WO2021217875A1 - 一种硅衬底上 GaN / 二维 AlN 异质结整流器及其制备方法 - Google Patents

一种硅衬底上 GaN / 二维 AlN 异质结整流器及其制备方法 Download PDF

Info

Publication number
WO2021217875A1
WO2021217875A1 PCT/CN2020/100510 CN2020100510W WO2021217875A1 WO 2021217875 A1 WO2021217875 A1 WO 2021217875A1 CN 2020100510 W CN2020100510 W CN 2020100510W WO 2021217875 A1 WO2021217875 A1 WO 2021217875A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
layer
gan
epitaxial wafer
silicon substrate
Prior art date
Application number
PCT/CN2020/100510
Other languages
English (en)
French (fr)
Inventor
王文樑
李国强
杨昱辉
孔德麒
邢志恒
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/789,789 priority Critical patent/US20230030977A1/en
Priority to JP2022565938A priority patent/JP7470458B2/ja
Publication of WO2021217875A1 publication Critical patent/WO2021217875A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66219Diodes with a heterojunction, e.g. resonant tunneling diodes [RTD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Definitions

  • the invention relates to the field of rectifiers, in particular to a GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate and a preparation method thereof.
  • Space wireless energy transmission technology is a very active research hotspot in recent years. It has advantages that are not available in contact energy transmission modes such as strong environmental affinity, green environmental protection, and transmission safety.
  • rectifiers are widely used in military and civilian fields such as satellite systems, aerospace vehicles, and household appliances.
  • Si is an indirect bandgap semiconductor with a small forbidden band width and low breakdown field strength, so it is difficult to apply to high-frequency devices.
  • group III nitrides have the characteristics of high breakdown voltage, large band gap, high thermal conductivity, high electron saturation rate, and high carrier mobility, so they have great potential in the preparation of rectifiers. .
  • the thickness of two-dimensional AlN is only a few atomic layers, so the stress and polarization intensity it receives are greater than that of AlGaN. Therefore, the GaN/two-dimensional AlN heterostructure can generate a two-dimensional electron gas with an ultra-high concentration and an ultra-high mobility, thereby achieving a substantial increase in frequency and efficiency.
  • the purpose of the present invention is to provide a GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate and a preparation method thereof.
  • the method has high compatibility with existing production methods and is easy to The advantages achieved.
  • a GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate includes a silicon substrate, a GaN buffer layer, a carbon-doped semi-insulating GaN layer, a two-dimensional AlN layer, an undoped GaN layer, and a non-doped GaN layer stacked in sequence.
  • the hetero InGaN layer and the SiNx passivation layer further include a mesa isolation groove and a Schottky contact electrode arranged on one side of the undoped InGaN layer, wherein the mesa isolation groove is connected to the undoped GaN layer and the undoped GaN layer.
  • the InGaN layer, the SiNx passivation layer and the Schottky contact electrode are in contact, and the Schottky contact electrode is in contact with the mesa isolation groove and the undoped GaN layer.
  • the thickness of the GaN buffer layer is 650-900 nm.
  • the doping concentration of the carbon-doped semi-insulating GaN layer is 5.0 ⁇ 10 18 to 6.0 ⁇ 10 18 cm ⁇ 3 , and the thickness is 80 to 180 nm.
  • the thickness of the two-dimensional AlN layer is 2 to 4 atomic layers.
  • the thickness of the two-dimensional AlN layer is 2 atomic layers.
  • the thickness of the undoped GaN layer is 350-550 nm.
  • the thickness of the undoped InGaN layer is 50-200 nm.
  • x 1.29-1.51 in the SiNx passivation layer.
  • the depth of the mesa isolation groove (8) is 1.2-1.5 ⁇ m; the thickness of the Schottky contact electrode (9) is 220-250 nm.
  • the depth of the mesa isolation groove is 1.5 ⁇ m; the thickness of the Schottky contact electrode is 250 nm.
  • the method for preparing GaN/two-dimensional AlN heterojunction rectification on a silicon substrate as described in any one of the above includes the following steps:
  • a GaN buffer layer, a carbon-doped semi-insulating GaN layer, a two-dimensional AlN layer, an undoped GaN layer and an undoped InGaN layer are grown sequentially on a silicon substrate to obtain a rectifier epitaxial wafer;
  • step (2) Put the rectifier epitaxial wafer obtained in step (1) into acetone and absolute ethanol in order of ultrasonic treatment, take it out and rinse with deionized water and then dry it with nitrogen;
  • step (3) to expose and develop the ohmic contact electrode and the Schottky contact electrode to expose the SiNx on the two electrodes;
  • step (12) Put the rectifier epitaxial wafer obtained in step (12) into the plasma-assisted chemical weather deposition equipment, repeat step (8), and deposit SiNx passivation layer in the groove etched in step (12);
  • step (11) After removing the excess photoresist and the surface of the epitaxial wafer, remove the residual photoresist and SiNx on the surface of the rectifier epitaxial wafer by immersion in the degreasing solution and ultrasonic cleaning to complete the GaN/two-dimensional AlN on the silicon substrate Preparation of heterojunction rectifier.
  • the present invention has the following beneficial effects:
  • the two-dimensional AlN/GaN thin film heterostructure of the present invention can generate two-dimensional electron gas with ultra-high concentration and electron mobility, thereby achieving a substantial increase in frequency and efficiency.
  • the electron gas concentration of the rectifier prepared in Example 1 is as high as 10 14 cm -2 , and the mobility is as high as 3000 cm 2 /V ⁇ s.
  • the defect density of the material film of the present invention is small.
  • the GaN (0002) X-ray rocking curve of the GaN thin film of Example 1 has a FWHM of 0.09°.
  • Example 1 The turn-on voltage of Example 1 is 0.75 V, and the calculated specific on-resistance R ON is 8.8 m ⁇ /sq.
  • Fig. 1 is a schematic cross-sectional view of a rectifier chip prepared in Example 1 of the present invention.
  • Fig. 2 is an x-ray rocking curve diagram of GaN(0002) of Example 1 of the present invention.
  • Fig. 3 is a graph of the forward JV curve of the rectifier according to the first embodiment of the present invention.
  • Fig. 4 is a reverse IV curve diagram of the rectifier according to the first embodiment of the present invention.
  • Fig. 1 The structure of the rectifier of the present invention is shown in Fig. 1, which includes a silicon substrate 1, a GaN buffer layer 2, a carbon-doped semi-insulating GaN layer 3, a two-dimensional AlN layer 4, an undoped GaN layer 5, and a non-doped GaN layer.
  • the doped InGaN layer 6 and the SiNx passivation layer 7 further include a mesa isolation groove 8 and a Schottky contact electrode 9 arranged on the side of the non-doped InGaN layer 6, wherein the mesa isolation groove 8 and the non-doped InGaN layer 6
  • the hetero GaN layer 5, the undoped InGaN layer 6, the SiNx passivation layer 7 and the Schottky contact electrode 9 are in contact, and the Schottky contact electrode 9 is in contact with the mesa isolation groove 8 and the undoped GaN layer 5.
  • the doping concentration is 5.9 ⁇ 10 18 cm -3 , the non-doped two-dimensional AlN layer 4 grown on the carbon-doped semi-insulating GaN layer 3, and the non-doped two-dimensional AlN layer 4 grown on the non-doped two-dimensional AlN layer 4
