WO2023051733A1 - 气溶胶生成装置及其控制方法 - Google Patents

气溶胶生成装置及其控制方法 Download PDF

Info

Publication number
WO2023051733A1
WO2023051733A1 PCT/CN2022/122825 CN2022122825W WO2023051733A1 WO 2023051733 A1 WO2023051733 A1 WO 2023051733A1 CN 2022122825 W CN2022122825 W CN 2022122825W WO 2023051733 A1 WO2023051733 A1 WO 2023051733A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
generating device
power
aerosol generating
power source
Prior art date
Application number
PCT/CN2022/122825
Other languages
English (en)
French (fr)
Inventor
操广平
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023051733A1 publication Critical patent/WO2023051733A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices

Definitions

  • the present application relates to the technical field of smoking appliances, in particular to an aerosol generating device and a control method thereof.
  • the existing aerosol generating device When the existing aerosol generating device is preheated, after the temperature of the heater rises to the preset temperature, it can be maintained at the preset temperature for a period of time, and then enter the suction stage.
  • the problem with this device is that mechanical vibrations are likely to be generated during the suction stage, which in turn generates noise, which makes the experience of the user poor.
  • the present application provides an aerosol generating device and a control method thereof, aiming at solving the problem of noise in existing aerosol generating devices.
  • an embodiment of the present application provides a method for controlling an aerosol generating device, the aerosol generating device includes a heater and a power source for heating an aerosol-forming substrate to generate an aerosol; the method Including: controlling the power source to output power to the heater so that the heater is within a desired temperature range or maintained at a target temperature; and during the period during which the heater is within a desired temperature range or maintained at a target temperature, controlling The power source outputs power to the heater according to at least a predetermined value or an electric parameter within a predetermined range, so as to adjust the noise decibel value generated by the aerosol generating device.
  • the power parameter includes at least one of current, voltage and frequency, and/or, a parameter derived based on at least one of current, voltage and frequency.
  • the method includes: controlling a power source to output power to the heater according to a variable electric parameter, and adjusting the noise decibel value by limiting a variation of the electric parameter.
  • the variation of the power parameter includes a variation of current or voltage; the method further includes: controlling the variation of current or voltage to limit the noise decibel value to a reference decibel value Down.
  • the variation of the current is controlled to be between 0-5A; or, between 0-4A; or, between 0-3A; or, between 0-2A; or, between 0-1A; Or, between 0-0.5A; or, between 0-0.2A.
  • the method includes: controlling the power source to output power to the heater alternately according to a first power parameter and a second power parameter smaller than the first power parameter, and limiting the first power parameter and the second power parameter The difference between the power parameters does not exceed a preset threshold.
  • the noise decibel value is adjusted by limiting the alternating frequency of the first power parameter and the second power parameter.
  • both the first power parameter and the second power parameter include voltage, and the voltage value of the second power parameter is equal to zero.
  • the real-time temperature of the heater is monitored, and the voltage supplied to the heater by the power source is controlled according to the temperature value.
  • the aerosol generating device further includes a voltage regulation circuit connected to a power source; the method further includes: controlling the voltage regulation circuit to output different voltages to the heater.
  • the voltage regulation circuit includes a switch tube; the method further includes: controlling a duty cycle and/or a switching frequency of the switch tube to output different voltages.
  • the method further includes: controlling the power source to alternately output at least two different powers to the heater, and by limiting the changing frequency of the at least two different powers, to adjust the gas The decibel value of the noise generated by the sol generating device.
  • limiting the changing frequency of the at least two different powers is between 0.05 Hz and 10 Hz; or, between 0.05 Hz and 5 Hz; or, between 0.05 Hz and 2 Hz; or, between 0.05 Hz and 1 Hz ; or, between 0.05 Hz and 0.8 Hz; or, between 0.05 Hz and 0.5 Hz; or, between 0.1 Hz and 0.5 Hz.
  • the aerosol generating device further includes a switching circuit; the method further includes: controlling a switching frequency of the switching circuit to adjust a frequency at which the power source changes power output.
  • the embodiment of the present application also provides a method for controlling an aerosol generating device, the aerosol generating device includes a heater and a power source for heating an aerosol-forming substrate to generate an aerosol; the The method includes: controlling a power source to output power to the heater so that the heater is within a desired temperature range or maintained at a target temperature; and during the period during which the heater is within a desired temperature range or maintained at a target temperature, The power source is controlled to output power to the heater intermittently, and by limiting the frequency of the output power action, the noise decibel value generated by the aerosol generating device is adjusted.
  • the embodiment of the present application also provides an aerosol generating device, including: a power source; a heater for heating an aerosol-forming substrate to generate an aerosol; a controller configured to control the output of the power source providing power to the heater such that the heater is within a desired temperature range or maintained at a target temperature; value or an electric parameter within a predetermined range to output power to the heater, so as to adjust the noise decibel value generated by the aerosol generating device.
  • the aerosol generating device further includes a voltage regulation circuit; the voltage regulation circuit is configured to be controlled by the controller to adjust the voltage supplied to the heater.
  • the voltage regulating circuit includes a voltage boosting circuit and/or a voltage reducing circuit.
  • the voltage regulation circuit includes at least one of a BUCK conversion circuit, a BOOST conversion circuit, a BUCK-BOOST conversion circuit, a CUK conversion circuit, a ZETA conversion circuit, and a SEPIC conversion circuit.
  • the heater includes a resistive heating element connected to a power source, and the controller is configured to adjust the decibel noise level of the heater when a varying current is passed through the resistive heating element.
  • the heater includes an induction coil connected to a power source and an induction heating element electromagnetically coupled to the induction coil, and the controller is configured to adjust the Noise decibel value of the induction coil.
  • the heater is configured as an elongated heater insertable into the aerosol-forming substrate for heating.
  • the aerosol generating device further includes a switch circuit; the switch circuit is configured to accept the control of the controller to turn on or off the electrical connection between the battery cell and the heater .
  • the switching circuit includes a first switching tube and a second switching tube; both the first switching tube and the second switching tube include an input connection terminal, an output connection terminal and a control terminal; the first The control end of the switch tube is used to accept the control of the controller, the input connection end of the first switch tube is electrically connected to the control end of the second switch tube, and the output connection end of the first switch tube is grounded; The input connection end of the second switch tube is electrically connected to the battery cell, and the output connection end of the second switch tube is electrically connected to the heater.
  • the control method of the aerosol generating device controls the power source to output power to the heater according to at least a predetermined value or an electric parameter within a predetermined range to adjust the noise decibel value generated by the aerosol generating device to avoid excessive noise.
  • Fig. 1 is a schematic diagram of a control method of an aerosol generating device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an aerosol generating device provided in an embodiment of the present application
  • Fig. 3 is a schematic diagram of the temperature curve of the heater provided in the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the voltage waveform of the heater provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a voltage regulating circuit provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another voltage regulating circuit provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another voltage regulating circuit provided in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of another voltage regulating circuit provided in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of another aerosol generating device provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another aerosol generating device provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a switch circuit in another aerosol generating device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another voltage waveform provided by the embodiment of the present application.
