned on means that a signal for controlling the air conditioner is transmitted to the controller 10.
  • the signal for controlling the air conditioner may be a signal for the user to operate the smartphone to control the air conditioner (remote control or timer control), or may be a signal for heating or cooling the high-power battery 12.
  • the controller 10 switches the prohibition flag from 1 to 0, and the relay 13 is switched from off to on. As a result, even after the high electric state is released and the transition to the high electric state is prevented, it is possible to return to the high electric state again.
  • step S101 when the user presses the unlock switch of the intelligence key 20, a third signal is transmitted from the intelligence key 20 to the controller 10 (see FIG. 1).
  • step S103 the controller 10 that has received the third signal shifts the power supply position from the power supply off (first state) to the second state (see FIG. 2).
  • the relay 13 In the second state, the relay 13 is on, and power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13.
  • step S105 When the power switch 11 is pressed and held for a predetermined time or longer (YES in step S105), the process proceeds to step S107, and the controller 10 switches the relay 13 from on to off. As a result, the light electric battery 15 is separated from the high electric battery 12, and the power supply from the high electric battery 12 is stopped. As a result, the high electric state is released. Further, the controller 10 switches the prohibition flag from 0 to 1 (step S109). This prevents the relay 13 from switching from off to on, and prevents the relay 13 from transitioning to the high electric state again. If NO in step S105, the process waits.
  • step S109 when the user connects the external power supply 30 and the electric vehicle with a dedicated charging cable and starts charging the high-power battery 12, a second signal indicating the start of charging of the high-power battery 12 is sent to the controller 10. Will be sent.
  • the controller 10 receives this second signal (YES in step S111)
  • the process proceeds to step S113, and the controller 10 switches the prohibition flag from 1 to 0. This allows the controller 10 to switch the relay 13 from off to on.
  • step S115 the controller 10 switches the relay 13 from off to on.
  • step S103 the case where the power supply position transitions to the second state has been described in step S103, but the same applies to the case where the power supply position transitions to the third state.
  • the controller 10 When the controller 10 receives the first signal (see FIG. 1) when the power position is in the second or third state, the controller 10 switches the relay 13 from on to off, and then the relay 13 turns from off to on. It is prohibited to switch to. As a result, even if the user presses the unlock switch of the intelligence key 20 again after the high electric state is released, the transition to the high electric state is prevented.
  • the controller 10 When the controller 10 receives the second signal (see FIG. 1) after prohibiting the relay 13 from switching from off to on, the controller 10 switches the relay 13 from off to on. As a result, even after the high electric state is released and the transition to the high electric state is prevented, it is possible to return to the high electric state again.
  • the second signal is a signal for enabling the electric vehicle to run, a signal for indicating the start of charging of the high-power battery 12, a signal for controlling an air conditioner mounted on the electric vehicle, or a decrease in the remaining capacity of the low-power battery 15. Includes at least one of the signals to prevent.
  • the controller 10 When the controller 10 receives the third signal from the intelligence key 20, the controller 10 shifts the power supply position from the power off to the second state. In other words, when the controller 10 receives the third signal from the intelligence key 20, power is supplied from the high-power battery 12 to the low-power battery 15 via the relay 13 from the power-off state (not the high-power state). Transition to the state to be performed (high power state). That is, in the present embodiment, the state that is not the high electric state is easily changed to the high electric state. Therefore, when the controller 10 switches the relay 13 from on to off by pressing and holding the power switch 11, the controller 10 sets a prohibition flag so that the relay 13 does not switch from off to on again even if the third signal is subsequently received. do. As a result, even if the user presses the unlock switch of the intelligence key 20 again after the high electric state is released, the transition to the high electric state is prevented.
  • the processing circuit includes a programmed processing device such as a processing device including an electric circuit.
  • Processing circuits also include devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
  • ASICs application specific integrated circuits

Abstract

電源制御装置(100)は、強電バッテリ(12)と、弱電バッテリ(15)と、強電バッテリ(12)及び弱電バッテリ(15)を電気的に接続するリレー(13)と、電源スイッチ(11)と、リレー(13)のオンオフを制御するコントローラ(10)とを備える。電源の状態が強電バッテリ(12)から弱電バッテリ(15)にリレー(13)を介して電力が供給されている状態である場合において、コントローラ(10)は第1信号を受信したとき、リレー(13)をオンからオフに切り替え、その後、リレー(13)がオフからオンに切り替わることを禁止する。