  • the hetero GaN layer 5 is an undoped InGaN layer 6 grown on an undoped GaN layer; the GaN buffer layer has a thickness of 800 nm, and the carbon-doped semi-insulating GaN layer has a thickness of 80 nm; the undoped two The thickness of the dimensional AlN layer is 2 atomic layers; the thickness of the undoped GaN layer is 450 nm; the thickness of the undoped InGa
  • the model is AZ5214, and the thickness of the photoresist is 0.3 ⁇ m.
  • the groove depth is 250nm
  • step (4) Put the rectifier epitaxial wafer engraved with ohmic contact electrode pattern grooves obtained in step (4) into the electron beam evaporation equipment, and vacuum the cavity to 2 ⁇ 10 -5 Pa, and then evaporate electrode metal MoS in sequence 2 /Ni/Au. After evaporation, the rectifier epitaxial wafer is annealed, the annealing temperature is 400°C, and the annealing time is 55min;
  • step (12) Align with the alignment mark of the mask, repeat steps (3) and (4), prepare mesa isolation patterns on the surface of the epitaxial wafer by photolithography and development, and use reactive ion etching equipment to perform the step (12)
  • the surface of the rectifier epitaxial wafer is groove-etched with an etching depth of 1.5 ⁇ m. Finally, the surface of the epitaxial wafer is cleaned with deionized water and dried with nitrogen;
  • step (14) Repeat step (11) to remove the excess SiNx layer on the surface of the rectifier epitaxial wafer. After that, step (6) is repeated to remove the residual SiNx and photoresist on the surface of the rectifier epitaxial wafer to complete the preparation of the GaN/two-dimensional AlN heterojunction rectifier on the silicon substrate.
  • the GaN (0002) x-ray rocking curve of the GaN thin film of the rectifier prepared in this embodiment is shown in FIG. 2, and the FWHM value is 0.09°.
  • the positive JV curve of the epitaxial wafer is shown in Figure 3.
  • the turn-on voltage is 0.75 V, and the calculated specific on-resistance R ON is 8.8m ⁇ /sq. Therefore, the stability and reliability of the device are very good under high-power operation.
  • the reverse IV curve of the epitaxial wafer is shown in Figure 4. Under a reverse bias of -20 V, the leakage current of the device is -0.0003 A, and the reverse leakage performance is very good.
  • the electron gas concentration of the rectifier prepared in this embodiment is as high as 10 14 cm -2 , and the mobility is as high as 3000 cm 2 /V ⁇ s.
  • the doping concentration is 5.9 ⁇ 10 18 cm -3 , the non-doped two-dimensional AlN layer 4 grown on the carbon-doped semi-insulating GaN layer 3, and the non-doped two-dimensional AlN layer 4 grown on the non-doped two-dimensional AlN layer 4
  • the hetero GaN layer 5 is an undoped InGaN layer 6 grown on an undoped GaN layer; the GaN buffer layer has a thickness of 650 nm, and the carbon-doped semi-insulating GaN layer has a thickness of 120 nm; the undoped
  • the thickness of the two-dimensional AlN layer is 3 atomic layers; the thickness of the undoped GaN layer is 350 nm; the thickness of the undoped InGa
  • the model is AZ5214, and the thickness of the photoresist is 0.3 ⁇ m.
  • the groove depth is 250nm
  • step (4) Put the rectifier epitaxial wafer with ohmic contact electrode pattern grooves obtained in step (4) into the electron beam evaporation equipment, and pump the cavity vacuum: 3.5 ⁇ 10 -5 Pa, and then evaporate the electrode metal MoS2 in sequence /Ni/Au. After evaporation, the rectifier epitaxial wafer is annealed, the annealing temperature is 700°C, and the annealing time is 90min;
  • step (14) Repeat step (11) to remove the excess SiNx layer on the surface of the rectifier epitaxial wafer.
  • Step (6) is then repeated to remove the residual SiNx and photoresist on the surface of the rectifier epitaxial wafer, and finally the preparation of the GaN/two-dimensional AlN heterojunction rectifier on the silicon substrate is completed.
  • the FWHM of the GaN (0002) X-ray rocking curve of the GaN thin film prepared in this embodiment is 0.09°.
  • the turn-on voltage in the forward JV curve of the prepared rectifier epitaxial wafer is 0.78V, and the calculated specific on-resistance R ON is 9.1 m ⁇ /sq. Therefore, the stability and reliability of the device are very good under high-power operation. .
  • the leakage current of the device is -0.0003 A, so the reverse leakage performance is very good.
  • the electron gas concentration of the rectifier prepared in this embodiment is as high as 10 14 cm -2 , and the mobility is as high as 2900 cm 2 /V ⁇ s.
  • the doping concentration is 5.9 ⁇ 10 18 cm -3 , the non-doped two-dimensional AlN layer 4 grown on the carbon-doped semi-insulating GaN layer 3, and the non-doped two-dimensional AlN layer 4 grown on the non-doped two-dimensional AlN layer 4
  • the hetero GaN layer 5 is an undoped InGaN layer 6 grown on an undoped GaN layer; the buffer layer has a thickness of 900 nm, and the carbon-doped semi-insulating GaN layer has a thickness of 180 nm; the undoped two-dimensional
  • the thickness of the AlN layer is 4 atomic layers; the thickness of the undoped GaN layer is 550 nm; the thickness of the undoped InGaN
  • the groove depth is 250 nm
  • step (4) Put the rectifier epitaxial wafer engraved with ohmic contact electrode pattern grooves obtained in step (4) into the electron beam evaporation equipment, and vacuum the cavity to 5.5 ⁇ 10 -5 Pa, and then evaporate the electrode metal MoS2 in sequence /Ni/Au. After evaporation, the rectifier epitaxial wafer is annealed, the annealing temperature is 700°C, and the annealing time is 90min;
  • step (6) Prepare the ohmic contact electrode on the rectifier epitaxial wafer after photolithography.
  • step (6) Preparation: Put the rectifier epitaxial wafer with the device ohmic contact pattern into the electron beam evaporation equipment, and pump the cavity vacuum to 5.5 ⁇ 10 -5 Pa. Subsequently, the ohmic contact electrode material Ti/Al/Ni/Au is vapor-deposited in sequence. Finally, the process of step (6) is repeated to remove the remaining photoresist and vapor-deposited metal on the surface of the epitaxial wafer;
  • step (14) After removing the excess SiNx layer on the surface of the rectifier epitaxial wafer using the step (11) wet etching process, use the step (6) process to remove the residual SiNx and photoresist on the surface of the rectifier epitaxial wafer by immersion and ultrasonic cleaning in a degreasing solution.
  • step (6) process After removing the excess SiNx layer on the surface of the rectifier epitaxial wafer using the step (11) wet etching process, use the step (6) process to remove the residual SiNx and photoresist on the surface of the rectifier epitaxial wafer by immersion and ultrasonic cleaning in a degreasing solution.
  • the fabrication of a GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate is completed.
  • the FWHM of the GaN (0002) X-ray rocking curve of the GaN thin film prepared in this embodiment is 0.095°.
  • the turn-on voltage in the forward JV curve of the prepared rectifier epitaxial wafer is 0.80V, and the calculated specific on-resistance R ON is 9.3m ⁇ /sq. Therefore, the stability and reliability of the device are very good under high-power operation.
  • the leakage current of the device is -0.00035 A, so the reverse leakage performance is very good.
  • the electron gas concentration of the rectifier prepared in this embodiment is as high as 10 14 cm -2 , and the mobility is as high as 3000 cm 2 /V ⁇ s.

