WO2016112541A1 - 一种自动控制雾化功率的电子烟及方法 - Google Patents

一种自动控制雾化功率的电子烟及方法 Download PDF

Info

Publication number
WO2016112541A1
WO2016112541A1 PCT/CN2015/070907 CN2015070907W WO2016112541A1 WO 2016112541 A1 WO2016112541 A1 WO 2016112541A1 CN 2015070907 W CN2015070907 W CN 2015070907W WO 2016112541 A1 WO2016112541 A1 WO 2016112541A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
main controller
light
guiding member
Prior art date
Application number
PCT/CN2015/070907
Other languages
English (en)
French (fr)
Inventor
刘秋明
Original Assignee
惠州市吉瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市吉瑞科技有限公司 filed Critical 惠州市吉瑞科技有限公司
Priority to CN201580072945.7A priority Critical patent/CN107529820A/zh
Publication of WO2016112541A1 publication Critical patent/WO2016112541A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to an electronic cigarette technology, and more particularly to an electronic cigarette and method for automatically controlling atomization power.
  • Electronic cigarettes are a relatively common simulated cigarette electronic product, which is mainly composed of a battery rod and an atomizer.
  • the atomizer When the smoker inhales, the atomizer is turned on by the switch assembly electrically connected with the atomizer, wherein after the atomizer is turned on, the atomizer heating wire is heated, and the smoke liquid is evaporated by heat to form a simulated smoke. Aerosol.
  • the atomizer atomizes the smoke oil with a constant atomization power, and the smoke has a pure mouthfeel and does not burn the cotton.
  • the amount of smoke oil gradually decreases, and the amount of smoke absorbed on the oil guide member is also reduced. If the smoke oil is atomized with a constant atomization power at this time, the smoke taste is deteriorated, even There is a situation in which the burning of cotton produces odor, which brings a bad experience to the user.
  • the technical problem to be solved by the present invention is to provide an electronic cigarette and method for automatically controlling the atomization power, in view of the fact that the existing electronic cigarette cannot automatically control the atomization power according to the amount of smoke oil on the oil guiding member.
  • the present invention provides an electronic cigarette that automatically controls the atomization power, including: a power module for supplying power to the electronic cigarette, a smoking trigger module, a main controller, an atomizer heating wire, An oil guiding member in contact with the atomizer heating wire, further comprising a power adjusting module and a light detecting component for detecting transmittance of the oil guiding member, wherein the light detecting component is configured to detect The transmittance of the oil guiding member determines the amount of smoke oil absorbed by the oil guiding member;
  • the light detecting assembly includes a light emitting module for illuminating the oil guiding member and at least one light detecting module; among them,
  • the main controller is respectively connected to a smoking trigger module, a light emitting module, at least one light detecting module and a power adjusting module; the power adjusting module is connected to the atomizing device heating wire;
  • the smoking triggering module is configured to sense a smoking signal and send the smoking signal to the main controller; [0010] the main controller is configured to control the lighting module to emit light according to the smoking signal, The at least one light detecting module is configured to receive the reflected light or the transmitted transmitted light reflected from the oil guiding member under the illumination of the light emitting module, and output an electrical signal according to the received reflected light intensity or the transmitted light intensity to The master controller, so that the master controller sends a power control signal to the power adjustment module according to the input electrical signal strength;
  • the power adjustment module is configured to adjust an atomization power of the atomizer resistance wire according to the power control signal.
  • the at least one light detecting module includes a first light detecting module for receiving reflected light of the oil guiding member and outputting a first electrical signal, and receiving light transmitted by the oil guiding member A second light detecting module that outputs a second electrical signal.
  • the first light detecting module and the second light detecting module each comprise a photoresistor or a light sensitive sensor for receiving an optical signal and correspondingly outputting an electrical signal.
  • the first light detecting module further includes a first voltage dividing resistor, one end of the first voltage dividing resistor is connected in series with the corresponding one of the photoresistor or the photosensitive sensor, and the first voltage dividing resistor is another One end is used for an external power supply positive pole, the other end of the photoresistor or photosensor is grounded, and the second electrical signal is a partial pressure on the photoresistor or photosensor.
  • the second light detecting module further includes a second voltage dividing resistor, one end of the second voltage dividing resistor is connected in series with the corresponding one of the photoresistor or the photosensitive sensor, and the second voltage dividing resistor is another One end is used for an external power supply positive pole, the other end of the photoresistor or photosensor is grounded, and the second electrical signal is a partial pressure on the photoresistor or photosensor.
  • the light emitting module is a light emitting diode.
  • the power adjustment module includes a switch tube, the main controller is connected to a control pole of the bypass tube, and the main controller is configured to output the power control signal to the control pole
  • the duty ratio of the power control signal changes according to a change of the electrical signal
  • the switch tube is configured to be used according to the power
  • the duty cycle of the control signal adjusts the conduction time of the atomizer heating wire, thereby adjusting the power of the atomizer heating wire.
  • the main controller further includes a threshold comparison module and a control module;
  • the threshold comparison module is configured to compare the electrical signal with a threshold; when the electrical signal is greater than a preset first threshold, the control module outputs a first duty cycle power control signal to the a power adjustment module; when the electrical signal is greater than a preset second threshold and less than the first threshold, the control module outputs a second duty cycle power control signal to the power adjustment module; when the electrical signal The control module outputs a third duty cycle power control signal to the power adjustment module when the third threshold is greater than the preset third threshold and is less than the second threshold; otherwise the control module outputs a fourth duty cycle power control signal To the power conditioning module.
  • the smoking trigger module comprises an air flow sensor and/or a button trigger unit.
  • the power module further includes a battery and a voltage conversion unit;
  • the electronic cigarette that automatically controls the atomization power further includes an oil quantity prompting module;
  • the voltage conversion unit is configured to convert a voltage of the battery, and provide the output voltage to the light emitting module and the at least one light detecting module;
  • the oil quantity prompting module is configured to prompt the oil quantity according to the control signal of the main controller.
  • the present invention further provides a method for automatically controlling the atomization power, comprising the following steps: [0025] S1.
  • the main controller detects whether there is a smoking signal, and if yes, proceeds to step S2; otherwise, continues to detect ;
  • the main controller output control signal controls the illumination module to emit light
  • the light emitting module illuminates the oil guiding member
  • the light detecting module detects the refracted light or reflected light of the oil guiding member and outputs an electrical signal reflecting the transmittance of the oil guiding member to the main controller;
  • S5. The main controller outputs a power control signal according to the electrical signal
  • the power adjustment module adjusts the atomization power of the atomizer heating wire according to the power control signal.
  • the method further comprises the step of: displaying the amount of oil.
  • the step S4 includes:
  • the power adjustment module includes a switch
  • the main controller is connected to the control pole of the switch tube
  • the main controller outputs a power control signal to the control pole
  • the duty ratio of the power control signal follows the transmittance The signal changes according to the change of the signal
  • the switch tube adjusts the conduction time of the atomizer heating wire according to the duty ratio of the power control signal, thereby adjusting the atomization power of the atomizer heating wire.
  • the step S5 includes:
  • S51 Determine whether the electrical signal is greater than a preset first threshold, and if yes, output a first duty cycle power control signal to the power adjustment module, otherwise proceed to the next step;
  • S52 Determine whether the electrical signal is greater than a preset second threshold, and if yes, output a second duty cycle power control signal to the power adjustment module, otherwise proceed to the next step;
  • the present invention has the following beneficial effects:
  • the present invention can automatically control the atomization power of the electronic cigarette by the electrical signal of the transmittance of the reaction oil guiding member provided to the main controller by the light detecting component.
  • the method for automatically controlling the atomization power provided by the present invention has the advantages of simplicity, low cost, and easy implementation, and can significantly improve the user experience. Brief description of the drawing
  • FIG. 1 is a block diagram showing the structure of an electronic cigarette according to a first embodiment of the present invention
  • FIG. 2 is a circuit diagram of an electronic cigarette according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of an electronic cigarette according to a third embodiment of the present invention.
  • FIG. 4 is a circuit diagram of an electronic cigarette according to a fourth embodiment of the present invention.
  • FIG. 5 is a block diagram showing the structure of a main controller of a fifth embodiment provided by the present invention.
  • FIG. 6 is a flowchart of a power control method according to a sixth embodiment of the present invention
  • 7 is a flowchart of a power control method according to a seventh embodiment of the present invention.
  • the electronic cigarette of the embodiment includes: a main controller 1, an atomizer heating wire 2, an oil guiding member 3 in contact with the atomizing device heating wire 2, a light emitting module 4, and a first light detecting module 51.
  • the light emitting module 4, the first light detecting module 51 and the second light detecting module 52 constitute the light detecting component in the embodiment.
  • the oil guiding member 3 is a glass fiber rope having a columnar structure, and the atomizing device heating wire 2 is wound around the oil guiding member 3; wherein, the oil guiding oil
  • the piece 3 can also be arranged in a cylindrical structure, and the atomizer heating wire 2 is spirally shaped and sleeved in the oil guiding member 3, and the oil guiding member 3 can also be arranged in a plate-like structure.
  • the atomizer heating wire 2 has a disk-shaped spiral structure and is attached to one side of the oil guiding member. Therefore, the specific structure of the atomizing device heating wire 2 and the oil guiding member 3 is not limited herein.
  • the working principle of the electronic cigarette provided in this embodiment is as follows:
  • the power module 9 is configured to supply power to the functional modules in the circuit, which are respectively electrically connected to the light emitting module 4, the first light detecting module 51, the second light detecting module 52, the oil quantity prompting module 7, and the smoking triggering module 8. , main controller 1 and power conditioning module 6. To emphasize the core signal flow in this application, Figure 1 omits the electrical connection of the power module 9 to some of the functional modules.
  • the smoking trigger module 8 is for transmitting a smoking signal to the main controller 1.
  • the smoking trigger module 8 can be a push button switch. When the user is ready to smoke or want to stop smoking, just trigger the button switch. The user's button signal is sent to the main controller 1, and the main controller 1 further controls the on/off of the electronic cigarette.
  • the smoking trigger module 8 can also be an air flow sensor. After the user smokes, the airflow sensor senses the negative pressure generated by the user's smoking in the electronic cigarette. When the negative pressure exceeds the preset threshold, the airflow sensor sends a smoking signal to the main controller 1 to activate the electronic cigarette.
  • the main controller 1 controls the lighting module 4 to emit light.
  • the incident light 20 emitted from the light-emitting module 4 is irradiated onto the oil guiding member 3, a part of the light is reflected by the oil guiding member 3, and a part of the light is transmitted from the oil guiding member 3.
  • the reflected light 40 is received by the first light detecting module 51 and converted into a first electrical signal and sent to the main controller 1.
  • the transmitted light 60 is received by the second light detecting module 52 and converted into a second electrical signal and sent to the main controller. 1.
  • the strengths of the first electrical signal and the second electrical signal are related to the received light intensity of the reflected light 40 and the transmitted light 60, respectively.
  • the light intensity of the reflected light 40 and the transmitted light 60 is in turn related to the amount of smoke absorbed by the oil guiding member 3. Therefore, both the first electrical signal and the second electrical signal are related to the amount of smoke absorbed by the oil guiding member 3, and this relationship has been previously stored in the main controller 1.
  • the main controller 1 After receiving the electrical signals sent by the first light detecting module 51 and the second light detecting module 52, the main controller 1 can obtain the absorbed energy in the oil guiding member 3 according to the corresponding relationship between the pre-stored electrical signal and the amount of the soot oil.
  • the amount of smoke oil information is sent to the oil quantity prompting module 7 for display.
  • the main controller 1 sends a control signal to the power adjustment module 6 according to the amount of smoke oil to adjust the atomization power of the atomizer heating wire 2.
  • the atomizer heating wire 2 is usually a resistance device which generates a high temperature by electric heat generation, thereby atomizing the oil.
  • the oil guiding member 3 is in contact with the atomizing device heating wire 2, and the oil is guided to the atomizing device heating wire 2 for atomizing the atomizing device heating wire 2.
  • the atomizer heating wire 2 is connected to the power regulating module 6, and the atomizing power of the atomizing device heating wire 2 is regulated by the power adjusting module 6. It can be understood that the power adjustment of the atomizer heating wire 2 by the power adjustment module 6 includes powering off the atomizer heating wire 2.