Description

電源制御方法及び電源制御装置
 本発明は、電源制御方法及び電源制御装置に関する。
 従来より、電動車両の電源モードを制御する発明が知られている(特許文献1)。特許文献1に記載された発明は、電動車両に搭載された電装品が稼働中の場合には駆動用バッテリへの充電が停止した後であっても電源モードをオンに維持する。
特開2018-98844号公報
 強電バッテリと弱電バッテリとが接続されていない状態から接続された状態(いわゆる強電状態)に、スイッチ操作以外の事象(例えば信号受信)をトリガとして遷移させる方法がある。このような方法によれば比較的簡単に強電状態に遷移させることが可能である。しかしながらこのような方法を採用した場合、強電状態を解除したとしても再度簡単に強電状態に遷移することが想定される。そこで強電状態を解除した後に再度強電状態に遷移することを防止することが求められる。しかしながら、特許文献1に記載された発明はこの点について言及していない。
 本発明は、上記問題に鑑みて成されたものであり、その目的は、強電状態を解除した後に再度強電状態に遷移することを防止可能な電源制御方法及び電源制御装置を提供することである。
 本発明の一態様に係る電源制御方法は、電源の状態が強電バッテリから弱電バッテリにリレーを介して電力が供給されている状態である場合において、第1信号を受信したとき、リレーをオンからオフに切り替え、その後リレーがオフからオンに切り替わることを禁止する。
 本発明によれば、強電状態を解除した後に再度強電状態に遷移することを防止できる。
図1は、本発明の実施形態に係る電源制御装置100のブロック図である。 図2は、本発明の実施形態に係る電源ポジションを説明する図である。 図3は、本発明の実施形態に係るリレー13のオンオフを説明する図である。 図4は、電源ポジションの各状態における電動車両内の通電状況について説明する図である。 図5は、本発明の実施形態に係る電源制御装置100の一動作例を説明するタイミングチャートである。 図6は、本発明の実施形態に係る電源制御装置100の他の動作例を説明するタイミングチャートである。 図7は、本発明の実施形態に係る電源制御装置100の他の動作例を説明するタイミングチャートである。 図8は、本発明の実施形態に係る電源制御装置100の一動作例を説明するフローチャートである。
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 図1を参照して、車両に搭載される電源制御装置100の構成例について説明する。図1に示すように、電源制御装置100は、コントローラ10と、電源スイッチ11と、強電バッテリ12と、リレー13と、DCDCコンバータ14と、弱電バッテリ15と、電装品16とを備える。本実施形態における車両は電気をエネルギー源とする電動車両である。
 コントローラ10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、CAN(Controller Area Network)通信回路などを有する電子制御ユニット(ECU:Electronic Control Unit)である。コントローラ10は電動車両の各機能を制御する。一例としてコントローラ10は受信した信号(第1信号~第3信号)に基づいてリレー13のオンオフを制御する。
 電源スイッチ11は、車内に設置される押圧式のスイッチである。電源スイッチ11の設置場所は特に限定されないが、通常、運転席に座ったユーザが操作しやすい位置に設置される。一例として電源スイッチ11はステアリングホイールの近くに設置される。ユーザが電源スイッチ11を押すたびに電源の状態が切り替わる。このような電源の状態を本実施形態では「電源ポジション」と表現する。電源ポジションの詳細は後述する。電源スイッチ11にはオンオフを示すインジケータが設けられている。
 強電バッテリ12は、主にモータ(不図示)の電源として用いられる駆動用のバッテリである。強電バッテリ12は複数の電池モジュールから構成される大容量の二次電池である。強電バッテリ12の充電には外部電源30が用いられる。ユーザは専用の充電ケーブルで外部電源30と電動車両とを接続することにより、強電バッテリ12を充電する。
 弱電バッテリ15は、車内に搭載された電装品16の電源として用いられる。弱電バッテリ15は一例として12V~15Vの電圧で電力を蓄える鉛蓄電池である。弱電バッテリ15が電力を供給する対象となる電装品16は、ナビゲーション装置、オーディオ装置などである。
 強電バッテリ12と弱電バッテリ15との間にはリレー13及びDCDCコンバータ14が接続される。リレー13によって弱電バッテリ15は強電バッテリ12と電気的に接続される。リレー13のオンオフはコントローラ10によって制御される。電源スイッチ11がオフでないとき、リレー13はオンであることが通常である。DCDCコンバータ14は、強電バッテリ12の電力を降圧して弱電バッテリ15に電力を供給する。なお図1では電装品16とDCDCコンバータ14を別々に示したが、DCDCコンバータ14も電装品16の一種である。
 インテリジェンスキー20は、ドアの解錠及び施錠を遠隔で操作するために用いられる。ユーザがインテリジェンスキー20の解錠スイッチを押すと、電動車両の全てのドアが解錠される。ただしインテリジェンスキー20の機能はこれに限定されない。ユーザがドアハンドル、トランクに付いているスイッチを押した場合でもドアは解錠される。このシステムを簡単に説明すると、電動車両とインテリジェンスキー20の両方に電波を発信するアンテナと、電波を受信する受信機が設けられる。ユーザがドアハンドル、トランクに付いているスイッチを押すと、電動車両のアンテナから電波が発信され、その電波を受けたインテリジェンスキー20は自動で電波を返す。この電波を電動車両の受信機が受信することでドアは解錠される。なおインテリジェンスキー20はスマートキーと呼ばれる場合もある。
