CN112599586B - 一种高可靠性氮化镓基功率器件及制备方法 - Google Patents

一种高可靠性氮化镓基功率器件及制备方法 Download PDF

Info

Publication number
CN112599586B
CN112599586B CN202011332294.XA CN202011332294A CN112599586B CN 112599586 B CN112599586 B CN 112599586B CN 202011332294 A CN202011332294 A CN 202011332294A CN 112599586 B CN112599586 B CN 112599586B
Authority
CN
China
Prior art keywords
layer
gate electrode
gallium nitride
electrode
passivation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011332294.XA
Other languages
English (en)
Other versions
CN112599586A (zh
Inventor
郝惠莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202011332294.XA priority Critical patent/CN112599586B/zh
Publication of CN112599586A publication Critical patent/CN112599586A/zh
Application granted granted Critical
Publication of CN112599586B publication Critical patent/CN112599586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体的技术领域,公开了一种高可靠性氮化镓基功率器件,自下而上包括衬底和氮化镓基层,在所述氮化镓基层的两端分别设置有源电极和漏电极,在其中部设置有栅电极,在所述栅电极和漏电极之间的区域自下而上还设置有阻隔层、钝化层,在所述栅电极和源电极之间的区域仅设置有钝化层,所述阻隔层用于减少氮化镓基层中电子陷阱的数量,并阻止栅电极的电子进入电子陷阱。还公开了一种高可靠性氮化镓基功率器件的制备方法。本发明的制备方法既能加快刻蚀过程,又能保证刻蚀完后凹槽表面的平整度,对凹槽法的产业化应用提供了更好的选择。