  • Fig. 1 is a schematic diagram of a control method of an aerosol generating device provided in an embodiment of the present application.
  • the aerosol generating device includes a heater for heating the aerosol-forming substrate to generate an aerosol; the heater can be configured as a peripheral or circumferential heating structure (the heater surrounds at least part of the aerosol-forming substrate), or can be constructed Centralized heating structure (the periphery of the heater is in direct contact with the aerosol-forming substrate).
  • the heating method may be resistance heating, infrared radiation heating, electromagnetic heating, etc., which are not limited herein.
  • the methods include:
  • Step S11 controlling the power source to output power to the heater so that the heater is within a desired temperature range or maintained at a target temperature
  • Step S12 and during the period of keeping the heater within the desired temperature range or maintaining the target temperature, controlling the power source to output power to the heater according to at least a predetermined value or an electric parameter within a predetermined range, so as to adjust the The decibel value of the noise produced by the aerosol generating device.
  • the user can inhale the aerosol generated by the aerosol generating device within the preset duration.
  • the target temperature is between 150°C and 350°C; alternatively, between 150°C and 300°C; alternatively, between 150°C and 250°C; alternatively, between 150°C and 200°C.
  • the desired temperature range may be up or down based on the target temperature.
  • the noise decibel value generated by the aerosol generating device can be controlled within a range acceptable to users.
  • the user expects the noise decibel value generated by the aerosol generating device to be limited below a reference decibel value, so that the vibration noise generated by the aerosol generating device will not affect the user's experience when the user inhales, for example, it is limited to Below the reference decibel value of 45bB.
  • the noise decibel value generated by the aerosol generating device is limited to the following user acceptable range: 0dB-32dB, 0dB-30dB, 0dB-26dB, 0dB-20dB or 5dB-20dB and so on.
  • the power parameter includes at least one of current, voltage and frequency, and/or a parameter derived based on at least one of current, voltage and frequency, for example: variation, variation rate, and the like.
  • the aerosol generating device 10 includes a heater 101 , a controller 102 and a cell 103 .
  • the heater 101 is used to generate heat according to the power provided by the electric core 103 to heat the product 20 placed in the aerosol generating device 10, so that the aerosol-forming matrix in the product 20 generates an aerosol for the user to inhale.
  • the heater 101 is configured as a peripheral or circumferential heating structure (the heater 101 surrounds at least part of the aerosol-forming substrate), and the heating method can be resistance heating, infrared radiation heating, electromagnetic heating, etc.
  • the controller 102 is connected to the heater 101 and the electric core 103 respectively, and is used to control the electric power supplied to the heater 101 by the electric core 103 or output power to the heater 101, thereby controlling the heating temperature of the heater 101, so that the heated aerosol is formed
  • the matrix produces an aerosol.
  • the controller 102 is also configured to execute the control method of the aerosol generating device 10 .
  • the aerosol generating device 10 may also include a storage medium for storing a program for executing the control method of the aerosol generating device 10, and the controller 102 may read and execute the program of the control method of the aerosol generating device 10 stored in the storage medium.
  • the program realizes the control method of the aerosol generating device 10 .
  • the storage medium may be an independent storage device provided in the aerosol generating device 10 , or a storage medium built in the controller 102 .
  • Storage media includes, but is not limited to, non-volatile storage media.
  • the battery cell 103 namely the power source, is used to provide power to the heater 101 and the controller 102 .
  • the battery cell 103 can be a rechargeable battery cell or a non-rechargeable battery cell.
  • the aerosol generating device 10 further includes a voltage regulation circuit 104 coupled between the heater 101 and the battery cell 103 ; the voltage regulation circuit 104 includes a voltage boost circuit and/or a voltage drop circuit.
  • the voltage regulation circuit 104 includes a voltage boost circuit and/or a voltage drop circuit.
  • the BUCK-BOOST conversion circuit shown in Figure 5 and Figure 8 the BOOST conversion circuit shown in Figure 6, the BUCK conversion circuit shown in Figure 7, the CUK conversion circuit (not shown), the ZETA conversion circuit (not shown ), at least one of a SEPIC conversion circuit (not shown).
  • the voltage regulating circuit 104 includes a switching tube. By controlling the duty ratio and/or switching frequency of the switching tube in the voltage regulating circuit 104, the voltage of the power signal supplied to the heater 101 can be adjusted so that the current flowing through the heater 101 changes The amount is kept within a preset range, thereby controlling the decibel value of the noise generated by the aerosol generating device 10 .
  • the voltage of the electric power supplied to the heater 101 can be adjusted according to the real-time temperature of the heater 101 .
  • the real-time temperature of the heater 101 can be detected by a temperature sensor (not shown) connected to the controller 102 .
  • the temperature sensor includes but not limited to a thermocouple, a temperature detection module with a temperature coefficient of resistance.
  • the heater 101 itself may have a temperature coefficient of resistance, and the real-time temperature of the heater 101 may be determined by the resistance value of the heater 101 .
  • the voltage waveform of the power supplied to the heater 101 includes, but is not limited to, a square wave, a triangle wave, and a sawtooth wave.
  • FIG. 3 A schematic diagram of the temperature curve of the heater as shown in FIG. 3 , wherein the abscissa t of the temperature curve represents time, and the ordinate T represents temperature.
  • the initial temperature of the heater 101 is T0.
  • the initial temperature is greater than the ambient temperature; in other examples, the initial temperature may be the ambient temperature.
  • the controller 102 controls the electric power of the heater 101 to heat with the maximum power or other preset power, for example: the maximum power is 36W; at the moment t1, the heater 101 is heated to the preset temperature T1.
  • the preset temperature can be the optimum temperature for the aerosol-forming substrate to generate the aerosol, that is, the aerosol-forming substrate can provide the most suitable smoke volume and temperature for the user to inhale and have a better taste at this temperature.
  • the preset temperature adopted in the embodiments of the present application is between 150°C and 350°C; or, between 180°C and 350°C; or, between 220°C and 350°C; or, between 220°C and 300°C; or, between At 220°C ⁇ 280°C; 220°C ⁇ 260°C.
  • the controller 102 controls the electric power supplied by the cell 103 to the heater 101 and controls the heater 101 to keep at the preset temperature T1 (220° C.) for a period of time (ie, the period from t1 to t2). It should be noted that, in other examples, it is also feasible not to set the time period t1-t2.
  • the controller 102 may output a prompt signal to inhale the aerosol, prompting the user to inhale.
  • the reminder operation can be performed according to the reminder signal of the inhalable aerosol output by the controller 102 through the reminder device connected to the controller 102 .
  • the prompting device is a vibrating motor, and the vibrating motor is output according to the prompt signal of the inhalable aerosol from the controller 102 (including the start signal for controlling the work of the vibrating motor), and the vibration prompts the user to inhale the aerosol
  • the prompting device is an LED Light, the LED light is always on or flashes to prompt the user to smoke the inhalable aerosol according to the prompt signal of the inhalable aerosol output by the controller 102 .
  • the controller 102 controls the power supplied by the battery cell 103 to the heater 101 and controls the temperature of the heater 101 to drop from T1 to the target temperature T2. Subsequently, the controller 102 controls the electric power supplied by the cell 103 to the heater 101 to control the heater 101 to maintain the target temperature T2.
  • the value of the time period t2-t3 may be 120 seconds-360 seconds or a duration of 6 puffs-20 puffs.
  • the power parameters of the power supplied to the heater 101 include alternately provided first power parameters and second power parameters.