  • the oil quantity prompting module 7 may include a display screen and/or an indicator light.
  • the display is used to display numbers and/or text related to the amount of oil.
  • the indicator light can indicate the amount of oil by the degree of light and darkness, or it can indicate the insufficient amount of oil by flashing. It should be understood that, in the present invention, the oil quantity prompting module 7 is an optional function module, and can be selected according to actual needs to be included in the electronic cigarette provided by the present invention.
  • the present embodiment provides an electronic cigarette that uses the optical signal to detect the amount of smoke absorbed by the oil guiding member 3 and adjusts the atomizing power of the electronic cigarette according to the amount of the smoke oil, which can significantly improve the mouthfeel and atomization efficiency of the electronic cigarette. And the detection cost is low, the method is simple and easy to implement.
  • FIG. 2 is a circuit diagram of an electronic cigarette according to a second embodiment of the present invention.
  • the electronic cigarette circuit diagram of this embodiment can be divided into two parts, one part is a circuit diagram of the battery assembly 100, and the other part is a circuit diagram of the atomizer 200.
  • the battery assembly 100 and the atomizer 200 are electrically connected to each other through respective interfaces to form an electronic cigarette circuit diagram.
  • the battery BT and the voltage conversion unit 91 (shown by a broken line in the figure) constitute the power supply module of the present application for supplying voltage to each circuit module.
  • the voltage conversion unit 91 is configured to convert the voltage of the battery BT into a suitable voltage.
  • the voltage converted by the voltage conversion unit 91 is input to the light emitting module, the first light detecting module 51, and the second light detecting module 52.
  • the voltage conversion unit 91 includes a voltage conversion chip U3.
  • the voltage conversion chip U3 is of the type TLV7 0430, and the voltage conversion chip U3 has three pins, the first pin is the voltage input terminal Vin, and the third pin is the voltage output terminal. Vout, the second pin is the ground GND.
  • the first pin of the voltage conversion chip U3 is connected to the positive electrode of the battery BT, and the third pin of the voltage conversion chip U3 is connected to the anode of the light-emitting diode LED5, the resistor R4 and the resistor R5, respectively, and the 2-pin of the voltage conversion chip U3 is grounded.
  • a capacitor C2 is connected between the first and second pins of the voltage conversion chip U3, and a resistor R3 and a capacitor C3 are connected between the third and second pins of the voltage conversion chip U3.
  • the button switch SW2 is a smoking trigger module, and the user sends a smoking signal to the main controller U4 by triggering the button switch SW2.
  • the switch tube Q2 is a power adjustment module.
  • the light-emitting diodes LED3 and LED4 constitute a fuel quantity prompting module.
  • the light emitting diode LED5 is a light emitting module, and the incident light 20 emitted from the atomizer 200 is irradiated onto the oil guiding member Y3.
  • the resistor R4 and the photoresistor R17 constitute a first light detecting module 51 for receiving the reflected light 40 of the oil guiding member Y 3 .
  • the resistor R5 and the photoresistor R18 constitute a second light detecting module 52 for receiving the transmitted light 60 of the oil guiding member Y3.
  • the oil guiding member Y3 is in contact with the resistor R19 to guide the oil to the resistor R19.
  • the resistor R19 is an atomizer heating wire that atomizes the smoke oil guided from the oil guiding member Y3 by electric heating.
  • One end of the push button switch SW2 is connected to the third pin of the main controller U4, and the other end is grounded.
  • the push button switch SW2 When the push button switch SW2 is pressed, the third pin of the main controller U4 inputs a low level, and the fifth pin of the main controller U4 outputs a low level.
  • the anode of the light-emitting diode LED5 is connected to the output end of the voltage conversion unit 91, the cathode thereof is connected to the fifth pin of the main controller U4 through the resistor R12, so when the fifth pin of the main controller U4 outputs a low level, the light is emitted.
  • the diode LED5 is turned on, thereby emitting light to illuminate the oil guiding member Y3.
  • the incident ray 20 that is incident on the oil guiding member ⁇ 3 is partially reflected and the other portion is transmitted from the oil guiding member ⁇ 3.
  • the reflected light 40 is irradiated onto the photoresistor R17
  • the transmitted light 60 is irradiated onto the photoresistor R1S.
  • the resistance values of the photoresistor R17 and the photoresistor R18 are changed.
  • the resistor R4 is connected in series with the photoresistor R17 and connected between the output terminal of the voltage converting unit 91 and the ground, and the photoresistor R17
  • the upper divided voltage is input to the 8th pin of the master U4.
  • the resistor R5 and the photoresistor R18 are connected in series and connected between the output terminal of the voltage converting unit 91 and the ground, and the divided voltage on the photoresistor R18 is input to the 7th pin of the main controller U4.
  • the main controller U4 the correspondence between the amount of smoke absorbed by the oil guiding member Y3 and the partial pressure value on the photoresistor has been previously stored, and therefore, the main controller U4 can be based on its eighth pin and seventh lead.
  • the amount of partial pressure received by the foot is obtained to obtain the amount of smoke absorbed by the oil guiding member Y3, and the brightness of the light-emitting diodes LED3 and LED4 is controlled by the fourth foot outputting control signal.
  • the main controller U4 further outputs a PWM (Pulse Width Modulation) signal having a different duty ratio from the second pin to the gate of the bypass transistor Q2 according to the amount of smoke.
  • the source of the switching transistor Q2 is connected to the positive terminal of the battery BT, the drain is connected to one end of the resistor R19, and the other end of the resistor R19 is grounded. Therefore, when the bypass transistor Q2 is turned on, the resistor R19 is turned on, and a current flows through the resistor R19 to generate heat, thereby atomizing the smoke oil.
  • the main controller U4 adjusts the on-time of the switching transistor Q2 by adjusting the duty ratio of the PWM signal outputted from the second pin, thereby controlling the average atomizing power of the resistor R19.
  • the battery assembly 100 further includes a battery voltage detecting module composed of resistors R13 and R14 and an output voltage detecting module composed of resistors R7 and R11.
  • the battery voltage detection module is used to detect the voltage value of the battery.
  • the output voltage detection module is used to detect the voltage of the output of the switch Q2 to the resistor R19.
  • the resistor R13 is connected to the positive pole of the battery BT, the other end is connected to one end of the resistor R14, and the other end of the resistor R14 is grounded.
  • the divided voltage on the resistor R14 is input to the 9th pin I of the main controller U4, and the main controller U4 obtains the voltage of the battery by detecting the voltage value of the 9th pin.
  • One end of the resistor R7 is connected to the drain of the bypass transistor Q2, the other end is connected to one end of the resistor R11, and the other end of the resistor R11 is grounded.
  • the divided voltage on the resistor R11 is input to the sixth pin of the main controller U4, and the main controller U4 obtains the voltage output from the switch Q2 by detecting the voltage value of the sixth pin.
  • the main controller U4 can grasp the battery voltage and the voltage input on the resistor R19, and can adjust the atomization power by adjusting the conduction time of the resistor R19.
  • the main controller U4 not only outputs a power control signal based on the divided voltage signals on the photo resistors R17 and R18, but also outputs a power control signal in consideration of the voltage on the battery BT.
  • the main controller U4 is modeled as MC32P7010A0I, and has 10 pins in total.
  • the first bow I of the main controller U4 is connected to the positive electrode of the battery BT through a anti-reverse diode D2.
  • the first pin of the main controller U4 is connected to the grounding capacitor C4.
  • the 10th pin of the master U 4 is grounded.
  • the electronic cigarette of the embodiment includes: a main controller 1, an atomizer heating wire 2, an oil guiding member 3 in contact with the atomizing device heating wire 2, a light emitting module 4, a light detecting module 5, and power.
  • the light emitting module 4 and the light detecting module 5 constitute the light detecting component in this embodiment.
  • the working principle of the electronic cigarette provided in this embodiment is as follows:
  • the power module 9 is configured to supply power to each functional module in the circuit, which is electrically connected to the light emitting module 4, the light detecting module 5, the oil quantity prompting module 7, the smoking triggering module 8, the main controller 1 and the power regulating module, respectively. 6. To emphasize the core signal flow in this application, Figure 3 omits the electrical connection of the power module 9 to some of the functional modules.
  • the smoking trigger module 8 is for transmitting a smoking signal to the main controller 1.
  • the smoking trigger module 8 can be a push button switch. When the user is ready to smoke or want to stop smoking, just trigger the button switch. The user's button signal is sent to the main controller 1, and the main controller 1 further controls the on/off of the electronic cigarette.
  • the smoking trigger module 8 can also be an air flow sensor. After the user smokes, the airflow sensor can sense the negative pressure generated in the electronic cigarette when the user smokes. When the negative pressure exceeds the preset threshold, the airflow sensor sends a smoking signal to the main controller 1 to start the electronic cigarette.
  • the main controller 1 controls the lighting module 4 to emit light.
  • the incident light 20 emitted from the light-emitting module 4 is irradiated onto the oil guiding member 3
  • the transmitted light 60 transmitted from the oil guiding member 3 is received by the light detecting module 5 and converted into an electrical signal and sent to the main controller 1.
  • the strength of the electrical signal is related to the received light intensity of the transmitted light 60.
  • the light intensity of the transmitted light 60 is in turn related to the amount of smoke absorbed by the oil guiding member 3. Therefore, the electrical signal is related to the amount of smoke absorbed by the oil guiding member 3, and this relationship has been previously stored in the main controller 1.
  • the main controller 1 After receiving the electrical signal sent by the light detecting module 5, the main controller 1 obtains the information of the amount of smoke absorbed in the oil guiding member 3 according to the corresponding relationship between the pre-stored electrical signal and the amount of the smoke oil, and the smoke oil is obtained. The quantity information is sent to the oil quantity prompting module 7 for display. At the same time, the main controller 1 sends a control signal to the power adjustment module 6 according to the amount of smoke oil to adjust the atomization power of the atomizer heating wire 2.
  • the atomizer heating wire 2 is usually a resistance device which generates a high temperature by electric heat generation, thereby atomizing the oil.
  • the oil guiding member 3 is in contact with the atomizing device heating wire 2, and the tobacco oil is guided to the atomizing device heating wire 2 for the atomizer
  • the hot wire 2 is atomized.
  • the atomizer heating wire 2 is connected to the power conditioning module 6, and the atomizing power of the atomizer heating wire 2 is regulated by the power conditioning module 6.
  • the oil quantity prompting module 7 may include a display screen and/or an indicator light.
  • the display is used to display numbers and/or text related to the amount of oil.
  • the indicator light can indicate the amount of oil by the degree of light and darkness, or it can indicate the insufficient amount of oil by flashing. It should be understood that, in the present invention, the oil quantity prompting module 7 is an optional function module, and can be selected according to actual needs to be included in the electronic cigarette provided by the present invention.
  • the present embodiment provides an electronic cigarette that uses the optical signal to detect the amount of smoke absorbed by the oil guiding member 3 and adjusts the atomization power of the electronic cigarette according to the amount of the smoke oil, which can significantly improve the mouthfeel and atomization efficiency of the electronic cigarette. And the detection cost is low, the method is simple and easy to implement. Compared with the first embodiment, this embodiment uses only one light detecting module, and the circuit structure of the electronic cigarette is simpler. However, the use of two light detection modules can improve the reliability of detection.
  • FIG. 4 is a circuit diagram of an electronic cigarette according to a fourth embodiment of the present invention.
  • the electronic cigarette circuit diagram of this embodiment can be divided into two parts, one part is a circuit diagram of the battery assembly 300, and the other part is a circuit diagram of the atomizer 400.
  • the battery assembly 300 and the atomizer 400 are electrically connected to each other through respective interfaces to form an electronic cigarette circuit diagram.
  • the battery BT and the voltage conversion unit 91 constitute the power supply module of the present application for supplying voltage to each circuit module.
  • the voltage conversion unit 91 is configured to convert the voltage of the battery BT into a suitable voltage.
  • the voltage converted by the voltage conversion unit 91 is input to the light emitting module, the first light detecting module 51, and the second light detecting module 52.
  • the voltage conversion unit 91 includes a voltage conversion chip U3.
  • the voltage conversion chip U3 has three pins in total. The first pin is the voltage input terminal Vin, the third pin is the voltage output terminal Vout, and the second pin is the ground terminal GND.
  • the first pin of the voltage conversion chip U3 is connected to the positive electrode of the battery BT, and the third pin of the voltage conversion chip U3 is connected to the anode of the light-emitting diode LED5, the resistor R4 and the resistor R5, and the 2-pin of the voltage conversion chip U3 is grounded.
  • a capacitor C2 is connected between the first and second pins of the voltage conversion chip U3, and a resistor R3 and a capacitor C3 are connected between the third and second pins of the voltage conversion chip U3.
  • the button SW2 is a smoking trigger module, and the user sends a smoking signal to the main controller U4 through the trigger button SW2.
  • the switch tube Q2 is a power adjustment module.
  • the light-emitting diodes LED3 and LED4 constitute a fuel quantity prompting module.
  • the light emitting diode LED5 is a light emitting module, and the incident light 20 emitted from the atomizer is irradiated onto the oil guiding member Y3.
  • the resistor R5 and the photoresistor R18 constitute a light detecting module 5 (shown by a broken line in the figure) for receiving the transmitted light 40 transmitted from the oil guiding member Y3.