Abstract

一种硅衬底上GaN/二维AlN异质结整流器及其制备方法,属于整流器领域。该整流器包括依次层叠的硅衬底(1)、GaN缓冲层(2)、碳掺杂半绝缘化GaN层(3)、二维AlN层(4)、非掺杂GaN层(5)、非掺杂InGaN层(6)和SiNx钝化层(7),还包括设置在一侧的台面隔离凹槽(8)和肖特基接触电极(9),所述台面隔离凹槽(8)与非掺杂GaN层(5)、非掺杂InGaN层(6)、SiNx钝化层(7)和肖特基接触电极(9)接触,所述肖特基接触电极(9)与台面隔离凹槽(8)、非掺杂GaN层(5)接触。二维AlN层(4)的厚度仅有几个原子层,故受到的应力和极化强度相较AlGaN更大。因此,GaN/二维AlN的异质结构可产生超高浓度且迁移率超大的二维电子气,从而实现频率和效率的大幅提升。

Description

一种硅衬底上GaN/二维AlN异质结整流器及其制备方法 技术领域
本发明涉及整流器领域,特别涉及一种硅衬底上GaN/二维AlN异质结整流器及其制备方法。
背景技术
空间无线能量传输技术是近年来相当活跃的研究热点,具有环境亲和力强,绿色环保,传输安全等接触式能量传输模式所不具备的优势。整流器作为空间无线能量传输系统中必不可少的一部分,在卫星系统、航空航天飞行器、家用电器等军事、民用领域都有着广泛的应用。目前,整流器大多采用第一代半导体Si。然而Si是间接带隙半导体,禁带宽度小,击穿场强小,故其难以应用于高频器件。而III族氮化物作为第三代半导体的代表,具备击穿电压高、禁带宽度大、导热率高、电子饱和速率高、载流子迁移率高等特点,所以在整流器的制备方面有着巨大潜力。目前以III族氮化物为基础制备的整流器大多采用AlGaN/GaN异质结构。GaN/AlGaN异质结的极化效应在界面处会产生高面密度和高电子迁移率的二维电子气,能够实现制备理论频率达THz的射频器件。但是由于AlGaN异质结的极化强度难以调控,AlGaN层太厚会导致弛豫,太薄则会降低其质量和均匀性,致使其难以满足新一代微波射频系统高频、高效率的应用需求。因此,设计极化强度更大的新型的异质外延结构,是实现高频高效整流器件的关键。二维AlN的厚度仅有几个原子层,故受到的应力和极化强度相较AlGaN更大。因此,GaN/二维AlN的异质结构可产生超高浓度且迁移率超大的二维电子气,从而实现频率和效率的大幅提升。
技术解决方案
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种硅衬底上GaN/二维AlN异质结整流器及其制备方法,该方法具有与现有生产手段匹配性高且易于实现的优点。
本发明的目的通过以下技术方案之一实现。
一种硅衬底上GaN/二维AlN异质结整流器,包括依次层叠的硅衬底、GaN缓冲层、碳掺杂半绝缘化GaN层、二维AlN层、非掺杂GaN层、非掺杂InGaN层和SiNx钝化层,还包括设置在非掺杂InGaN层一侧的台面隔离凹槽和肖特基接触电极,其中,所述台面隔离凹槽与非掺杂GaN层、非掺杂InGaN层、SiNx钝化层和肖特基接触电极接触,所述肖特基接触电极与台面隔离凹槽、非掺杂GaN层接触。
作为本发明的优选方案,所述GaN缓冲层厚度为650-900nm。
作为本发明的优选方案,所述碳掺杂半绝缘化GaN层的掺杂浓度为5.0×10 18~6.0×10 18cm -3,厚度为80~180 nm。
作为本发明的优选方案,所述二维AlN层的厚度为2~4 个原子层。
作为本发明的优选方案,所述二维AlN层的厚度为2个原子层。
作为本发明的优选方案,所述非掺杂GaN层厚度为350-550nm。
作为本发明的优选方案,所述非掺杂InGaN层厚度为50-200nm。
作为本发明的优选方案,所述SiNx钝化层中x=1.29-1.51。
作为本发明的优选方案,所述台面隔离凹槽(8)的深度为1.2~1.5 μm;所述肖特基接触电极(9)的厚度为220~250 nm。
作为本发明的优选方案,所述台面隔离凹槽的深度为1.5 μm;所述肖特基接触电极的厚度为250 nm。
以上任一项所述的一种硅衬底上GaN/二维AlN异质结整流的制备方法,包括以下步骤:
(1)在硅衬底上依次生长GaN缓冲层、碳掺杂半绝缘化GaN层、二维AlN层、非掺杂GaN层和非掺杂InGaN层,得到整流器外延片;
(2)将步骤(1)所得整流器外延片依次置于丙酮、无水乙醇中超声处理,拿出后经去离子水清洗再用氮气吹干;
(3)将肖特基接触图案转移至整流器外延片:在步骤(2)所得整流器外延片上均匀旋涂光刻胶,之后置于光刻机中进行曝光,最后利用显影液清洗外延片使图案显现出来;
(4)利用反应离子刻蚀法,沿整流器外延片中的肖特基接触电极图案刻蚀出凹槽,得到欧姆接触电极;
(5)制备肖特基接触电极:将步骤(4)所得刻有欧姆接触电极图案凹槽的整流器外延片放入电子束蒸发设备中,随后对腔体抽真空,并用电子枪轰击金属靶,使金属沉积到外延片表面,蒸镀结束后,对外延片进行退火;
(6)将整流器外延片浸入去胶液后用去离子水冲洗,之后将外延片置于丙酮之中超声处理,并用氮气吹干;
(7)通过掩膜板中的对准标记,对整流器外延片进行对准,重复步骤(3),在相应位置上光刻显影,制备器件欧姆接触电极图案并清洗;
(8)制备欧姆接触电极:重复步骤(5)与(6),沉积电极金属后退火并清洗,完成欧姆接触电极的制备;