Description

一种高可靠性氮化镓基功率器件及制备方法
技术领域
本发明涉及半导体的技术领域,尤其涉及一种高可靠性氮化镓基功率器件及制备方法。
背景技术
由于氮化镓GaN材料具有大禁带宽度、强击穿电场、高电子迁移率和高饱和电子漂移速度等优越的物理特性,GaN基电子器件比硅基电子器件更适合在高温、高压与高频等极端条件下工作。尤其是基于AlGaN/GaN异质结形成的GaN基功率器件,凭借其良好的高频和大功率特性,成为电力电子、无线通信和雷达等领域的核心器件。但是,尽管GaN基功率器件的性能正不断取得突破,该器件的大规模商业化应用仍受到各种电学可靠性问题的限制,其中一个重要的可靠性问题就是电流崩塌,即器件在大电场应力或大电流应力的情况下,输出电流减小。
电流崩塌的主要原因在于器件中存在电子陷阱,在栅漏电极之间大电场应力下,栅电极电子会被AlGaN层/钝化层界面的电子陷阱俘获,耗尽AlGaN层/GaN层界面下方的二维电子气,引起电流减小;同时,器件工作在大电流时,热电子会溢出二维电子气沟道,被AlGaN层/钝化层界面的电子陷阱俘获,甚至被钝化层中的电子陷阱俘获,引起电流减小。由于栅极与漏极中间区域的电子陷阱对电流崩塌起到主要作用,因此避免电子被此区域的陷阱俘获,是改善电流崩塌性能的关键。
发明内容
本发明的目的在于克服现有技术中存在电子陷阱,在栅漏电极之间大电场应力下,栅电极电子会被AlGaN层/钝化层界面的电子陷阱俘获,耗尽AlGaN层/GaN层界面下方的二维电子气,引起电流减小的缺陷,提供一种高可靠性氮化镓基功率器件及制备方法。
为实现上述目的,本发明提供如下技术方案:
一种高可靠性氮化镓基功率器件,自下而上包括衬底和氮化镓基层,在所述氮化镓基层的两端分别设置有源电极和漏电极,在其中部设置有栅电极,在所述栅电极和漏电极之间的区域自下而上还设置有阻隔层、钝化层,在所述栅电极和源电极之间的区域仅设置有钝化层,所述阻隔层用于减少氮化镓基层中电子陷阱的数量,并阻止栅电极的电子进入电子陷阱。
进一步,处于所述栅电极和漏电极之间的隔离层和钝化层,所述隔离层的全部区域或者部分区域注有氟离子,或者所述钝化层的全部区域或者部分区域注有氟离子,或者所述隔离层和钝化层的全部区域或者部分区域均注有氟离子。
进一步,所述阻隔层采用AlN材料制成,所述钝化层采用SiN材料制成。
一种高可靠性氮化镓基功率器件的制备方法,在衬底上外延生长氮化镓基层,再沉积隔离层,然后对隔离层进行刻蚀,仅保留栅电极和漏电极之间区域的隔离层,最后,制备源电极、漏电极、栅电极及钝化层,并对栅电极和漏电极之间的区域进行氟离子注入。
进一步,最后,先在氮化镓基层的两端制备源电极、漏电极,再沉积钝化层,然后,对栅电极和漏电极之间的区域进行氟离子注入,再制备栅电极。
进一步,包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,再进行光刻,然后再刻蚀AlGaN层的边缘部分,直至GaN层的一部分被刻蚀掉;
步骤二、沉积隔离层,然后进行光刻和刻蚀,仅保留栅电极和漏电极之间区域的隔离层;
步骤三、在AlGaN层的两端分别制备源电极和漏电极,然后,沉积钝化层,并将源电极和漏电极上方的钝化层去掉;
步骤四、向栅电极和漏电极之间区域的隔离层和钝化层的全部区域或者部分区域注入氟离子,然后进行退火处理;
步骤五、将栅电极区域的钝化层刻蚀掉,再制作栅电极。
进一步,所述源电极、漏电极和栅电极均利用电子束蒸发设备蒸镀制成,所述源电极、漏电极均采用Ti/Al/Ni/Au金属材料制成,所述栅电极采用Ni/Au金属材料制成。
进一步,所述衬底采用Si、蓝宝石或者SiC材料制成,所述钝化层采用Si3N4材料制成。
本发明有益的技术效果在于:
首先,利用MOCVD设备在衬底上生长外延片,并进行台面隔离;其次,栅电极与漏电极之间区域沉积隔离层即AlN薄膜,再制作源漏欧姆电极并沉积钝化层;最后,对栅漏电极之间区域的隔离层和钝化层区域进行氟离子注入,并制作栅电极,由于AlN薄膜与AlGaN层的匹配度较好,AlGaN/AlN界面的电子陷阱数量会大为减少;同时,对隔离层及其上方的钝化层进行氟离子注入,由于氟离子具有强的电负性,能提升所在区域的能带,从而能有效阻止电子进入陷阱,其电流崩塌效应有明显改善,具有高的电学可靠性,在电力电子器件领域有广阔的应用前景。
附图说明
图1为本发明的总体流程示意图;
图2为本发明的制备方法的具体图示示意图。
具体实施方式
下面结合附图及较佳实施例详细说明本发明的具体实施方式。
本发明提供了一种高可靠性氮化镓基功率器件,如图1和2所示,这种芯片在栅电极与漏电极之间区域的AlGaN层上方覆盖一层隔离层即AlN薄膜,由于AlN薄膜与AlGaN层的匹配度较好,AlGaN/AlN界面的电子陷阱数量会大为减少;同时,对隔离层及其上方的钝化层进行氟离子注入,由于氟离子具有强的电负性,能提升所在区域的能带,从而能有效阻止电子进入陷阱,具体地,本发明的高可靠性氮化镓基功率器件自下而上包括衬底和氮化镓基层,在氮化镓基层的两端分别设置有源电极和漏电极,在其中部设置有栅电极,在栅电极和漏电极之间的区域自下而上还设置有阻隔层、钝化层,在栅电极和源电极之间的区域仅设置有钝化层,该阻隔层用于减少氮化镓基层中电子陷阱的数量,并阻止栅电极的电子进入电子陷阱。这种功率器件芯片的电流崩塌效应有明显改善,具有高的电学可靠性,在电力电子器件领域有广阔的应用前景。
根据实际需要,对于处于栅电极和漏电极之间的隔离层和钝化层,可以仅在隔离层的全部区域或者部分区域注有氟离子,或者仅在钝化层的全部区域或者部分区域注有氟离子,或者隔离层和钝化层的全部区域或者部分区域均注有氟离子。
本发明还提供了一种高可靠性氮化镓基功率器件的制备方法,在衬底上外延生长氮化镓基层,再沉积隔离层,然后对隔离层进行刻蚀,仅保留栅电极和漏电极之间区域的隔离层,最后,制备源电极、漏电极、栅电极及钝化层,并对栅电极和漏电极之间的区域进行氟离子注入,可以先在氮化镓基层的两端制备源电极、漏电极,再沉积钝化层,然后,对栅电极和漏电极之间的区域进行氟离子注入,再制备栅电极,具体包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,可借用MOCVD设备进行外延生长,再进行光刻,然后再利用ICP设备刻蚀AlGaN层的边缘部分,直至GaN层的一部分被刻蚀掉,以阻断二维电子气,其总刻蚀深度大于200nm;
该衬底采用Si、蓝宝石或者SiC材料制成。
步骤二、沉积隔离层,可利用原子层沉积设备,在片子表面蒸镀一层AlN薄膜即隔离层,该AlN薄膜的厚度在5nm左右,然后进行光刻和刻蚀,仅保留栅电极和漏电极之间区域的隔离层,并进行退火处理,这样,该部分AlN层与下方AlGaN层形成的界面缺陷很少,因此,电子陷阱也很少;此时,可选地,利用离子注入机,向仅存的隔离层的全部区域或者部分区域注入氟离子。
另外,此步骤中,将其余区域的隔离层刻蚀掉,是为了后续覆盖钝化层,该钝化层采用硬度更高的材料制成。
步骤三、在AlGaN层的两端分别制备源电极和漏电极,然后,沉积钝化层,并将源电极和漏电极上方的钝化层去掉;
该源电极和漏电极利用电子束蒸发台制作,电极材质采用Ti/Al/Ni/Au,厚度可分别设置为20/100/30/80nm,然后进行电极退火处理,以形成欧姆接触。
利用PECVD在片子表面沉积一层400nm厚的钝化层,可采用SiN材料制成,然后进行光刻及刻蚀,将源电极和漏电极上方的钝化层去除。
可选地,还可以向栅电极和漏电极之间区域的钝化层的全部区域或者部分区域注入氟离子。
步骤四、利用离子注入机,向栅电极和漏电极之间区域的隔离层和钝化层的全部区域或者部分区域注入氟离子,然后进行退火处理,以加强氟离子的稳定性;由于氟离子具有很强的电负性,会提升注入区域的能带,阻止电子被注入区域的电子陷阱俘获。
氟离子注入的区域可为栅电极与漏电极之间的隔离层和钝化层的全部区域或者部分区域,具体根据实际情况而定。
步骤五、将栅电极区域的钝化层刻蚀掉,再制作栅电极,具体方法为,先进行光刻及刻蚀,将栅电极区域的钝化层去除掉,然后用电子束蒸发台蒸镀栅电极。栅电极金属采用Ti/Au,厚度可设置为40/150nm。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (7)