  • the first power parameter and the second power parameter includes voltage
  • the voltage waveform provided by the power source is a square wave.
  • the voltage provided by the power source includes a first voltage and a second voltage
  • the second voltage is smaller than the first voltage.
  • the first voltage Vmax is the maximum voltage value of the electric power supplied to the heater 101
  • the second voltage Vmin is the minimum voltage value of the electric power supplied to the heater 101 .
  • Vmax and Vmin satisfy the following relationship:
  • the resistance of the heater 101 is constant, the voltage variation of the power supplied to the heater 101 is also within a corresponding preset range.
  • the switch tube Q3 is turned on, the asynchronous step-down circuit does not work, and the BOOST boost circuit composed of the switch tube Q7 and the switch tube Q6 works, and the output voltage is higher than the voltage amplitude of the battery cell 103.
  • DC voltage make the heater 101 heated to a preset temperature T1.
  • the switch tube Q6 can be controlled to be turned on, and the switch tube Q7 is turned off, that is, the BOOST boost circuit stops working; then the switch tube Q14 is controlled by the controller 102 so that the switch tube Q3 outputs a PWM pulse Signal, so that the asynchronous step-down circuit composed of switch tube Q3, diode D7, inductor L1, switch tube Q6, electric heating C12 and C9, the voltage of the electric power loaded on the heater 101 drops, and the temperature also drops accordingly.
  • the temperature of the heater 101 drops from T1 to T2 since the voltage at this time cannot make the temperature of the heater 101 rise, it is necessary to turn on the BOOST booster circuit again to make the temperature of the heater 101 rise to reach the set point.
  • a given temperature value T2 A given temperature value T2.
  • the BOOST boost circuit and the asynchronous step-down circuit work alternately to control the voltage of the power supplied to the heater 101, so that the amount of current change flowing through the heater 101 is kept within a preset range, and the heater is suppressed.
  • 101 The amplitude of mechanical vibration generated under the changing magnetic field environment generated by the changing current, and then controls the decibel value of the noise generated by the aerosol generating device 10 .
  • Test method The distance between the aerosol generating device and the noise collector is 10MM, and the noise data of the running aerosol generating device is collected in real time in the no-noise measurement laboratory; the aerosol generating device is inserted into the product (cigarette) And observe the average value of the noise in the constant temperature stage (t2 ⁇ t3 time period) after starting up;
  • Test equipment A5 audio analyzer
  • Judgment standard Environmental noise standard: 0dB-30dB is defined as extremely quiet; 30dB-50dB is defined as quiet; 50dB-70dB is defined as relatively quiet.
  • the test decibel is in the acceptable range (quiet range) for the user;
  • the current variation of the heater 101 is below 1A, the sound is almost inaudible close to the human ear, and the user experience is the best.
  • the decibel value of the test decreases accordingly.
  • FIGS. 9 to 12 Another preferred embodiment of the present application will be described below in conjunction with FIGS. 9 to 12 :
  • the heater 1001 in the aerosol generating device 100 is configured as a central heating structure (the outer periphery of the heater is in direct contact with the aerosol-forming substrate), and the heating method is not limited.
  • the controller 102 and the battery cell 103 in the aerosol generating device 100 are similar to those described above.
  • heater 1001 is a heater configured as an elongated shape for insertion into an aerosol-forming substrate.
  • the heater 1001 includes an elongated heater substrate and a resistance heating element combined on the heater substrate, and the resistance heating element can generate heat when an electric current flows through it; connected to the resistance heating element, the controller 102 in the aerosol generating device 100 can output power through appropriate electric parameters to suppress the amplitude or frequency of the mechanical vibration of the heater 1001 when the resistance heating element flows through a changing current, thereby The noise decibel value of the heater is kept at a low level.
  • the battery cell 103 can be used as a power source.
  • the heater can also include an induction coil 1003 connected to a power source and an induction heating element 1002 electromagnetically coupled to the induction coil 1003, and the induction heating element 1002 generates heat generated by the induction coil 1003.
  • the battery core 103 is connected to the induction coil 1003 through the controller 102, and the controller 102 in the aerosol generating device can output power to the induction coil 1003 with a suitable power parameter, for example, through a suitable frequency
  • the changing current is supplied to the induction coil, so as to suppress the vibration of the induction coil 1003 and keep the noise decibel value at a low level.
  • the battery cell 103 can be used as a power source.
  • the aerosol generating device 100 also includes a switch circuit 1004 coupled between the heater 1001 and the cell 103; as shown in FIG. 11 , the switch circuit 1004 includes a switch tube Q2 and a switch tube Q1; Including input connection end, output connection end and control end.
  • the switch tube Q2 is an NMOS tube
  • the switch tube Q1 is a PMOS tube
  • the input connection terminal of the switch tube Q2 is the drain
  • the output connection terminal is the source electrode
  • the control terminal is the gate
  • the input connection terminal of the switch tube Q1 is is the source, the output connection is the drain
  • the control terminal is the gate.
  • the control terminal of the switch tube Q2 is used to accept the control of the controller 102 to switch on or off the electrical connection between the cell 103 and the heater 1001 .
  • the input connection end of the switch tube Q2 is electrically connected to the control terminal of the switch tube Q1, and the output connection end of the switch tube Q2 is grounded; the input connection end of the switch tube Q1 is electrically connected to the battery cell, and the output connection end of the switch tube Q1 is connected to the heater 101 electrical connection.
  • the above-mentioned frequency is between 0.05Hz-10Hz; or, between 0.05Hz-5Hz; or, between 0.05Hz-2Hz; or, between 0.05Hz-1Hz; or, between 0.05Hz-0.8Hz ; or, between 0.05Hz and 0.5Hz; or, between 0.1Hz and 0.5Hz.
  • the controller controls the power source to alternately provide at least two different voltages to the heater, one of which is equal to zero, that is, the power source intermittently provides the heater.
  • the voltage waveform of the power signal supplied by the power source to the heater 101 is a square wave. In this square wave, Vmax is the maximum voltage value of the electric power supplied to the heater 101, and the minimum voltage value of the electric power supplied to the heater 101 is zero.
  • Test method The distance between the aerosol generating device and the noise collector is 10MM, and the noise data is collected in real time in a noiseless measurement laboratory; insert the product (cigarette) and observe the noise in the constant temperature stage (t2 ⁇ t3 time period) after starting the machine average of;
  • Test equipment A5 audio analyzer
  • Judgment standard Environmental noise standard: 0dB-30dB is defined as extremely quiet; 30dB-50dB is defined as quiet; 50dB-70dB is defined as relatively quiet.
  • the vibration noise generated by the heater can be well suppressed when the changing frequency of different power supplied to the heater is low.
  • the test decibel is in the range acceptable to the user (very quiet range); when the switching frequency of the switching tube Q2 is between 0.5 When it is below Hz, the sound is almost inaudible when it is close to the human ear, and the user experience is the best.
  • the switching frequency of the switching tube Q2 decreases, the decibel value of the test also decreases correspondingly.
  • the controller may be configured such that the changing frequency of the different powers provided to the heater is maintained at a specific value between 0.5 Hz and 10 Hz or varied within this range.
  • the frequency control methods of the power signals in FIGS. 9 to 12 are also applicable to the examples in FIGS. 2 to 8 .
  • the decibel value of the noise generated by the aerosol generating device 10 is controlled by simultaneously controlling the variation of the current flowing through the heater 101 and the frequency of intermittently providing the power signal.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course also by hardware.
  • all or part of the processes in the methods of the above embodiments can be completed by instructing related hardware through computer programs, and the programs can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种气溶胶生成装置(10)及其控制方法,方法包括:控制功率源输出功率给加热器(101),使得加热器(101)处于期望温度范围内或者维持在目标温度(S11);并且在使加热器(101)处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对加热器(101)输出功率,以调整气溶胶生成装置(10)产生的噪音分贝值(S12),通过控制功率源按照至少一预定值或者处于预定范围内的电力参数对加热器(101)输出功率,以调整气溶胶生成装置(10)产生的噪音分贝值,避免噪音过大导致用户体验感较差的问题,提升了用户的使用体验。