(9)制备氮化硅钝化层:将步骤(8)所得的整流器外延片放入等离子体增强化学气相沉积设备中,之后依次升温、抽真空、通入载气和反应气体,最后在外延片表面沉积SiNx钝化;
(10)重复步骤(3),在欧姆接触电极和肖特基接触电极处曝光并显影,使两个电极上的SiNx暴露出来;
(11)使用湿法刻蚀方法,将暴露出来的SiNx刻蚀掉,最后重复步骤(6),去除整流器外延片表面残留的光刻胶与SiNx钝化层;
(12)通过掩膜板对准标记对准,重复步骤(3)与(4),使台面隔离图案转移至外延片表面并在表面刻蚀凹槽;
(13)将步骤(12)所得的整流器外延片放入等离子体辅助化学气象沉积设备中,重复步骤(8),在步骤(12)刻蚀的凹槽内沉积SiNx钝化层;
(14)重复步骤(11),去除外延片表面多余光刻胶与后,通过去胶液浸泡与超声清洗去除整流器外延片表面残余光刻胶与SiNx,完成硅衬底上GaN/二维AlN异质结整流器的制备。
有益效果
与现有技术相比,本发明具有如下有益效果:
(1)本发明的二维AlN/GaN薄膜异质结构可产生超高浓度和电子迁移率的二维电子气,从而实现频率和效率的大幅提升。实施例1所制得的整流器电子气浓度高达10 14 cm -2,且迁移率高达3000 cm 2/V·s。
(2)本发明的材料薄膜的缺陷密度小。实施例1的GaN薄膜的GaN(0002)x射线摇摆曲线半高宽为0.09°。
(3)本发明的整流器的稳定性与可靠性很好。实施例1的开启电压为0.75 V,计算得到比导通电阻R ON为8.8 mΩ/sq。
(4)本发明的整流器的反向漏电性能很好。在-20 V的反向偏压下,测得实施例1所制备的整流器的漏电流为-0.0003 A。
附图说明
图1是本发明的实施例1制备整流器芯片的截面示意图。
图2是本发明的实施例1的GaN(0002) x射线摇摆曲线图。
图3是本发明的实施例1的整流器正向 J-V曲线图。
图4是本发明的实施例1的整流器反向 I-V曲线图。
本发明的实施方式
下面结合实施例与附图对本发明的具体实施方式作进一步地说明,但本发明的实施方式不限于此。
本发明的整流器的结构如图1所示,包括依次层叠的硅衬底1、GaN缓冲层2、碳掺杂半绝缘化GaN层3、二维AlN层4、非掺杂GaN层5、非掺杂InGaN层6和SiNx钝化层7,还包括设置在非掺杂InGaN层6一侧的台面隔离凹槽8和肖特基接触电极9,其中,所述台面隔离凹槽8与非掺杂GaN层5、非掺杂InGaN层6、SiNx钝化层7和肖特基接触电极9接触,所述肖特基接触电极9与台面隔离凹槽8、非掺杂GaN层5接触。
实施例 1
本实施例的硅衬底上适用于交流频率下工作的整流器芯片的制备方法:
(1)采用低温脉冲激光沉积技术在硅衬底上生长整流器外延片,包括生长在硅衬底1上的GaN缓冲层2,生长在GaN缓冲层2上的碳掺杂半绝缘化GaN层3,其掺杂浓度为5.9×10 18cm -3,生长在碳掺杂半绝缘化GaN层3上的非掺杂二维AlN层4,生长在非掺杂二维AlN层4上的非掺杂GaN层5,生长在非掺杂GaN层上的非掺杂InGaN层6;所述GaN缓冲层厚度为800nm,所述碳掺杂半绝缘化GaN层厚度为80nm;所述非掺杂二维AlN层厚度为2个原子层;所述非掺杂GaN层厚度为450nm;所述非掺杂InGaN层厚度为120nm;
(2)将整流器外延片依次置于丙酮、无水乙醇中超声处理5min,拿出后经去离子水清洗再用氮气吹干;
(3)对清洗后的整流器外延片旋涂正性光刻胶,型号为AZ5214,光刻胶厚度为0.3μm,将涂有光刻胶的外延片置于热台上预烘45s,随后放入光刻机中进行曝光,曝光时间5s,再将曝光后的外延片浸入显影液中,显影液型号为RZX3038,浸泡时间为60s,使外延片上面的图案显现出来,并用去离子水冲洗外延片并用氮气吹干;最后将外延片置于热台上烘烤坚膜,烘烤时间为45s;
(4)利用反应离子刻蚀法,沿整流器外延片中的肖特基接触电极图案刻蚀出凹槽,凹槽深度为250nm;
(5)将步骤(4)所得刻有欧姆接触电极图案凹槽的整流器外延片放入电子束蒸发设备中,将腔体真空度抽:2×10 -5Pa,随后依次蒸镀电极金属MoS 2/Ni/Au。蒸镀结束后,对整流器外延片进行退火,退火温度400℃,退火时间55min;
(6)将制备好欧姆接触电极的整流器外延片浸入去胶液中浸泡70min,捞出后用去离子水冲洗并置于丙酮中超声5min,拿出后经去离子水冲洗并用氮气吹干;
(7)通过掩膜板中的对准标记,对整流器外延片进行对准,重复步骤(3),在相应位置上光刻显影,制备整流器外延片上暴露出器件肖特基接触电极图案区域;
(8)对光刻后整流器外延片进行欧姆接触电极9制备将制备有器件欧姆接触图案的整流器外延片放入电子束蒸发设备中,将腔体真空度抽至2×10 -5Pa,随后依次蒸镀欧姆接触电极物质Ti/Al/Ni/Au。最后重复步骤(6),去除外延片表面残留的光刻胶与蒸镀金属;
(9)使用等离子体增强化学气相沉积方法制备SiNx钝化层7,将制备好电极的整流器外延片放入等离子体增强化学气相沉积设备中,仪器升温至800℃,腔体真空度抽至2×10 -5Pa,沉积时间75min;
(10)重复步骤(3),通过光刻显影在外延片表面制备掩膜板,将欧姆接触电极与肖特基接触电极图案上的SiNx(x=1.33~1.5)暴露出来;