  • the oil guiding member Y3 is in contact with the resistor R19 to guide the oil to the resistor R19.
  • the resistor R19 is an atomizer heating wire that atomizes the smoke oil guided from the oil guiding member Y3 by electric heating.
  • One end of the push button switch SW2 is connected to the third pin of the main controller U4, and the other end is grounded.
  • the push button switch SW2 When the push button switch SW2 is pressed, the third pin of the main controller U4 inputs a low level, and the fifth pin of the main controller U4 outputs a low level.
  • the anode of the light-emitting diode LED5 Since the anode of the light-emitting diode LED5 is connected to the output end of the voltage conversion unit 91, the cathode thereof is connected to the fifth pin of the main controller U4 through the resistor R12, so when the fifth pin of the main controller U4 outputs a low level, the light is emitted.
  • the diode LED5 is turned on to emit incident light 20 to illuminate the oil guiding member Y3.
  • the LEDs LED5 Under the illumination of the LEDs LED5, a portion of the incident light rays 20 are transmitted from the oil guides ⁇ 3 to form transmitted light 60.
  • the transmitted light 60 is incident on the photoresistor R18.
  • the resistance value of the photoresistor R18 changes.
  • the resistor R5 and the photoresistor R18 are connected in series and connected between the output terminal of the voltage converting unit 91 and the ground, and the divided voltage on the photoresistor R18 is input to the 7th pin of the main controller U4.
  • the main controller U4 In the main controller U4, the correspondence between the amount of smoke absorbed by the oil guiding member ⁇ 3 and the partial pressure value on the photoresistor has been pre-stored, so that the main controller U4 can receive the sub-pin according to its seventh pin.
  • the magnitude of the pressure is used to obtain the amount of smoke absorbed by the oil guide ⁇ 3, and the brightness of the light-emitting diodes LED3 and LED4 is controlled by the fourth foot output control signal.
  • the main controller U4 further outputs a PWM (Pulse Width Modulation) signal with a different duty ratio from the 2nd pin to the gate of the switching transistor Q2 according to the amount of smoke.
  • PWM Pulse Width Modulation
  • the source of the switch Q2 is connected to the positive terminal of the battery ,, the drain is connected to one end of the resistor R19, and the other end of the resistor R19 is grounded. Therefore, when the switch Q2 is turned on, the resistor R19 is turned on, and a current flows through the resistor R19 to generate heat, thereby atomizing the smoke oil.
  • the main controller U4 adjusts the conduction time of the switching transistor Q2 by adjusting the duty ratio of the PWM signal outputted by the second bow I, and thereby controls the average atomizing power of the resistor R19.
  • the battery assembly 100 further includes a battery voltage detecting module composed of resistors R13 and R14 and an output voltage detecting module composed of resistors R7 and R11.
  • the battery voltage detection module is used to detect the voltage value of the battery.
  • the output voltage detecting module is configured to detect the voltage of the output of the bypass transistor Q2 to the resistor R19.
  • the resistor R13 is connected to the positive pole of the battery pack, the other end is connected to one end of the resistor R14, and the other end of the resistor R14 is grounded. resistance
  • the divided voltage on R14 is input to the 9th pin I of the main controller U4, and the main controller U4 obtains the voltage of the battery by detecting the voltage value of the 9th pin.
  • One end of the resistor R7 is connected to the drain of the switching transistor Q2, the other end is connected to one end of the resistor R11, and the other end of the resistor R11 is grounded.
  • the divided voltage on the resistor R11 is input to the sixth pin of the main controller U4, and the main controller U4 obtains the voltage output from the switching transistor Q2 by detecting the voltage value of the sixth pin.
  • the main controller U4 can grasp the battery voltage and the voltage input on the resistor R19, and can adjust the atomizing power by adjusting the conduction time of the resistor R19.
  • the main controller U4 not only outputs a power control signal based on the divided voltage signals on the photo resistors R17 and R18, but also outputs a power control signal in consideration of the voltage on the battery BT.
  • the main controller U4 model is MC32P7010A0I, a total of 10 pins.
  • the 1st bow I of the main controller U4 is connected to the battery BT positive pole through a anti-reverse diode D2 to supply power to the main controller U4.
  • the first pin of the main controller U4 is connected to the grounding capacitor C4.
  • the 10th pin of the master U4 is grounded.
  • the 8th pin of the master U4 is left floating.
  • the main controller 1 of this embodiment includes a threshold comparison module 11 and a control module 12.
  • the threshold comparison module 11 is configured to compare the electrical signal from the light detecting module 5 received by the main controller 1 with a preset threshold.
  • the control module 12 is configured to output a power control signal with different duty ratios to the power adjustment module 6 according to the comparison result of the threshold comparison module 11.
  • the control module 12 when the electrical signal is greater than the preset first threshold ⁇ , the control module 12 outputs the first duty cycle power control signal to the power adjustment module 6; when the electrical signal is greater than the preset second threshold and less than the first threshold, The control module 12 outputs a second duty cycle power control signal to the power adjustment module 6; when the electrical signal is greater than the preset third threshold and less than the second threshold ⁇ , the control module 12 outputs the third duty cycle power control signal to the power adjustment Module 6; otherwise control module 12 in turn outputs a fourth duty cycle power control signal to power conditioning module 6.
  • FIG. 6 is a flow chart of a method for automatically controlling atomization power according to a sixth embodiment of the present invention.
  • the method for automatically controlling the atomization power provided by the embodiment is used for the electronic cigarette, the method includes the following steps: [0080] The SL main controller detects whether there is a smoking signal, and if so, proceeds to step S2; Otherwise continue to test; [0081] The main controller actually detects the smoking signal input by the smoking trigger module, and determines whether there is a smoking action or a smoking trigger action. If there is, proceed to the next step, if not, continue the test.
  • the main controller output control signal controls the illumination of the illumination module
  • the signal output of the main controller outputs a control signal to control the illumination of the illumination module.
  • the light emitting module illuminates the oil guiding member
  • the light emitting module uses a light emitting diode.
  • the light emitted by the light-emitting diode is irradiated onto the stored oil member, and the intensity of the light irradiated onto the oil guiding member is reflected and transmitted according to the amount of the oil absorbed on the oil guiding member.
  • the light detecting module detects the refracted light or reflected light of the oil guiding member and outputs an electrical signal reflecting the transmittance of the oil guiding member to the main controller;
  • the light detecting module comprises a photoresistor or a photosensor.
  • the electrical signal output by the light receiving module reflects the light intensity of the reflected light and/or the transmitted light, thereby reflecting the amount of smoke absorbed by the oil guiding member.
  • step S4 further includes: S41. detecting reflected light of the oil guiding member and outputting the first electrical signal; and S42. detecting transmitted light of the oil guiding member and outputting the second electric signal.
  • the main controller derives the amount of smoke from the first electrical signal and the second electrical signal.
  • S5. The main controller outputs a power control signal according to the electrical signal
  • the electrical signal has a correspondence with the amount of smoke absorbed by the oil guiding member, and this correspondence is previously stored in the main controller.
  • the main controller can obtain the amount of smoke oil absorbed by the oil guiding member according to the received electric signal and the corresponding relationship between the pre-stored electric signal and the amount of the soot oil, and then output the corresponding power control signal.
  • the power adjustment module adjusts the atomization power of the atomizer heating wire according to the power control signal.
  • the present embodiment provides a method for detecting the amount of smoke absorbed by the oil guide member by using an optical signal and adjusting the atomization power of the electronic cigarette according to the amount of the smoke oil, which can significantly improve the mouthfeel and atomization efficiency of the electronic cigarette, and The detection cost is low, the method is simple and easy to implement.
  • 7 is a flow chart of a method for automatically controlling atomization power according to a seventh embodiment of the present invention. As shown in FIG. 7, the method for automatically controlling the atomization power provided by the embodiment is used for an electronic cigarette, and the method includes the following steps:
  • step S1 The main controller detects whether there is a smoking signal, and if yes, proceeds to step S2; otherwise, continues to detect;
  • the main controller detects the smoking signal input by the smoking trigger module and determines whether there is a smoking action or a smoking trigger action. If there is, proceed to the next step, if not, continue the test.
  • the main controller output control signal controls the illumination of the illumination module
  • the signal output of the main controller outputs a control signal to control the illumination of the illumination module.
  • the light emitting module illuminates the oil guiding member
  • the light emitting module employs a light emitting diode.
  • the light emitted by the light-emitting diode is irradiated onto the oil guiding member. According to the amount of the oil absorbed on the oil guiding member, the light intensity of the light irradiated onto the oil guiding member is reflected and transmitted.
  • step S4 The main controller determines whether the smoking is over, if yes, then go to step S6, otherwise go to step S5;
  • This step is added to facilitate the user to choose to stop smoking, and it is also possible to effectively prevent the atomizer from starting due to the user accidentally pressing the smoking trigger button.
  • the battery voltage VB can be obtained and input to the main controller through the battery voltage detecting module as described in the above embodiment.
  • the electrical signal VF is the voltage signal that the light detection module inputs to the main controller.
  • the main controller controls the lighting module to be turned off, and stops outputting the power adjustment signal, and returns to step S1;
  • the main controller determines that the smoking has ended, the main controller outputs a corresponding signal to the lighting module to turn off the lighting module, saving power. At the same time, the main controller stops outputting the power adjustment signal, turns off the power adjustment module, and stops the atomizer resistance wire from heating up.
  • the power adjustment signal output by the main controller is a PWM signal with different duty ratios.
  • Power The adjustment signal is related not only to the electrical signal VF provided by the light detecting module but also to the voltage VB of the battery. As the usage time increases, the voltage of the battery drops, causing the atomization power of the atomizer heating wire to decrease. Therefore, in order to overcome the influence of the battery voltage drop on the atomization power, it is necessary to comprehensively consider the battery voltage to output the power adjustment signal.
  • the power adjustment module is a switch tube connected in series with the atomizer heating wire.
  • the main controller controls the conduction time of the switch tube by transmitting a PWM signal having a different duty ratio to the control electrode of the bypass tube, thereby controlling the conduction time of the atomizer heating wire.
  • a PWM signal having a different duty ratio
  • the on-time of the atomizer heating wire is different, and the average atomization power is different.
  • the main controller determines whether the VF is greater than the preset second threshold VSET2, and if yes, proceeds to step S10, otherwise proceeds to step S11;
  • step S11 The main controller determines whether the VF is greater than the preset third threshold VSET3, and if so, then proceeds to step S12, otherwise to step S13;
  • S 14 The main controller outputs the PWM signal of the duty cycle to the power adjustment module, and proceeds to step S15;
  • the power adjustment module adjusts the atomization power of the atomizer heating wire according to the power control signal, and the process proceeds to step S4.
  • This embodiment provides a method of adjusting the electronic aerosolization power by adjusting the duty ratio of the PWM signal, and the duty ratio of the PWM signal is again determined by three threshold comparisons. Although there are only four power adjustment signals that can be output in this embodiment, the method is very simple and easy to implement, and the hardware and software costs are extremely low.
  • modules typically include hardware and/or a combination of hardware and software (eg, firmware). These modules may also include computer readable media (e.g., permanent media) containing instructions (e.g., software instructions) that, when executed by the processor, perform various functional features of the present invention. Accordingly, the scope of the present invention is not limited by the specific hardware and/or software features of the modules specifically recited in the embodiments unless specifically claimed.
  • the present invention may, in an embodiment, execute software instructions (eg, stored in non-permanent) by one or more processors (eg, microprocessors, digital signal processors, baseband processors, microcontrollers) Memory and/or permanent storage Device).
  • the invention can be implemented with application specific integrated circuits (ASICs) and/or other hardware components.
  • ASICs application specific integrated circuits
  • the above description of the various modules is divided into these modules for clarity. However, in actual implementations, the boundaries of the various modules may be ambiguous. For example, any or all of the functional modules herein may share various hardware and/or software components. Also for example, any and/or all of the functional blocks herein may be implemented in whole or in part by a shared processor executing software instructions. In addition, various software sub-modules executed by one or more processors can be shared among various software modules. Accordingly, the scope of the present invention is not limited by the limits of the various hardware and/or software components unless specifically claimed.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种自动控制雾化功率的电子烟及方法,电子烟包括用于为电子烟供电的电源模块(9),吸烟触发模块(8),主控器(1),雾化器电热丝(2),与雾化器电热丝(2)相接触的导油件(3),用于检测导油件(3)透光度的光检测组件(5)和功率调节模块(6),光检测组件(5)用于通过检测导油件(3)透光度,而导油件(3)的透光度可反映其吸收的烟油量,进而主控器(1)根据光检测组件(5)提供的检测信号输出相应的功率调节信号以调节电子烟的雾化功率,从而实现电子烟雾化功率的自动化控制,具有简单、成本低、易于实现等优点,可显著提升用户体验。