Description

气溶胶生成装置及其控制方法 技术领域
本申请涉及烟具技术领域,尤其涉及一种气溶胶生成装置及其控制方法。
背景技术
诸如香烟、雪茄等物品在使用期间燃烧烟草以产生烟草烟雾。已经尝试通过产生在不燃烧的情况下释放化合物的产品来为这些燃烧烟草的物品提供替代物。此类产品的示例是所谓的加热不燃烧产品,也称之为烟草加热产品、或烟草加热设备、或者气溶胶生成装置,该产品或设备通过加热材料而不燃烧材料来释放化合物。材料例如可为烟草或其它非烟草产品或组合,诸如,可包含或可不包含尼古丁的共混的混合物。
现有的气溶胶生成装置在预加热时,当加热器的温度上升到预设温度之后,可以在该预设温度下维持一段时间,然后进入抽吸阶段。该装置存在的问题是,抽吸阶段容易产生机械振动,进而产生噪音,使得用户的体验感较差。
发明内容
本申请提供一种气溶胶生成装置及其控制方法,旨在解决现有气溶胶生成装置存在噪音的问题。
第一方面,本申请实施例提供了一种气溶胶生成装置的控制方法,所述气溶胶生成装置包括用于对气溶胶形成基质进行加热以产生气溶胶的加热器和功率源;所述方法包括:控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,以调整所述气溶胶生成装置产生的噪音分贝值。
在一示例中,所述电力参数包括电流、电压和频率中的至少一种,和/或, 基于电流、电压和频率中的至少一种衍生出的参数。
在一示例中,所述方法包括:控制功率源按照可变化的电力参数对所述加热器输出功率,且通过限制所述电力参数的变化量来调整所述噪音分贝值。
在一示例中,所述电力参数的变化量包括电流或电压的变化量;所述方法还包括:控制所述电流或电压的变化量,以将所述噪音分贝值限制于一参考分贝值之下。
在一示例中,控制所述电流的变化量介于0~5A;或者,介于0~4A;或者,介于0~3A;或者,介于0~2A;或者,介于0~1A;或者,介于0~0.5A;或者,介于0~0.2A。
在一示例中,所述方法包括:控制功率源交替性地按照第一电力参数和小于该第一电力参数的第二电力参数对所述加热器输出功率,并且限制第一电力参数和第二电力参数之间的差值不超过预设阈值。
在一示例中,通过限制所述第一电力参数和第二电力参数的交替频率,以调整所述噪音分贝值。
在一示例中,所述第一电力参数和所述第二电力参数均包括电压,所述第二电力参数的电压值等于零。
在一示例中,监控所述加热器的实时温度,根据温度值来控制所述功率源提供给加热器的电压。
在一示例中,所述气溶胶生成装置还包括连接功率源的调压电路;所述方法还包括:控制所述调压电路,以输出给所述加热器不同的电压。
在一示例中,所述调压电路包括开关管;所述方法还包括:控制所述开关管的占空比和/或开关频率,以输出不同的电压。
在一示例中,所述方法还包括:控制所述功率源交替性地输出至少两个不同的功率至加热器,且通过限制所述至少两个不同的功率的改变频率,以调整所述气溶胶生成装置产生的噪音分贝值。
在一示例中,限制所述至少两个不同的功率的改变频率介于0.05Hz~10Hz;或者,介于0.05Hz~5Hz;或者,介于0.05Hz~2Hz;或者,介于0.05Hz~1Hz;或者,介于0.05Hz~0.8Hz;或者,介于0.05Hz~0.5Hz;或者,介于0.1Hz~0.5Hz。
在一示例中,所述气溶胶生成装置还包括开关电路;所述方法还包括:控制所述开关电路的开关频率,以调节所述功率源改变功率输出的频率。
第二方面,本申请实施例还提供了一种气溶胶生成装置的控制方法,所述气溶胶生成装置包括用于对气溶胶形成基质进行加热以产生气溶胶的加热器和功率源;所述方法包括:控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源间隙性地对所述加热器输出功率,并且通过限制输出功率动作的频率,以调整所述气溶胶生成装置产生的噪音分贝值。
第三方面,本申请实施例还提供了一种气溶胶生成装置,包括:功率源;加热器,用于对气溶胶形成基质进行加热以产生气溶胶;控制器,被配置为控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,以调整所述气溶胶生成装置产生的噪音分贝值。
在一示例中,所述气溶胶生成装置还包括调压电路;所述调压电路,被配置为接受所述控制器的控制,以调整供给至所述加热器的电压。
在一示例中,所述调压电路包括升压电路和/或降压电路。
在一示例中,所述调压电路包括BUCK变换电路、BOOST变换电路、BUCK-BOOST变换电路、CUK变换电路、ZETA变换电路、SEPIC变换电路中的至少一种。
在一示例中,所述加热器包括与功率源连接的电阻加热元件,所述控制器配置为当所述电阻加热元件流经变化电流时调整所述加热器的噪音分贝值。
在一示例中,所述加热器包括与功率源连接的感应线圈和与所述感应线圈电磁耦合的感应加发热体,所述控制器配置为当所述感应线圈流经变化电流时调整所述感应线圈的噪音分贝值。
在一示例中,所述加热器被构造成细长形加热器以可插入到所述气溶胶形成基质中进行加热。
在一示例中,所述气溶胶生成装置还包括开关电路;所述开关电路,被配置为接受所述控制器的控制,以导通或者断开电芯与所述加热器之间的电连接。
在一示例中,所述开关电路包括第一开关管和第二开关管;所述第一开关管和所述第二开关管均包括输入连接端、输出连接端以及控制端;所述第一开 关管的控制端用于接受所述控制器的控制,所述第一开关管的输入连接端与所述第二开关管的控制端电连接,所述第一开关管的输出连接端接地;所述第二开关管的输入连接端与电芯电连接,所述第二开关管的输出连接端与所述加热器电连接。
本申请提供的气溶胶生成装置的控制方法,通过控制功率源按照至少一预定值或者处于预定范围内的电力参数对加热器输出功率,以调整气溶胶生成装置产生的噪音分贝值,避免噪音过大导致用户体验感较差的问题,提升了用户的使用体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施方式提供的气溶胶生成装置的控制方法示意图;
图2是本申请实施方式提供的一种气溶胶生成装置示意图;
图3是本申请实施方式提供的加热器的温度曲线示意图;
图4是本申请实施方式提供的加热器的电压波形示意图;
图5是本申请实施方式提供的一种调压电路示意图;
图6是本申请实施方式提供的另一种调压电路示意图;
图7是本申请实施方式提供的又一种调压电路示意图;
图8是本申请实施方式提供的又一种调压电路示意图;
图9是本申请实施方式提供的另一种气溶胶生成装置示意图;
图10是本申请实施方式提供的又一种气溶胶生成装置示意图;
图11是本申请实施方式提供的另一种气溶胶生成装置中开关电路示意图;
图12是本申请实施方式提供的另一电压波形示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连 接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1是本申请实施方式提供的气溶胶生成装置的控制方法示意图。