(11)使用湿法刻蚀方法,将暴露出的SiNx钝化层刻蚀掉,取出后用去离子水冲洗,最后重复步骤(6),通过去胶液浸泡与超声清洗去除外延片表面残留的光刻胶与SiNx;
(12)通过掩膜板对准标记对准,重复步骤(3)与(4),在外延片表面光刻显影制备台面隔离图案,并使用反应离子刻蚀设备,对步骤(12)得到的整流器外延片表面进行凹槽刻蚀,刻蚀深度为1.5μm,最后用去离子水清洗外延片表面并用氮气吹干;
(13)台面隔离钝化层制作:整流器外延片放入等离子体辅助化学气象沉积设备中,重复步骤(9)工艺,在整流器外延片刻蚀凹槽内沉积SiNx钝化层,沉积时间75min;
(14)重复步骤(11),去除整流器外延片表面多余SiNx层。之后重复步骤(6),去除整流器外延片表面残余SiNx与光刻胶,完成硅衬底上GaN/二维AlN异质结整流器的制备。
本实施例制得的整流器的GaN薄膜的GaN(0002)x射线摇摆曲线如图2所示,半高宽值为0.09°。外延片的正向 J-V曲线如图3所示,开启电压为0.75 V,计算得到比导通电阻R ON为8.8mΩ/sq,所以在大功率工作情况下,器件的稳定性与可靠性很好。外延片的反向 I-V曲线如图4所示,在-20 V的反向偏压下,器件的漏电流为-0.0003 A,反向漏电性能很好。同时测得本实施例制得的整流器电子气浓度高达10 14 cm -2,且迁移率高达3000 cm 2/V·s。
实施例 2
本实施例的硅衬底上适用于交流频率下工作的整流器芯片的制备方法:
(1)采用低温脉冲激光沉积技术在硅衬底上生长整流器外延片,包括生长在硅衬底1上的GaN缓冲层2,生长在GaN缓冲层2上的碳掺杂半绝缘化GaN层3,其掺杂浓度为5.9×10 18cm -3,生长在碳掺杂半绝缘化GaN层3上的非掺杂二维AlN层4,生长在非掺杂二维AlN层4上的非掺杂GaN层5,生长在非掺杂GaN层上的非掺杂InGaN层6;所述GaN缓冲层厚度为650nm,所述碳掺杂半绝缘化GaN层厚度为120 nm;所述非掺杂二维AlN层厚度为3个原子层;所述非掺杂GaN层厚度为350nm;所述非掺杂InGaN层厚度为50nm;
(2)将整流器外延片依次置于丙酮、无水乙醇中超声处理5min,拿出后经去离子水清洗再用氮气吹干;
(3)对清洗后的整流器外延片旋涂正性光刻胶,型号为AZ5214,光刻胶厚度为0.3μm,将涂有光刻胶的外延片置于热台上预烘45s,随后放入光刻机中进行曝光,曝光时间3s,再将曝光后的外延片浸入显影液中,显影液型号为RZX3038,浸泡时间为45s,使外延片上面的图案显现出来,并用去离子水冲洗外延片并用氮气吹干;最后将外延片置于热台上烘烤坚膜,烘烤时间为45s;
(4)利用反应离子刻蚀法,沿整流器外延片中的肖特基接触电极图案刻蚀出凹槽,凹槽深度为250nm;
(5)将步骤(4)所得刻有欧姆接触电极图案凹槽的整流器外延片放入电子束蒸发设备中,将腔体真空度抽:3.5×10 -5Pa,随后依次蒸镀电极金属MoS2/Ni/Au。蒸镀结束后,对整流器外延片进行退火,退火温度700℃,退火时间90min;
(6)将制备好欧姆接触电极的整流器外延片浸入去胶液中浸泡40min,捞出后用去离子水冲洗并置于丙酮中超声5min,拿出后经去离子水冲洗并用氮气吹干;
(7)通过掩膜板中的对准标记,对整流器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备整流器外延片上暴露出器件肖特基接触电极图案区域;
(8)对光刻后整流器外延片进行欧姆接触电极9制备将制备有器件欧姆接触图案的整流器外延片放入电子束蒸发设备中,将腔体真空度抽至3.5×10 -5Pa,随后依次蒸镀欧姆接触电极物质Ti/Al/Ni/Au。蒸镀结束后,对整流器外延片进行退火,退火温度700℃,退火时间90min。最后重复步骤(6),去除外延片表面残留的光刻胶与蒸镀金属;
(9)使用等离子体增强化学气相沉积方法制备SiNx钝化层7,将制备好电极的整流器外延片放入等离子体增强化学气相沉积设备中,仪器升温至800℃,腔体真空度抽至3.5×10 -5Pa,沉积时间75min;
(10)重复步骤(3),通过光刻显影在外延片表面制备掩膜板,将欧姆接触电极与肖特基接触电极图案上的SiNx(x=1.33~1.5)暴露出来;
(11)使用湿法刻蚀方法,将暴露出的SiNx钝化层刻蚀掉,取出后用去离子水冲洗,最后重复步骤(6),去除外延片表面残留的光刻胶与SiNx;
(12)通过掩膜板对准标记对准,重复步骤(3)与(4),在外延片表面光刻显影制备台面隔离图案,并在表面进行凹槽刻蚀,刻蚀深度为1.5μm,最后用去离子水清洗外延片表面并用氮气吹干;
(13)台面隔离钝化层制作:整流器外延片放入等离子体辅助化学气象沉积设备中,重复步骤(9)工艺,在整流器外延片刻蚀凹槽内沉积SiNx钝化层,沉积时间75min;
(14)重复步骤(11),去除整流器外延片表面多余SiNx层。之后重复步骤(6),去除整流器外延片表面残余SiNx与光刻胶,最后完成硅衬底上GaN/二维AlN异质结整流器的制备。