 図1に示す第1信号は、電源スイッチ11からコントローラ10に送信される信号である。第2信号は、外部電源30と電動車両とが専用の充電ケーブルで接続された場合にコントローラ10に送信される信号である。第3信号はインテリジェンスキー20からコントローラ10に送信される信号である。コントローラ10は第1信号~第3信号を受信した場合、受信した信号に応じてリレー13のオンオフを制御する。
 次に図2を参照して、電源ポジションについて説明する。
 本実施形態において図2に示すように、電源ポジションには電源オフ(第1状態)、第2状態、第3状態、第4状態の4つの状態が含まれる。さらに電源ポジションには5つ目の第5状態が含まれる。ここでは第1~第4状態について説明し、第5状態は後述する。
 電源オフとは電源スイッチ11がオフの状態である。電源ポジションが電源オフのとき、一部の機器以外は作動しない。一部の機能とは、ドアロック(アンロックも含む)、通信機、セキュリティ機器である。また電源ポジションが電源オフのときでも、機能のバックアップなどのため電装品16には微小な電流(いわゆる暗電流)が流れる。この暗電流は弱電バッテリ15から供給される。電源ポジションが電源オフのとき、電源スイッチ11のインジケータは消灯している。
 第2状態とは電源スイッチ11がオンの状態であり、電源スイッチ11のインジケータは点灯している。電源ポジションが第2状態のとき、リレー13はオンであり、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される。より詳しくは電源ポジションが第2状態のとき、リレー13がオンになることによってDCDCコンバータ14を介して強電バッテリ12から弱電バッテリ15に電力が供給される。第2状態においてユーザは一部を除き多くの電装品16を利用できる。具体的に第2状態においてユーザはナビゲーション装置を操作してルートを設定したり、オーディオ装置を操作してラジオを聞いたりすることができる。
 第2状態において、メータとブロアモータは作動しない。これは第2状態においてユーザの操作がないまま所定時間(例えば1~10分程度)経過した場合、電源ポジションが第2状態から電源オフに自動的に遷移する仕組みだからである。ブロアモータとはエアコンの風を車室内に送るためのモータであり、ファンが取り付けられている。この仕組において、ユーザの操作がないまま所定時間経過するとブロアモータが停止して送風が止まる、つまりエアコンがオフになってしまう。エアコンが自動的にオフになってしまうとユーザは不満を感じるおそれがある。そのため第2状態においてブロアモータは作動しない。メータはユーザに様々な情報を提供する電装品であるため、メータが自動的にオフになってしまうとユーザは不便を感じるおそれがある。そのため第2状態においてメータは作動しない。ユーザの操作がないとは、ユーザから電装品16への入力がないことを意味する。なお第2状態は、AUTOACCと呼ばれる場合がある。
 第3状態とは第2状態と同様に電源スイッチ11がオンの状態であり、電源スイッチ11のインジケータは点灯している。電源ポジションが第3状態のとき、第2状態と同様にリレー13はオンであり、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される。第3状態と第2状態は以下の点で異なる。すなわち、第2状態ではメータとブロアモータが作動しないのに対し、第3状態ではメータとブロアモータを含む全ての電装品が作動する。なお第3状態は、IGN-ONと呼ばれる場合がある。
 次に電源ポジションの遷移について説明する。図2に示すようにユーザが電源スイッチ11を押すたびに、電源オフ(第1状態)、第2状態、第3状態の順番で電源ポジションが遷移する。また電源ポジションが第3状態のときにユーザが電源スイッチ11を押すと、電源ポジションは第2状態に遷移する。電源ポジションが第2状態のとき、上述したようにユーザの操作がないまま所定時間経過すると、電源ポジションは電源オフに自動的に遷移する。ここで電源オフから第2状態への遷移は電源スイッチ11の操作に限定されない。ユーザがインテリジェンスキー20の解錠スイッチを押した場合にも、電源ポジションは電源オフから第2状態に遷移する。より詳しくは、ユーザが電動車両に乗り込む前に所持するインテリジェンスキー20の解錠スイッチを押したとき、第3信号がインテリジェンスキー20からコントローラ10に送信される(図1参照)。この第3信号を受信したコントローラ10は電源ポジションを電源オフから第2状態に遷移させる。これによりユーザは乗車後すぐにナビゲーション装置、オーディオ装置などを利用することができる。その反面、本実施形態における第2状態では弱電バッテリ15から電装品16に電力が供給される時間が長くなり、バッテリの残容量(SOC:STATE OF CHARGE)が低下する可能性がある。そのため、上述したように第2状態ではコントローラ10はリレー13をオンにして、強電バッテリ12から弱電バッテリ15にリレー13を介して電力を供給させる。これにより弱電バッテリ15から電装品16に電力が供給される時間が長くなった場合でも弱電バッテリ15のSOC低下が防止される。
 このように本実施形態における第2状態(第3状態も同様)において強電バッテリ12から弱電バッテリ15にリレー13を介して電力を供給することは、電力システム面からの要求と言い換えられる。電力システム面からの要求を以下では単に「システム要求」と呼ぶ。
 図2に示すように電源ポジションが電源オフ、第2状態、または第3状態のとき、電動車両の走行は不可能である。電動車両を走行させるために、ユーザは所定の操作を行う必要がある。所定の操作とは一例としてブレーキペダルを踏みながら電源スイッチ11を押す操作をいう。この操作は電源ポジションが電源オフ、第2状態、第3状態のいずれであっても行うことが可能である。