所述气溶胶生成装置包括用于对气溶胶形成基质进行加热以产生气溶胶的加热器;加热器可以构造成外围或者周向加热结构(加热器包围至少部分气溶胶形成基质),也可以构造成中心加热结构(加热器的外周与气溶胶形成基质直接接触)。加热方式可以为电阻加热、红外辐射加热、电磁加热等等,在此不作限定。
所述方法包括:
步骤S11、控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;
步骤S12、并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,以调整所述气溶胶生成装置产生的噪音分贝值。
在所述加热器处于期望温度范围内或者维持在目标温度时,用户可在所述预设持续时间内吸食所述气溶胶生成装置产生的气溶胶。一般的,目标温度介于150℃~350℃;或者,介于150℃~300℃;或者,介于150℃~250℃;或者,介于150℃~200℃。期望温度范围可以基于目标温度上下浮动。
通过控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,可以控制所述气溶胶生成装置产生的噪音分贝值在用户可接受的范围。作为一种示例,用户期望气溶胶生成装置产生的噪音分贝值被限制在一参考分贝值之下,从而在用户抽吸时气溶胶生成装置产生的振动噪音不致影响用户的体验,例如被限制在45bB的参考分贝值之下。作为优选实施,又例如限制气溶胶生成装置产生的噪音分贝值保持在如下用户可接受的范围: 0dB-32dB,0dB-30dB,0dB-26dB,0dB-20dB或者5dB-20dB等等。
所述电力参数包括电流、电压和频率中的至少一种,和/或,基于电流、电压和频率中的至少一种衍生出的参数,例如:变化量、变化率等等。
以下结合图2-图8,对本申请一优选的实施方式进行说明:
如图2所示,气溶胶生成装置10包括加热器101、控制器102和电芯103。
加热器101用于根据电芯103提供的电力产生热量,以对放置于气溶胶生成装置10中的制品20进行加热,使制品20中的气溶胶形成基质产生气溶胶,供用户抽吸。
在图2的示例中,加热器101构造成外围或者周向加热结构(加热器101包围至少部分气溶胶形成基质),加热方式可以为电阻加热、红外辐射加热、电磁加热等等。
控制器102分别与加热器101和电芯103连接,用于控制电芯103供给至加热器101的电力或者输出功率给加热器101,进而控制加热器101的加热温度,以使得加热气溶胶形成基质产生气溶胶。
控制器102还配置为用于执行气溶胶生成装置10的控制方法。
气溶胶生成装置10还可包括用于存储执行气溶胶生成装置10的控制方法的程序的存储介质,控制器102可读取并执行所述存储介质中存储的气溶胶生成装置10的控制方法的程序,实现气溶胶生成装置10的控制方法。存储介质可以为设置在气溶胶生成装置10中的独立存储器件,也可以是内置于控制器102中的存储介质。存储介质包括但不限于非易失性的存储介质。
电芯103,即功率源,用于给加热器101和控制器102提供电力。电芯103可以为可充电电芯,也可以为不可充电电芯。
在图2的示例中,气溶胶生成装置10还包括耦接在加热器101与电芯103之间的调压电路104;调压电路104包括升压电路和/或降压电路。例如:图5和图8所示的BUCK-BOOST变换电路,图6所示的BOOST变换电路,图7所示的BUCK变换电路、CUK变换电路(未示出)、ZETA变换电路(未示出)、SEPIC变换电路(未示出)中的至少一种。
调压电路104包括开关管,通过控制调压电路104中开关管的占空比和/或开关频率,可以调整供给至加热器101的电力信号的电压,以使得流经加热器101的电流变化量保持在预设范围,进而控制气溶胶生成装置10产生的噪音分 贝值。
可以根据加热器101的实时温度,调整供给至加热器101的电力的电压。加热器101的实时温度可通过与控制器102连接的温度传感器(图中未示出)检测得到。温度传感器包括但不限于热电偶、具有电阻温度系数的温度检测模块。优选的实施中,加热器101本身可具有电阻温度系数,通过加热器101的电阻值可确定加热器101的实时温度。
在本示例中,供给至加热器101的电力的电压波形包括但不限于方波、三角波、锯齿波。
如图3所示的加热器的温度曲线示意图,其中,温度曲线的横坐标t表示时间,纵坐标T表示温度。
t0时刻,加热器101的初始温度为T0。
在图3示例中,初始温度大于环境温度;其它示例中,初始温度可以为环境温度。
t0~t1时间段,控制器102控制加热器101的电力以最大功率或者其它预设功率进行加热,例如:最大功率为36W;在t1时刻,加热器101加热到预设温度T1。
预设温度可以为气溶胶形成基质产生气溶胶的最佳温度,即气溶胶形成基质在该温度下可以提供最适合用户抽吸、口感较佳的烟雾量及温度。本申请实施方式采用的预设温度介于150℃~350℃;或者,介于180℃~350℃;或者,介于220℃~350℃;或者,介于220℃~300℃;或者,介于220℃~280℃;220℃~260℃。
t1~t2时间段,控制器102控制电芯103供给至加热器101的电力并控制加热器101在预设温度T1(220℃)下保持一段时间(即t1~t2时间段)。需要说明的是,在其它示例中,不设置t1~t2时间段也是可行的。
t2时刻,控制器102可输出抽吸气溶胶的提示信号,提示用户抽吸。具体地,可通过与控制器102连接的提示装置,根据控制器102输出的可抽吸气溶胶的提示信号执行提示操作。例如:提示装置为震动马达,震动马达根据控制器102输出的可抽吸气溶胶的提示信号(包括用于控制震动马达工作的启动信号),震动提示用户可抽吸气溶胶;提示装置为LED灯,LED灯根据控制器102输出的可抽吸气溶胶的提示信号,常亮或闪烁提示用户抽可抽吸气溶胶。
t2~t3时间段,在输出可抽吸气溶胶的提示信号之后,控制器102控制电芯103供给至加热器101的电力并控制加热器101的温度从T1下降到目标温度T2。随后,控制器102控制电芯103供给至加热器101的电力,以控制加热器101维持在目标温度T2。
其中,t2~t3时间段的值可以为120秒~360秒或者抽吸6口~20口的的时长。
如图4所示,t2~t3时间段,供给至加热器101的功率的电力参数包括交替性提供的第一电力参数和第二电力参数,在图4所示的实施中,第一电力参数和第二电力参数包括电压,功率源所提供的电压波形为方波。在该方波中,功率源所提供的电压包括第一电压和第二电压,且第二电压小于第一电压。例如第一电压Vmax为供给至加热器101的电力的最大电压值,第二电压Vmin为供给至加热器101的电力的最小电压值。为了控制气溶胶生成装置10产生的噪音分贝值在用户可接受的范围,Vmax和Vmin满足以下关系:
(Vmax-Vmin)/RX=I V,其中RX为加热器101的阻值,I V为电力信号的电流变化量,其预设范围介于0~5A;或者,介于0~4A;或者,介于0~3A;或者,介于0~2A;或者,介于0~1A;或者,介于0~0.5A;或者,介于0~0.2A。在加热器101的阻值一定时,供给至加热器101的电力的电压变化量也是处于对应的预设范围。