本实施例制得的GaN薄膜的GaN(0002)x射线摇摆曲线半高宽为0.09°。制得的整流器外延片的正向 J-V曲线中开启电压为0.78V,且计算得到比导通电阻R ON为9.1 mΩ/sq,所以在大功率工作情况下,器件的稳定性与可靠性很好。反向 I-V曲线中,在-20 V的反向偏压下,器件的漏电流为-0.0003 A,所以反向漏电性能很好。同时测得本实施例制得的整流器电子气浓度高达10 14 cm -2,且迁移率高达2900cm 2/V·s。
实施例 3
本实施例的硅衬底上适用于交流频率下工作的整流器芯片的制备方法:
(1)采用低温脉冲激光沉积技术在硅衬底上生长整流器外延片,包括生长在硅衬底1上的GaN缓冲层2,生长在GaN缓冲层2上的碳掺杂半绝缘化GaN层3,其掺杂浓度为5.9×10 18cm -3,生长在碳掺杂半绝缘化GaN层3上的非掺杂二维AlN层4,生长在非掺杂二维AlN层4上的非掺杂GaN层5,生长在非掺杂GaN层上的非掺杂InGaN层6;所述缓冲层厚度为900nm,所述碳掺杂半绝缘化GaN层厚度为180nm;所述非掺杂二维AlN层厚度为4个原子层;所述非掺杂GaN层厚度为550nm;所述非掺杂InGaN层厚度为200nm;
(2)将整流器外延片依次置于丙酮、无水乙醇中超声处理8min,拿出后经去离子水清洗再用氮气吹干;
(3)对清洗后的整流器外延片旋涂正性光刻胶,型号为AZ5214,光刻胶厚度为0.9μm,将涂有光刻胶的外延片置于热台上预烘45s,随后放入光刻机中进行曝光,曝光时间7s,再将曝光后的外延片浸入显影液中,显影液型号为RZX3038,浸泡时间为45s,使外延片上面的图案显现出来,并用去离子水冲洗外延片并用氮气吹干;最后将外延片置于热台上烘烤坚膜,烘烤时间为45s;
(4)利用反应离子刻蚀法,沿整流器外延片中的肖特基接触电极图案刻蚀出凹槽,凹槽深度为250 nm;
(5)将步骤(4)所得刻有欧姆接触电极图案凹槽的整流器外延片放入电子束蒸发设备中,将腔体真空度抽:5.5×10 -5Pa,随后依次蒸镀电极金属MoS2/Ni/Au。蒸镀结束后,对整流器外延片进行退火,退火温度700℃,退火时间90min;
(6)将制备好欧姆接触电极的整流器外延片浸入去胶液中浸泡95min,捞出后用去离子水冲洗并置于丙酮中超声8min,拿出后经去离子水冲洗并用氮气吹干;
(7)通过掩膜板中的对准标记,对整流器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备整流器外延片上暴露出器件肖特基接触电极图案区域;
(8)对光刻后整流器外延片进行欧姆接触电极9制备:将制备有器件欧姆接触图案的整流器外延片放入电子束蒸发设备中,将腔体真空度抽至5.5×10 -5Pa,随后依次蒸镀欧姆接触电极物质Ti/Al/Ni/Au。最后重复步骤(6)工艺,去除外延片表面残留的光刻胶与蒸镀金属;
(9)使用等离子体增强化学气相沉积方法制备SiNx钝化层7,将制备好电极的整流器外延片放入等离子体增强化学气相沉积设备中,仪器升温至800℃,腔体真空度抽至1×10 -5Pa,沉积时间110min;
(10)重复步骤(3)工艺,通过光刻显影在外延片表面制备掩膜板,将欧姆接触电极与肖特基接触电极图案上的SiNx(x=1.33~1.5)暴露出来;
(11)使用湿法刻蚀方法,将暴露出的SiNx钝化层刻蚀掉,取出后用去离子水冲洗,最后重复步骤(6)工艺,去除外延片表面残留的光刻胶与SiNx;
(12)通过掩膜板对准标记对准,重复步骤(3)与(4),在外延片表面光刻显影制备台面隔离图案,并在表面刻蚀凹槽,刻蚀深度为1.5μm,最后用去离子水清洗外延片表面并用氮气吹干;
(13)台面隔离钝化层制作:整流器外延片放入等离子体辅助化学气象沉积设备中,重复步骤(9)工艺,在整流器外延片刻蚀凹槽内沉积SiNx钝化层,沉积时间110min;
(14)使用步骤(11)湿法腐蚀工艺去除整流器外延片表面多余SiNx层后,采用步骤(6)工艺,通过去胶液浸泡与超声清洗去除整流器外延片表面残余SiNx与光刻胶,最后完成硅衬底上GaN/二维AlN异质结整流器的制备。
本实施例制得的GaN薄膜的GaN(0002)x射线摇摆曲线半高宽为0.095°。制得的整流器外延片的正向 J-V曲线中开启电压为0.80V,且计算得到比导通电阻R ON为9.3mΩ/sq,所以在大功率工作情况下,器件的稳定性与可靠性很好。反向 I-V曲线中,在-20 V的反向偏压下,器件的漏电流为-0.00035 A,所以反向漏电性能很好。同时测得本实施例制得的整流器电子气浓度高达10 14 cm -2,且迁移率高达3000 cm 2/V·s。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,包括依次层叠的硅衬底(1)、GaN缓冲层(2)、碳掺杂半绝缘化GaN层(3)、二维AlN层(4)、非掺杂GaN层(5)、非掺杂InGaN层(6)和SiNx钝化层(7),还包括设置在非掺杂InGaN层(6)一侧的台面隔离凹槽(8)和肖特基接触电极(9),其中,所述台面隔离凹槽(8)与非掺杂GaN层(5)、非掺杂InGaN层(6)、SiNx钝化层(7)和肖特基接触电极(9)接触,所述肖特基接触电极(9)与台面隔离凹槽(8)、非掺杂GaN层(5)接触。