Description

说明书 发明名称:一种自动控制雾化功率的电子烟及方法 技术领域
[0001] 本发明涉及电子烟技术, 尤其涉及一种自动控制雾化功率的电子烟及方法。
背景技术
[0002] 电子烟是一种较为常见的仿真香烟电子产品, 其主要由电池杆和雾化器组成。
当吸烟者吸气时, 通过与雾化器电连接的开关组件开启雾化器, 其中, 雾化器 幵启后, 雾化器发热丝发热, 烟液受热蒸发雾化, 形成模拟烟气的气雾。
[0003] 现有的电子烟中, 当烟油均充足吋, 雾化器以一个恒定的雾化功率雾化烟油, 烟气口感纯正且出现不会烧棉现象。 但是随着使用时间的增加, 烟油含量逐渐 减少, 导油件上所吸收的烟油量也会减少, 如果此时还以恒定的雾化功率雾化 烟油, 烟气口感变差, 甚至出现烧棉而产生异味的情况, 从而给用户带来很不 好的体验。
[0004] 因此, 针对上述情况, 如何根据导油件上所吸收的烟油量来自动控制电子烟的 雾化功率, 使电子烟更人性化, 更能给用户带来良好的体验, 成为本领域技术 人员亟待解决的重要技术问题。
技术问题
[0005] 本发明所要解决的技术问题在于, 针对现有电子烟无法根据导油件上的烟油含 量来自动控制雾化功率的缺陷, 提供一种自动控制雾化功率的电子烟及方法。 问题的解决方案
技术解决方案
[0006] 为了解决上述技术问题, 本发明提供了一种自动控制雾化功率的电子烟, 包括 : 用于为电子烟供电的电源模块, 吸烟触发模块, 主控器, 雾化器电热丝, 与 所述雾化器电热丝相接触的导油件, 其中, 还包括功率调节模块和用于检测所 述导油件透光度的光检测组件, 所述光检测组件用于通过检测所述导油件透光 度确定所述导油件吸收的烟油量;
[0007] 所述光检测组件包括用于照射所述导油件的发光模块和至少一个光检测模块; 其中,
[0008] 所述主控器分别连接吸烟触发模块、 发光模块、 至少一个光检测模块和功率调 节模块; 所述功率调节模块连接所述雾化器电热丝;
[0009] 所述吸烟触发模块用于感应吸烟信号并将所述吸烟信号发送至所述主控器; [0010] 所述主控器用于根据所述吸烟信号控制所述发光模块发光, 所述至少一个光检 测模块用于接收在所述发光模块照射下从所述导油件反射出来的反射光或透射 出来的透射光, 并根据所接收到的反射光强度或透射光强度输出电信号至所述 主控器, 从而所述主控器根据输入的电信号强度发送功率控制信号至所述功率 调节模块;
[0011] 所述功率调节模块用于根据所述功率控制信号调节所述雾化器电阻丝的雾化功 率。
[0012] 优选地, 所述至少一个光检测模块包括用于接收所述导油件的反射光并输出第 一电信号的第一光检测模块和用于接收所述导油件的透射光并输出第二电信号 的第二光检测模块。
[0013] 优选地, 所述第一光检测模块和所述第二光检测模块各包括一个光敏电阻或光 敏传感器, 用于接收光信号并对应输出电信号。
[0014] 优选地, 所述第一光检测模块还包括第一分压电阻, 所述第一分压电阻一端与 对应的所述光敏电阻或光敏传感器串联, 所述第一分压电阻的另一端用于外接 电源正极, 所述光敏电阻或光敏传感器的另一端接地, 所述第二电信号为所述 光敏电阻或光敏传感器上的分压。
[0015] 优选地, 所述第二光检测模块还包括第二分压电阻, 所述第二分压电阻一端与 对应的所述光敏电阻或光敏传感器串联, 所述第二分压电阻的另一端用于外接 电源正极, 所述光敏电阻或光敏传感器的另一端接地, 所述第二电信号为所述 光敏电阻或光敏传感器上的分压。
[0016] 优选地, 所述发光模块为发光二极管。
[0017] 优选地, 所述功率调节模块包括一个开关管, 所述主控器连接至所述幵关管的 控制极, 所述主控器用于将所述功率控制信号输出至所述控制极, 所述功率控 制信号的占空比随着所述电信号的变化而变化, 所述开关管用于根据所述功率 控制信号的占空比调节所述雾化器电热丝的导通时间, 进而调节所述雾化器电 热丝的功率。
[0018] 优选地, 所述主控器进一步包括阈值比较模块和控制模块;
[0019] 所述阈值比较模块用于将所述电信号与阈值进行比较; 当所述电信号大于预设 的第一阈值时, 所述控制模块输出第一占空比功率控制信号至所述功率调节模 块; 当所述电信号大于预设的第二阈值且小于所述第一阈值时, 所述控制模块 输出第二占空比功率控制信号至所述功率调节模块; 当所述电信号大于预设的 第三阈值且小于所述第二阈值时, 所述控制模块输出第三占空比功率控制信号 至所述功率调节模块; 否则所述控制模块输出第四占空比功率控制信号至所述 功率调节模块。
[0020] 优选地, 所述吸烟触发模块包括气流感应器和 /或按键触发单元。
[0021] 优选地, 所述电源模块进一步包括电池和电压转换单元; 所述自动控制雾化功 率的电子烟还包括油量提示模块; 其中,
[0022] 所述电压转换单元用于将所述电池的电压进行转换, 并将输出的电压提供给所 述发光模块和所述至少一个光检測模块;
[0023] 所述油量提示模块用于根据所述主控器的控制信号提示油量。
[0024] 相应地, 本发明还提供了一种自动控制雾化功率的方法, 包括以下步骤: [0025] S1.主控器检测是否有吸烟信号, 若有, 则转步骤 S2; 否则继续检测;
[0026] S2.主控器输出控制信号控制发光模块发光;
[0027] S3.发光模块照射导油件;
[0028] S4.光检测模块检测导油件的折射光或反射光并输出反映导油件透光度的电信 号至主控器;
[0029] S5.主控器根据电信号输出功率控制信号;
[0030] S6.功率调节模块根据功率控制信号调节雾化器电热丝的雾化功率。
[0031] 优选地, 还包括步骤: 显示油量。
[0032] 优选地, 所述步骤 S4包括:
[0033] S41.检测导油件的反射光并输出第一电信号;
[0034] S42.检测导油件的折射光并输出第二电信号。 [0035] 优选地, 功率调节模块包括一个幵关管, 主控器连接至开关管的控制极, 主控 器将功率控制信号输出至控制极, 功率控制信号的占空比随着透光度信号的变 化而变化, 开关管根据功率控制信号的占空比调节雾化器电热丝的导通吋间, 进而调节雾化器电热丝的雾化功率。
[0036] 优选地, 所述步骤 S5包括:
[0037] S51.判断电信号是否大于预设的第一阈值, 若是, 则输出第一占空比功率控制 信号至功率调节模块, 否则转下一步;
[0038] S52.判断电信号是否大于预设的第二阈值, 若是, 则输出第二占空比功率控制 信号至功率调节模块, 否则转下一步;
[0039] S53.判断电信号是否大于预设的第三阈值, 若是, 则输出第三占空比功率控制 信号至功率调节模块, 否则输出第四占空比功率控制信号至功率调节模块。 发明的有益效果
有益效果
[0040] 本发明具有如下有益效果: 本发明可通过光检测组件提供给主控器的反应导油 件透光度的电信号, 实现自动控制电子烟的雾化功率。 本发明提供的自动控制 雾化功率的方法具有简单、 成本低、 易于实现的优点, 可显著提升用户体验。 对附图的简要说明
附图说明
[0041] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0042] 图 1是本发明提供的第一实施例电子烟结构方框图;
[0043] 图 2是本发明提供的第二实施例电子烟电路图;
[0044] 图 3是本发明提供的第三实施例电子烟结构方框图;
[0045] 图 4是本发明提供的第四实施例电子烟电路图;
[0046] 图 5是本发明提供的第五实施例主控器结构方框图;
[0047] 图 6是本发明提供的第六实施例功率控制方法流程图; [0048] 图 7是本发明提供的第七实施例功率控制方法流程图。
发明实施例
本发明的实施方式
[0049] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0050] 图 1是本发明提供的第一实施例电子烟结构方框图。 如图 1所示, 本实施例电子 烟包括: 主控器 1、 雾化器电热丝 2、 与雾化器电热丝 2相接触的导油件 3、 发光 模块 4、 第一光检测模块 51、 第二光捡测模块 52、 功率调节模块 6、 油量提示模 块 7、 吸烟触发模块 8和电源模块 9。 其中发光模块 4、 第一光检测模块 51和第二 光检测模块 52构成了本实施例中的光检测组件。 需要说明的是, 在本实施例中 , 所述导油件 3为呈柱状结构的玻璃纤维绳, 所述雾化器电热丝 2缠绕在所述导 油件 3上; 其中, 所述导油件 3也可以设置成筒状结构, 所述雾化器电热丝 2呈柱 形螺旋状并套设在所述导油件 3内, 所述导油件 3还可以设置成板状结构, 所述 雾化器电热丝 2呈盘形螺旋状结构并贴合在所述导油件的一侧等; 因此, 所述雾 化器电热丝 2与导油件 3的具体结构在此不作限定。 本实施例提供的电子烟的工 作原理如下:
[0051] 电源模块 9用于为电路中的各功能模块供电, 其分别电连接至发光模块 4、 第一 光检测模块 51、 第二光检测模块 52、 油量提示模块 7、 吸烟触发模块 8、 主控器 1 和功率调节模块 6。 为着重体现本申请中的核心信号流, 图 1省略了电源模块 9与 部分功能模块的电连接。
[0052] 吸烟触发模块 8用于将吸烟信号发送至主控器 1。 在本发明提供的一个优选实施 例中, 吸烟触发模块 8可以是按键开关。 用户准备吸烟或要停止吸烟吋, 只需要 触发按键开关即可。 用户的按键信号会发送至主控器 1 , 主控器 1进一步控制电 子烟的通断。 在本发明提供的另一优选实施例中, 吸烟触发模块 8还可以是气流 感应器。 用户吸烟吋, 气流感应器感应到电子烟内因用户吸烟而产生的负压, 当负压超过预设阈值时, 气流感应器向主控器 1发送吸烟信号以启动电子烟。 [0053] 主控器 1接收到吸烟触发模块 8发送的吸烟信号后, 控制发光模块 4发光。 发光 模块 4发出的入射光线 20照射到导油件 3上后, 一部分光线被导油件 3反射, 一部 分光线从导油件 3中透射出去。 反射光线 40被第一光检测模块 51所接收并转换成 第一电信号发送至主控器 1 , 透射光线 60被第二光检测模块 52所接收并转换成第 二电信号发送至主控器 1。 第一电信号和第二电信号的强弱分别与所接收到的反 射光线 40和透射光线 60的光强度有关。 而反射光线 40和透射光线 60的光强度又 与导油件 3所吸收的烟油量有关。 因此, 第一电信号和第二电信号都与导油件 3 所吸收的烟油量相关, 并且这一关系已预先存储在主控器 1中。 主控器 1接收到 第一光检测模块 51和第二光检测模块 52发送来的电信号后, 根据预存的电信号 与烟油量的对应关系, 即可获得导油件 3中所吸收的烟油量信息, 并将烟油量信 息发送至油量提示模块 7进行显示。 同时, 主控器 1会根据烟油量发送控制信号 至功率调节模块 6以调节雾化器电热丝 2的雾化功率。