如图5所示的具体电路示意图,电芯103(图中的BAT所示)与加热器101(图中的OUT+与OUT-即为加热器101)之间耦接有异步降压电路和BOOST升压电路。
以图4的t0~t1时间段为例,开关管Q3导通,异步降压电路不工作,由开关管Q7和开关管Q6构成的BOOST升压电路工作,输出高于电芯103电压幅度的直流电压;使得加热器101加热到预设温度T1。
当加热器101加热到预设温度T1时,可以控制开关管Q6导通,开关管Q7关断,即BOOST升压电路停止工作;然后通过控制器102控制开关管Q14使得开关管Q3输出PWM脉冲信号,从而使得由开关管Q3、二极管D7、电感L1、开关管Q6、电热C12和C9组成的异步降压电路,加载在加热器101上的电力的电压下降,温度随之也下降。在加热器101的温度从T1下降到T2时,由于此时的电压不能使加热器101的温度呈上升趋势,所以需要再次打开BOOST升压电路,使加热器101的温度呈上升趋势,达到设定的温度值T2。在t2~t3时 间段,BOOST升压电路与异步降压电路交替工作,控制供给至加热器101的电力的电压,以使得流经加热器101的电流变化量保持在预设范围,抑制加热器101在变化电流作用下所产生的变化磁场环境下所产生机械振动的幅度,进而控制气溶胶生成装置10产生的噪音分贝值。
针对不同的电流变化量进行噪音测试:
测试数量(Qty):10;
测试方法:气溶胶生成装置离噪声采集器具有10MM的距离,在全无响测量实验室中对运行中的气溶胶生成装置进行噪声数据实时采集;在气溶胶生成装置被插入制品(烟支)并在开机后观察在恒温阶段(t2~t3时间段)噪声的平均值;
测试条件:测量实验室底噪音19dB;
测试设备:A5音频分析仪;
判定标准:环境噪音标准:0dB-30dB定义为极静;30dB-50dB定义为安静;50dB-70dB定义为较静。
噪音测试结果:
Figure PCTCN2022122825-appb-000001
从以上测试结果可以看出,在流经加热器101的电流变化量介于1A~5A时,虽然可以听到滋滋声,但是测试分贝处于用户可接受的范围(安静范围);在流 经加热器101的电流变化量介于1A以下时,贴近人耳几乎听不到声音,用户体验感最佳。随着流经加热器101的电流变化量的降低,测试的分贝值也是相应的降低。
以下结合图9至图12,对本申请另一优选的实施方式进行说明:
如图9所示,与图2示例不同的是,气溶胶生成装置100中的加热器1001构造成中心加热结构(加热器的外周与气溶胶形成基质直接接触),加热方式不作限定。气溶胶生成装置100中的控制器102、电芯103与前述类似。
在图9所示的实施中,加热器1001是构造成细长形状的加热器以可以插入气溶胶形成基质中。作为一种示例,加热器1001包括细长的加热器基体和结合在加热器基体上的电阻加热元件,电阻加热元件在流经电流时能够产生热量;电芯103通过控制器102与加热器1001的电阻加热元件连接,气溶胶生成装置100中的控制器102可以在该电阻加热元件流经变化的电流时,通过合适的电力参数来输出功率来抑制加热器1001机械振动的幅度或频次,从而使得所述加热器的噪音分贝值保持在较低水平。其中,电芯103可以作为功率源。
如图10所示,作为另一示例,加热器还可以是包括与功率源连接的感应线圈1003和与感应线圈1003电磁耦合的感应加发热体1002,感应加发热体1002在感应线圈1003产生的变化磁场下发热以加热气溶胶形成基质,电芯103通过控制器102与感应线圈1003连接,气溶胶生成装置中控制器102能够以合适的电力参数输出功率给感应线圈1003,例如通过合适的频率提供给所述感应线圈变化电流,从而抑制感应线圈1003的振动使其噪音分贝值保持在较低水平。其中,电芯103可以作为功率源。
气溶胶生成装置100还包括耦接在加热器1001与电芯103之间的开关电路1004;如图11所示,开关电路1004包括开关管Q2和开关管Q1;开关管Q2和开关管Q1均包括输入连接端、输出连接端以及控制端。在本示例中,开关管Q2为NMOS管,开关管Q1为PMOS管;开关管Q2的输入连接端为漏极,输出连接端为源极,控制端为栅极;开关管Q1的输入连接端为源极,输出连接端为漏极,控制端为栅极。开关管Q2的控制端用于接受控制器102的控制,以导通或者断开电芯103与加热器1001之间的电连接。开关管Q2的输入连接端与开关管Q1的控制端电连接,开关管Q2的输出连接端接地;开关管Q1的输入连接端与电芯电连接,开关管Q1的输出连接端与加热器101电连接。
仍以图3所示的加热器的温度曲线示意图为例,在t2~t3时间段,可以提供大小不同的输出功率,以维持加热器在目标温度;控制器进一步通过使提供给加热器的功率相关的电力参数例如电压的频率保持在一个预定值或者一个合适的范围内,从而控制气溶胶生成装置100产生的噪音分贝值。作为一种可行的实施,控制开关管Q2间隙性动作的开关频率,即可实现保持输出电压的改变频率在合适的范围内。作为优选的方案,上述频率介于0.05Hz~10Hz;或者,介于0.05Hz~5Hz;或者,介于0.05Hz~2Hz;或者,介于0.05Hz~1Hz;或者,介于0.05Hz~0.8Hz;或者,介于0.05Hz~0.5Hz;或者,介于0.1Hz~0.5Hz。
在一种示例中,控制器控制功率源交替性地提供至少两个不同电压给加热器,其中一个电压等于零,即功率源间隙性地提供给加热器。作为一个可行的实施,如图12所示的t2~t3时间段,功率源供给至加热器101的电力信号的电压波形为方波。在该方波中,Vmax为供给至加热器101的电力的最大电压值,供给至加热器101的电力的最小电压值为零。
针对不同开关频率进行噪音测试:
测试数量(Qty):10;
测试方法:气溶胶生成装置离噪声采集器10MM的距离,全无响测量实验室中进行噪声数据实时采集;插入制品(烟支)并在开机后观察在恒温阶段(t2~t3时间段)噪声的平均值;
测试条件:测量实验室底噪音19dB;
测试设备:A5音频分析仪;
判定标准:环境噪音标准:0dB-30dB定位为极静;30dB-50dB定义为安静;50dB-70dB定义为较静。
噪音测试结果:
Figure PCTCN2022122825-appb-000002
Figure PCTCN2022122825-appb-000003
从以上测试结果可以看出,提供给加热器不同功率的改变频率较低时,可以很好的抑制加热器产生的振动噪音。作为优选方案,在开关管Q2的开关频率介于0.5Hz~10Hz时,虽然可以听到声音,但是测试分贝处于用户可接受的范围(极静范围);在开关管Q2的开关频率介于0.5Hz以下时,贴近人耳几乎听不到声音,用户体验感最佳。随着开关管Q2的开关频率的降低,测试的分贝值也是相应的降低。在实施中,控制器可以被配置为提供给加热器不同功率的改变频次维持在0.5Hz~10Hz中某一特定值或者在该范围中变动。
需要说明的是,图9至图12的电力信号的频率控制方式,也适用于图2-图8的示例。在一种示例中,通过同时控制流经加热器101的电流变化量和间隙性提供电力信号的频率,控制气溶胶生成装置10产生的噪音分贝值。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本 申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种气溶胶生成装置的控制方法,所述气溶胶生成装置包括用于对气溶胶形成基质进行加热以产生气溶胶的加热器和功率源;其特征在于,所述方法包括:
    控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;
    并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,以调整所述气溶胶生成装置产生的噪音分贝值。
  2. 根据权利要求1所述的方法,其特征在于,所述电力参数包括电流、电压和频率中的至少一种,和/或,基于电流、电压和频率中的至少一种衍生出的参数。
  3. 根据权利要求1所述的方法,其特征在于,所述方法包括:控制功率源按照可变化的电力参数对所述加热器输出功率,且通过限制所述电力参数的变化量来调整所述噪音分贝值。
  4. 根据权利要求3所述的方法,其特征在于,所述电力参数的变化量包括电流或电压的变化量;
    所述方法还包括:
    控制所述电流或电压的变化量,以将所述噪音分贝值限制于一参考分贝值之下。
  5. 根据权利要求4所述的方法,其特征在于,控制所述电流的变化量介于0~5A;或者,介于0~4A;或者,介于0~3A;或者,介于0~2A;或者,介于0~1A;或者,介于0~0.5A;或者,介于0~0.2A。
  6. 根据权利要求3所述的方法,其特征在于,所述方法包括:控制功率源交替性地按照第一电力参数和小于该第一电力参数的第二电力参数对所述加热器输出功率,并且限制第一电力参数和第二电力参数之间的差值不超过预设阈值。
  7. 根据权利要求6所述的方法,其特征在于,通过限制所述第一电力参数和第二电力参数的交替频率,以调整所述噪音分贝值。
  8. 根据权利要求6所述的方法,其特征在于,所述第一电力参数和所述第二电力参数均包括电压,所述第二电力参数的电压值等于零。
  9. 根据权利要求1所述的方法,其特征在于,监控所述加热器的实时温度,根据温度值来控制所述功率源提供给加热器的电压。
  10. 根据权利要求9所述的方法,其特征在于,所述气溶胶生成装置还包括连接功率源的调压电路;
    所述方法还包括:
    控制所述调压电路,以输出给所述加热器不同的电压。
  11. 根据权利要求10所述的方法,其特征在于,所述调压电路包括开关管;
    所述方法还包括:
    控制所述开关管的占空比和/或开关频率,以输出不同的电压。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制所述功率源交替性地输出至少两个不同的功率至加热器,且通过限制所述至少两个不同的功率的改变频率,以调整所述气溶胶生成装置产生的噪音分贝值。
  13. 根据权利要求12所述的方法,其特征在于,限制所述至少两个不同的功率的改变频率介于0.05Hz~10Hz;或者,介于0.05Hz~5Hz;或者,介于0.05Hz~2Hz;或者,介于0.05Hz~1Hz;或者,介于0.05Hz~0.8Hz;或者,介于0.05Hz~0.5Hz;或者,介于0.1Hz~0.5Hz。
  14. 根据权利要求12所述的方法,其特征在于,所述气溶胶生成装置还包括开关电路;
    所述方法还包括:
    控制所述开关电路的开关频率,以调节所述功率源改变功率输出的频率。
  15. 一种气溶胶生成装置的控制方法,所述气溶胶生成装置包括用于对气溶胶形成基质进行加热以产生气溶胶的加热器和功率源;其特征在于,所述方法包括:
    控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;
    并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源间隙性地对所述加热器输出功率,并且通过限制输出功率动作的频率, 以调整所述气溶胶生成装置产生的噪音分贝值。
  16. 一种气溶胶生成装置,其特征在于,包括:
    功率源;
    加热器,用于对气溶胶形成基质进行加热以产生气溶胶;
    控制器,被配置为控制功率源输出功率给所述加热器,使得所述加热器处于期望温度范围内或者维持在目标温度;并且在使所述加热器处于期望温度范围内或者维持在目标温度的期间,控制功率源按照至少一预定值或者处于预定范围内的电力参数对所述加热器输出功率,以调整所述气溶胶生成装置产生的噪音分贝值。
  17. 根据权利要求16所述的气溶胶生成装置,其特征在于,还包括调压电路;
    所述调压电路,被配置为接受所述控制器的控制,以调整供给至所述加热器的电压。
  18. 根据权利要求17所述的气溶胶生成装置,其特征在于,所述调压电路包括升压电路和/或降压电路。
  19. 根据权利要求18所述的气溶胶生成装置,其特征在于,所述调压电路包括BUCK变换电路、BOOST变换电路、BUCK-BOOST变换电路、CUK变换电路、ZETA变换电路、SEPIC变换电路中的至少一种。
  20. 根据权利要求16所述的气溶胶生成装置,其特征在于,所述加热器包括与功率源连接的电阻加热元件,所述控制器配置为当所述电阻加热元件流经变化电流时调整所述加热器的噪音分贝值。
  21. 根据权利要求16所述的气溶胶生成装置,其特征在于,所述加热器包括与功率源连接的感应线圈和与所述感应线圈电磁耦合的感应加发热体,所述控制器配置为当所述感应线圈流经变化电流时调整所述感应线圈的噪音分贝值。
  22. 根据权利要求16所述的气溶胶生成装置,其特征在于,所述加热器被构造成细长形加热器以可插入到所述气溶胶形成基质中进行加热。
  23. 根据权利要求22所述的气溶胶生成装置,其特征在于,还包括开关电路;
    所述开关电路,被配置为接受所述控制器的控制,以导通或者断开电芯与 所述加热器之间的电连接。
  24. 根据权利要求23所述的气溶胶生成装置,其特征在于,所述开关电路包括第一开关管和第二开关管;所述第一开关管和所述第二开关管均包括输入连接端、输出连接端以及控制端;
    所述第一开关管的控制端用于接受所述控制器的控制,所述第一开关管的输入连接端与所述第二开关管的控制端电连接,所述第一开关管的输出连接端接地;所述第二开关管的输入连接端与电芯电连接,所述第二开关管的输出连接端与所述加热器电连接。
PCT/CN2022/122825 2021-09-30 2022-09-29 气溶胶生成装置及其控制方法 WO2023051733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111160239.1A CN115868688A (zh) 2021-09-30 2021-09-30 气溶胶生成装置及其控制方法
CN202111160239.1 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051733A1 true WO2023051733A1 (zh) 2023-04-06