1.一种高可靠性氮化镓基功率器件,自下而上包括衬底和氮化镓基层,在所述氮化镓基层的两端分别设置有源电极和漏电极,在其中部设置有栅电极,其特征在于:在所述栅电极和漏电极之间的区域自下而上还设置有阻隔层、钝化层,在所述栅电极和源电极之间的区域仅设置有钝化层,所述阻隔层用于减少氮化镓基层中电子陷阱的数量,并阻止栅电极的电子进入电子陷阱;处于所述栅电极和漏电极之间的阻隔层和钝化层,所述阻隔层的全部区域或者部分区域注有氟离子,或者所述钝化层的全部区域或者部分区域注有氟离子,或者所述阻隔层和钝化层的全部区域或者部分区域均注有氟离子。
2.根据权利要求1所述的高可靠性氮化镓基功率器件,其特征在于:所述阻隔层采用AlN材料制成,所述钝化层采用SiN材料制成。
3.一种基于权利要求1所述的高可靠性氮化镓基功率器件的制备方法,其特征在于:在衬底上外延生长氮化镓基层,再沉积阻隔层,然后对阻隔层进行刻蚀,仅保留栅电极和漏电极之间区域的阻隔层,最后,制备源电极、漏电极、栅电极及钝化层,并对栅电极和漏电极之间的区域进行氟离子注入。
4.根据权利要求3所述的高可靠性氮化镓基功率器件的制备方法,其特征在于:最后,先在氮化镓基层的两端制备源电极、漏电极,再沉积钝化层,然后,对栅电极和漏电极之间的区域进行氟离子注入,再制备栅电极。
5.根据权利要求3所述的高可靠性氮化镓基功率器件的制备方法,其特征在于包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,再进行光刻,然后再刻蚀AlGaN层的边缘部分,直至GaN层的一部分被刻蚀掉;
步骤二、沉积阻隔层,然后进行光刻和刻蚀,仅保留栅电极和漏电极之间区域的阻隔层;
步骤三、在AlGaN层的两端分别制备源电极和漏电极,然后,沉积钝化层,并将源电极和漏电极上方的钝化层去掉;
步骤四、向栅电极和漏电极之间区域的阻隔层和钝化层的全部区域或者部分区域注入氟离子,然后进行退火处理;
步骤五、将栅电极区域的钝化层刻蚀掉,再制作栅电极。
6.根据权利要求5所述的高可靠性氮化镓基功率器件的制备方法,其特征在于:所述源电极、漏电极和栅电极均利用电子束蒸发设备蒸镀制成,所述源电极、漏电极均采用Ti/Al/Ni/Au金属材料制成,所述栅电极采用Ni/Au金属材料制成。
7.根据权利要求5所述的高可靠性氮化镓基功率器件的制备方法,其特征在于:所述衬底采用Si、蓝宝石或者SiC材料制成,所述钝化层采用Si3N4材料制成。
CN202011332294.XA 2020-11-24 2020-11-24 一种高可靠性氮化镓基功率器件及制备方法 Active CN112599586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011332294.XA CN112599586B (zh) 2020-11-24 2020-11-24 一种高可靠性氮化镓基功率器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011332294.XA CN112599586B (zh) 2020-11-24 2020-11-24 一种高可靠性氮化镓基功率器件及制备方法