  2. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述GaN缓冲层(2)的厚度为650-900nm。
  3. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述碳掺杂半绝缘化GaN层(3)的掺杂浓度为5.0×10 18~6.0×10 18cm -3,厚度为80~180 nm。
  4. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述二维AlN层(4)的厚度为2~4 个原子层。
  5. 根据权利要求4所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述二维AlN层(4)的厚度为2个原子层。
  6. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述非掺杂GaN层(5)厚度为350-550nm。
  7. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述非掺杂InGaN层(6)厚度为50-200nm。
  8. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述SiNx钝化层(7)中x=1.29-1.51。
  9. 根据权利要求1所述的一种硅衬底上GaN/二维AlN异质结整流器,其特征在于,所述台面隔离凹槽(8)的深度为1.2~1.5 μm;所述肖特基接触电极(9)的厚度为220~250 nm。
  10. 制备权利要求1-9任一项所述的一种硅衬底上GaN/二维AlN异质结整流器的方法,其特征在于,包括以下步骤:
    (1)在硅衬底上依次生长GaN缓冲层、碳掺杂半绝缘化GaN层、二维AlN层、非掺杂GaN层和非掺杂InGaN层,得到整流器外延片;
    (2)将步骤(1)所得整流器外延片依次置于丙酮、无水乙醇中超声处理,拿出后经去离子水清洗再用氮气吹干;
    (3)将肖特基接触图案转移至整流器外延片:在步骤(2)所得整流器外延片上均匀旋涂光刻胶,之后置于光刻机中进行曝光,最后利用显影液清洗外延片使图案显现出来;
    (4)利用反应离子刻蚀法,沿整流器外延片中的肖特基接触电极图案刻蚀出凹槽,得到欧姆接触电极;
    (5)制备肖特基接触电极:将步骤(4)所得刻有欧姆接触电极图案凹槽的整流器外延片放入电子束蒸发设备中,随后对腔体抽真空,并用电子枪轰击金属靶,使金属沉积到外延片表面,蒸镀结束后,对外延片进行退火;
    (6)将整流器外延片浸入去胶液后用去离子水冲洗,之后将外延片置于丙酮之中超声处理,并用氮气吹干;
    (7)通过掩膜板中的对准标记,对整流器外延片进行对准,重复步骤(3),在相应位置上光刻显影,制备器件欧姆接触电极图案并清洗;
    (8)制备欧姆接触电极:重复步骤(5)与(6),沉积电极金属后退火并清洗,完成欧姆接触电极的制备;
    (9)制备氮化硅钝化层:将步骤(8)所得的整流器外延片放入等离子体增强化学气相沉积设备中,之后依次升温、抽真空、通入载气和反应气体,最后在外延片表面沉积SiNx钝化;
    (10)重复步骤(3),在欧姆接触电极和肖特基接触电极处曝光并显影,使两个电极上的SiNx暴露出来;
    (11)使用湿法刻蚀方法,将暴露出来的SiNx刻蚀掉,最后重复步骤(6),去除整流器外延片表面残留的光刻胶与SiNx钝化层;
    (12)通过掩膜板对准标记对准,重复步骤(3)与(4),使台面隔离图案转移至外延片表面并在表面刻蚀凹槽;
    (13)将步骤(12)所得的整流器外延片放入等离子体辅助化学气象沉积设备中,重复步骤(8),在步骤(12)刻蚀的凹槽内沉积SiNx钝化层;
    (14)重复步骤(11),去除外延片表面多余光刻胶与后,通过去胶液浸泡与超声清洗去除整流器外延片表面残余光刻胶与SiNx,完成硅衬底上GaN/二维AlN异质结整流器的制备。
PCT/CN2020/100510 2020-04-27 2020-07-07 一种硅衬底上 GaN / 二维 AlN 异质结整流器及其制备方法 WO2021217875A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/789,789 US20230030977A1 (en) 2020-04-27 2020-07-07 Gan/two-dimensional aln heterojunction rectifier on silicon substrate and preparation method therefor
JP2022565938A JP7470458B2 (ja) 2020-04-27 2020-07-07 シリコン基板上のGaN/2次元AlNヘテロ接合整流器及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010346191.2 2020-04-27
CN202010346191.2A CN111430457A (zh) 2020-04-27 2020-04-27 一种硅衬底上GaN/二维AlN异质结整流器及其制备方法