[0054] 雾化器电热丝 2通常为电阻器件, 通过电致发热产生高温, 进而将烟油雾化。
导油件 3与雾化器电热丝 2相接触, 将烟油引导至雾化器电热丝 2上, 供雾化器电 热丝 2雾化。 雾化器电热丝 2连接至功率调节模块 6 , 雾化器电热丝 2的雾化功率 由功率调节模块 6进行调节。 可以理解的是, 所述功率调节模块 6对所述雾化器 电热丝 2的功率调节包括断幵对所述雾化器电热丝 2的供电。
[0055] 油量提示模块 7可包括显示屏和 /或指示灯。 其中, 显示屏用于显示与油量相关 的数字和 /或文字。 而指示灯可通过明暗程度来表示油量的多少, 也可以通过闪 烁的方式来指示油量不足。 应理解, 在本发明中, 油量提示模块 7是一个可选功 能模块, 可根据实际需要来选择是否包含在本发明提供的电子烟中。
[0056] 本实施例提供了一种利用光信号检测导油件 3所吸收的烟油量并根据烟油量调 节电子烟的雾化功率的电子烟, 可显著提升电子烟口感和雾化效率, 而且检测 成本低、 方法简单且易于实现。
[0057] 图 2是本发明提供的第二实施例电子烟电路图。 如图 2所示, 本实施例的电子烟 电路图可分为两部分, 一部分是电池组件 100的电路图, 另一部分是雾化器 200 的电路图。 电池组件 100和雾化器 200通过各自的接口相互电连接而形成了电子 烟电路图。 [0058] 在电池组件 100中, 电池 BT和电压转换单元 91 (如图中虚线框所示) 构成了本 申请的电源模块, 用于为各电路模块提供电压。 其中, 电压转换单元 91用于将 电池 BT的电压转换成合适的电压。 经电压转换单元 91转换后的电压输入到发光 模块、 第一光检测模块 51和第二光检测模块 52中。 如图 2所示, 电压转换单元 91 包括一个电压转换芯片 U3。 在本实施例中, 所述电压转换芯片 U3的型号为 TLV7 0430, 所述电压转换芯片 U3共有 3个引脚被使用, 第 1引脚为电压输入端 Vin, 第 3引脚为电压输出端 Vout, 第 2引脚为接地端 GND。 电压转换芯片 U3的第 1引脚接 电池 BT的正极, 电压转换芯片 U3的第 3引脚分别连接至发光二极管 LED5的阳极 、 电阻 R4和电阻 R5 , 电压转换芯片 U3的 2引脚接地。 另外, 电压转换芯片 U3的 第 1和第 2引脚之间还连接了一个电容 C2, 电压转换芯片 U3的第 3和第二引脚之间 还连接了一个电阻 R3和一个电容 C3。 按键开关 SW2为吸烟触发模块, 用户通过 触发按键开关 SW2将吸烟信号发送至主控器 U4。 开关管 Q2为功率调节模块。 发 光二极管 LED3和 LED4构成油量提示模块。
[0059] 在雾化器 200中, 发光二极管 LED5为发光模块, 其发出的入射光线 20照射到导 油件 Y3上。 电阻 R4和光敏电阻 R17组成了第一光检测模块 51 , 用于接收导油件 Y 3的反射光线 40。 电阻 R5和光敏电阻 R18组成了第二光检测模块 52, 用于接收导 油件 Y3的透射光线 60。 导油件 Y3与电阻 R19相接触, 将烟油引导至电阻 R19上。 电阻 R19为雾化器电热丝, 其通过电致发热来雾化从导油件 Y3引导上来的烟油。
[0060] 整个电路的工作原理如下:
[0061] 按键开关 SW2的一端连接主控器 U4的第 3引脚, 另一端接地。 当按键开关 SW2 被按下后, 主控器 U4的第 3引脚输入低电平, 进而主控器 U4第 5引脚输出低电平 。 因为发光二极管 LED5的阳极连接电压转换单元 91的输出端, 其阴极通过电阻 R12连接至主控器 U4的第 5引脚, 所以当主控器 U4的第 5引脚输出低电平吋, 发 光二极管 LED5导通, 从而发出光线照射导油件 Y3。 照射到导油件 Υ3上的入射光 线 20—部分被反射, 另一部分从导油件 Υ3中透射出去。 其中, 反射光线 40照射 到光敏电阻 R17上, 而透射光线 60照射到光敏电阻 R1S上。 在光线的照射下, 光 敏电阻 R17和光敏电阻 R18的电阻值发生改变。 在第一光检测模块 51中, 电阻 R4 与光敏电阻 R17串联后连接于电压转换单元 91的输出端和地之间, 光敏电阻 R17 上的分压输入至主控器 U4的第 8引脚。 在第二光检测模块 52中, 电阻 R5和光敏电 阻 R18串联后连接于电压转换单元 91的输出端和地之间, 光敏电阻 R18上的分压 输入至主控器 U4的第 7引脚。 在主控器 U4中, 已预先存储了导油件 Y3所吸收的 烟油量与光敏电阻上的分压值的对应关系, 因此, 主控器 U4可根据其第 8引脚和 第 7引脚接收到的分压值的大小来获得导油件 Y3所吸收的烟油量, 进而通过其第 4脚输出控制信号来控制发光二极管 LED3和 LED4的亮度。 主控器 U4会进一步根 据烟油量从第 2引脚输出占空比不同的 PWM (脉冲宽度调制) 信号至幵关管 Q2 的栅极。 开关管 Q2的源极连接至电池 BT的正极, 漏极连接至电阻 R19的一端, 电阻 R19的另一端接地。 所以, 当幵关管 Q2导通时, 电阻 R19接通电源, 电流流 过电阻 R19使其发热, 进而雾化烟油。 主控器 U4通过调节其第 2引脚输出的 PWM 信号的占空比来调节开关管 Q2的导通时间, 进而控制电阻 R19的平均雾化功率。
[0062] 另外, 电池组件 100中还包括电阻 R13和 R14组成的电池电压检测模块和电阻 R7 和 R11组成的输出电压检测模块。 电池电压检测模块用于检测电池的电压值。 输 出电压检测模块用于检测开关管 Q2输出至电阻 R19的电压。 其中, 电阻 R13—端 连接电池 BT的正极, 另一端连接电阻 R14的一端, 电阻 R14的另一端接地。 电阻 R14上的分压输入至主控器 U4的第 9弓 I脚, 主控器 U4通过检测其第 9脚的电压值 来获得电池的电压。 电阻 R7的一端连接幵关管 Q2的漏极, 另一端连接电阻 R11 的一端, 电阻 R11的另一端接地。 电阻 R11上的分压输入至主控器 U4的第 6引脚 , 主控器 U4通过检测其第 6脚的电压值来获得开关管 Q2输出的电压。 通过实施电 池电压检测模块和输出电压检测模块, 主控器 U4可掌握电池电压和电阻 R19上输 入的电压, 进而可通过调节电阻 R19的导通时间来调节雾化功率。 因为随着使用 吋间的推移, 电池的电量会减少, 输出的电压会降低, 为了不影响吸烟的口感 , 当电池输出的电压降低吋, 需要延长雾化吋间, 从而使烟油充分被雾化。 因 此, 在本发明提供的一个优选实施例中, 主控器 U4不但根据光敏电阻 R17和 R18 上的分压信号来输出功率控制信号, 还综合考虑电池 BT上的电压来输出功率控 制信号。
[0063] 在本实施例中, 主控器 U4型号为 MC32P7010A0I, 共 10个引脚。 除上面介绍到 的第 2~9弓 I脚外, 主控器 U4的第 1弓 I脚通过一个防反二极管 D2连接电池 BT正极, 以便为主控器 U4供电。 同时, 主控器 U4的第 1引脚连接至接地电容 C4。 主控器 U 4的第 10引脚接地。
[0064] 图 3是本发明提供的第三实施例电子烟结构方框图。 如图 3所示, 本实施例电子 烟包括: 主控器 1、 雾化器电热丝 2、 与雾化器电热丝 2相接触的导油件 3、 发光 模块 4、 光检测模块 5、 功率调节模块 6、 油量提示模块 7、 吸烟触发模块 8和电源 模块 9。 其中发光模块 4、 光检测模块 5构成了本实施例中的光检测组件。 本实施 例提供的电子烟的工作原理如下:
[0065] 电源模块 9用于为电路中的各功能模块供电, 其分别电连接至发光模块 4、 光检 测模块 5、 油量提示模块 7、 吸烟触发模块 8、 主控器 1和功率调节模块 6。 为着重 体现本申请中的核心信号流, 图 3省略了电源模块 9与部分功能模块的电连接。
[0066] 吸烟触发模块 8用于将吸烟信号发送至主控器 1。 在本发明提供的一个优选实施 例中, 吸烟触发模块 8可以是按键开关。 用户准备吸烟或要停止吸烟吋, 只需要 触发按键开关即可。 用户的按键信号会发送至主控器 1 , 主控器 1进一步控制电 子烟的通断。 在本发明提供的另一优选实施例中, 吸烟触发模块 8还可以是气流 感应器。 用户吸烟吋, 气流感应器可以感应到因用户吸烟时电子烟内产生的负 压, 当负压超过预设阈值时, 气流感应器向主控器 1发送吸烟信号以启动电子烟
[0067] 主控器 1接收到吸烟触发模块 8发送的吸烟信号后, 控制发光模块 4发光。 发光 模块 4发出的入射光线 20照射到导油件 3上后, 从导油件 3中透射出去的透射光线 60被光检测模块 5所接收并转换成电信号发送至主控器 1。 电信号的强弱与所接 收到的透射光线 60的光强度有关。 而透射光线 60的光强度又与导油件 3所吸收的 烟油量有关。 因此, 电信号与导油件 3所吸收的烟油量相关, 并且这一关系已预 先存储在主控器 1中。 主控器 1接收到光检测模块 5发送来的电信号后, 根据预存 的电信号与烟油量的对应关系, 即可获得导油件 3中所吸收的烟油量信息, 并将 烟油量信息发送至油量提示模块 7进行显示。 同时, 主控器 1会根据烟油量信息 发送控制信号至功率调节模块 6以调节雾化器电热丝 2的雾化功率。
[0068] 雾化器电热丝 2通常为电阻器件, 通过电致发热产生高温, 进而将烟油雾化。
导油件 3与雾化器电热丝 2相接触, 将烟油引导至雾化器电热丝 2上, 供雾化器电 热丝 2雾化。 雾化器电热丝 2连接至功率调节模块 6, 雾化器电热丝 2的雾化功率 由功率调节模块 6进行调节。
[0069] 油量提示模块 7可包括显示屏和 /或指示灯。 其中, 显示屏用于显示与油量相关 的数字和 /或文字。 而指示灯可通过明暗程度来表示油量的多少, 也可以通过闪 烁的方式来指示油量不足。 应理解, 在本发明中, 油量提示模块 7是一个可选功 能模块, 可根据实际需要来选择是否包含在本发明提供的电子烟中。
[0070] 本实施例提供了一种利用光信号检测导油件 3所吸收的烟油量并根据烟油量调 节电子烟的雾化功率的电子烟, 可显著提升电子烟口感和雾化效率, 而且检测 成本低、 方法简单且易于实现。 与第一实施例相比, 本实施例只釆用了一个光 检测模块, 是的电子烟的电路结构更加简单。 但是, 同吋采用两个光检测模块 则可提高检测的可靠度。
[0071] 图 4是本发明提供的第四实施例电子烟电路图。 如图 4所示, 本实施例的电子烟 电路图可分为两部分, 一部分是电池组件 300的电路图, 另一部分是雾化器 400 的电路图。 电池组件 300和雾化器 400通过各自的接口相互电连接而形成了电子 烟电路图。