 ユーザがブレーキペダルを踏みながら電源スイッチ11を押したとき、図2に示すように電源ポジションは電源オフ、第2状態、または第3状態から第4状態に遷移する。第4状態において電動車両の走行は可能である。また第4状態では電源スイッチ11はオンの状態であり、電源スイッチ11のインジケータは点灯している。また第4状態では、リレー13はオンであり、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される。また第4状態では、第3状態と同様にメータとブロアモータを含む全ての電装品が作動する。さらに第4状態では、メータには走行可能であることを示すアイコンが表示される。走行が終了した後、図2に示すようにユーザが電源スイッチ11を押すと電源ポジションは第4状態から第2状態に遷移する。これは走行が終了した後であってもオーディオ装置などを利用したいニーズがあるからである。なお第4状態は、READY-ONと呼ばれる場合がある。
 以下では、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される状態を、「強電状態」と呼ぶ場合がある。図2に示す第2状態、第3状態、及び第4状態は強電状態である。
 次に図3を参照してリレー13のオンオフについて説明する。
 図3に示す表は、電源ポジションに応じてリレー13のオンオフがどのように制御されるかを示す。
 図3に示すように電源ポジションが電源オフのとき、リレー13は通常オフである。電源ポジションが第2状態のとき、リレー13は通常オンである。電源ポジションが第3状態のとき、リレー13は通常オンである。電源ポジションが第4状態とき、リレー13は通常オンである。
 図3に示すように電源ポジションが第2状態のとき、電源スイッチ11が所定時間(例えば2秒)以上長押しされた場合コントローラ10はリレー13をオンからオフに切り替える。より詳しくは、電源スイッチ11が所定時間以上長押しされたとき、第1信号(図1参照)が電源スイッチ11からコントローラ10に送信される。この第1信号を受信したコントローラ10はリレー13をオンからオフに切り替える。これにより、弱電バッテリ15は強電バッテリ12から切り離され、強電バッテリ12からの電力供給が停止する。これにより強電状態が解除される。
 このように電源スイッチ11が所定時間以上長押しされた場合に強電状態を解除する理由の一つは、予期せぬ出来事に対応するためである。予期せぬ出来事が発生し救助が必要な場合、強電状態の迅速な解除が求められる。そこで本実施形態のコントローラ10は第1信号を受信したとき、リレー13をオンからオフに切り替える。第1信号は電源スイッチ11の長押し(例えば2秒以上)によって送信されるため、本実施形態によれば強電状態の容易かつ迅速な解除が可能となる。上述の所定時間は2秒に限定されるものではなく、適宜変更可能である。
 電源ポジションが第3状態のときでも第2状態のときと同様に、電源スイッチ11が所定時間以上長押しされた場合コントローラ10はリレー13をオンからオフに切り替える。
 なお、第1信号は電源ポジションが第2状態または第3状態のときにのみ電源スイッチ11から送信される。換言すれば、電源ポジションが電源オフまたは第4状態のとき、たとえ電源スイッチ11が所定時間以上長押しされたとしても第1信号は電源スイッチ11から送信されない。よって電源ポジションが電源オフまたは第4状態のとき、電源スイッチ11が所定時間以上長押しされたとしても図3に示すようにリレー13の状態は変化しない。
 また、強電状態の解除は上述の救助の他に、工場での作業、主に強電に関わるコントローラにおけるソフトウェアの更新作業などにおいて求められる。このような作業においても救助と同様に強電状態の迅速な解除が求められる。本実施形態によれば電源スイッチ11の長押しだけで強電状態を解除できるため、強電状態の容易かつ迅速な解除が実現する。これにより工場での作業、主に強電に関わるコントローラにおけるソフトウェアの更新作業などはスムーズになる。なお本実施形態において強電状態が解除された状態(第2状態及び第3状態)でも弱電バッテリ15から電装品16に電力が供給される。
 次に図4を参照して、電源ポジションの各状態における電動車両内の通電状況について説明する。
 図4の表には、電動車両内の通電状況として、ドアロック、通信機、セキュリティ装置、暗電流、電装品16、EVシステムの通電状況が示される。電装品16は、ナビゲーション装置、オーディオ装置、メータ、ブロアモータ、パワーウィンドウ、DCDCコンバータ14に分類される。また、EVシステムはヒータ、コンプレッサ、インバータに分類される。ヒータは、強電バッテリ12を加熱するために用いられる。
 ナビゲーション装置、オーディオ装置、メータ、ブロアモータ、パワーウィンドウ、DCDCコンバータ14には弱電バッテリ15から電力が供給される。ヒータ、コンプレッサ、インバータには強電バッテリ12から電力が供給される。
 図4に示すように電源ポジションは電源オフ(第1状態)、第2状態、第3状態、第4状態、第5状態に分類される。電源オフ、第2状態、第3状態、第4状態についてはすでに説明した。第5状態とは、電源ポジションが第2状態または第3状態のとき、電源スイッチ11が所定時間以上長押しされた場合に遷移する状態である。
 図4に示すように電源ポジションが電源オフのとき、ドアロック(アンロックも含む)、通信機、セキュリティ機器に弱電バッテリ15から電力が供給される。一方、電装品16には弱電バッテリ15から電力は供給されない。同様にEVシステムにも強電バッテリ12から電力は供給されない。ただし、機能のバックアップなどのため電装品16には微小な電流(いわゆる暗電流)が流れる。なお、第1状態~第5状態において、ドアロック、通信機、セキュリティ機器、暗電流の通電状況は同じため、説明を省略する。
 図4に示すように電源ポジションが第2状態のとき、ナビゲーション装置、オーディオ装置、パワーウィンドウ、DCDCコンバータ14には弱電バッテリ15から電力が供給される。また電源ポジションが第2状態のとき、上述したように強電状態であるため、ヒータ、コンプレッサ、インバータには強電バッテリ12から電力が供給される。ここで電源ポジションが第2状態のとき、メータとブロアモータには弱電バッテリ15から電力が供給されない。これは上述したように、第2状態には所定の条件で自動的に電源オフに遷移する仕組み(いわゆる時限)が設定されているからである。上述したようにエアコンが自動的にオフになってしまうとユーザは不満を感じるおそれがある。メータはユーザに様々な情報を提供する電装品であるため、メータが自動的にオフになってしまうとユーザは不便を感じるおそれがある。そのため第2状態においてメータとブロアモータには弱電バッテリ15から電力が供給されない。