Publications (1)

Publication Number Publication Date
WO2021217875A1 true WO2021217875A1 (zh) 2021-11-04

Family

ID=71551902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100510 WO2021217875A1 (zh) 2020-04-27 2020-07-07 一种硅衬底上 GaN / 二维 AlN 异质结整流器及其制备方法

Country Status (4)

Country Link
US (1) US20230030977A1 (zh)
JP (1) JP7470458B2 (zh)
CN (1) CN111430457A (zh)
WO (1) WO2021217875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646419A (zh) * 2022-03-23 2022-06-21 中山大学 一种气体压强传感器及其制备方法和气体压强检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113327759B (zh) * 2021-05-30 2022-11-15 南京工业职业技术大学 一种基于宽禁带异质结结构的平面变压器
CN114242800B (zh) * 2021-11-24 2023-08-22 华南理工大学 日盲AlGaN紫外光电探测器及其制备方法
CN114242782A (zh) * 2021-11-24 2022-03-25 华南理工大学 N极性GaN/AlGaN基射频整流器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957474A (zh) * 2004-01-23 2007-05-02 国际整流器公司 Ⅲ-氮电流控制装置及其制造方法
WO2013008414A1 (ja) * 2011-07-08 2013-01-17 パナソニック株式会社 整流装置
US20130240911A1 (en) * 2004-09-30 2013-09-19 International Rectifier Corporation III-Nitride Multi-Channel Heterojunction Device
CN204067372U (zh) * 2013-12-27 2014-12-31 广州吉日嘉禾电子科技发展有限公司 一种异质结构整流二极管
CN108010956A (zh) * 2017-12-19 2018-05-08 华南理工大学 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084653A (ja) 2010-10-08 2012-04-26 Advanced Power Device Research Association 半導体装置およびその製造方法
FR2977260B1 (fr) 2011-06-30 2013-07-19 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiale epaisse de nitrure de gallium sur un substrat de silicium ou analogue et couche obtenue par ledit procede
JP6142877B2 (ja) 2012-09-25 2017-06-07 富士電機株式会社 半導体積層基板および半導体素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957474A (zh) * 2004-01-23 2007-05-02 国际整流器公司 Ⅲ-氮电流控制装置及其制造方法
US20130240911A1 (en) * 2004-09-30 2013-09-19 International Rectifier Corporation III-Nitride Multi-Channel Heterojunction Device
WO2013008414A1 (ja) * 2011-07-08 2013-01-17 パナソニック株式会社 整流装置
CN204067372U (zh) * 2013-12-27 2014-12-31 广州吉日嘉禾电子科技发展有限公司 一种异质结构整流二极管
CN108010956A (zh) * 2017-12-19 2018-05-08 华南理工大学 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BESHKOVA MILENA; YAKIMOVA ROSITSA: "Properties and Potential Applications of Two-dimensional AlN", VACUUM, vol. 176, 31 January 2020 (2020-01-31), pages 1 - 17, XP086155914, ISSN: 0042-207X, DOI: 10.1016/j.vacuum.2020.109231 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646419A (zh) * 2022-03-23 2022-06-21 中山大学 一种气体压强传感器及其制备方法和气体压强检测方法

Also Published As

Publication number Publication date
JP7470458B2 (ja) 2024-04-18
US20230030977A1 (en) 2023-02-02
JP2023528581A (ja) 2023-07-05
CN111430457A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021217875A1 (zh) 一种硅衬底上 GaN / 二维 AlN 异质结整流器及其制备方法
CN104992974B (zh) 金刚石基双层绝缘栅介质场效应晶体管及其制备方法
CN100557815C (zh) InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
US11257935B2 (en) Gan rectifier suitable for operating under 35GHZ alternating-current frequency, and preparation method therefor
CN105977311A (zh) 用少层黑磷烯的不同堆垛结构的遂穿二极管及实现方法
CN107248528A (zh) 低频率损耗GaN基微波功率器件及其制作方法
CN109037326A (zh) 一种具有p型埋层结构的增强型hemt器件及其制备方法
CN107706245B (zh) 一种氮化物平面结构共振隧穿二极管及其制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN113555429B (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN110504316B (zh) 具有分割子器件的GaN高电子迁移率晶体管及制造方法
CN107302022A (zh) 低损伤表面处理高效率器件及其制作方法
CN212010980U (zh) 一种硅衬底上GaN/二维AlN异质结整流器
CN109830540B (zh) 一种基于空心阳极结构的肖特基二极管及其制备方法
CN114361031A (zh) 一种基于新型欧姆再生长的GaN基器件及其制备方法
CN109346405B (zh) 一种GaN基SBD倒装芯片的制备方法
CN112951911A (zh) 增强型GaN基高电子迁移率晶体管及其制备方法
CN102306626B (zh) 半导体异质结场效应晶体管栅结构的制备方法
CN213401214U (zh) 一种AlGaN/GaN基35GHz毫米波整流器
CN112018177A (zh) 全垂直型Si基GaN UMOSFET功率器件及其制备方法
WO2023092855A1 (zh) N极性GaN/AlGaN基射频整流器及其制备方法
CN112599586B (zh) 一种高可靠性氮化镓基功率器件及制备方法
CN114156346A (zh) 一种AlGaN/GaN基35GHz毫米波整流器及其制备方法与应用
CN109904228B (zh) 界面电荷补偿常关型金刚石基场效应晶体管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20932992

Country of ref document: EP

Kind code of ref document: A1