[0072] 其中, 在电池组件 300中, 电池 BT和电压转换单元 91 (如图中虚线框所示) 构 成了本申请的电源模块, 用于为各电路模块提供电压。 其中, 电压转换单元 91 用于将电池 BT的电压转换成合适的电压。 经电压转换单元 91转换后的电压输入 到发光模块、 第一光检测模块 51和第二光检测模块 52中。 如图 2所示, 电压转换 单元 91包括一个电压转换芯片 U3。 在本实施例中, 所述电压转换芯片 U3共有 3个 引脚被使用, 第 1引脚为电压输入端 Vin, 第 3引脚为电压输出端 Vout, 第 2引脚 为接地端 GND。 电压转换芯片 U3的第 1引脚接电池 BT的正极, 电压转换芯片 U3 的第 3引脚分别连接至发光二极管 LED5的阳极、 电阻 R4和电阻 R5 , 电压转换芯 片 U3的 2引脚接地。 另外, 电压转换芯片 U3的第 1和第 2引脚之间还连接了一个电 容 C2, 电压转换芯片 U3的第 3和第二引脚之间还连接了一个电阻 R3和一个电容 C 3。 按键幵关 SW2为吸烟触发模块, 用户通过触发按键幵关 SW2将吸烟信号发送 至主控器 U4。 开关管 Q2为功率调节模块。 发光二极管 LED3和 LED4构成油量提 示模块。 [0073] 在雾化器 400中, 发光二极管 LED5为发光模块, 其发出的入射光线 20照射到导 油件 Y3上。 电阻 R5和光敏电阻 R18组成了光检测模块 5 (如图中虚线框所示) , 用于接收从导油件 Y3透射出来的透射光线 40。 导油件 Y3与电阻 R19相接触, 将 烟油引导至电阻 R19上。 电阻 R19为雾化器电热丝, 其通过电致发热来雾化从导 油件 Y3引导上来的烟油。
[0074] 整个电路的工作原理如下:
[0075] 按键开关 SW2的一端连接主控器 U4的第 3引脚, 另一端接地。 当按键开关 SW2 被按下后, 主控器 U4的第 3引脚输入低电平, 进而主控器 U4第 5引脚输出低电平 。 因为发光二极管 LED5的阳极连接电压转换单元 91的输出端, 其阴极通过电阻 R12连接至主控器 U4的第 5引脚, 所以当主控器 U4的第 5引脚输出低电平吋, 发 光二极管 LED5导通, 从而发出入射光线 20照射导油件 Y3。 在发光二极管 LED5 的照射下, 一部分入射光线 20从导油件 Υ3中透射出去形成透射光线 60。 透射光 线 60照射到光敏电阻 R18上。 在光线的照射下, 光敏电阻 R18的电阻值发生改变 。 在光检测模块 5中, 电阻 R5和光敏电阻 R18串联后连接于电压转换单元 91的输 出端和地之间, 光敏电阻 R18上的分压输入至主控器 U4的第 7引脚。 在主控器 U4 中, 已预先存储了导油件 Υ3所吸收的烟油量与光敏电阻上的分压值的对应关系 , 因此, 主控器 U4可根据其第 7引脚接收到的分压值的大小来获得导油件 Υ3所吸 收的烟油量, 进而通过其第 4脚输出控制信号来控制发光二极管 LED3和 LED4的 亮度。 主控器 U4会进一步根据烟油量从第 2引脚输出占空比不同的 PWM (脉冲 宽度调制) 信号至开关管 Q2的栅极。 开关管 Q2的源极连接至电池 ΒΤ的正极, 漏 极连接至电阻 R19的一端, 电阻 R19的另一端接地。 所以, 当开关管 Q2导通时, 电阻 R19接通电源, 电流流过电阻 R19使其发热, 进而雾化烟油。 主控器 U4通过 调节其第 2弓 I脚输出的 PWM信号的占空比来调节开关管 Q2的导通吋间, 进而控 制电阻 R19的平均雾化功率。
[0076] 另外, 电池组件 100中还包括电阻 R13和 R14组成的电池电压检测模块和电阻 R7 和 R11组成的输出电压检测模块。 电池电压检测模块用于检测电池的电压值。 输 出电压检测模块用于检测幵关管 Q2输出至电阻 R19的电压。 其中, 电阻 R13—端 连接电池 ΒΤ的正极, 另一端连接电阻 R14的一端, 电阻 R14的另一端接地。 电阻 R14上的分压输入至主控器 U4的第 9弓 I脚, 主控器 U4通过检测其第 9脚的电压值 来获得电池的电压。 电阻 R7的一端连接开关管 Q2的漏极, 另一端连接电阻 R11 的一端, 电阻 R11的另一端接地。 电阻 R11上的分压输入至主控器 U4的第 6引脚 , 主控器 U4通过检测其第 6脚的电压值来获得开关管 Q2输出的电压。 通过实施电 池电压检测模块和输出电压检测模块, 主控器 U4可掌握电池电压和电阻 R19上输 入的电压, 进而可通过调节电阻 R19的导通时间来调节雾化功率。 因为随着使用 吋间的推移, 电池的电量会减少, 输出的电压会降低, 为了不影响吸烟的口感 , 当电池输出的电压降低时, 需要延长雾化时间, 从而使烟油充分被雾化。 因 此, 在本发明提供的一个优选实施例中, 主控器 U4不但根据光敏电阻 R17和 R18 上的分压信号来输出功率控制信号, 还综合考虑电池 BT上的电压来输出功率控 制信号。
[0077] 在本实施例中, 主控器 U4型号为 MC32P7010A0I, 共 10个引脚。 除上面介绍到 的第 2~7和 9引脚外 , 主控器 U4的第 1弓 I脚通过一个防反二极管 D2连接电池 BT正 极, 以便为主控器 U4供电。 同时, 主控器 U4的第 1引脚连接至接地电容 C4。 主 控器 U4的第 10引脚接地。 主控器 U4的第 8引脚悬空。
[0078] 图 5是本发明提供的第五实施例主控器结构方框图。 如图 5所示, 本实施例主控 器 1包括阈值比较模块 11和控制模块 12。 其中, 所述阈值比较模块 11用于将主控 器 1接收到的来自光检测模块 5电信号与预设的阈值进行比较。 所述控制模块 12 用于根据阈值比较模块 11的比较结果输出占空比不同的功率控制信号至功率调 节模块 6。 具体地, 当电信号大于预设的第一阈值吋, 控制模块 12输出第一占空 比功率控制信号至功率调节模块 6; 当电信号大于预设的第二阈值且小于第一阈 值时, 控制模块 12输出第二占空比功率控制信号至功率调节模块 6; 当电信号大 于预设的第三阈值且小于第二阈值吋, 控制模块 12输出第三占空比功率控制信 号至功率调节模块 6; 否则控制模块 12进而输出第四占空比功率控制信号至功率 调节模块 6。
[0079] 图 6是本发明提供的第六实施例自动控制雾化功率的方法流程图。 如图 6所示, 本实施例提供的自动控制雾化功率的方法用于电子烟, 本方法包括以下步骤: [0080] SL主控器检测是否有吸烟信号, 若有, 则转步骤 S2; 否则继续检测; [0081] 主控器实吋检测吸烟触发模块输入的吸烟信号, 并判断是否有吸烟动作或吸烟 触发动作。 如果有, 则进行下一步处理, 如果没有, 则继续检测。
[0082] S2.主控器输出控制信号控制发光模块发光;
[0083] 当检测到有吸烟动作或吸压触发动作时 , 主控器的信号输出弓 I脚就输出控制信 号, 以控制发光模块发光。
[0084] S3.发光模块照射导油件;
[0085] 在本发明提供的一个优选实施例中, 发光模块采用发光二极管。 发光二极管发 出的光照射到储导油件上, 根据导油件上所吸收的烟油量的不同, 照射到导油 件上的光被反射和被透射的光强度也相应有所不同。
[0086] S4.光检测模块检测导油件的折射光或反射光并输出反映导油件透光度的电信 号至主控器;
[0087] 在本发明提供的一个优选实施例中, 光检测模块包括光敏电阻或光敏传感器。
当导油件的透射光或反射光照射到光敏电阻或光敏传感器上时, 光敏电阻或光 敏传感器上的电阻会随着照射光的强度变化而变化, 进而输出不同的电信号到 主控器。 因此, 光接收模块输出的电信号反映了反射光和 /或透射光的光强度, 进而反映了导油件所吸收的烟油量。
[0088] 在本发明提供的另一优选实施例中, 步骤 S4还包括: S41.检测导油件的反射光 并输出第一电信号; 以及 S42.检测导油件的透射光并输出第二电信号。 主控器 根据第一电信号和第二电信号得出烟油量。
[0089] S5.主控器根据电信号输出功率控制信号;
[0090] 如上面所述, 电信号与导油件所吸收的烟油量有对应关系, 而这一对应关系被 预先存储在主控器中。 主控器根据接收到的电信号和预存的电信号与烟油量的 对应关系就可以得到导油件所吸收的烟油量信息, 进而输出对应的功率控制信 号。
[0091] S6.功率调节模块根据功率控制信号调节雾化器电热丝的雾化功率。
[0092] 本实施例提供了一种利用光信号检测导油件所吸收的烟油量并根据烟油量调节 电子烟的雾化功率的方法, 可显著提升电子烟口感和雾化效率, 而且检测成本 低、 方法简单且易于实现。 [0093] 图 7是本发明提供的第七实施例自动控制雾化功率的方法流程图。 如图 7所示, 本实施例提供的自动控制雾化功率的方法用于电子烟, 本方法包括以下步骤:
[0094] S1.主控器检测是否有吸烟信号, 若有, 则转步骤 S2; 否则继续检测;
[0095] 主控器实吋检测吸烟触发模块输入的吸烟信号, 并判断是否有吸烟动作或吸烟 触发动作。 如果有, 则进行下一步处理, 如果没有, 则继续检测。
[0096] S2.主控器输出控制信号控制发光模块发光;
[0097] 当检测到有吸烟动作或吸压触发动作时, 主控器的信号输出弓 I脚就输出控制信 号, 以控制发光模块发光。
[0098] S3.发光模块照射导油件;
[0099] 在本发明提供的一个优选实施例中, 发光模块采用发光二极管。 发光二极管发 出的光照射到导油件上, 根据导油件上所吸收的烟油量的不同, 照射到导油件 上的光被反射和被透射的光强度也相应有所不同。
[0100] S4.主控器判断吸烟是否结束, 若是则转步骤 S6, 否则转步骤 S5;
[0101] 增加这一步骤是为了方便用户随吋选择停止吸烟, 还可以有效防止因用户误按 了吸烟触发按键而导致雾化器启动的情况发生。
[0102] S5.获取电池电压 VB和光检测模块输入的反映导油件透光度的电信号 VF, 转步 骤 S7;
[0103] 在本实施例中, 电池电压 VB可以通过如上面实施例所介绍的电池电压检测模 块来获得并输入到主控器中。 电信号 VF则是光检测模块输入至主控器的电压信 号。
[0104] S6.主控器控制发光模块关闭, 并停止输出功率调节信号, 返回步骤 S1 ;
[0105] 如果主控器判定吸烟已经结束, 那么主控器就会输出相应的信号至发光模块使 发光模块关闭, 节约电能。 同吋, 主控器停止输出功率调节信号, 关闭功率调 节模块, 进而使雾化器电阻丝停止发热。
[0106] S7.主控器判断 VF是否大于预设的第一阈值 VSET1 , 若是, 则转步骤 SS, 否则 转步骤 S9;
[0107] S8.综合 VB , 主控器计算出占空比为 DUTY1 , 转步骤 S14;