 電源ポジションが第3状態のとき、図4に示す全ての機器に電力が供給される。第3状態では第2状態と異なり、時限はない。つまり第3状態においてユーザの操作がないまま所定時間経過した場合であっても、電源ポジションは自動的に電源オフに遷移しない。
 電源ポジションが第4状態のとき、図4に示す全ての機器に電力が供給される。
 図4に示すように電源ポジションが第5状態のとき、上述したように強電状態が解除されるためヒータ、コンプレッサ、インバータには強電バッテリ12から電力は供給されない。
 ここで第3状態から第5状態への遷移について補足する。上述したように電源ポジションが第3状態のとき、電源スイッチ11が所定時間以上長押しされた場合に電源ポジションは第5状態に遷移する。このとき、電源スイッチ11が押されることにより電源ポジションはまず第2状態に遷移し、そのまま電源スイッチ11が所定時間以上長押しされることにより電源ポジションは第5状態に遷移する。このように電源ポジションが第2状態、第3状態のいずれの状態であっても同一の操作(電源スイッチ11の長押し)により強電状態を解除できるため、電源ポジションの状態に応じて操作を異ならせる場合と比較して、操作が煩雑になることを防止できる。
 次に図5のタイミングチャートを参照して電源制御装置100の一動作例について説明する。
 図5の初期状態(時間:0)は第2状態を示す。すなわち図5に示すタイミングチャートはコントローラ10が第3信号(図1参照)を受信し、電源ポジションを電源オフから第2状態に遷移させたシーンからスタートする。
 図5の初期状態において電源ポジションは第2状態であるため、システム要求はオンである。システム要求がオンとは強電状態の要求を意味する。システム要求がオンであるため、コントローラ10はリレー13をオンにして、強電バッテリ12から弱電バッテリ15にリレー13を介して電力を供給させる。
 ここで図5の時刻T1において電源スイッチ11が長押しされたと仮定する。電源スイッチ11を長押しする者は、電動車両のユーザ、レスキュー隊員、工場の作業者、ディーラーなどが想定される。電源スイッチ11が長押しされたとき、タイマー(コントローラ10の機能の一つ)が作動して電源スイッチ11が長押しされている時間が計測される。
 電源スイッチ11が長押しされている時間が閾値以上となったとき(時刻T2)、コントローラ10はリレー13をオンからオフに切り替える。これにより、弱電バッテリ15は強電バッテリ12から切り離され、強電バッテリ12からの電力供給が停止する。これにより強電状態が解除される。時刻T2において電源ポジションは第2状態から第5状態に遷移する。なお、ここでいう閾値とは上述の所定時間と同じ意味である。
 時刻T2において、コントローラ10はリレー13をオンからオフに切り替え、かつ禁止フラグを0から1に切り替える。禁止フラグとは、コントローラ10がリレー13をオフからオンに切り替えることを禁止するために用いられるフラグである。禁止フラグが0に設定されているとき、コントローラ10はリレー13をオフからオンに切り替えることができる。一方、禁止フラグが1に設定されているとき、コントローラ10はリレー13をオフからオンに切り替えることができない。
 ここで禁止フラグを設定する目的を説明する。上述したように本実施形態では強電状態の迅速な解除のため、電源スイッチ11が所定時間以上長押しされた場合コントローラ10はリレー13をオンからオフに切り替える。リレー13がオフに切り替わった後に、例えばユーザが再度インテリジェンスキー20の解錠スイッチを押すとコントローラ10は再度リレー13をオフからオンに切り替える。これにより再度強電状態に遷移してしまう。よって強電状態が解除された後は再度強電状態に遷移することを防止する必要がある。
 そこで本実施形態では、電源スイッチ11が所定時間以上長押しされた場合に禁止フラグを0から1に切り替える。これにより強電状態が解除された後に、ユーザが再度インテリジェンスキー20の解錠スイッチを押したとしても再度強電状態に遷移することは防止される。
 なお図6に示すように、電源スイッチ11が長押しされている時間が閾値未満(1.5秒)であるとき、コントローラ10はリレー13をオンからオフに切り替えない。またコントローラ10は禁止フラグを0から1に切り替えない。
 次に図7のタイミングチャートを参照して電源制御装置100の他の動作例について説明する。
 図7の初期状態(時間:0)は禁止フラグが0から1に切り替わった後の状態を示す。すなわち図7に示すタイミングチャートは図5の時刻T2より後の状態からスタートする。
 図7の初期状態において強電状態は解除されており、電源ポジションは第5状態である。電源ポジションが第5状態であっても電装品16は作動するため、システム要求はオンのままである。図7の時刻T3において他の要求がオンになったとき、コントローラ10は禁止フラグを1から0に切り替え、リレー13をオフからオンに切り替える。上述では電源スイッチ11が所定時間以上長押しされた場合、コントローラ10は強電状態を解除し、再度強電状態に遷移することを防止する、と説明した。ここで強電状態を解除することになった原因(救助、工場での作業、ソフトウェアの更新作業など)が解消した場合、状況によっては再度強電状態に戻す必要がある。例えば、強電バッテリ12を充電する場合、電動車両を走行させる場合などである。強電バッテリ12を充電する場合、同時に弱電バッテリ15を充電するために強電状態に戻す必要がある。電動車両を走行させる場合、弱電バッテリ15のSOC低下を防止するために強電状態に戻す必要がある。