Family

ID=85756664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122825 WO2023051733A1 (zh) 2021-09-30 2022-09-29 气溶胶生成装置及其控制方法

Country Status (2)

Country Link
CN (1) CN115868688A (zh)
WO (1) WO2023051733A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108618206A (zh) * 2018-04-10 2018-10-09 绿烟实业(深圳)有限公司 烟具设备及用于该烟具设备的测温控温方法
CN109640714A (zh) * 2016-08-08 2019-04-16 莱战略控股公司 用于气溶胶递送设备的升压转换器
US20200278707A1 (en) * 2019-03-01 2020-09-03 Rai Strategic Holdings, Inc. Temperature control circuitry for an aerosol delivery device
CN111655054A (zh) * 2018-01-26 2020-09-11 日本烟草产业株式会社 气溶胶生成装置以及气溶胶生成装置的制造方法
CN112188840A (zh) * 2018-11-19 2021-01-05 韩国烟草人参公社 以规定频率以下的信号控制气溶胶生成装置的加热器的电力的方法以及其气溶胶生成装置
CN112385902A (zh) * 2020-11-03 2021-02-23 深圳市合元科技有限公司 一种气溶胶生成装置
CN112403405A (zh) * 2020-10-15 2021-02-26 深圳麦克韦尔科技有限公司 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640714A (zh) * 2016-08-08 2019-04-16 莱战略控股公司 用于气溶胶递送设备的升压转换器
CN111655054A (zh) * 2018-01-26 2020-09-11 日本烟草产业株式会社 气溶胶生成装置以及气溶胶生成装置的制造方法
CN108618206A (zh) * 2018-04-10 2018-10-09 绿烟实业(深圳)有限公司 烟具设备及用于该烟具设备的测温控温方法
CN112188840A (zh) * 2018-11-19 2021-01-05 韩国烟草人参公社 以规定频率以下的信号控制气溶胶生成装置的加热器的电力的方法以及其气溶胶生成装置
US20200278707A1 (en) * 2019-03-01 2020-09-03 Rai Strategic Holdings, Inc. Temperature control circuitry for an aerosol delivery device
CN112403405A (zh) * 2020-10-15 2021-02-26 深圳麦克韦尔科技有限公司 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质
CN112385902A (zh) * 2020-11-03 2021-02-23 深圳市合元科技有限公司 一种气溶胶生成装置

Also Published As

Publication number Publication date
CN115868688A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US11937357B2 (en) Aerosol generation device comprising voltage converter and method for controlling same
WO2021093778A1 (zh) 气溶胶产生装置及其控制方法
CN111990703A (zh) 气溶胶产生装置及方法
JP2022522601A (ja) エアロゾル生成装置
CN106072766A (zh) 一种输入发热材料电阻温度系数的电子烟温控系统
JP7361895B2 (ja) 中央および周辺サセプタを備える誘導ヒーター
WO2023051733A1 (zh) 气溶胶生成装置及其控制方法
CN112369707A (zh) 加热不燃烧烟草器具及供电控制方法
KR20240067132A (ko) 에어로졸 생성 장치 및 그 제어 방법
EP4316290A1 (en) Inhalation device, control method, and program
WO2022201303A1 (ja) 吸引装置、制御方法、及びプログラム
WO2024024004A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
CN116261985A (zh) 气溶胶产生装置及其控制方法
EP4353106A1 (en) Inhalation device, base material, and control method
WO2024024003A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2023169526A1 (zh) 电子雾化装置及电子雾化装置的控制方法
WO2023073931A1 (ja) 吸引装置、基材、及び制御方法
WO2022190211A1 (ja) 吸引装置、及びプログラム
WO2023181280A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2023181282A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2018141101A1 (zh) 一种输入发热材料电阻温度系数的电子烟温控系统
WO2024001297A1 (zh) 气溶胶产生方法、装置、计算机程序产品及存储介质
CN108991607A (zh) 混合式电子烟系统、控制方法、装置及计算机设备
WO2022130493A1 (ja) 吸引装置、制御方法、及びプログラム
WO2023157275A1 (ja) 誘導加熱システム、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247014601

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022875114

Country of ref document: EP

Effective date: 20240430