[0108] 在本实施例中, 主控器输出的功率调节信号为占空比不同的 PWM信号。 功率 调节信号不但与光检测模块提供的电信号 VF有关, 还与电池的电压 VB有关。 随 着使用时间的延长, 电池的电压会组件下降, 导致雾化器电热丝的雾化功率降 低。 因此, 为了克服电池电压降低对雾化功率的影响, 需要综合考虑电池电压 来输出功率调节信号。 功率调节模块为与雾化器电热丝串联的开关管。 主控器 通过将占空比不同的 PWM信号发送至幵关管的控制极来控制开关管的导通吋间 , 进而控制雾化器电热丝的导通吋间。 在同一周期内, 雾化器电热丝的导通时 间不同, 平均雾化功率就不同。
[0109] S9.主控器判断 VF是否大于预设的第二阈值 VSET2, 若是, 则转步骤 S10, 否则 转步骤 S11 ;
[0110] S10.综合 VB , 主控器计算出占空比为 DUTY2, 转步骤 S14;
[0111] S11.主控器判断 VF是否大于预设的第三阈值 VSET3, 若是, 则转步骤 S12, 否 则转步骤 S 13;
[0112] S12.综合 VB , 主控器计算出占空比为 DUTY3 , 转步骤 S14;
[0113] S13.综合 VB , 主控器计算出占空比为 DUTY4, 转步骤 S14;
[0114] S 14.主控器将此占空比的 PWM信号输出至功率调节模块, 转步骤 S15;
[0115] S15.功率调节模块根据功率控制信号调节雾化器电热丝的雾化功率, 转步骤 S4
[0116] 本实施例提供了一种通过调节 PWM信号的占空比来调节电子烟雾化功率的方 法, 而 PWM信号的占空比又是通过三次阈值比较来确定。 虽然本实施例能输出 的功率调节信号只有四种, 但是本方法非常简单, 实现起来也很容易, 软硬件 成本极低。
[0117] 上述描述涉及各种模块。 这些模块通常包括硬件和 /或硬件与软件的组合 (例 如固化软件) 。 这些模块还可以包括包含指令 (例如, 软件指令) 的计算机可 读介质 (例如, 永久性介质) , 当处理器执行这些指令吋, 就可以执行本发明 的各种功能性特点。 相应地, 除非明确要求, 本发明的范围不受实施例中明确 提到的模块中的特定硬件和 /或软件特性的限制。 作为非限制性例子, 本发明在 实施例中可以由一种或多种处理器 (例如微处理器、 数字信号处理器、 基带处 理器、 微控制器) 执行软件指令 (例如存储在非永久性存储器和 /或永久性存储 器) 。 另外, 本发明还可以用专用集成电路 (ASIC) 和 /或其他硬件元件执行。 需要指出的是, 上文对各种模块的描述中, 分割成这些模块, 是为了说明清楚 。 然而, 在实际实施中, 各种模块的界限可以是模糊的。 例如, 本文中的任意 或所有功能性模块可以共享各种硬件和 /或软件元件。 又例如, 本文中的任何和 / 或所有功能模块可以由共有的处理器执行软件指令来全部或部分实施。 另外, 由一个或多个处理器执行的各种软件子模块可以在各种软件模块间共享。 相应 地, 除非明确要求, 本发明的范围不受各种硬件和 /或软件元件间强制性界限的 限制。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权利要求书
[权利要求 1] 一种自动控制雾化功率的电子烟, 包括用于为电子烟供电的电源 模块, 吸烟触发模块, 主控器 (1 ) , 雾化器电热丝 (2) , 与所 述雾化器电热丝 (2) 相接触的导油件 (3) , 其特征在于, 还包 括功率调节模块 (6) 和用于检测所述导油件 (3) 透光度的光检 测组件, 所述光检测组件用于通过检测所述导油件 (3) 透光度确 定所述导油件 (3) 吸收的烟油量;
所述光检测组件包括用于照射所述导油件 (3) 的发光模块 (4) 和至少一个光检测模块 (5) ; 其中,
所述主控器 (1 ) 分别连接吸烟触发模块、 发光模块 (4) 、 至少 一个光检测模块 (5) 和功率调节模块 (6) ; 所述功率调节模块
(6) 连接所述雾化器电热丝 (2) ;
所述吸烟触发模块用于感应吸烟信号并将所述吸烟信号发送至所 述主控器 (1) ;
所述主控器 (1 ) 用于根据所述吸烟信号控制所述发光模块 (2) 发光, 所述至少一个光检测模块 (5) 用于接收在所述发光模块 ( 4) 照射下从所述导油件 (3) 反射出来的反射光或透射出来的透 射光, 并根据所接收到的反射光强度或透射光强度输出电信号至 所述主控器 (1 ) , 从而所述主控器 (1 ) 根据输入的电信号强度 发送功率控制信号至所述功率调节模块 (6) ;
所述功率调节模块 (6) 用于根据所述功率控制信号调节所述雾化 器电阻丝 (2) 的雾化功率。
[权利要求 2] 根据权利要求 1所述的自动控制雾化功率的电子烟, 其特征在于, 所述至少一个光检测模块 (5) 包括用于接收所述导油件 (3) 的 反射光并输出第一电信号的第一光检测模块 (51) 和用于接收所 述导油件 (3) 的透射光并输出第二电信号的第二光检测模块 (52 ) 。
[权利要求 3] 根据权利要求 2所述的自动控制雾化功率的电子烟, 其特征在于, 所述第一光检测模块 (51 ) 和所述第二光检测模块 (52) 各包括 一个光敏电阻或光敏传感器, 用于接收光信号并对应输出电信号
[权利要求 4] 根据权利要求 3所述的自动控制雾化功率的电子烟, 其特征在于, 所述第一光检测模块 (51 ) 还包括第一分压电阻, 所述第一分压 电阻一端与对应的所述光敏电阻或光敏传感器串联, 所述第一分 压电阻的另一端用于外接电源正极, 所述光敏电阻或光敏传感器 的另一端接地, 所述第二电信号为所述光敏电阻或光敏传感器上 的分压。
[权利要求 5] 根据权利要求 3所述的自动控制雾化功率的电子烟, 其特征在于, 所述第二光检测模块 (52) 还包括第二分压电阻, 所述第二分压 电阻一端与对应的所述光敏电阻或光敏传感器串联, 所述第二分 压电阻的另一端用于外接电源正极, 所述光敏电阻或光敏传感器 的另一端接地, 所述第二电信号为所述光敏电阻或光敏传感器上 的分压。
[权利要求 6] 根据权利要求 1所述的自动控制雾化功率的电子烟, 其特征在于, 所述发光模块 (4) 为发光二极管。
[权利要求 7] 根据权利要求 1所述的自动控制雾化功率的电子烟, 其特征在于, 所述功率调节模块 (6) 包括一个开关管, 所述主控器 (1 ) 连接 至所述开关管的控制极, 所述主控器 (1) 用于将所述功率控制信 号输出至所述控制极, 所述功率控制信号的占空比随着所述电信 号的变化而变化, 所述开关管用于根据所述功率控制信号的占空 比调节所述雾化器电热丝的导通吋间, 进而调节所述雾化器电热 丝的功率。
[权利要求 8] 根据权利要求 7所述的自动控制雾化功率的电子烟, 其特征在于, 所述主控器 (1 ) 进一步包括阈值比较模块 ( 11) 和控制模块 (12 所述阈值比较模块 (11) 用于将所述电信号与阈值进行比较; 当 所述电信号大于预设的第一阈值吋, 所述控制模块 (12) 输出第 一占空比功率控制信号至所述功率调节模块 (6) ; 当所述电信号 大于预设的第二阈值且小于所述第一阈值时, 所述控制模块 (12 ) 输出第二占空比功率控制信号至所述功率调节模块 (6) ; 当所 述电信号大于预设的第三阈值且小于所述第二阈值时, 所述控制 模块 (12) 输出第三占空比功率控制信号至所述功率调节模块 (6 ) ; 否则所述控制模块 (12) 输出第四占空比功率控制信号至所 述功率调节模块 (6) 。
[权利要求 9] 根据权利要求 1所述的自动控制雾化功率的电子烟, 其特征在于, 所述吸烟触发模块包括气流感应器和 /或按键触发单元。
[权利要求 10] 根据权利要求 1所述的自动控制雾化功率的电子烟, 其特征在于, 所述电源模块进一步包括电池和电压转换单元; 所述自动控制雾 化功率的电子烟还包括油量提示模块 (7) ; 其中,
所述电压转换单元用于将所述电池的电压进行转换, 并将输出的 电压提供给所述发光模块 (4) 和所述至少一个光检测模块 (5) 所述油量提示模块 (7) 用于根据所述主控器 (1) 的控制信号提 示油量。
[权利要求 11] 一种自动控制雾化功率的方法, 用于电子烟, 其特征在于, 包括 以下步骤:
51.主控器检测是否有吸烟信号, 若有, 则转步骤 S2; 否则继续捡 测;
52.主控器输出控制信号控制发光模块发光;
53.发光模块照射导油件;
54.光检测模块检测导油件的折射光或反射光并输出反映导油件透 光度的电信号至主控器;
55.主控器根据电信号输出功率控制信号;
56.功率调节模块根据功率控制信号调节雾化器电热丝的雾化功率 根据权利要求 11所述的自动控制雾化功率的方法, 其特征在于, 还包括步骤: 显示油量。
根据权利要求 11所述的自动控制雾化功率的方法, 其特征在于, 所述步骤 S4包括:
541.检测导油件的反射光并输出第一电信号;
542.检测导油件的折射光并输出第二电信号。
根据权利要求 11所述的自动控制雾化功率的方法, 其特征在于, 功率调节模块包括一个开关管, 主控器连接至开关管的控制极, 主控器将功率控制信号输出至控制极, 功率控制信号的占空比随 着透光度信号的变化而变化, 开关管根据功率控制信号的占空比 调节雾化器电热丝的导通吋间, 进而调节雾化器电热丝的雾化功 率。
根据权利要求 11所述的自动控制雾化功率的方法, 其特征在于, 所述步骤 S5包括:
551.判断电信号是否大于预设的第一阈值, 若是, 则输出第一占 空比功率控制信号至功率调节模块, 否则转下一步;
552.判断电信号是否大于预设的第二阈值, 若是, 则输出第二占 空比功率控制信号至功率调节模块, 否则转下一步;
553.判断电信号是否大于预设的第三阈值, 若是, 则输出第三占 空比功率控制信号至功率调节模块, 否则输出第四占空比功率控 制信号至功率调节模块。
PCT/CN2015/070907 2015-01-16 2015-09-29 一种自动控制雾化功率的电子烟及方法 WO2016112541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580072945.7A CN107529820A (zh) 2015-01-16 2015-09-29 一种自动控制雾化功率的电子烟及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520033710.4U CN204540815U (zh) 2015-01-16 2015-01-16 一种自动控制雾化功率的电子烟
CN201520033710.4 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016112541A1 true WO2016112541A1 (zh) 2016-07-21

