WO2021213256A1 - 加热不燃烧烟草器具及供电控制方法 - Google Patents

加热不燃烧烟草器具及供电控制方法 Download PDF

Info

Publication number
WO2021213256A1
WO2021213256A1 PCT/CN2021/087682 CN2021087682W WO2021213256A1 WO 2021213256 A1 WO2021213256 A1 WO 2021213256A1 CN 2021087682 W CN2021087682 W CN 2021087682W WO 2021213256 A1 WO2021213256 A1 WO 2021213256A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
tobacco
temperature
driving voltage
action
Prior art date
Application number
PCT/CN2021/087682
Other languages
English (en)
French (fr)
Inventor
刘华臣
李丹
陈义坤
柯炜昌
黄龙
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2021213256A1 publication Critical patent/WO2021213256A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage

Definitions

  • This application relates to the technical field of tobacco appliances, and in particular to a control method of a heat-not-burn tobacco appliance and a power supply module.
  • Heat-not-burn tobacco appliances gradually entered the public view.
  • a battery is used to supply power to the resistance wire, and the resistance wire generates heat to heat the tobacco.
  • users When users use heat-not-burn tobacco appliances, they usually need to stabilize the temperature of the tobacco within a fixed temperature range. How to adjust the power supply voltage so that the temperature of the tobacco is stabilized within a set temperature range has become a continuous concern for those skilled in the art.
  • the present application provides a control method for heating non-combustion tobacco appliances and power supply modules, so as to at least partially solve the technical problems existing in the prior art.
  • an embodiment of the present application provides a power supply control method for heating non-combustion tobacco appliances.
  • the power supply control method includes an alternating heating process and a cooling process. During the cooling process, if the temperature of the tobacco reaches a first preset If the temperature is set, the heating process is entered; during the heating process, if the temperature of the tobacco reaches a second preset temperature, the cooling process is entered, and the second preset temperature is greater than the first preset temperature In the cooling process, the temperature of the tobacco is detected, if the detected tobacco temperature is greater than the first preset temperature and the current power supply output power is greater than the minimum power supply output power, then the power supply output power is adjusted, wherein, During the cooling process, the amount of adjustment and decrease of the power supply output power each time is less than the difference between the maximum power supply output power and the minimum power supply output power; and/or, during the heating process, the temperature of the tobacco is detected, as detected If the tobacco temperature is less than the second preset temperature and the current power supply output power is less than
  • the power supply module is configured to alternately provide an adjustable first drive voltage and an adjustable second drive voltage to the heating element; adjusting and reducing the output power of the power supply module includes: starting from the first action and the second action And the third action is selected for execution, the first action is to adjust and decrease the first driving voltage according to a set step, the second action is to adjust and decrease the second drive voltage according to a set step, The third action is to adjust the time proportion of the larger one of the first driving voltage and the second driving voltage according to a set step length.
  • the first driving voltage is set to always be greater than or equal to the second driving voltage, and the time proportions of the first driving voltage and the second driving voltage are both greater than 0;
  • Select one of the second action and the third action to execute including: first execute the third action; if the time proportion of the first driving voltage has been reduced to a minimum, the tobacco temperature is greater than the first
  • the second action is executed if the temperature is preset; if the tobacco temperature is greater than the first preset temperature after the second driving voltage is reduced to a minimum value, the first action is executed.
  • increasing the output power of the power supply module includes: selecting one of a fourth action, a fifth action, and a sixth action to execute, and the fourth action is increasing the first driving voltage according to a set step.
  • the fifth action is to increase the second drive voltage according to a set step length
  • the sixth action is to increase the first drive voltage and the second drive voltage according to a set step length. The percentage of time with a larger value.
  • the first driving voltage is set to always be greater than or equal to the second driving voltage, and the time proportions of the first driving voltage and the second driving voltage are both greater than 0;
  • Select one of the five actions and the sixth action to execute including: first execute the fourth action; if the temperature of the tobacco is lower than the second preset temperature after the first driving voltage is adjusted to the maximum value, then Perform the fifth action; if the temperature of the tobacco is lower than the second preset temperature after the second driving voltage is adjusted to the maximum value, then perform the sixth action.
  • the maximum value of the first driving voltage is greater than the maximum value of the second driving voltage.
  • the sum of the duration of each of the first driving voltage and the subsequent second driving voltage is equal to a set time period; or both of each of the second driving voltage and the subsequent first driving voltage The sum of the duration is equal to the set time period.
  • the detection of the temperature of the tobacco is performed every set time.
  • an embodiment of the present application provides a heat-not-burn tobacco device, which includes a tobacco substance accommodating cavity, a heating element, a temperature sensor, a temperature controller, and a power supply module.
  • the temperature sensor is used to detect the temperature of the tobacco in the tobacco material containing cavity
  • the power supply module is used to provide a driving voltage for the heating element
  • the temperature controller is used to set the power supply module to The power supply output power provided by the heating element
  • the temperature controller includes a memory and a processor, the memory stores instructions, and the processor runs the instructions to execute the heat-not-burn tobacco appliance power supply control method of the first aspect .
  • the power supply module includes a battery, a first DCDC converter, a second DCDC converter, and a strobe switch; the first DCDC converter is connected to the battery for providing the first driving voltage; The second DCDC converter is connected to the battery for providing the second driving voltage; the strobe switch is connected to the first DCDC converter, the second DCDC converter, the temperature controller and the The heating element is configured to provide a driving voltage of one of the first DCDC converter and the second DCDC converter to the heating element according to a control signal provided by the temperature controller.
  • the heating element includes an infrared heating coating, the infrared heating coating is located on the outer surface of the tobacco substance accommodating cavity, and the infrared heating coating is located on its side facing away from the tobacco substance accommodating cavity.
  • the electrode on the side is electrically connected with the power supply module.
  • it further includes a barrier layer wrapping the infrared heating coating, and the barrier layer is used to block the infrared rays emitted by the infrared heating coating from passing through the barrier layer.
  • the heating element includes an infrared heating coating, the infrared heating coating is located on the inner surface of the tobacco substance accommodating cavity, and the infrared heating coating is located on the back of the tobacco substance accommodating cavity.
  • the electrode on the side is electrically connected with the power supply module.
  • it further includes a barrier layer that wraps the tobacco substance containing cavity, and the barrier layer is used to block the infrared rays emitted by the infrared heating coating from passing through the barrier layer.
  • the power supply output power has at least 3 adjustable gears.
  • the output power of the power supply is gradually reduced, and the temperature of the tobacco drops relatively gently and controllably to the first preset temperature. It is avoided that the temperature of the tobacco drops too fast and is lower than the first preset temperature.
  • the output power of the power supply is gradually increased, and the temperature of the tobacco rises relatively gently and controllably to the second preset temperature. It is avoided that the temperature of the tobacco rises too fast to be higher than the second preset temperature.