 図7の時刻T3における他の要求とは、強電バッテリ12の充電要求、電動車両の走行要求などである。他の要求がオンになったとは、強電バッテリ12の充電開始を示す第2信号(図1参照)がコントローラ10に送信された場合、またはブレーキペダルを踏みながら電源スイッチ11が押されたことを示す信号がコントローラ10に送信された場合を意味する。なお他の要求はシステム要求と異なる。
 また他の要求は、電動車両に搭載された空調装置を制御するための要求であってもよい。この場合他の要求がオンになったとは、空調装置を制御するための信号がコントローラ10に送信された場合を意味する。空調装置を制御するための信号とは、ユーザがスマートフォンを操作してエアコンを制御(リモート制御またはタイマー制御)するための信号でもよく、強電バッテリ12を加熱または冷却するための信号でもよい。
 このようにシステム要求と異なる他の要求がオンになったとき、コントローラ10は禁止フラグを1から0に切り替え、リレー13をオフからオンに切り替える。これにより強電状態を解除し、再度強電状態に遷移することを防止した後においても、再度強電状態に戻すことが可能となる。
 図5~7に示す例では、電源ポジションが第2状態の場合について説明したが、電源ポジションが第3状態の場合においても同様である。
 次に、図8のフローチャートを参照して、電源制御装置100の一動作例を説明する。
 ステップS101において、ユーザがインテリジェンスキー20の解錠スイッチを押すと、第3信号がインテリジェンスキー20からコントローラ10に送信される(図1参照)。処理はステップS103に進み、第3信号を受信したコントローラ10は電源ポジションを電源オフ(第1状態)から第2状態に遷移させる(図2参照)。これによりユーザは乗車後すぐにナビゲーション装置などを利用することができる。第2状態においてリレー13はオンであり、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される。
 電源スイッチ11が所定時間以上長押しされた場合(ステップS105でYES)、処理はステップS107に進み、コントローラ10はリレー13をオンからオフに切り替える。これにより弱電バッテリ15は強電バッテリ12から切り離され、強電バッテリ12からの電力供給が停止する。これにより強電状態が解除される。またコントローラ10は、禁止フラグを0から1に切り替える(ステップS109)。これによりリレー13がオフからオンに切り替わることが防止され、再度強電状態に遷移することは防止される。ステップS105でNOの場合、処理は待機する。
 ステップS109の処理の後に、ユーザが専用の充電ケーブルで外部電源30と電動車両とを接続して強電バッテリ12の充電を開始したとき、強電バッテリ12の充電開始を示す第2信号がコントローラ10に送信される。この第2信号をコントローラ10が受信したとき(ステップS111でYES)、処理はステップS113に進み、コントローラ10は禁止フラグを1から0に切り替える。これによりコントローラ10はリレー13をオフからオンに切り替えることができるようになる。そして、ステップS115においてコントローラ10はリレー13をオフからオンに切り替える。このように本実施形態によれば、強電状態を迅速に解除したり、状況に応じて再度強電状態を復活させたりすることが可能となる。
 図8に示す例では、ステップS103において電源ポジションが第2状態に遷移した場合について説明したが、電源ポジションが第3状態に遷移した場合においても同様である。
(作用効果)
 以上説明したように、本実施形態に係る電源制御装置100によれば、以下の作用効果が得られる。
 電源ポジションが第2状態または第3状態である場合においてコントローラ10が第1信号(図1参照)を受信したとき、コントローラ10はリレー13をオンからオフに切り替え、その後、リレー13がオフからオンに切り替わることを禁止する。これにより強電状態が解除された後に、例えばユーザが再度インテリジェンスキー20の解錠スイッチを押したとしても再度強電状態に遷移することは防止される。
 コントローラ10は、リレー13がオフからオンに切り替わることを禁止した後に第2信号(図1参照)を受信した場合、リレー13をオフからオンに切り替える。これにより強電状態を解除し、再度強電状態に遷移することを防止した後においても、再度強電状態に戻すことが可能となる。
 第2信号は、電動車両を走行可能状態にするための信号、強電バッテリ12の充電開始を示す信号、電動車両に搭載された空調装置を制御するための信号、あるいは弱電バッテリ15の残容量低下を防止するための信号のうち、少なくとも一つを含む。
 コントローラ10はインテリジェンスキー20から第3信号を受信した場合、電源ポジションを電源オフから第2状態に遷移させる。換言すれば、コントローラ10はインテリジェンスキー20から第3信号を受信した場合、電源がオフである状態(強電状態ではない状態)から、強電バッテリ12から弱電バッテリ15にリレー13を介して電力が供給される状態(強電状態)に遷移させる。つまり、本実施形態において強電状態ではない状態から容易に強電状態に遷移する。そこで、コントローラ10は電源スイッチ11の長押しによりリレー13をオンからオフに切り替えたときは、その後に第3信号を受信したとしても再度リレー13がオフからオンに切り替わらないように禁止フラグを設定する。これにより強電状態が解除された後に、例えばユーザが再度インテリジェンスキー20の解錠スイッチを押したとしても再度強電状態に遷移することは防止される。
 上述の実施形態に記載される各機能は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、また、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含む。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
100 電源制御装置
10 コントローラ
11 電源スイッチ
12 強電バッテリ
13 リレー
14 DCDCコンバータ
15 弱電バッテリ
16 電装品
20 インテリジェンスキー
30 外部電源

Claims (7)

  1.  強電バッテリと、弱電バッテリと、前記強電バッテリ及び前記弱電バッテリを電気的に接続するリレーと、電源スイッチと、前記リレーのオンオフを制御するコントローラとを備える電源制御装置の電源制御方法であって、
     電源の状態が前記強電バッテリから前記弱電バッテリに前記リレーを介して電力が供給されている状態である場合において、前記コントローラは第1信号を受信したとき、前記リレーをオンからオフに切り替え、その後、前記リレーがオフからオンに切り替わることを禁止する
    ことを特徴とする電源制御方法。
  2.  前記コントローラが前記第1信号を受信し、前記リレーをオンからオフに切り替えた状態において、前記弱電バッテリから車両に搭載された電装品へ電力が供給される
    ことを特徴とする請求項1に記載の電源制御方法。
  3.  前記第1信号は、前記電源スイッチが所定時間以上長押しされたことを示す信号である
    ことを特徴とする請求項1または2に記載の電源制御方法。
  4.  前記コントローラは、前記リレーがオフからオンに切り替わることを禁止した後に第2信号を受信した場合、前記リレーをオフからオンに切り替える
    ことを特徴とする請求項1に記載の電源制御方法。
  5.  前記第2信号は、車両を走行可能状態にするための信号、前記強電バッテリの充電開始を示す信号、前記車両に搭載された空調装置を制御するための信号、あるいは前記弱電バッテリの残容量低下を防止するための信号のうち、少なくとも一つを含む
    ことを特徴とする請求項4に記載の電源制御方法。
  6.  前記電源の状態は、
     前記電源がオフである第1状態と、
     前記強電バッテリから前記弱電バッテリに前記リレーを介して電力が供給される第2状態と、を含み、
     前記コントローラは、ユーザが車両に乗り込む前に前記ユーザが所持するキーから発信される第3信号を受信した場合、前記電源の状態を前記第1状態から前記第2状態に遷移させる
    ことを特徴とする請求項1~5のいずれか1項に記載の電源制御方法。
  7.  強電バッテリと、弱電バッテリと、前記強電バッテリ及び前記弱電バッテリを電気的に接続するリレーと、電源スイッチと、前記リレーのオンオフを制御するコントローラとを備える電源制御装置であって、
     電源の状態が前記強電バッテリから前記弱電バッテリに前記リレーを介して電力が供給されている状態である場合において、前記コントローラは第1信号を受信したとき、前記リレーをオンからオフに切り替え、その後、前記リレーがオフからオンに切り替わることを禁止する
    ことを特徴とする電源制御装置。
PCT/JP2020/017955 2020-04-27 2020-04-27 電源制御方法及び電源制御装置 WO2021220340A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080100266.7A CN115461243A (zh) 2020-04-27 2020-04-27 电源控制方法以及电源控制装置
JP2022518438A JP7447996B2 (ja) 2020-04-27 2020-04-27 電源制御方法及び電源制御装置
PCT/JP2020/017955 WO2021220340A1 (ja) 2020-04-27 2020-04-27 電源制御方法及び電源制御装置
BR112022021672A BR112022021672A2 (pt) 2020-04-27 2020-04-27 Método de controle de fornecimento energia e dispositivo de controle de fornecimento energia
EP20934104.9A EP4144561A4 (en) 2020-04-27 2020-04-27 POWER SUPPLY CONTROL METHOD AND POWER SUPPLY CONTROL DEVICE
MX2022013368A MX2022013368A (es) 2020-04-27 2020-04-27 Metodo de control de suministro de energia y dispositivo de control de suministro de energia.
US17/920,671 US20230150366A1 (en) 2020-04-27 2020-04-27 Power Supply Control Method and Power Supply Control Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017955 WO2021220340A1 (ja) 2020-04-27 2020-04-27 電源制御方法及び電源制御装置

Publications (1)

Publication Number Publication Date
WO2021220340A1 true WO2021220340A1 (ja) 2021-11-04

Family

ID=78373412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017955 WO2021220340A1 (ja) 2020-04-27 2020-04-27 電源制御方法及び電源制御装置

Country Status (7)

Country Link
US (1) US20230150366A1 (ja)
EP (1) EP4144561A4 (ja)
JP (1) JP7447996B2 (ja)
CN (1) CN115461243A (ja)
BR (1) BR112022021672A2 (ja)
MX (1) MX2022013368A (ja)
WO (1) WO2021220340A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188133A1 (ja) * 2022-03-30 2023-10-05 三菱自動車工業株式会社 電動車両の電源管理装置
WO2023188139A1 (ja) * 2022-03-30 2023-10-05 三菱自動車工業株式会社 電動車両の電源管理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051885A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 電力供給制御装置およびこれを備える動力出力装置並びに自動車
JP2005261041A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 駆動システムおよびこれを搭載した自動車
JP2015107022A (ja) * 2013-12-02 2015-06-08 トヨタ自動車株式会社 車両の充放電制御装置
JP2018083486A (ja) * 2016-11-22 2018-05-31 株式会社デンソー 車両制御装置
JP2018098844A (ja) 2016-12-09 2018-06-21 三菱自動車工業株式会社 電源制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015059A1 (de) * 2012-07-28 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zur Deaktivierung eines Hochspannungssystems eines Kraftfahrzeugs
US10086705B2 (en) * 2016-06-28 2018-10-02 Toyota Motor Engineering & Manufacturing North America, Inc. Multipoint emergency responder safety isolation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051885A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 電力供給制御装置およびこれを備える動力出力装置並びに自動車
JP2005261041A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 駆動システムおよびこれを搭載した自動車
JP2015107022A (ja) * 2013-12-02 2015-06-08 トヨタ自動車株式会社 車両の充放電制御装置
JP2018083486A (ja) * 2016-11-22 2018-05-31 株式会社デンソー 車両制御装置
JP2018098844A (ja) 2016-12-09 2018-06-21 三菱自動車工業株式会社 電源制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144561A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188133A1 (ja) * 2022-03-30 2023-10-05 三菱自動車工業株式会社 電動車両の電源管理装置
WO2023188139A1 (ja) * 2022-03-30 2023-10-05 三菱自動車工業株式会社 電動車両の電源管理装置

Also Published As

Publication number Publication date
JPWO2021220340A1 (ja) 2021-11-04
BR112022021672A2 (pt) 2022-12-20
JP7447996B2 (ja) 2024-03-12
CN115461243A (zh) 2022-12-09
MX2022013368A (es) 2022-11-30
EP4144561A4 (en) 2023-06-14
US20230150366A1 (en) 2023-05-18
EP4144561A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
CN107323265B (zh) 混合动力汽车上下电控制方法及系统
JP6710581B2 (ja) 車両用バッテリーの過放電防止装置及びその方法
JP3549806B2 (ja) 自動車用電源の制御装置
US20100244560A1 (en) Vehicle power supply system
WO2021220340A1 (ja) 電源制御方法及び電源制御装置
US9400543B2 (en) Communication system and communication node
JP2008006946A (ja) 車両用電源制御装置
CN110481501A (zh) 电动车辆的启动方法、系统及电子设备
CN112383558B (zh) 车辆空调远程控制方法、车辆及计算机可读存储介质
WO2024001635A1 (zh) 电源管理系统、车辆及电源管理方法
CN107351789B (zh) 整车低压上下电的控制方法、整车控制器及车辆
US11608028B1 (en) Systems and methods for multi-zoned vehicle wake up
JP2010076509A (ja) 電源監視装置
US11858378B2 (en) Battery discharge control system including a battery saver for motor-driven vehicle and battery discharge control method using the battery saver for motor-driven vehicle
JP5995819B2 (ja) 二次電池上がり防止装置および二次電池上がり防止方法
CN113085654A (zh) 一种电动汽车低压电池防亏电自动控制方法及系统
CN111717145B (zh) 一种多途径整车电源切换方法和装置
JP3167419B2 (ja) 自動車用バッテリ監視装置
US20230075700A1 (en) System and method for efficient management of vehicle power modes
CN110588467A (zh) 一种汽车座椅自动加热控制方法
CN112112958B (zh) 车辆上下电控制方法、车辆及计算机可读存储介质
KR101823903B1 (ko) 차량의 재시동성을 강화한 암전류 차단 시스템
JPH0746701A (ja) 電気自動車の空調装置
CN111717144B (zh) 一种取消启动开关的整车电源管理方法和装置
JP2012205469A (ja) 電力供給装置、電力制御装置、および電力供給プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518438

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021672

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020934104

Country of ref document: EP

Effective date: 20221128

ENP Entry into the national phase

Ref document number: 112022021672

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221025