Family

ID=53816009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070907 WO2016112541A1 (zh) 2015-01-16 2015-09-29 一种自动控制雾化功率的电子烟及方法

Country Status (2)

Country Link
CN (2) CN204540815U (zh)
WO (1) WO2016112541A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
EP3771351A1 (en) * 2019-07-30 2021-02-03 Shenzhen Smoore Technology Limited Electronic atomization devices, methods for heating control, and computer program products
CN112493548A (zh) * 2020-12-11 2021-03-16 西安稳先半导体科技有限责任公司 一种电子烟、用于电子烟的烟弹和密钥控制芯片

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205478A (zh) * 2015-01-16 2017-09-26 惠州市吉瑞科技有限公司 一种雾化器、电子烟及油量检测方法
CN204540815U (zh) * 2015-01-16 2015-08-12 惠州市吉瑞科技有限公司 一种自动控制雾化功率的电子烟
CN105302223B (zh) * 2015-09-17 2017-09-12 深圳睿思奇科技开发有限公司 电子烟的功率调节方法及其装置、电子烟
CN105212280A (zh) * 2015-11-04 2016-01-06 卓尔悦(常州)电子科技有限公司 电池装置、电子烟及其控制方法
CN106263035A (zh) * 2016-08-08 2017-01-04 深圳市海派特光伏科技有限公司 电子烟及尼古丁检测方法
CN106579560A (zh) * 2016-12-15 2017-04-26 深圳市合元科技有限公司 电子烟驱动方法、组件及电子烟具
CN108720084B (zh) * 2017-04-13 2021-02-02 深圳市赛尔美电子科技有限公司 电子烟具的控制系统及控制方法
GB201716117D0 (en) * 2017-10-03 2017-11-15 Project Paradise Ltd An excitation device for an electronic inhaler, a method of electronically controlling an excitation device of an electronic inhaler, and an electronic contro
CN108459536B (zh) * 2018-01-31 2020-04-03 深圳瀚星翔科技有限公司 一种电子烟抽吸次数的控制方法和控制装置
CN109174828A (zh) * 2018-07-06 2019-01-11 深圳瀚星翔科技有限公司 一种电子加热装置的加热片的清洁方法和装置
CN110856556B (zh) * 2018-08-06 2022-04-05 常州市派腾电子技术服务有限公司 控制电路、电子烟以及电子烟的控制方法
CN108835718B (zh) * 2018-08-18 2020-11-03 深圳市合元科技有限公司 一种电子烟功率控制方法及电子烟
CN110547511B (zh) * 2019-08-01 2022-10-11 深圳葭南科技有限公司 用于更好还原烟油口感的电子烟控制方法及电子烟
CN111631432A (zh) * 2019-10-08 2020-09-08 高煜翔 具有磁性变化感应功能的烟弹及电子烟
CN111358057A (zh) * 2020-04-10 2020-07-03 奥斯特原点(深圳)科技有限公司 一种防伪装置、防伪方法和电子烟的防伪结构
CN111713745B (zh) * 2020-06-08 2023-06-27 惠州市新泓威科技有限公司 电子雾化设备溶液粘度的检测与控制方法及其电子雾化设备
CN116268579B (zh) * 2023-03-08 2024-03-19 无锡市晶源微电子股份有限公司 电子烟装置的变功率输出控制方法、装置及电子烟装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264251A (zh) * 2008-12-24 2011-11-30 菲利普莫里斯生产公司 用于电气加热吸烟系统中使用的包含识别的物品
US20120048266A1 (en) * 2010-08-24 2012-03-01 Eli Alelov Inhalation device including substance usage controls
CN103338664A (zh) * 2010-12-24 2013-10-02 菲利普莫里斯生产公司 具有用于处理液体基质消耗的装置的气雾剂产生系统
CN104106844A (zh) * 2014-06-23 2014-10-22 深圳市麦克韦尔科技有限公司 电子烟控制器及电子烟
CN204070530U (zh) * 2014-06-23 2015-01-07 深圳市麦克韦尔科技有限公司 电子烟控制器及电子烟
CN204540813U (zh) * 2015-01-16 2015-08-12 惠州市吉瑞科技有限公司 一种雾化器及电子烟

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204540815U (zh) * 2015-01-16 2015-08-12 惠州市吉瑞科技有限公司 一种自动控制雾化功率的电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264251A (zh) * 2008-12-24 2011-11-30 菲利普莫里斯生产公司 用于电气加热吸烟系统中使用的包含识别的物品
US20120048266A1 (en) * 2010-08-24 2012-03-01 Eli Alelov Inhalation device including substance usage controls
CN103338664A (zh) * 2010-12-24 2013-10-02 菲利普莫里斯生产公司 具有用于处理液体基质消耗的装置的气雾剂产生系统
CN104106844A (zh) * 2014-06-23 2014-10-22 深圳市麦克韦尔科技有限公司 电子烟控制器及电子烟
CN204070530U (zh) * 2014-06-23 2015-01-07 深圳市麦克韦尔科技有限公司 电子烟控制器及电子烟
CN204540813U (zh) * 2015-01-16 2015-08-12 惠州市吉瑞科技有限公司 一种雾化器及电子烟

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
EP3771351A1 (en) * 2019-07-30 2021-02-03 Shenzhen Smoore Technology Limited Electronic atomization devices, methods for heating control, and computer program products
CN112493548B (zh) * 2020-12-11 2024-01-12 西安稳先半导体科技有限责任公司 一种电子烟、用于电子烟的烟弹和密钥控制芯片
CN112493548A (zh) * 2020-12-11 2021-03-16 西安稳先半导体科技有限责任公司 一种电子烟、用于电子烟的烟弹和密钥控制芯片

Also Published As

Publication number Publication date
CN204540815U (zh) 2015-08-12
CN107529820A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2016112541A1 (zh) 一种自动控制雾化功率的电子烟及方法
WO2016112542A1 (zh) 一种雾化器、电子烟及油量检测方法
CN205385867U (zh) 电子烟
EP3141135B1 (en) Dual-voltage electronic cigarette control assembly
CN204540813U (zh) 一种雾化器及电子烟
WO2015139338A1 (zh) 一种电子烟雾化烟油的方法、电子烟控制电路以及电子烟
US10004269B2 (en) Control circuit, electronic cigarette and method for controlling electronic cigarette
WO2015149647A1 (zh) 电子烟和电子烟雾化控制方法
CN104509976B (zh) 一种吸烟信号产生方法、装置及电子烟
US8863753B2 (en) Power supply device for electronic cigarette
CN103107376B (zh) 电子烟电池的电量查询方法、系统及电子烟
WO2014075369A1 (zh) 电子烟的智能控制器及方法
WO2015192357A1 (zh) 一种电子烟
WO2017024477A1 (zh) 一种检测电子烟中烟油是否耗尽的方法和一种电子烟
WO2014206148A1 (zh) 面加热式雾化器及带有该雾化器的电子烟
WO2016119144A1 (zh) 一种电子烟烟油余量检测装置、电子烟及电子烟控制方法
JP2014509456A (ja) Led駆動装置及びその制御方法
CN203554741U (zh) Led调光控制器
WO2021243944A1 (zh) 电子雾化装置及其控制电路
CN102548084B (zh) 亮度缓变光源控制装置及其方法
TW201008394A (en) Light adjusting device for a light emitting diode and related light adjusting method and light emitting device
WO2017185356A1 (zh) 一种检测电子烟中烟油是否耗尽的方法
TWI542982B (zh) 電源輸出調節電路
TWM396557U (en) Photo-driving light with a timer
JP2013200968A (ja) 光源点灯装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 22.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877459

Country of ref document: EP

Kind code of ref document: A1