  • the temperature control of the tobacco is more refined.
  • Fig. 1 is a block diagram of a heat-not-burn tobacco appliance provided by an embodiment of the application.
  • Fig. 2 is a flowchart of a power supply control method for heating non-burning tobacco appliances provided by an embodiment of the application.
  • Fig. 3 is a waveform diagram of the power supply output voltage of the heating and non-burning tobacco appliance provided by an embodiment of the application.
  • Fig. 4 is a block diagram of a heat-not-burn tobacco appliance provided by another embodiment of the application.
  • Fig. 5 is a structural diagram of a heat-not-burn tobacco appliance provided by an embodiment of the application.
  • the embodiment of the present application provides a heating non-combustion tobacco appliance, including a tobacco substance containing cavity 1, a heating element 2, a temperature sensor 3, a temperature controller 4, and a power supply module 5.
  • the heating element 2 is used to treat the tobacco substance
  • the tobacco in the accommodating cavity 1 is heated
  • the temperature sensor 3 is used to detect the temperature of the tobacco in the tobacco material accommodating cavity 1
  • the power supply module 5 is used to provide power output for the heating element 2
  • the temperature controller 4 is used to set the power supply module 5 to The size of the output power of the power supply provided by the heating element 2.
  • the temperature controller 4 controlling the power supply module 5 to provide the output voltage to the heating element 2 is equivalent to controlling the power supply module 5 to provide the power supply output power to the heating element 2.
  • the execution body may be the temperature controller 4 in the heat-not-burn tobacco appliances; from the program point of view, the execution body correspondingly It may be a program mounted on the temperature controller 4 of these heat-not-burn tobacco appliances.
  • the power supply module 5 is usually controlled to output the maximum power in the initial stage, so that the temperature of the tobacco rises rapidly and maintains a higher temperature.
  • the temperature of the tobacco should be maintained in a slightly lower temperature range.
  • the power supply module 5 is turned off, so that the temperature of the tobacco is reduced.
  • the technical problem to be solved by the power supply control method provided in this application is how to accurately control the power supply output power of the power supply module 5, so as to more accurately control the temperature of the tobacco within a set temperature range.
  • the power supply control method for heating non-combustion tobacco appliances includes alternate heating and cooling processes. During the cooling process, if the temperature of the tobacco reaches the first preset If the temperature is set, the temperature rise process is entered; during the temperature rise process, if the temperature of the tobacco reaches the second preset temperature, the temperature drop process is entered, and the second preset temperature is greater than the first preset temperature.
  • the first set temperature is, for example, 310°C
  • the second set temperature is, for example, 350°C.
  • the first set temperature and the second set temperature depend on the properties of the tobacco itself, and this application does not limit the specific values thereof.
  • the temperature of the tobacco is detected. If the detected tobacco temperature is greater than the first preset temperature and the current power supply output power is greater than the minimum power supply output power, the power supply output power is adjusted. The amount of output power reduction is less than the difference between the maximum power supply output power and the minimum power supply output power. It is also possible to detect the temperature of the tobacco during the heating process. If the detected tobacco temperature is less than the second preset temperature and the current power supply output power is less than the maximum power supply output power, then the power supply output power is adjusted. The increment of the output power of the secondary power supply is smaller than the difference between the maximum power supply output power and the minimum power supply output power.
  • the power supply output power is the output power provided by the power supply module 5 to the heating element 2 and has at least 3 adjustable gears.
  • the temperature of tobacco is affected by the output power of the power supply, and on the other hand, it is also affected by factors such as the nature of the heating element 2 itself, the characteristics of the tobacco itself, the ambient temperature, and the user's smoking action (the user takes away heat when smoking). .
  • the process of controlling tobacco temperature should be a process of dynamically adjusting the output power of the power supply at any time.
  • the time interval for detecting the temperature of the tobacco is, for example, between several tens of microseconds to several tens of milliseconds. It can be considered that the adjustment of the output power of the power supply is carried out in real time. Tobacco temperature detection can also be irregular. Of course, the detection of the tobacco temperature can also be triggered by other actions, for example, the temperature of the tobacco is detected when the user is detected to have a smoking action. Of course, the above methods can also be used in combination.
  • the power supply output power is reduced. This helps to ensure that the tobacco continues to cool down. In addition, the reduction of the output power of the power supply is gradually completed, which prevents the tobacco temperature from falling too fast and seriously lower than the first set temperature.
  • the output power of the power supply is increased. This helps to ensure that the tobacco continues to heat up. In addition, the increase of the output power of the power supply is gradually completed, which prevents the tobacco temperature from rising too fast and being seriously higher than the second set temperature. Adopting the above-mentioned power supply control method is conducive to precise control of the tobacco temperature.
  • One implementation is that the drive voltage provided by the power supply module 5 has multiple selectable gears. If the output power of the power supply needs to be changed, the drive voltage gear can be directly changed.
  • the embodiments of the present application also provide a power supply module 5 capable of finely adjusting the power supply output power.
  • each time the tobacco temperature is detected it is determined whether to increase the power supply output power once, or whether to adjust the power supply output power once.
  • the power supply module 5 is configured to alternately provide an adjustable first driving voltage and an adjustable second driving voltage to the heating element 2; adjusting and reducing the power supply output power of the power supply module 5 includes: Choose one of the second action and the third action to execute.
  • the first action is to adjust and reduce the first drive voltage according to the set step length
  • the second action is to reduce the second drive voltage according to the set step length
  • the third action is to reduce the second drive voltage according to the set step.
  • the time proportion of the larger of the first driving voltage and the second driving voltage is adjusted and reduced by a fixed step.
  • the first driving voltage is denoted as U1
  • the second driving voltage is denoted as U2
  • the duration of the first driving voltage is denoted as t1
  • the sum of the duration of the first driving voltage and the subsequent second driving voltage is constant, Marked as T.
  • the output power of the power supply can be slightly adjusted.
  • the different gears of the power supply output power are divided more finely, and the tobacco temperature is controlled more finely. Furthermore, in order to realize the reduction of the output power of the power supply, the available means are more flexible.
  • the first driving voltage is set to always be greater than or equal to the second driving voltage, and the time proportions of the first driving voltage and the second driving voltage are both greater than 0; select from the first action, the second action, and the third action
  • One execution includes: first execute the third action; if the time proportion of the first driving voltage has been reduced to the minimum value and the tobacco temperature is greater than the first preset temperature, then execute the second action; such as the second driving voltage reduction After reaching the minimum value, the tobacco temperature is greater than the first preset temperature, and then the first action is performed.
  • the power supply output power is usually relatively large.
  • U1, U2, and t1 are all relatively large at this time. If the first driving voltage and the second driving voltage are changed first, then the first driving voltage and the second driving voltage are reduced (even to 0), then adjust The time ratio of the first driving voltage is meaningless. Therefore, the time proportion of the first driving voltage is adjusted first when the temperature is lowered. Subsequently, since the second driving voltage has a relatively large time proportion, reducing the second driving voltage is more effective in reducing the overall power supply output power. Finally, adjust and reduce the first driving voltage.
  • adjusting the output power of the power supply module includes: selecting one of the fourth action, the fifth action, and the sixth action to execute, and the fourth action is adjusting the first driving voltage and the fifth action according to the set step length
  • the sixth action is to increase the time proportion of the larger value of the first driving voltage and the second driving voltage according to the set step length.
  • the power supply output power can be slightly adjusted higher.
  • the different gears of the power supply output power are divided more finely, and the tobacco temperature is controlled more finely.
  • the first driving voltage is always set to be greater than or equal to the second driving voltage, and the time proportions of the first driving voltage and the second driving voltage are both greater than 0; select from the fourth action, the fifth action, and the sixth action
  • One execution includes: first execute the fourth action; if the temperature of the tobacco is lower than the second preset temperature after the first driving voltage is increased to the maximum value, execute the fifth action; if the second driving voltage is increased to the maximum value If the temperature of the tobacco is lower than the second preset temperature, the sixth action is executed.
  • the power supply output power is usually relatively low. If the time ratio of the first driving voltage and the second driving voltage is changed first, the actual output power of the power supply has a relatively slight variation, which has little effect on the temperature rise. Therefore, increase the first driving voltage first, and then increase the second driving voltage. When the first driving voltage and the second driving voltage both reach the maximum value, the time proportion of the first driving voltage is adjusted to ensure that the power supply output power is relatively stable increase during the whole stage of the heating process.
  • the maximum value of the first driving voltage is greater than the maximum value of the second driving voltage.
  • adjusting the voltage value of the first driving voltage can produce a larger adjustment step size of the power supply output power, and adjusting the voltage value of the second driving voltage can produce a smaller power supply output power.
  • the adjustment step. The combination of the two is also conducive to the precise control of the output power of the power supply.
  • the sum of the duration of each first driving voltage and the subsequent second driving voltage is equal to the set time period; or the duration of each second driving voltage and the subsequent first driving voltage The sum is equal to the set time period.
  • a timer can be used to generate a square wave with a fixed period as a control signal to control the duration of the first driving voltage and the duration of the second driving voltage.
  • an embodiment of the present application also provides a heat-not-burn tobacco device, which includes a tobacco material containing cavity 1, a heating element 2, a temperature sensor 3, a temperature controller 4 and a power supply module 5, heating
  • the element 2 is used to heat the tobacco in the tobacco material containing cavity 1
  • the temperature sensor 3 is used to detect the temperature of the tobacco in the tobacco material containing cavity 1
  • the power supply module 5 is used to provide a driving voltage for the heating element 2
  • the temperature controller 4 is used
  • the temperature controller 4 includes a memory 41 and a processor 42, the memory 41 stores instructions, and the processor 42 runs the instructions to execute the above-mentioned heating and non-burning tobacco appliance power supply control method .
  • the memory 41 includes, but is not limited to, a magnetic disk memory 41, a CD-ROM, an optical memory 41, a read only memory (ROM), or a flash memory (flash RAM).
  • the processor 42 is, for example, a central processing unit (CPU), a micro control unit 4a (MCU), or the like. Of course, the memory 41 and the processor 42 may also be integrated in one element.
  • the power supply module includes a battery 51, a first DCDC converter 52, a second DCDC converter 53, and a strobe switch 54;
  • the first DCDC converter 52 is connected to the battery 51 for reducing the voltage of the battery 51 Is converted into a first driving voltage;
  • the second DCDC converter 53 is connected to the battery 51 for converting the voltage of the battery 51 into a second driving voltage;
  • the gate switch 54 is connected to the first DCDC converter 52, the second DCDC converter 53,
  • the temperature controller 4 and the heating element 2 are used to provide the driving voltage of one of the first DCDC converter 52 and the second DCDC converter 53 to the heating element 2 according to the control signal provided by the temperature controller 4.
  • the temperature controller 4 is specifically a micro control unit 4a (MCU).
  • the heating element 2 is specifically an infrared heating coating 2a.
  • the output voltage of the battery 51 is, for example, between 3.7V and 4.2V.
  • the adjustable range of the output voltage of the first DCDC converter 52 is, for example, 0-5V.
  • the adjustable range of the output voltage of the second DCDC converter 53 is, for example, 0-2.5V.
  • the micro-control unit 4a can set the output voltage of the first DCDC converter 52, set the output voltage of the second DCDC converter 53, and set the gate switch 54 to alternately connect the first DCDC converter 52 and the second DCDC converter 53 is in communication with the infrared heating coating 2a and setting the proportion of time during which the first DCDC converter 52 is in communication with the infrared heating coating 2a accurately controls the power supply output power, thereby accurately controlling the temperature of the tobacco.
  • the heating element 2 includes an infrared heating coating 2a (shown by the shaded part in the figure), the infrared heating coating 2a is located on the outer surface of the tobacco substance containing cavity 1, and the infrared heating coating 2a is located on its back
  • the electrode 6 on the side of the tobacco substance containing cavity 1 is electrically connected to the power supply module 5.
  • the power supply module 5 provides a driving voltage for the infrared heating coating 2a through the two electrodes 6, so that the infrared heating coating 2a emits infrared rays.
  • the infrared heating coating 2a is used to heat the tobacco, not only the heating speed is fast, but the tobacco is heated evenly, and the heating power can be finely controlled.
  • the heat-not-burn tobacco appliance further includes a barrier layer (not shown) covering the infrared heating coating 2a, and the barrier layer is used to block the infrared rays emitted by the infrared heating coating 2a from passing through the barrier layer.
  • the function of the barrier layer is to prevent the temperature controller 4 and the power supply module 5 outside the tobacco material containing cavity 1 from being damaged by high temperature. If the barrier layer is specifically used to reflect infrared rays, the barrier layer can also increase the utilization rate of heat.
  • the heating element 2 includes an infrared heating coating 2a, the infrared heating coating 2a is located on the inner surface of the tobacco substance containing cavity 1, and the infrared heating coating 2a passes through the electrode 6 on the side facing away from the tobacco substance containing cavity 1. It is electrically connected to the power supply module 5. In this way, the infrared heating coating 2a is closer to the tobacco, and the heating efficiency is higher.
  • it further includes a barrier layer (not shown) that wraps the tobacco substance containing cavity 1, and the barrier layer is used to block the infrared rays emitted by the infrared heating coating 2a from passing through the barrier layer.
  • the barrier layer is more convenient.
  • the temperature sensor 3 can be arranged in the tobacco substance containing cavity 1 to more accurately test the real-time temperature of the tobacco.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种加热不燃烧烟草器具及供电控制方法,该方法包括:在降温过程中,检测烟草的温度,如检测到的烟草温度大于第一预设温度且当前供电输出功率大于最小供电输出功率,则调减供电输出功率,每次供电输出功率的调减量小于最大供电输出功率与最小供电输出功率的差;和/或,在升温过程中,检测烟草的温度,如检测到的烟草温度小于第二预设温度且当前供电输出功率小于最大供电输出功率,则调增供电输出功率,每次供电输出功率的调增量小于最大供电输出功率与最小供电输出功率的差。采用该供电控制方法,可实现烟草温度在设定温度区间的精确控制。

Description

加热不燃烧烟草器具及供电控制方法 技术领域
本申请涉及烟草器具技术领域,尤其涉及一种加热不燃烧烟草器具及供电模块的控制方法。
背景技术
加热不燃烧烟草器具逐渐走进公众视野。其中例如是采用电池等为电阻丝供电,电阻丝发热进而加热烟草。在用户使用加热不燃烧烟草器具时,通常需要将烟草的温度稳定在一个固定的温度区间内。如何对供电电压进行调整,从而使烟草的温度稳定在设定的温度区间内,成为本领域技术人员持续关注的问题。
技术解决方案
本申请提供一种加热不燃烧烟草器具及供电模块的控制方法,以至少部分解决现有技术中存在的技术问题。
为解决上述问题,本申请提供的技术方案如下。
第一方面,本申请实施例提供一种加热不燃烧烟草器具的供电控制方法,所述供电控制方法包括交替的升温过程和降温过程,在所述降温过程中,如烟草的温度达到第一预设温度,则进入升温过程;在所述升温过程中,如所述烟草的温度达到第二预设温度,则进入所述降温过程,所述第二预设温度大于所述第一预设温度;在所述降温过程中,检测所述烟草的温度,如检测到的烟草温度大于所述第一预设温度且当前供电输出功率大于最小供电输出功率,则调减供电输出功率,其中,在所述降温过程中,每次供电输出功率的调减量小于最大供电输出功率与最小供电输出功率的差;和/或,在所述升温过程中,检测所述烟草的温度,如检测到的烟草温度小于所述第二预设温度且当前供电输出功率小于最大供电输出功率,则调增供电输出功率,其中,在所述升温过程中,每次供电输出功率的调增量小于最大供电输出功率与最小供电输出功率的差;其中,供电输出功率为供电模块提供给加热元件的输出功率,且具有至少3个可调档位。
可选地,所述供电模块配置为交替地向加热元件提供可调的第一驱动电压和可调的第二驱动电压;调减供电模块的输出功率,包括:从第一动作、第二动作和第三动作中选择一项执行,所述第一动作为按照设定步长调减所述第一驱动电压,所述第二动作为按照设定步长调减所述第二驱动电压、所述第三动作为按照设定步长调减所述第一驱动电压和所述第二驱动电压二者中较大一者的时间占比。
可选地,所述第一驱动电压设置为始终大于或等于所述第二驱动电压,所述第一驱动电压和所述第二驱动电压的时间占比均大于0;从第一动作、第二动作和第三动作中选择一项执行,包括:首先执行所述第三动作;如所所述第一驱动电压的时间占比已调减至最小值后所述烟草温度大于所述第一预设温度,则执行所述第二动作;如所述第二驱动电压调减至最小值后所述烟草温度大于所述第一预设温度,则执行所述第一动作。
可选地,调增供电模块的输出功率包括:从第四动作、第五动作和第六动作中选择一项执行,所述第四动作为按照设定步长调增所述第一驱动电压、所述第五动作为按照设定步长调增所述第二驱动电压、所述第六动作为按照设定步长调增所述第一驱动电压和所述第二驱动电压二者中较大值的时间占比。
可选地,所述第一驱动电压设置为始终大于或等于所述第二驱动电压,所述第一驱动电压和所述第二驱动电压的时间占比均大于0;从第四动作、第五动作和第六动作中选择一项执行,包括:首先执行所述第四动作;如所述第一驱动电压调增至最大值后所述烟草的温度小于所述第二预设温度,则执行所述第五动作;如所述第二驱动电压调增至最大值后所述烟草的温度小于所述第二预设温度,则执行所述第六动作。
可选地,所述第一驱动电压的最大值大于所述第二驱动电压的最大值。
可选地,每个所述第一驱动电压以及随后的第二驱动电压二者持续的时长之和等于设定时间周期;或者每个所述第二驱动电压以及随后的第一驱动电压二者持续的时长之和等于设定时间周期。
可选地,所述检测所述烟草的温度是每隔设定时间进行的。
第二方面,本申请实施例提供一种加热不燃烧烟草器,包括烟草物质容纳腔、加热元件、温度传感器、温度控制器和供电模块,所述加热元件用于对所述烟草物质容纳腔内的烟草进行加热,所述温度传感器用于检测所述烟草物质容纳腔内烟草的温度,所述供电模块用于为所述加热元件提供驱动电压,所述温度控制器用于设置所述供电模块向所述加热元件提供的供电输出功率,所述温度控制器包括存储器和处理器,所述存储器存储指令,所述处理器运行所述指令以执行第一方面的加热不燃烧烟草器具的供电控制方法。
可选地,所述供电模块包括电池、第一DCDC转换器、第二DCDC转换器、选通开关;所述第一DCDC转换器连接所述电池,用于提供所述第一驱动电压;所述第二DCDC转换器连接所述电池,用于提供所述第二驱动电压;所述选通开关连接所述第一DCDC转换器、所述第二DCDC转换器、所述温度控制器和所述加热元件,用于根据所述温度控制器提供的控制信号将所述第一DCDC转换器和所述第二DCDC转换器二者中一者的驱动电压提供给所述加热元件。
可选地,所述加热元件包括红外加热涂层,所述红外加热涂层位于所述烟草物质容纳腔的外表面上,所述红外加热涂层通过位于其背向所述烟草物质容纳腔一侧的电极与所述供电模块电连接。
可选地,还包括包裹所述红外加热涂层的阻挡层,所述阻挡层用于阻挡所述红外加热涂层发出的红外线穿过所述阻挡层。
可选地,所述加热元件包括红外加热涂层,所述红外加热涂层位于所述烟草物质容纳腔的内表面上,所述红外加热涂层通过位于其背向所述烟草物质容纳腔一侧的电极与所述供电模块电连接。
可选地,还包括包裹所述烟草物质容纳腔的阻挡层,所述阻挡层用于阻挡所述红外加热涂层发出的红外线穿过所述阻挡层。
有益效果
相比较于现有技术而言,在本申请实施例中,供电输出功率至少具有3个可调档位。在降温过程中,供电输出功率是逐步降低的,烟草的温度相对平缓可控地下降到第一预设温度。避免了烟草的温度下降地过快而低于第一预设温度。在升温过程中,供电输出功率是逐步增大的,烟草的温度相对平缓可控地升高到第二预设温度。避免了烟草的温度升高地过快而高于第二预设温度。对烟草的温度的控制更加精细。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
      图1为本申请实施例提供的加热不燃烧烟草器具的框图。
      图2为本申请实施例提供的加热不燃烧烟草器具的供电控制方法的流程图。
      图3为本申请实施例提供的加热不燃烧烟草器具的供电输出电压的波形图。
      图4为本申请另一实施例提供的加热不燃烧烟草器具的框图。
      图5为本申请的实施例提供的加热不燃烧烟草器具的结构图。
本发明的实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例的方式进行详细说明。
在本申请中,应理解,诸如“包括”或“具有”等术语旨在指示本说明书中所公开的特征、数字、步骤、行为、部件、部分或其组合的存在,并且不旨在排除一个或多个其他特征、数字、步骤、行为、部件、部分或其组合存在的可能性。
另外还需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
参考图1,本申请的实施例提供一种加热不燃烧烟草器具,包括烟草物质容纳腔1、加热元件2、温度传感器3、温度控制器4和供电模块5,加热元件2用于对烟草物质容纳腔1内的烟草进行加热,温度传感器3用于检测烟草物质容纳腔1内烟草的温度,供电模块5用于为加热元件2提供供电输出功率,温度控制器4用于设置供电模块5向加热元件2提供的供电输出功率的大小。在一些具体的结构中,温度控制器4控制供电模块5向加热元件2提供的输出电压也就相当于控制供电模块5向加热元件2提供的供电输出功率。
本申请的实施例所提供的加热不燃烧烟草器具的供电控制方法,从设备角度而言,执行主体可以是加热不燃烧烟草器具中的温度控制器4;从程序角度而言,执行主体相应地可以是搭载于这些加热不燃烧烟草器具的温度控制器4上的程序。
在使用加热不燃烧烟草器具的过程中,通常在最初阶段控制供电模块5按照最大功率输出,从而使烟草的温度迅速升高,并维持较高的温度。当烟草能够产生足够多的烟雾后,则应将烟草的温度维持在一个稍低的温度区间内。当烟草消耗完后,通常是经过设定的使用时间之后,关闭供电模块5,从而使烟草的温度降低。
本申请所提供的供电控制方法所要解决的技术问题在于,如何对供电模块5的供电输出功率进行精确地控制,从而将烟草的温度更精确地控制在设定的温度区间内。
参考图2,并结合图1和图3,本申请的实施例提供的加热不燃烧烟草器具的供电控制方法包括交替的升温过程和降温过程,在降温过程中,如烟草的温度达到第一预设温度,则进入升温过程;在升温过程中,如烟草的温度达到第二预设温度,则进入降温过程,第二预设温度大于第一预设温度。
第一设定温度例如是310℃,第二设定温度例如是350℃。第一设定温度和第二设定温度依赖于烟草本身的性质,本申请对其具体数值不做限定。
在降温过程中,检测烟草的温度,如检测到的烟草温度大于第一预设温度且当前供电输出功率大于最小供电输出功率,则调减供电输出功率,其中,在降温过程中,每次供电输出功率的调减量小于最大供电输出功率与最小供电输出功率的差。也可以在升温过程中,检测烟草的温度,如检测到的烟草温度小于第二预设温度且当前供电输出功率小于最大供电输出功率,则调增供电输出功率,其中,在升温过程中,每次供电输出功率的调增量小于最大供电输出功率与最小供电输出功率的差。其中,供电输出功率为供电模块5提供给加热元件2的输出功率,且具有至少3个可调档位。
烟草的温度一方面受到供电输出功率的影响,另一方面也受到加热元件2本身的性质、烟草本身的特性、环境温度、用户的抽吸动作(用户吸烟时会带走热量)等因素的影响。烟草温度的控制过程,应当是随时动态调整供电输出功率的过程。
检测烟草的温度的时间间隔例如是几十微秒到几十毫秒之间。可以认为供电输出功率的调整是实时进行的。烟草温度的检测也可以是不定时。当然,烟草温度的检测也可以是由其他动作触发的,例如检测到用户有抽吸动作则检测烟草的温度。当然,以上方式也可以是组合使用的。
在降温过程中,只要烟草的温度没有降低到第一设定温度,就降低供电输出功率。从而有利于保证烟草持续降温。另外,供电输出功率的降低是逐渐完成的,避免了烟草温度降低地过快而严重低于第一设定温度。在升温过程中,只要烟草的温度没有升高到第二设定温度,就增大供电输出功率。从而有利于保证烟草持续升温。另外,供电输出功率的提升是逐渐完成的,避免了烟草温度升高的过快而严重高于第二设定温度。采用上述供电控制方法,有利于对烟草温度的精确控制。
一种实现方式是供电模块5提供的驱动电压具有可选的多个档位,如需改变供电输出功率,直接改变驱动电压的档位即可。
此外,本申请的实施例同时提供了一种能够更加精细调整供电输出功率的供电模块5。
以下实施方式中,每检测一次烟草温度,判断是否调增一次供电输出功率,或者判断是否调减一次供电输出功率。
可选地,供电模块5配置为交替地向加热元件2提供可调的第一驱动电压和可调的第二驱动电压;调减供电模块5的供电输出功率,包括:从第一动作、第二动作和第三动作中选择一项执行,第一动作为按照设定步长调减第一驱动电压,第二动作为按照设定步长调减第二驱动电压、第三动作为按照设定步长调减第一驱动电压和第二驱动电压二者中较大一者的时间占比。
参考图4,第一驱动电压记为U1,第二驱动电压记为U2,第一驱动电压持续的时长记为t1,第一驱动电压以及随后的第二驱动电压二者持续时长之和恒定,记为T。不论是增大U1、增大U2还是增大U1和U2中较大一者的时间占比,都能够提高供电输出功率。
不论是执行第一动作、第二动作和第三动作,都能将略微调减供电输出功率。供电输出功率的不同档位之间划分地更加精细,由此对烟草温度的控制也就更加精细。进一步,为实现供电输出功率的调减,可用的手段也更加灵活。
可选地,第一驱动电压设置为始终大于或等于第二驱动电压,第一驱动电压和第二驱动电压的时间占比均大于0;从第一动作、第二动作和第三动作中选择一项执行,包括:首先执行第三动作;如第一驱动电压的时间占比已调减至最小值后烟草温度大于第一预设温度,则执行第二动作;如第二驱动电压调减至最小值后烟草温度大于第一预设温度,则执行第一动作。
在降温过程之前是升温过程,在降温过程的初始阶段,供电输出功率通常都是比较大的。结合图4,此时U1、U2和t1都比较大,如果先改变第一驱动电压和第二驱动电压,那么第一驱动电压和第二驱动电压都降低(甚至为0)后,那么再调节第一驱动电压的时间占比就没有意义了。所以在降温时先调节第一驱动电压的时间占比。随后,由于第二驱动电压的时间占比比较大,调减第二驱动电压对调减整体的供电输出功率更有效。最后再调减第一驱动电压。
可选地,调增供电模块的输出功率包括:从第四动作、第五动作和第六动作中选择一项执行,第四动作为按照设定步长调增第一驱动电压、第五动作为按照设定步长调增第二驱动电压、第六动作为按照设定步长调增第一驱动电压和第二驱动电压二者中较大值的时间占比。
不论是执行第四动作、第五动作和第六动作,都能将略微调高供电输出功率。供电输出功率的不同档位之间划分地更加精细,由此对烟草温度的控制也就更加精细。
可选地,第一驱动电压设置为始终大于或等于第二驱动电压,第一驱动电压和第二驱动电压的时间占比均大于0;从第四动作、第五动作和第六动作中选择一项执行,包括:首先执行第四动作;如第一驱动电压调增至最大值后烟草的温度小于第二预设温度,则执行第五动作;如第二驱动电压调增至最大值后烟草的温度小于第二预设温度,则执行第六动作。
在升温过程之前是降温过程,在升温过程的初始阶段,供电输出功率通常都是比较低的。如果先改变第一驱动电压和第二驱动电压的时间占比,实际的供电输出功率该变量比较轻微,对于升温的作用很小。所以优先调增第一驱动电压,然后调增第二驱动电压。当第一驱动电压和第二驱动电压都达到最大值后,再调增第一驱动电压的时间占比,从而保证在升温过程的整个阶段,供电输出功率是相对稳定地提升的。
可选地,第一驱动电压的最大值大于第二驱动电压的最大值。在二者可调档位数相同的情况下,调整第一驱动电压的电压值可以产生供电输出功率的较大的调整步长,调整第二驱动电压的电压值可以产生供电输出功率的较小的调整步长。二者结合使用,也是有利于供电输出功率的精确控制。
可选地,每个第一驱动电压以及随后的第二驱动电压二者持续的时长之和等于设定时间周期;或者每个第二驱动电压以及随后的第一驱动电压二者持续的时长之和等于设定时间周期。如此,可以通过一个定时器产生周期固定的方波作为控制信号,控制第一驱动电压持续的时长和第二驱动电压持续的时长。便于硬件实现。
基于相同的发明构思,参考图1,本申请的实施例还提供一种加热不燃烧烟草器,包括烟草物质容纳腔1、加热元件2、温度传感器3、温度控制器4和供电模块5,加热元件2用于对烟草物质容纳腔1内的烟草进行加热,温度传感器3用于检测烟草物质容纳腔1内烟草的温度,供电模块5用于为加热元件2提供驱动电压,温度控制器4用于设置供电模块5向加热元件2提供的供电输出功率,温度控制器4包括存储器41和处理器42,存储器41存储指令,处理器42运行指令以执行上述的加热不燃烧烟草器具的供电控制方法。
存储器41包括但不限于磁盘存储器41、CD-ROM、光学存储器41、只读存储器(ROM)或闪存(flash RAM)等。处理器42例如是中央处理器(CPU)、微控制单元4a(MCU)等。当然,存储器41和处理器42也可以是集成在一个元件内。
可选地,参考图4,供电模块包括电池51、第一DCDC转换器52、第二DCDC转换器53、选通开关54;第一DCDC转换器52连接电池51,用于将电池51的电压转换成第一驱动电压;第二DCDC转换器53连接电池51,用于将电池51的电压转换成第二驱动电压;选通开关54连接第一DCDC转换器52、第二DCDC转换器53、温度控制器4和加热元件2,用于根据温度控制器4提供的控制信号将第一DCDC转换器52和第二DCDC转换器53二者中一者的驱动电压提供给加热元件2。
图4中,温度控制器4具体为微控制单元4a(MCU)。加热元件2具体为红外加热涂层2a。电池51的输出电压例如在3.7V-4.2V之间。第一DCDC转换器52的输出电压的可调范围例如是在0-5V。第二DCDC转换器53的输出电压的可调范围例如是在0-2.5V。
微控制单元4a可以设定第一DCDC转换器52的输出电压、设定第二DCDC转换器53的输出电压、设定选通开关54交替地将第一DCDC转换器52和第二DCDC转换器53与红外加热涂层2a连通、设定第一DCDC转换器52与红外加热涂层2a连通的时间占比的方式精确地控制供电输出功率,从而精确地控制烟草的温度。
可选地,参考图5,加热元件2包括红外加热涂层2a(图中阴影部分表示),红外加热涂层2a位于烟草物质容纳腔1的外表面上,红外加热涂层2a通过位于其背向烟草物质容纳腔1一侧的电极6与供电模块5电连接。
具体地,供电模块5通过两个电极6为红外加热涂层2a提供驱动电压,从而使得红外加热涂层2a发出红外线。相较于使用电阻加热的方式,使用红外加热涂层2a对烟草加热,不仅升温速度快,而且烟草受热均匀,进一步发热功率可以精细控制。
可选地,加热不燃烧烟草器具还包括包裹红外加热涂层2a的阻挡层(未示出),阻挡层用于阻挡红外加热涂层2a发出的红外线穿过阻挡层。阻挡层的作用是防止烟草物质容纳腔1外侧的温度控制器4和供电模块5受到高温损伤。如阻挡层具体用于反射红外线,那么阻挡层还可提高热量的利用率。
可选地,加热元件2包括红外加热涂层2a,红外加热涂层2a位于烟草物质容纳腔1的内表面上,红外加热涂层2a通过位于其背向烟草物质容纳腔1一侧的电极6与供电模块5电连接。如此,红外加热涂层2a更接近烟草,加热效率更高。
可选地,还包括包裹烟草物质容纳腔1的阻挡层(未示出),阻挡层用于阻挡红外加热涂层2a发出的红外线穿过阻挡层。如此,更便于阻挡层的设置。
温度传感器3可以设置在烟草物质容纳腔1内,从而更准确地测试烟草的实时温度。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种加热不燃烧烟草器具的供电控制方法,其特征在于,
    所述供电控制方法包括交替的升温过程和降温过程,在所述降温过程中,如烟草的温度达到第一预设温度,则进入升温过程;在所述升温过程中,如所述烟草的温度达到第二预设温度,则进入所述降温过程,所述第二预设温度大于所述第一预设温度;
    在所述降温过程中,检测所述烟草的温度,如检测到的烟草温度大于所述第一预设温度且当前供电输出功率大于最小供电输出功率,则调减供电输出功率,其中,在所述降温过程中,每次供电输出功率的调减量小于最大供电输出功率与最小供电输出功率的差;和/或,
    在所述升温过程中,检测所述烟草的温度,如检测到的烟草温度小于所述第二预设温度且当前供电输出功率小于最大供电输出功率,则调增供电输出功率,其中,在所述升温过程中,每次供电输出功率的调增量小于最大供电输出功率与最小供电输出功率的差;
    其中,供电输出功率为供电模块提供给加热元件的输出功率,具有至少3个可调档位。
  2. 根据权利要求1所述的供电控制方法,其特征在于,所述供电模块配置为交替地向加热元件提供可调的第一驱动电压和可调的第二驱动电压;
    调减供电模块的输出功率,包括:从第一动作、第二动作和第三动作中选择一项执行,所述第一动作为按照设定步长调减所述第一驱动电压,所述第二动作为按照设定步长调减所述第二驱动电压、所述第三动作为按照设定步长调减所述第一驱动电压和所述第二驱动电压二者中较大一者的时间占比。
  3. 根据权利要求2所述的供电控制方法,其特征在于,所述第一驱动电压设置为始终大于或等于所述第二驱动电压,所述第一驱动电压和所述第二驱动电压的时间占比均大于0;
    从第一动作、第二动作和第三动作中选择一项执行,包括:首先执行所述第三动作;如所述第一驱动电压的时间占比已调减至最小值后所述烟草温度大于所述第一预设温度,则执行所述第二动作;如所述第二驱动电压调减至最小值后所述烟草温度大于所述第一预设温度,则执行所述第一动作。
  4. 根据权利要求1所述的供电控制方法,其特征在于,调增供电模块的输出功率包括:从第四动作、第五动作和第六动作中选择一项执行,所述第四动作为按照设定步长调增所述第一驱动电压、所述第五动作为按照设定步长调增所述第二驱动电压、所述第六动作为按照设定步长调增所述第一驱动电压和所述第二驱动电压二者中较大值的时间占比。
  5. 根据权利要求4所述的供电控制方法,其特征在于,所述第一驱动电压设置为始终大于或等于所述第二驱动电压,所述第一驱动电压和所述第二驱动电压的时间占比均大于0;
    从第四动作、第五动作和第六动作中选择一项执行,包括:首先执行所述第四动作;如所述第一驱动电压调增至最大值后所述烟草的温度小于所述第二预设温度,则执行所述第五动作;如所述第二驱动电压调增至最大值后所述烟草的温度小于所述第二预设温度,则执行所述第六动作。
  6. 根据权利要求2-4任意一项所述的供电控制方法,其特征在于,所述第一驱动电压的最大值大于所述第二驱动电压的最大值。
  7. 根据权利要求2-4任意一项所述的供电控制方法,其特征在于,每个所述第一驱动电压以及随后的第二驱动电压二者持续的时长之和等于设定时间周期;或者每个所述第二驱动电压以及随后的第一驱动电压二者持续的时长之和等于设定时间周期。
  8. 根据权利要求1所述的供电控制方法,其特征在于,所述检测所述烟草的温度是每隔设定时间进行的。
  9. 一种加热不燃烧烟草器,包括烟草物质容纳腔、加热元件、温度传感器、温度控制器和供电模块,所述加热元件用于对所述烟草物质容纳腔内的烟草进行加热,所述温度传感器用于检测所述烟草物质容纳腔内烟草的温度,所述供电模块用于为所述加热元件提供驱动电压,所述温度控制器用于设置所述供电模块向所述加热元件提供的供电输出功率,其特征在于,所述温度控制器包括存储器和处理器,所述存储器存储指令,所述处理器运行所述指令以执行根据权利要求1-8中任一项所述的加热不燃烧烟草器具的供电控制方法。
  10. 根据权利要求9所述的加热不燃烧烟草器具,其特征在于,所述供电模块包括电池、第一DCDC转换器、第二DCDC转换器、选通开关;所述第一DCDC转换器连接所述电池,用于提供所述第一驱动电压;所述第二DCDC转换器连接所述电池,用于提供所述第二驱动电压;所述选通开关连接所述第一DCDC转换器、所述第二DCDC转换器、所述温度控制器和所述加热元件,用于根据所述温度控制器提供的控制信号将所述第一DCDC转换器和所述第二DCDC转换器二者中一者的驱动电压提供给所述加热元件。
  11. 根据权利要求9所述的加热不燃烧烟草器具,其特征在于,所述加热元件包括红外加热涂层,所述红外加热涂层位于所述烟草物质容纳腔的外表面上,所述红外加热涂层通过位于其背向所述烟草物质容纳腔一侧的电极与所述供电模块电连接。
  12. 根据权利要求11所述的加热不燃烧烟草器具,其特征在于,还包括包裹所述红外加热涂层的阻挡层,所述阻挡层用于阻挡所述红外加热涂层发出的红外线穿过所述阻挡层。
  13. 根据权利要求9所述的加热不燃烧烟草器具,其特征在于,所述加热元件包括红外加热涂层,所述红外加热涂层位于所述烟草物质容纳腔的内表面上,所述红外加热涂层通过位于其背向所述烟草物质容纳腔一侧的电极与所述供电模块电连接。
  14. 根据权利要求13所述的加热不燃烧烟草器具,其特征在于,还包括包裹所述烟草物质容纳腔的阻挡层,所述阻挡层用于阻挡所述红外加热涂层发出的红外线穿过所述阻挡层。
PCT/CN2021/087682 2020-04-19 2021-04-16 加热不燃烧烟草器具及供电控制方法 WO2021213256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010308994.9 2020-04-19
CN202010308994.9A CN112369707B (zh) 2020-04-19 2020-04-19 加热不燃烧烟草器具及供电控制方法

Publications (1)

Publication Number Publication Date
WO2021213256A1 true WO2021213256A1 (zh) 2021-10-28

Family

ID=74586318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087682 WO2021213256A1 (zh) 2020-04-19 2021-04-16 加热不燃烧烟草器具及供电控制方法

Country Status (2)

Country Link
CN (1) CN112369707B (zh)
WO (1) WO2021213256A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112369707B (zh) * 2020-04-19 2022-07-19 湖北中烟工业有限责任公司 加热不燃烧烟草器具及供电控制方法
CN115769918A (zh) * 2021-09-06 2023-03-10 深圳麦克韦尔科技有限公司 电子雾化装置及其控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
CN108826438A (zh) * 2018-06-20 2018-11-16 广东美的环境电器制造有限公司 加热功率的调节方法、装置、加热负载和计算机存储介质
CN108851242A (zh) * 2018-07-18 2018-11-23 东莞市麦斯莫科电子科技有限公司 加热件温度控制方法、装置及电子吸烟系统
CN109002066A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种电子烟及其温度检测控制方法
CN108991602A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其加热控制方法
CN109730360A (zh) * 2019-01-21 2019-05-10 深圳麦克韦尔股份有限公司 电子雾化装置及其加热元件的控制方法
CN109846093A (zh) * 2019-02-28 2019-06-07 深圳市合元科技有限公司 低温烘烤烟具
CN110179159A (zh) * 2019-05-28 2019-08-30 筑思有限公司 用于电子烟的温度控制方法及电子烟
WO2019186667A1 (ja) * 2018-03-26 2019-10-03 日本たばこ産業株式会社 エアロゾル生成装置及び制御方法並びにプログラム
CN110301679A (zh) * 2019-07-22 2019-10-08 安徽中烟工业有限责任公司 一种加热不燃烧烟草制品烟气持续释放的控制方法
CN110664017A (zh) * 2019-11-05 2020-01-10 深圳市新宜康科技股份有限公司 雾化器多发热体交替发热的方法及装置
CN112369707A (zh) * 2020-04-19 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧烟草器具及供电控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9949511B2 (en) * 2014-06-24 2018-04-24 Shenzhen Smoore Technology Limited Electronic cigarette and control method therefor
EA201991564A1 (ru) * 2017-04-24 2019-09-30 Джапан Тобакко Инк. Генерирующее аэрозоль устройство, способ управления генерирующим аэрозоль устройством и программа

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
WO2019186667A1 (ja) * 2018-03-26 2019-10-03 日本たばこ産業株式会社 エアロゾル生成装置及び制御方法並びにプログラム
CN109002066A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种电子烟及其温度检测控制方法
CN108991602A (zh) * 2018-04-13 2018-12-14 赫斯提亚深圳生物科技有限公司 一种气溶胶生成装置及其加热控制方法
CN108826438A (zh) * 2018-06-20 2018-11-16 广东美的环境电器制造有限公司 加热功率的调节方法、装置、加热负载和计算机存储介质
CN108851242A (zh) * 2018-07-18 2018-11-23 东莞市麦斯莫科电子科技有限公司 加热件温度控制方法、装置及电子吸烟系统
CN109730360A (zh) * 2019-01-21 2019-05-10 深圳麦克韦尔股份有限公司 电子雾化装置及其加热元件的控制方法
CN109846093A (zh) * 2019-02-28 2019-06-07 深圳市合元科技有限公司 低温烘烤烟具
CN110179159A (zh) * 2019-05-28 2019-08-30 筑思有限公司 用于电子烟的温度控制方法及电子烟
CN110301679A (zh) * 2019-07-22 2019-10-08 安徽中烟工业有限责任公司 一种加热不燃烧烟草制品烟气持续释放的控制方法
CN110664017A (zh) * 2019-11-05 2020-01-10 深圳市新宜康科技股份有限公司 雾化器多发热体交替发热的方法及装置
CN112369707A (zh) * 2020-04-19 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧烟草器具及供电控制方法

Also Published As

Publication number Publication date
CN112369707B (zh) 2022-07-19
CN112369707A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2021213256A1 (zh) 加热不燃烧烟草器具及供电控制方法
US20170095001A1 (en) Electronic Cigarette and Control Method Therefor
US11950635B2 (en) Temperature control method of electronic cigarette, electronic cigarette and computer storage medium
JP2022116199A5 (zh)
CN109613945A (zh) 一种预加热时间控制方法和气溶胶产生装置
WO2016112541A1 (zh) 一种自动控制雾化功率的电子烟及方法
CN104116138A (zh) 电子烟及其控制方法
WO2017031681A1 (zh) 电子烟及其控制方法
CN107105789A (zh) 一种电子烟以及电子烟的控制方法
WO2020038183A1 (zh) 具有模拟气压传感器的电子烟及其控制方法
WO2020029905A1 (zh) 控制电路、电子烟以及电子烟的控制方法
WO2019218893A1 (zh) 电子烟控制方法、电子烟及计算机存储介质
WO2020134360A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018171037A1 (zh) 体重检测装置及其加热方法
EP4023087A1 (en) Heating-not-burning apparatus and temperature control method
TWI672442B (zh) 智慧風扇及其風速控制方法
TWI381763B (zh) Heating device and its temperature control method
CN204540829U (zh) 一种能够自动控温的电子烟
CN204203671U (zh) 一种高效电子烟控制芯片
WO2022188350A1 (zh) 一种温度控制方法、装置及计算机可读存储介质
TWM601481U (zh) 用於電子菸的短路偵測電路
RU2793875C1 (ru) Курительное изделие для нагревания табака без его горения и способ регулирования температуры
JP2004173750A (ja) 電気温熱式治療器
WO2023051733A1 (zh) 气溶胶生成装置及其控制方法
RU2792175C1 (ru) Способ управления для непрерывного выпуска дыма из нагреваемого без горения табачного изделия

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792681

Country of ref document: EP

Kind code of ref document: A1