Publications (2)

Publication Number Publication Date
CN112599586A CN112599586A (zh) 2021-04-02
CN112599586B true CN112599586B (zh) 2022-11-29

Family

ID=75183756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011332294.XA Active CN112599586B (zh) 2020-11-24 2020-11-24 一种高可靠性氮化镓基功率器件及制备方法

Country Status (1)

Country Link
CN (1) CN112599586B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484067A (zh) * 2009-06-26 2012-05-30 康奈尔大学 包括铝-硅氮化物钝化的用于形成iii-v半导体结构的方法
CN104393040A (zh) * 2014-10-29 2015-03-04 电子科技大学 一种具有荷电介质的hemt器件
CN104600107A (zh) * 2013-10-31 2015-05-06 英飞凌科技奥地利有限公司 电子器件
CN105355555A (zh) * 2015-10-28 2016-02-24 中国科学院微电子研究所 一种GaN基增强型功率电子器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027027A2 (en) * 2005-09-07 2008-03-06 Cree, Inc Transistor with fluorine treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484067A (zh) * 2009-06-26 2012-05-30 康奈尔大学 包括铝-硅氮化物钝化的用于形成iii-v半导体结构的方法
CN104600107A (zh) * 2013-10-31 2015-05-06 英飞凌科技奥地利有限公司 电子器件
CN104393040A (zh) * 2014-10-29 2015-03-04 电子科技大学 一种具有荷电介质的hemt器件
CN105355555A (zh) * 2015-10-28 2016-02-24 中国科学院微电子研究所 一种GaN基增强型功率电子器件及其制备方法

Also Published As

Publication number Publication date
CN112599586A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN110190116B (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
JP7178121B2 (ja) 半導体デバイスの製造方法、及びその使用
CN108110054B (zh) 一种GaN基HEMT器件及其制备方法
CN109873034B (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
CN113380623A (zh) 通过p型钝化实现增强型HEMT的方法
CN110429127B (zh) 一种氮化镓晶体管结构及其制备方法
CN109742142A (zh) 一种GaN基HEMT器件及其制备方法
CN113380884B (zh) 一种hemt器件的栅极、hemt器件及其制备方法
US20210384345A1 (en) Vertical umosfet device with high channel mobility and preparation method thereof
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN109037326A (zh) 一种具有p型埋层结构的增强型hemt器件及其制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN111739801B (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN116741635A (zh) 基于无掩膜再生长低阻延伸层的hemt器件制备方法
CN104037217B (zh) 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法
CN104037222B (zh) 一种基于有机聚合物极化效应的高压槽栅AlGaN/GaN HEMT器件结构及制作方法
CN112599586B (zh) 一种高可靠性氮化镓基功率器件及制备方法
CN113394096B (zh) Hemt器件及其自隔离方法、制作方法
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN112768358B (zh) 一种氮化镓高电子迁移率晶体管及其制备方法
CN209766426U (zh) 一种沉积多晶AlN的常关型HEMT器件
CN114121655A (zh) 一种基于增强型器件的自终止刻蚀方法及器件
CN114447113A (zh) 基于栅下图形化的新型Fin结构GaN HEMT器件及其制备方法
CN103681831A (zh) 高电子迁移率晶体管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant