WO2023169526A1 - 电子雾化装置及电子雾化装置的控制方法 - Google Patents

电子雾化装置及电子雾化装置的控制方法 Download PDF

Info

Publication number
WO2023169526A1
WO2023169526A1 PCT/CN2023/080584 CN2023080584W WO2023169526A1 WO 2023169526 A1 WO2023169526 A1 WO 2023169526A1 CN 2023080584 W CN2023080584 W CN 2023080584W WO 2023169526 A1 WO2023169526 A1 WO 2023169526A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
power
heating
target temperature
electronic atomization
Prior art date
Application number
PCT/CN2023/080584
Other languages
English (en)
French (fr)
Inventor
陈汉良
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023169526A1 publication Critical patent/WO2023169526A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the embodiments of the present application relate to the field of electronic atomization technology, and in particular, to an electronic atomization device and a control method of the electronic atomization device.
  • Smoking products eg, cigarettes, cigars, etc.
  • Smoking products burn tobacco during use to produce tobacco smoke. Attempts have been made to replace these tobacco-burning products by creating products that release compounds without burning them.
  • vaping products which work by heating a liquid substrate to vaporize it, thereby producing an inhalable vapor or aerosol.
  • the liquid base may contain nicotine and/or flavors and/or aerosol-generating substances (eg, glycerol).
  • the battery core directly outputs power to the resistance heating element through the switching of the switch tube, so that the liquid substrate is heated and atomized to generate aerosol; for the control of the heating process, patent No.
  • CN112189907A proposes a typical The output control method uses a constant power output method to control the supply of power to the resistance heating element, thereby heating the liquid substrate; thus, during heating, it is necessary to detect the temperature of the resistance heating element in real time to prevent the temperature of the resistance heating element from changing during constant power output. Rising above the target temperature causes a "dry burn".
  • One embodiment of the present application provides an electronic atomization device, including:
  • Liquid storage chamber for storing liquid matrix
  • a heating element for heating the liquid matrix to generate an aerosol for suction
  • a controller configured to periodically repeatedly execute control steps to control the electric core to directly or indirectly provide power to the heating element so that the heating element heats the liquid substrate; wherein, the control Steps include:
  • the target temperature is constant or unchanged.
  • a more preferred implementation also includes:
  • a first switching tube through which the battery core directly or indirectly provides power to the heating element
  • the control of the electric core to directly or indirectly output to the heating element with the required power includes: determining the required power of the first switch tube within the predetermined period according to the required power. conduction time, and control the conduction and disconnection of the first switching tube according to the required conduction time.
  • the target temperature ranges from 150 to 300°C.
  • the predetermined period of time is between 1 and 100 ms.
  • the controller is configured to:
  • Control the electric core to provide power to the heating element during the first heating period to heat the temperature of the heating element from the initial temperature to the target temperature
  • the temperature of the heating element is maintained at the target temperature.
  • the controller is configured to repeatedly perform the control step at a first frequency during the first heating period, and to repeatedly perform the control step at a second frequency during the second heating period. step;
  • the first frequency is greater than the second frequency.
  • the predetermined period during which the control step is performed during the first heating period is smaller than the predetermined period during which the control step is performed during the second heating period.
  • the controller is configured to control the power provided by the electric core to the heating element during the first heating period to be greater than the power provided to the heating element during the second heating period.
  • the predetermined period during the execution of the first heating period of the control step is between 1 and 20 ms;
  • the predetermined period during the execution of the second heating period of the control step is between 20 and 100 ms.
  • the controller is further configured to determine an adverse condition based on the power provided by the electric core to the heating element; and when the adverse condition exists, prevent the electric core from supplying power to the heating element. Heating elements provide power.
  • the controller is configured to determine that the liquid matrix provided to the heating element is insufficient or exhausted when the power provided by the electric core to the heating element is less than a preset threshold.
  • the controller is configured to obtain the current temperature of the heating element by detecting the resistance value of the heating element.
  • a more preferred implementation also includes:
  • a second switching tube operable to form a series detectable circuit between the quasi-voltage dividing resistor and the heating element
  • the controller is configured to detect the electrical characteristics of the standard voltage dividing resistor and/or the heating element in the detectable loop to obtain the current temperature of the heating element.
  • a more preferred implementation also includes:
  • a boosting unit is used to boost the output voltage of the battery cell.
  • the controller is configured to control the on and off of the first switch tube through pulse width modulation
  • the controller is configured to adjust the duty cycle of the pulse width modulation according to the required conduction time to control the conduction and disconnection of the first switching tube.
  • the power provided by the electric core to the heating element is variable or non-constant.
  • the electronic atomization device includes:
  • Liquid storage chamber for storing liquid matrix
  • a heating element for heating the liquid matrix to generate an aerosol for suction
  • the methods include:
  • control steps are periodically repeated to control the electric core to directly or indirectly supply electricity to the heating element.
  • Power is provided to cause the heating element to heat the liquid substrate; wherein the control step includes:
  • the target temperature is constant or unchanged.
  • Another embodiment of the present application also provides a controller, including:
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to perform the method as described above.
  • Yet another embodiment of the present application also provides a non-volatile computer-readable storage medium, which stores computer-executable instructions.
  • the computer-readable storage medium stores computer-executable instructions.
  • the controller executes the method as described above.
  • the present application also provides a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program When the instructions are executed by the controller, the controller is caused to execute the method as described above.
  • the above electronic atomization device provides power in a constant temperature control mode, which is faster in heating from the initial temperature to the target temperature than the usual constant power output control mode, which is beneficial for quickly generating aerosol.
  • Figure 1 is a schematic diagram of an electronic atomization device provided by an embodiment
  • Figure 2 is a schematic diagram of an embodiment of the atomizer in Figure 1;
  • Figure 3 is a schematic diagram of the porous body in Figure 2 from one perspective
  • Figure 4 is a schematic diagram of the porous body in Figure 2 from another perspective
  • Figure 5 is a schematic diagram of another embodiment of the atomizer in Figure 1;
  • Figure 6 is a structural block diagram of an embodiment of the circuit board in Figure 1;
  • Figure 7 is a schematic diagram of the detectable loop composed of the standard voltage dividing resistor and the heating element in Figure 6;
  • Figure 8 is a schematic diagram of a preset heating curve for controlling a heating element in one embodiment
  • Figure 9 is a schematic diagram of the control steps for controlling the provision of power to a heating element in one embodiment
  • Figure 10 is a schematic diagram of the resistance change curve of the heating element during heating according to a preset heating curve in an embodiment and a comparative example
  • Figure 11 is a schematic diagram of an electronic atomization device according to another embodiment
  • Figure 12 is a schematic diagram of an atomization assembly according to yet another embodiment
  • Figure 13 is a schematic diagram of the hardware structure of a controller provided by yet another embodiment.
  • This application proposes an electronic atomization device, as shown in FIG. 1 , including an atomizer 100 that stores a liquid substrate and heats and vaporizes it to generate an aerosol, and a power supply mechanism 200 that supplies power to the atomizer 100 .
  • the power supply mechanism 200 includes a receiving cavity 270 disposed at one end along the length direction for receiving and accommodating at least a portion of the atomizer 100 , and at least a portion of the receiving cavity 270 is exposed.
  • the first electrical contact 230 on the surface of the cavity 270; the first electrical contact 230 is used to form an electrical connection with the atomizer 100 when at least a portion of the atomizer 100 is received and accommodated in the receiving cavity 270, thereby forming an electrical connection with the atomizer 100. 100 powered.
  • a second electrical contact 21 is provided on the end of the atomizer 100 opposite to the power supply mechanism 200 along the length direction, so that when at least a portion of the atomizer 100 is received in the receiving cavity 270 When the second electrical contact 21 is in contact with the first electrical contact 230, the second electrical contact 21 is electrically conductive.
  • a seal 260 is provided inside the power supply mechanism 200 , and at least a part of the internal space of the power supply mechanism 200 is partitioned by the seal 260 to form the above receiving cavity 270 .
  • the seal 260 is configured to extend along the cross-sectional direction of the power supply mechanism 200 , and is preferably made of a flexible material such as silicone, thereby preventing the atomizer 100 from seeping into the receiving chamber.
  • 270 Liquid Matrix Flow To the circuit board 220, air flow sensor 250 and other components inside the power supply mechanism 200.
  • the power supply mechanism 200 further includes a battery core 210 for power supply that is away from the receiving cavity 270 along the length direction; and a circuit board 220 disposed between the battery core 210 and the receiving cavity.
  • the circuit board 220 is operable to conduct electrical current between the cell 210 and the first electrical contact 230 .
  • the power supply mechanism 200 includes an airflow sensor 250, such as a microphone, an air pressure sensor, etc., which is used to sense the suction airflow generated when the user inhales the atomizer 100, and then the circuit board 220 controls the circuit according to the detection signal of the airflow sensor 250.
  • the core 210 outputs power to the atomizer 100 .
  • the power supply mechanism 200 is provided with a charging interface 240 at the other end away from the receiving cavity 270 for charging the battery core 210 .
  • Figures 2 to 4 show a schematic structural diagram of an embodiment of the atomizer 100 in Figure 1, which includes a main housing 10, a porous body 30 and a heating element 40:
  • the main housing 10 is generally flat and cylindrical. Of course, its interior is hollow, and is used to store the atomized liquid matrix and accommodate other necessary functional devices; the upper end of the main housing 10 is provided with a gas suction The suction nozzle A of the sol;
  • the interior of the main housing 10 is provided with a liquid storage chamber 12 for storing a liquid matrix; in a specific implementation, the main housing 10 is provided with a flue gas transmission pipe 11 arranged along the axial direction, and the outer wall of the flue gas transmission pipe 11 is in contact with the main body.
  • the space between the inner walls of the housing 10 forms a liquid storage chamber 12 for storing the liquid matrix; the upper end of the smoke transmission tube 11 relative to the proximal end 110 is connected to the suction nozzle opening A;
  • the porous body 30 is used to obtain the liquid matrix in the liquid storage chamber 12 through the liquid channel 13, and the liquid matrix is transferred as shown by the arrow R1 in Figure 2; the porous body 30 has a flat atomization surface 310, and the atomization surface 310 has a flat atomization surface 310.
  • a heating element 40 is formed for heating at least part of the liquid matrix absorbed by the porous body 30 to generate an aerosol.
  • the side of the porous body 30 away from the atomization surface 310 is in fluid communication with the liquid channel 13 to absorb the liquid substrate, and then transfers the liquid substrate to the atomization surface 310 for heating and atomization.
  • both ends of the heating element 40 abut against the second electrical contact 21 and are electrically conductive.
  • the heating element 40 heats at least part of the liquid matrix of the porous body 30 to generate an aerosol.
  • the porous body 30 includes flexible fibers, such as cotton fibers, non-woven fabrics, fiberglass ropes, etc., or porous ceramics with microporous structures, such as porous ceramics with shapes shown in Figures 3 and 4 body.
  • the heating element 40 may be combined on the atomization surface 310 of the porous body 30 through printing, deposition, sintering or physical assembly.
  • the porous body 30 may have a flat or curved surface for supporting the heating element 40 , and the heating element 40 is formed by mounting, printing, deposition, etc. on the flat or curved surface of the porous body 30 .
  • the material of the heating element 40 may be a metallic material, a metal alloy, graphite, carbon, conductive ceramic or other composite materials of ceramic and metallic materials with appropriate impedance.
  • Suitable metal or alloy materials include nickel, cobalt, zirconium, titanium, nickel alloys, cobalt alloys, zirconium alloys, titanium alloys, nickel-chromium alloys, nickel-iron alloys, iron-chromium alloys, iron-chromium-aluminum alloys, titanium alloys, iron-manganese-aluminum base At least one of alloy or stainless steel.
  • the resistance material of the heating element 40 can be a metal or alloy material with a suitable resistance temperature coefficient, such as a positive temperature coefficient or a negative temperature coefficient. In this way, the heating circuit can be used to both generate heat and sense the real-time temperature of the atomization component. sensor.
  • FIG. 5 shows a schematic structural diagram of an atomizer 100a in yet another embodiment; the porous body 30a is configured in a hollow columnar shape extending along the longitudinal direction of the atomizer 100a, and the heating element 40a is formed in the columnar hollow of the porous body 30a. .
  • the liquid matrix in the liquid storage chamber 20a is absorbed along the outer surface of the porous body 30a in the radial direction, and then transferred to the heating element 40a on the inner surface for heating and vaporization to generate an aerosol; the generated aerosol It is output from the columnar hollow of the porous body 30a along the longitudinal direction of the atomizer 100a.
  • the heating element 40/40a may have an initial resistance value of approximately 0.3 ⁇ 1.5 ⁇ .
  • the circuit board 220 includes:
  • the boosting unit 221 is used to boost the voltage output by the battery cell 210 and then output it; on the one hand, the boosting unit 221 boosts the value of the output voltage; on the other hand, the boosted output voltage value is stable to prevent the battery core from The output voltage of 210 gradually decreases or becomes unstable during the discharge process;
  • the boost unit 221 is a commonly used boost chip, such as the boost chip of Microsource Semiconductor LP6216B6F, which can convert the voltage output by the battery cell 210 (approximately 3.7-4.5V) into a standard voltage of 6.0V. output.
  • circuit board 220 also includes:
  • the switch tube 222 is used to guide current between the heating element 40 and the voltage boosting unit 221, that is, to supply power to the heating element 40;
  • the MCU controller 223 controls the power provided to the heating element 40 by controlling the conduction or disconnection of the switch tube 222;
  • the standard voltage dividing resistor 224 is used to form a detection loop with the heating element 40 for the MCU controller 223 to detect the electrical characteristic parameters of the heating element 40 .
  • Electrical characteristic parameters typically include the voltage of the heating element 40, Current, resistance, etc.; then the MCU controller 223 obtains the temperature of the heating element 40 according to the sampled electrical characteristics. For example, based on a given correlation between the resistance of the resistive heating element 44 and the temperature, the MCU controller 223 can calculate and obtain the real-time temperature of the heating element 44 by detecting the resistance of the heating element 40 .
  • FIG. 7 shows a schematic diagram of a detection loop composed of a standard voltage dividing resistor 224 and a heating element 40 in an embodiment.
  • the MCU controller 223 controls the conduction of the switch tube 222 to provide power to the heating element 40 .
  • the MCU controller 223 turns off the switch tube 222 and turns on the MOS tube Q1.
  • the electrical properties of the heating element 40 such as resistance can be calculated, and then the temperature of the heating element 40 can be calculated and obtained. That is, outputting power to the heating element 40 and detecting the electrical characteristics or temperature of the heating element 40 are not performed at the same time.
  • FIG. 8 shows a schematic diagram of the heating curve of controlling the heating element 40 to heat according to the target temperature in one embodiment; in this embodiment, the target temperature T0 of the heating element 40 is controlled to be constant, and the MCU controller 223 controls the supply of power to the heating element 40 according to a mode in which the target temperature T0 is constant.
  • the target temperature T0 is higher than the lowest vaporization temperature of the liquid substrate, so that the heating temperature of the heating element 40 can reach the temperature required to vaporize the liquid substrate.
  • the target temperature T0 suitable for the liquid matrix can be set to 150-300°C; more preferably, the target temperature T0 suitable for the liquid matrix can be set to 200-280°C.
  • the target temperature T0 determined in the above control step is pre-stored by the storage unit in the MCU controller 223.
  • the target temperature T0 determined in the above control step is input by the user through input elements such as input buttons and interactive screens on the electronic atomization device.
  • the target temperature T0 determined in the above control step is determined by the manufacturer setting a readable storage unit (such as an eeprom memory) in the atomizer 100 during production according to the type of liquid substrate. stored; then when the atomizer 100 receives the power supply mechanism 200, the MCU controller 223 obtains it by reading the readable storage unit in the atomizer 100.
  • a readable storage unit such as an eeprom memory
  • control method is always based on controlling the power supply at a constant target temperature T0, so no matter the amount of liquid matrix delivered to the heating element 40, the heating element 40 cannot be heated to a temperature higher than the higher dry burning temperature that produces harmful substances. Temperature is beneficial to prevent dry burning.
  • the heating time of the heating element 40 is determined by the user's puffing time sensed by the airflow sensor 250 . That is, when the airflow sensor 250 senses the user's suction, the MCU controller 223 controls the heating element 40 to heat according to the target temperature T0; and When the airflow sensor 250 senses that the user's suction action has stopped, the power output and heating are stopped.
  • the heating duration of the heating element 40 is determined by the duration of the user's puffing sensed by the airflow sensor 250 . For example, in some conventional implementations, the duration of each puff by the user is about 3 to 5 seconds.
  • FIG. 9 shows a schematic diagram of the steps in which the MCU controller 223 controls the supply of power to the heating element 40 in one embodiment.
  • the control process includes:
  • the MCU controller 223 can store a comparison table between the resistance and temperature of the heating element 40; and in step S10, based on the detected The resistor determines the temperature of the heating element 40 via a lookup table.
  • step S20 the power required for heating to the target temperature is determined according to the current temperature of the heating element 40, and the MCU controller 223 can calculate it according to the energy conversion formula.
  • determining the power required for heating to the target temperature is also obtained based on a lookup table; for example, for different atomizers 100, the heating element 40 is preheated from different current temperatures to the target temperature or A comparison table is established between the difference between the current temperature and the target temperature and the required power consumption, and then the MCU controller 223 obtains the power required to heat the heating element 40 at the current temperature to the target temperature by looking up the table.
  • the MCU controller 223 controls the conduction of the switch tube 222 to provide power to the heating element 40 through PWM (pulse width) modulation.
  • the MCU controller 223 controls the on and off time of the switch tube 222 by adjusting the duty cycle of the PWM modulation, thereby changing the DC voltage or DC voltage provided to the heating element 40.
  • the duty cycle of the current is such that the power output to the heating element 40 is consistent with the required power.
  • the above control process is divided into several predetermined periods and executed repeatedly. For example, in a complete user's puffing time of 3 to 5 seconds, the MCU controller 223 divides the control into several predetermined periods, and repeatedly executes the above steps S10 to S30 to control heating; the duration of each predetermined period is approximately between 1 and 100 ms.
  • the puffing time of 4s is divided into several predetermined periods.
  • the power provided to the heating element 40 is controlled according to the above steps S10 to S30; wherein the duration of each predetermined period is set to 20 ms.
  • the curve L1 in FIG. 10 shows the resistance change curve of the heating element 40 when the MCU controller 223 controls the heating element 40 to perform heating according to the above settings.
  • Table 1 below shows data corresponding to the real-time resistance of the heating element 40 and the power provided to the heating element 40:
  • curve L2 in FIG. 10 shows the resistance change curve of the comparative example in which the MCU controller 223 controls the heating element 40 to heat to the target temperature in the commonly used typical constant power output mode; similarly, the target temperature T0 in this comparative example is 260°C, the output power is constant at 7.2W, and the initial resistance value of the heating element 40 is 0.783m ⁇ .
  • Table 2 below corresponds to the data of the real-time resistance of the heating element 40 and the power provided to the heating element 40 during the heating process of this comparative example:
  • the resistance rises from the initial state to a target value within approximately t2 time (1.6s), and then remains stable until the end of suction.
  • the output control mode in the embodiment is faster than the commonly used constant power output control mode in heating from room temperature or initial temperature to the target temperature, and is suitable for rapid generation of gas.
  • Sol is advantageous.
  • the target temperature is used as the basis for power calculation. Therefore, during the heating process, the supply of liquid substrate is sufficient or insufficient, and the temperature is always maintained at the target temperature, that is, there will be no "dry burning" situation in which the temperature suddenly rises beyond the target temperature.
  • the MCU controller 223 also sets the preset power according to the power required to maintain the target temperature; and when the actual power output to the heating element 40 is different from the preset power, If the power does not match, determine the adverse conditions.
  • the unfavorable condition described above refers to insufficient liquid substrate delivered or provided to the heating element 40 or exhaustion of the liquid substrate in the liquid storage chamber 12 .
  • the liquid substrate supplied to the heating element 40 is insufficient or depleted, less power is required to maintain the heating element 40 at the target temperature than is required to normally vaporize the liquid. Then by monitoring whether the power is lower than the minimum preset power, it can be determined that the liquid matrix provided to the heating element 40 is insufficient or the liquid matrix in the liquid storage chamber 12 is exhausted.
  • 7.5W is set as the minimum preset power, and when the power when maintaining the temperature of the heating element 40 at the target temperature of 260 degrees is lower than the minimum preset power of 7.5W, it can be considered that the delivery or The liquid substrate supplied to the heating element 40 is insufficient or the liquid substrate in the liquid storage chamber 12 is exhausted.
  • the disadvantageous condition described above is coupled to the power supply mechanism 200
  • the atomizer 100 is counterfeit or substandard or damaged.
  • the power provided to maintain the heating element 40 at the target temperature is different from the preset power of the qualified atomizer 100, or exceeds the preset power.
  • the disadvantageous condition described above is that the liquid matrix provided to the heating element 40 by the atomizer 100 is undesirable; specifically, the undesired liquid matrix may have different properties from the desired liquid matrix. Ingredients with different viscosities, heat capacities or boiling points may result in higher or lower temperatures or power than expected in heated atomization. Then, when the heating element 40 vaporizes an undesired liquid substrate, the power required for vaporizing the desired liquid substrate is significantly different, and based on this power difference, it can be determined whether it is an adverse condition.
  • the execution frequency and/or response speed of the control process of the MCU controller 223 is different.
  • the operating power consumption of the MCU controller 223 can be reduced while accurately maintaining heating at the target temperature.
  • the first heating period that is, the period 0 to t1, during which the resistance of the heating element 40 reaches the preset value from the initial value;
  • the resistance of the heating element 40 remains constant during this heating period.
  • heating the heating element 40 from the initial temperature to the target temperature is defined as the first heating period, that is, the period 0 to t1; and maintaining the temperature of the heating element 40 at the target from t1 to the end of suction.
  • Temperature is defined as the second heating period.
  • the MCU controller 223 divides the first heating period into several predetermined periods and repeatedly executes steps S10 to S30. Finally, the heating element 40 is heated to Target temperature; Similarly, the MCU controller 223 divides the first heating period into several predetermined periods and repeatedly executes steps S10 to S30 to control the power provided to the heating element 40 .
  • the target temperature setting in each predetermined period during the control process is the same or constant.
  • the MCU controller 223 repeatedly executes steps S10 to S30 in the first heating period, and the time set in each predetermined period is shorter than the time set in each predetermined period in the second heating period.
  • the MCU controller 223 sets each predetermined period to be 1 to 20 ms or shorter; and in the second heating period, each predetermined period is set to be 20 to 100 ms or longer.
  • the MCU controller 223 controls the execution of steps S10 to S30 in the first heating period at a higher frequency than the second heating period; or, the MCU controller 223 controls the first heating period to perform steps S10 to S30 faster than the second heating period. Perform steps S10 to S30 according to the response speed.
  • the MCU controller 223 controls the electric core 210 to provide power to the heating element 40 during the first heating period at a relatively higher output power than the second heating period. And according to the power data in Table 1 above, the MCU controller 223 controls that during the first heating period, the output power of the battery core 210 is basically the maximum power that the battery core 210 can output; for example, in the period of 0 to 100ms, the output The power is 15662mW, which is basically the maximum power that the battery cell 210 can output.
  • the MCU controller 223 controls the battery core 210 to Full power and maximum power are output, that is, the switch tube 222 is controlled to be fully conductive in this stage until the end of this stage.
  • FIG 11 shows a schematic diagram of an electronic atomization device according to yet another embodiment.
  • the electronic atomization device in this embodiment includes:
  • An atomizer 200e that stores a liquid aerosol-generating substrate and vaporizes it to generate an aerosol, and a power supply assembly 100e that supplies power to the atomizer 200e.
  • the aerosol-generating substrate is liquid, usually including liquid nicotine or nicotine salts, glycerol, propylene glycol, etc., which vaporizes when heated to generate an aerosol that can be smoked.
  • Nebulizer 200e includes:
  • Liquid storage chamber 210e for storing liquid aerosol generating matrix
  • the liquid-conducting element 220e extends at least partially into the liquid storage chamber 210e to absorb liquid aerosol to generate the matrix;
  • the induction heating element 30e is combined with the liquid-conducting element 220e to generate heat when penetrated by a changing magnetic field to heat part of the liquid matrix in the liquid-conducting element 220e to generate an aerosol.
  • the liquid-conducting element 220e is in the shape of a rod, a tube, or a rod; the liquid-conducting element 220e can be made of porous materials such as fiber cotton, sponge, or porous ceramic body, and can pass through the internal capillary action. Suction and transfer of liquid aerosol generates a matrix; the inductive heating element 30e may be a sensitive strip, tube, or mesh surrounding the liquid-conducting element 220e.
  • Power supply assembly 100e includes:
  • a receiving cavity 130e is provided at one end along the length direction, and at least part of the atomizer 200e is removably received in the receiving cavity 130e during use;
  • Induction coil 50e at least partially surrounding the receiving cavity 130e, for generating a changing magnetic field
  • the circuit board 120e is connected to the rechargeable battery core 110e through appropriate electrical connections, and is used to convert the DC current output by the battery core 110e into an alternating current with a suitable frequency and then supply it to the induction coil 50e. By providing power to the induction coil 50e, the changing magnetic field generated by the induction coil 50e is then converted into eddy current heating of the induction heating element 30e to heat the liquid substrate.
  • the circuit board 120e indirectly provides power to the induction heating element 30e through the induction coil 50e by transferring the power output by the electric core 110e.
  • the circuit board 120e can also control the power output to the induction coil 50e by repeatedly executing the above control steps S10 to S30, so as to maintain the temperature of the induction heating element 30e at a required target temperature.
  • FIG. 12 shows a schematic diagram of a liquid-conducting element 220f in yet another embodiment; at least part of the surface of the liquid-conducting element 220f is used to be in fluid communication with the liquid storage chamber 210e to receive the liquid aerosol-generating matrix. ;
  • the liquid-conducting element 220f has a flat and extended atomization surface 221f; the induction heating element 30f is combined on the atomization surface 221f through surface mounting, co-firing, deposition, etc., and generates heat to heat the liquid by being penetrated by the changing magnetic field. Aerosol-generating matrices generate aerosols.
  • the induction heating element 30f has a hollow 31f, thereby defining a channel for the aerosol to overflow from the atomization surface 221f.
  • the induction heating element 30f may be in a mesh shape, a strip shape, a meandering shape, etc.
  • the liquid-conducting element 220f can also be in the shape of a flat plate, or in the shape of a concave block with a cavity on its surface, or in the shape of an arch with an arch structure, or the like.
  • Figure 13 shows a schematic diagram of the hardware structure of the MCU controller 223 of another embodiment.
  • the MCU controller 223 includes:
  • One or more processors 2231 and memory 2232 are taken as an example.
  • the processor 2231 and the memory 2232 can be connected through a bus or other means.
  • the connection through the bus is taken as an example.
  • the memory 2232 can be used to store non-volatile software programs, non-volatile computer executable programs and modules, such as the control method of the electronic atomization device in the embodiment of the present application. Corresponding program instructions/modules.
  • the processor 2231 executes various functional applications and data processing of the heating element 40 by running non-volatile software programs, instructions and modules stored in the memory 2232, that is, implementing the control method of the electronic atomization device in the above method embodiment.
  • the memory 2232 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store the electronic atomization device according to The data created using the settings, etc.
  • memory 2232 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the above-mentioned controller can execute the method provided by the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the method provided by the embodiment of the present application and has corresponding functional modules and beneficial effects for executing the method.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by one or more processors.
  • a processor 2231 can enable the above one or more processors to execute the control method of the electronic atomization device in any of the above method embodiments.
  • Embodiments of the present invention provide a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are described When the controller is executed, the controller is enabled to execute the control method of the electronic atomization device in any of the above method embodiments.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Catching Or Destruction (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种电子雾化装置及控制方法;其中,电子雾化装置由控制器(223)控制向加热元件(40)提供功率,以期望使加热元件(40)于恒定的目标温度下加热液体基质;控制器(223)被配置为周期性地重复执行控制步骤,以控制电芯直接或间接地向加热元件(40)提供的功率;控制步骤包括:确定一预设的目标温度;根据加热元件(40)的当前温度或者当前温度与目标温度的差值,确定在单个周期的预定时段内将加热元件(40)加热至目标温度或保持于目标温度所需的功率;控制电芯以所需的功率直接或间接地输出至加热元件(40),直至预定时段结束。以上电子雾化装置,以恒定温度的控制模式提供功率,比通常的恒功率输出控制模式,在由初始温度加热至目标温度是更快的,对于快速地产生气溶胶是有利的。

Description

电子雾化装置及电子雾化装置的控制方法
相关申请的交叉参考
本申请要求于2022年03月11日提交中国专利局,申请号为202210239470.8,发明名称为“电子雾化装置、及电子雾化装置的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子雾化技术领域,尤其涉及一种电子雾化装置、及电子雾化装置的控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为电子雾化产品,其通过加热液体基质以使其发生汽化,从而产生可吸入蒸汽或气溶胶。该液体基质可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。在已知的电子雾化产品中,电芯直接通过开关管的通断向电阻加热元件输出功率,使液体基质被加热雾化生成气溶胶;对于加热过程中的控制,CN112189907A号专利提出了典型的输出控制方法,以恒功率输出方式控制向电阻加热元件提供功率,进而加热液体基质;由此导致在加热中,需要实时检测电阻加热元件的温度,以防止恒功率输出中电阻加热元件的温度升高至目标温度以上引起“干烧”。
发明内容
本申请的一个实施例提供一种电子雾化装置,包括:
储液腔,用于存储液体基质;
加热元件,用于加热液体基质生成供抽吸的气溶胶;
电芯,用于提供功率输出;
控制器,被配置为周期性地重复执行控制步骤,以控制所述电芯直接或间接地向所述加热元件提供功率,以使所述加热元件加热液体基质;其中,所述控制 步骤包括:
确定一预设的目标温度;
获取所述加热元件的当前温度,并根据所述加热元件的当前温度或者当前温度与目标温度的差值,确定在单个周期的预定时段内将所述加热元件加热至目标温度或保持于所述目标温度所需的功率;
控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件,直至所述预定时段结束;
所述控制步骤在重复地执行过程中,所述目标温度是恒定或不变的。
更加优选的实施中,还包括:
第一开关管,所述电芯通过该开关管直接或间接地向所述加热元件提供功率;
所述控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件包括:根据所述所需的功率确定在所述预定时段内所述第一开关管的所需的导通时间,并根据所述所需的导通时间控制所述第一开关管的导通和断开。
更加优选的实施中,所述目标温度介于150~300℃。
更加优选的实施中,所述预定时段介于1~100ms。
更加优选的实施中,所述控制器被配置为:
在第一加热时段控制所述电芯向所述加热元件提供功率,以将所述加热元件的温度由初始温度加热至所述目标温度;
在第二加热时段,将所述加热元件的温度保持于所述目标温度。
更加优选的实施中,所述控制器被配置为在所述第一加热时段以第一频率重复地执行所述控制步骤,以及在所述第二加热时段以第二频率重复地执行所述控制步骤;
所述第一频率大于所述第二频率。
更加优选的实施中,所述控制步骤在所述第一加热时段执行中的所述预定时段,小于所述控制步骤在所述第二加热时段执行中的所述预定时段。
更加优选的实施中,所述控制器被配置为控制所述电芯在所述第一加热时段向所述加热元件提供的功率,大于在所述第二加热时段向所述加热元件提供的功率。
更加优选的实施中,所述控制步骤在所述第一加热时段执行中的所述预定时段介于1~20ms;
和/或,所述控制步骤在所述第二加热时段执行中的所述预定时段介于20~100ms。
更加优选的实施中,所述控制器还被配置为根据所述电芯提供至所述加热元件的功率,以确定不利条件;以及在存在所述不利条件时,阻止所述电芯向所述加热元件提供功率。
更加优选的实施中,所述控制器被配置为根据所述电芯提供至所述加热元件的功率小于预设阈值时,确定提供给所述加热元件的液体基质不足或耗尽。
更加优选的实施中,所述控制器被配置为通过检测所述加热元件的电阻值,以获取所述加热元件的当前温度。
更加优选的实施中,还包括:
标准分压电阻;
第二开关管,可操作地将所述准分压电阻与所述加热元件形成串联的可检测回路;
所述控制器被配置为检测在所述可检测回路中所述标准分压电阻和/或加热元件的电特性,以获取所述加热元件的当前温度。
更加优选的实施中,还包括:
升压单元,用于对所述电芯的输出电压进行升压。
更加优选的实施中,所述控制器被配置为通过脉冲宽度调制以控制所述第一开关管的导通和断开;
以及,所述控制步骤中,所述控制器被配置为根据所述所需的导通时间,调节所述脉冲宽度调制的占空比以控制控制所述第一开关管的导通和断开。
更加优选的实施中,所述电芯向所述加热元件提供的功率是变化的或非恒定的。
本申请的又一个实施例还一种电子雾化装置的控制方法,所述电子雾化装置包括:
储液腔,用于存储液体基质;
加热元件,用于加热液体基质生成供抽吸的气溶胶;
电芯,用于提供功率输出;
所述方法包括:
周期性地重复执行控制步骤,以控制所述电芯直接或间接地向所述加热元件 提供功率,从而使加热元件加热液体基质;其中,所述控制步骤包括:
确定一预设的目标温度;
获取所述加热元件的当前温度,并根据所述加热元件的当前温度或者当前温度与目标温度的差值,确定在单个周期的预定时段内将所述加热元件加热至目标温度或保持于所述目标温度所需的功率;
控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件,直至所述预定时段结束;
所述控制步骤在重复地执行过程中,所述目标温度是恒定或不变的。
本申请的又一个实施例还提供一种控制器,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
本申请的又一个实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被控制器执行时,使所述控制器执行如上所述的方法。
本申请的另一个实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被控制器执行时,使所述控制器执行如上所述的方法。
以上电子雾化装置,以恒定温度的控制模式提供功率,比通常的恒功率输出控制模式,在由初始温度加热至目标温度是更快的,对于快速地产生气溶胶是有利的。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是一实施例提供的电子雾化装置的示意图;
图2是图1中雾化器一个实施例的示意图;
图3是图2中多孔体一个视角的示意图;
图4是图2中多孔体又一个视角的示意图;
图5是图1中雾化器又一个实施例的示意图;
图6是图1中电路板一个实施例的结构框图;
图7是图6中标准分压电阻与加热元件组成可检测回路的示意图;
图8是一个实施例中控制加热元件的预设加热曲线的示意图;
图9是一个实施例中控制向加热元件提供功率的控制步骤的示意图;
图10是一个实施例和对比例中按照预设加热曲线进行加热中加热元件的电阻变化曲线示意图;
图11是又一个实施例的电子雾化装置的示意图;
图12是又一个实施例的雾化组件的示意图;
图13是又一个实施例提供的控制器的硬件结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请提出一种电子雾化装置,可以参见图1所示,包括存储有液体基质并对其进行加热汽化生成气溶胶的雾化器100、以及为雾化器100供电的电源机构200。
在一个可选的实施方案中,比如图1所示,电源机构200包括设置于沿长度方向的一端、用于接收和容纳雾化器100的至少一部分的接收腔270,以及至少部分裸露在接收腔270表面的第一电触头230;第一电触头230用于当雾化器100的至少一部分接收和容纳在接收腔270内时,与雾化器100形成电连接进而为雾化器100供电。
根据图1所示的优选实施方案,雾化器100沿长度方向与电源机构200相对的端部上设置有第二电触头21,进而当雾化器100的至少一部分接收于接收腔270内时,第二电触头21通过与第一电触头230接触抵靠进而形成导电。
电源机构200内设置有密封件260,并通过该密封件260将电源机构200的内部空间的至少一部分分隔形成以上接收腔270。在图1所示的优选实施方案中,该密封件260被构造成沿电源机构200的横截面方向延伸,并且优选是采用具有柔性材质例如硅胶制备,进而阻止由雾化器100渗流至接收腔270的液体基质流 向电源机构200内部的电路板220、气流传感器250等部件。
在图1所示的优选实施中,电源机构200还包括沿长度方向背离接收腔270的用于供电的电芯210;以及设置于电芯210与容纳腔之间的电路板220,该电路板220可操作地在电芯210与第一电触头230之间引导电流。
电源机构200包括有气流传感器250,例如咪头、气压传感器等,用于感测用户对雾化器100抽吸时产生的抽吸气流,进而电路板220根据该气流传感器250的检测信号控制电芯210向雾化器100输出功率。
进一步在图1所示的优选实施中,电源机构200在背离接收腔270的另一端设置有充电接口240,用于对电芯210充电。
图2至图4的实施例示出了图1中雾化器100一个实施例的结构示意图,其包括有主壳体10、多孔体30以及加热元件40:
根据图2所示,该主壳体10大致呈扁形的筒状,当然其内部是中空,用于存储雾化液体基质和收纳其它必要功能器件;主壳体10的上端设置有用于抽吸气溶胶的吸嘴口A;
主壳体10的内部设置有用于存储液体基质的储液腔12;具体实施中,主壳体10内设有沿轴向设置的烟气传输管11,该烟气传输管11的外壁与主壳体10内壁之间的空间形成用于存储液体基质的储液腔12;该烟气传输管11相对近端110的上端与吸嘴口A连通;
多孔体30用于通过液体通道13获取储液腔12内的液体基质,液体基质传递如图2中箭头R1所示;该多孔体30具有一个平坦的雾化面310,该雾化面310上形成有加热多孔体30所吸取的至少部分液体基质生成气溶胶的加热元件40。
具体参见图3和图4所示,多孔体30背离雾化面310的一侧与液体通道13流体连通进而吸收液体基质,而后再将液体基质传递至雾化面310上加热雾化。
在装配后加热元件40的两端是与第二电触头21抵靠进而导电的,加热元件40在通电过程中加热多孔体30的至少部分液体基质生成气溶胶。在可选的实施中,多孔体30包括柔性的纤维,例如棉纤维、无纺布、玻纤绳等等,或者包括具有微孔构造的多孔陶瓷,例如图3和图4所示形状的多孔陶瓷体。
加热元件40可以是通过印刷、沉积、烧结或物理装配等方式结合在多孔体30的雾化面310上的。在一些其他的变化实施方式中,多孔体30可以具有用于支撑加热元件40的平面或曲面,加热元件40通过贴装、印刷、沉积等方式形成 于多孔体30的平面或曲面上。
加热元件40的材料可以是具有适当阻抗的金属材料、金属合金、石墨、碳、导电陶瓷或其它陶瓷材料和金属材料的复合材料。适当的金属或合金材料包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、铁铬铝合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。加热元件40的电阻材料可以选取具有适合电阻温度系数的金属或合金材料,例如正温度系数或负温度系数,这样发热线路既可以用来发热,又可以作为用来感测雾化组件实时温度的传感器。
图5示出了又一个实施例的雾化器100a的结构示意图;多孔体30a被构造成沿雾化器100a的纵向延伸的中空柱状的形状,加热元件40a形成于多孔体30a的柱状中空内。在使用中如箭头R1所示,储液腔20a的液体基质沿多孔体30a的径向方向的外表面被吸收,而后传递至内表面的加热元件40a内加热汽化生成气溶胶;生成的气溶胶由多孔体30a的柱状中空内沿雾化器100a的纵向输出。
以及在一些通常的实施中,加热元件40/40a可以具有大约0.3~1.5Ω的初始电阻值。
进一步为了使电源机构200能监测和控制加热元件40/40a的加热过程,电源机构200的电路板220在一个实施例的硬件结构参见图6所示,电路板220包括:
升压单元221,用于对电芯210输出的电压进行升压后输出;升压单元221一方面提升输出电压的值;另一方面升压后输出的电压值是稳定的,以避免电芯210的输出电压随着放电过程逐渐下降或不稳的情形;
在一些具体实施中,升压单元221是常用的升压芯片,例如微源半导体LP6216B6F的升压芯片,能将电芯210输出的电压(约为3.7~4.5V)转换成6.0V的标准电压输出。
进一步,电路板220还包括:
开关管222,用于在加热元件40与升压单元221之间引导电流,即对加热元件40进行供电;
MCU控制器223,通过控制开关管222的导通或断开,进而控制提供给加热元件40的功率;
标准分压电阻224,用于与加热元件40组成检测回路,以用于供MCU控制器223检测加热元件40的电特性参数。电特性参数通常包括加热元件40的电压、 电流、电阻等;而后MCU控制器223在根据所采样的电特性获取加热元件40的温度。例如,基于给定电阻加热元件44的电阻与温度的相关关系,MCU控制器223通过检测加热元件40的电阻,即可计算获得加热元件44的实时温度。
具体进一步图7示出了一个实施例标准分压电阻224与加热元件40组成检测回路的示意图。在加热过程中,MCU控制器223控制开关管222的导通进而向加热元件40提供功率。在检测的过程中,MCU控制器223断开开关管222、并导通MOS管Q1,通过采样串联的标准分压电阻224与加热元件40之间的位点b的电压,再根据分压公式即可计算加热元件40的电特性例如电阻,而后即可再计算获得加热元件40的温度。即向加热元件40输出功率,和检测加热元件40的电特性或温度是不同时进行的。
进一步地,图8示出了一个实施例中控制加热元件40按照目标温度进行加热的加热曲线的示意图;在该实施例中,控制加热元件40的目标温度T0是恒定不变的,MCU控制器223按照该目标温度T0恒定的模式控制向加热元件40提供功率。在实施中,目标温度T0是高于液体基质的最低汽化温度的,进而使加热元件40的加热温度能达到汽化液体基质所需的温度。在一些具体的实施中,适合于液体基质的目标温度T0可以设定为150~300℃是合适的;更加优选地,适合于液体基质的目标温度T0可以设定为200~280℃。
在一个具体的实施例中,以上控制步骤中所确定的目标温度T0,是由MCU控制器223中的存储单元所预先存储的。或者在又一个具体的实施例中,以上控制步骤中所确定的目标温度T0是由用户通过电子雾化装置上的输入按钮、交互屏等输入元件输入的。或者在又一个具体的实施中,以上控制步骤中所确定的目标温度T0,是根据液体基质的类型而由生产商在生产中在雾化器100内设置可读存储单元(例如eeprom存储器)所存储的;而后当雾化器100接收于电源机构200时,MCU控制器223通过读取雾化器100内的可读存储单元进而获取的。
进一步地,以上控制方法始终是基于恒定的目标温度T0控制提供功率,则无论传递至加热元件40的液体基质的量的多寡,加热元件40不能被加热至高于产生有害物质的较高的干烧温度,对于防止干烧是有利的。
以及进一步地,在电子雾化装置的加热过程中,加热元件40的加热时长是由气流传感器250感测的用户的抽吸时间决定的。即当气流传感器250感测到用户抽吸时,则MCU控制器223控制加热元件40按照目标温度T0进行加热;而 当气流传感器250感测到用户的抽吸动作停止时,则停止输出功率以及停止加热。则加热元件40的加热时长是由气流传感器250感测到用户的抽吸时长决定的。例如,在一些常规的实施中,用户每次的抽吸时长大约为3~5s。
进一步图9示出了一个实施例中MCU控制器223控制向加热元件40提供功率的步骤的示意图,控制过程包括:
S10,通过检测加热元件40的电阻,确定加热元件40的当前温度;
S20,根据加热元件40的当前温度,确定在预定时段内使加热元件40的温度加热至目标温度所需的功率;
S30,根据所需的功率计算在预定时段内开关管222的导通时间,并根据该导通时间控制开关管222导通,进而向加热元件40提供功率使加热元件40的温度加热至目标温度。
在以上控制过程的具体实施中,基于加热元件40所具有的电阻温度系数的特性,MCU控制器223可存储有加热元件40的电阻与温度的对照表;而步骤S10中即可根据所检测的电阻通过查表的方式确定加热元件40的温度。
以及在又一些具体的实施中,步骤S20中根据加热元件40的当前温度确定加热至目标温度所需的功率,MCU控制器223可以是根据能量转换公式计算得到。在更加优选的实施中,确定加热至目标温度所需的功率,也是根据查表获得的;例如,对于不同的雾化器100,预先将加热元件40由不同的当前温度加热至目标温度或是当前温度与目标温度的差值、与所需消耗的功率建立对照表,而后MCU控制器223通过查表即可获得将当前温度的加热元件40加热至目标温度所需的功率。
以及在一些最常规的实施中,MCU控制器223是通过PWM(脉冲宽度)调制方式,控制开关管222的导通进而向加热元件40提供功率的。则对应地,在步骤S30的具体实施中,MCU控制器223通过调节PWM调制的占空比,以控制开关管222的导通和断开时间,进而改变提供给加热元件40的直流电压或直流电流的占空比,以使输出给加热元件40的功率与所需的功率保持一致。
在一些具体的实施中,在完整的抽吸中,以上控制过程是分成若干预定时段重复执行。例如在一个完整的用户抽吸时长3~5s中,MCU控制器223控制分成若干预定时段,重复执行以上步骤S10~S30控制加热;每个预定时段的时长大约为1~100ms之间。
在一个具体的实施例中,以目标温度T0为260℃、升压单元221的输出电压为6.0V、加热元件40的初始电阻值为0.783mΩ,在4s的抽吸时长内,分成若干预定时段按照以上步骤S10~S30控制向加热元件40提供功率;其中,每个预定时段的时长设定为20ms。进一步地,图10中曲线L1示出了MCU控制器223根据以上设置,控制加热元件40进行加热中加热元件40的电阻变化曲线。以及下表1对应示出了加热元件40的实时电阻和向加热元件40提供的功率的数据:

同时进一步图10中曲线L2示出了MCU控制器223以常用的典型的恒功率输出模式控制加热元件40加热至目标温度的对比例的电阻变化曲线;同样地,该对比例中目标温度T0为260℃、输出功率恒定为7.2W、加热元件40的初始电阻值为0.783mΩ。以及下表2对应示出了该对比例的加热过程中加热元件40的实时电阻和向加热元件40提供的功率的数据:


从图10中以实施例的控制过程得到的曲线L1中,电阻在大约t1时间(0.1s)内由初始状态上升到一目标值后,基本保持稳定直至抽吸结束;基于电阻与温度的相关性,即曲线L1表明加热元件40的加热温度在大约t1时间(0.15s)内由室温或初始温度加热到目标温度后,基本维持在目标温度直至抽吸结束。以及,从上表1中得出,在加热元件40达到目标温度之前的过程中,提供给加热元件40的功率相对保温阶段是更大的;即输出的功率是随当前温度与目标温度的差值而变化的,至少是非恒功率的。
而以经典的恒功率模式输出的加热控制方式的曲线L2中,电阻在大约t2时间(1.6s)内由初始状态上升到一目标值后,保持稳定直至抽吸结束。
从实施例的曲线L1和对比例的曲线L2可以看出,实施例中的输出控制模式比常用的恒功率输出控制模式,由室温或初始温度加热至目标温度是更快的,对于快速地产生气溶胶是有利的。同时,实施例中以目标温度作为功率计算基准,因而加热过程中液体基质供应充足或不足,温度始终是保持在目标温度,即不会产生温度骤升至超过目标温度的“干烧”情形。
进一步地在更加优选的实施中,基于以上表1中的检测数据,MCU控制器223还根据以上保持目标温度所需的功率设置预设功率;并且在当输出至加热元件40的实际功率与预设功率不符时,确定不利条件。
在一个具体的实施中,以上所描述的不利条件,是指传递或提供给加热元件40的液体基质不足或储液腔12内的液体基质耗尽。一般来说,当提供给加热元件40的液体基质不足或耗尽时,维持加热元件40处于目标温度的功率比正常汽化液体时所需的功率要更低。则通过监测功率是否低于最小预设功率,即可确定提供给加热元件40的液体基质不足或储液腔12内的液体基质耗尽。例如根据表1的测试,将7.5W设置为最小预设功率,而当将加热元件40的温度保持在目标温度为260度时的功率低于7.5W的最小预设功率时,可以认为传递或提供给加热元件40的液体基质不足或储液腔12内的液体基质耗尽。
在又一个可能的具体实施中,以上所描述的不利条件,是耦合于电源机构200 的雾化器100为仿冒或不合格或损坏的。对于仿冒或不合格或损坏的雾化器100,在维持加热元件40处于目标温度所提供的功率是合格的雾化器100预设功率不同的,或者超出预设功率的。
在又一个可能的具体实施中,以上所描述的不利条件,是由雾化器100提供给加热元件40的液体基质是非期望的;具体,非期望的液体基质可能与所期望的液体基质具有不同的成分导致具有不同的粘度、热容或沸点等,则在被加热雾化中具有比所预期的更高或更低的温度或功率。则加热元件40汽化非期望的液体基质时,与所期望的液体基质在汽化中所需的功率是显著差异的,则根据这一功率的差异即可确定是否为不利条件。
基于图10中实际加热过程中的电阻变化曲线L1,整个抽吸过程中,对应于不同的加热时段,MCU控制器223的控制过程的执行频率和/或响应速度是不同的。进而能在准确保持以目标温度加热的同时降低MCU控制器223的运行功耗。
具体,在一个优选的实施中,根据图10中所示的实际加热过程中的电阻变化曲线L1,包括有:
第一加热时段,即0~t1时段,此加热时段中加热元件40的电阻由初始值达到预设值;
第二加热时段,即t1~抽吸结束,此加热时段中加热元件40的电阻保持在恒定。
或者基于电阻与温度的相关性,将加热元件40由初始温度加热至目标温度定义为第一加热时段,即0~t1时段;以及将t1~抽吸结束中将加热元件40的温度保持于目标温度定义为第二加热时段。
以及,结合于MCU控制器223的微积分控制方式,MCU控制器223在第一加热时段内,分为若干预定时段重复执行步骤S10~S30最终整体在第一加热时段实现将加热元件40加热至目标温度;同样地,MCU控制器223在第一加热时段内分为若干预定时段重复执行步骤S10~S30控制向加热元件40提供的功率。当然,控制过程中每个预定时段中的目标温度设定都是相同或恒定的。
进一步地,MCU控制器223在第一加热时段内重复执行步骤S10~S30中,每个预定时段设定的时间是比在第二加热时段中每个预定时段设定的时间是更短的。例如,MCU控制器223在第一加热时段中,每个预定时段设定1~20ms或更短;以及在第二加热时段中,每个预定时段设定20~100ms或更长的时长。
或者根据以上,MCU控制器223控制在第一加热时段内以高于第二加热时段的频率执行步骤S10~S30;或者,MCU控制器223控制第一加热时段内以比第二加热时段更快的响应速度执行步骤S10~S30。
以及,MCU控制器223控制在第一加热时段以相对高于第二加热时段的输出功率,控制电芯210向加热元件40提供功率。以及根据以上表1的功率数据,,MCU控制器223控制在第一加热时段中,电芯210的输出功率基本是电芯210所能输出的最大功率;例如在0~100ms的时段中,输出功率为15662mW,基本是电芯210所能输出的最大功率。
以及,根据表1所示的具体实施中,当电芯210能输出的最大功率小于所需的功率时,例如表1中当0~100ms的时段中,则MCU控制器223控制电芯210以全功率最大功率进行输出,即控制开关管222在该阶段是全导通,直至该阶段结束。
图11示出了又一个实施例的电子雾化装置的示意图,该实施例的电子雾化装置包括:
存储有液体气溶胶生成基质并对其进行汽化生成气溶胶的雾化器200e、以及为雾化器200e供电的电源组件100e。在该实施例中,气溶胶生成基质是液态的,通常包括有液态的尼古丁或尼古丁盐、甘油、丙二醇等,在被加热时汽化生成可供吸食的气溶胶。
雾化器200e包括:
储液腔210e,以用于存储液体气溶胶生成基质;
导液元件220e,至少部分延伸至储液腔210e内以吸取液体气溶胶生成基质;
感应加热元件30e,结合于导液元件220e上,以在被变化的磁场穿透时发热以加热导液元件220e内的部分液体基质生成气溶胶。在一些可选的实施中,导液元件220e是棒状或管状或杆状等形状;导液元件220e可以采用纤维棉、海绵体、多孔陶瓷体等具有多孔材料制备,进而能通过内部的毛细作用吸取和传递液体气溶胶生成基质;感应加热元件30e可以是围绕导液元件220e的感受性的条带、管、或网等。
电源组件100e包括:
设置于沿长度方向的一端的接收腔130e,在使用中雾化器200e的至少部分可移除地接收于接收腔130e;
感应线圈50e,至少部分围绕接收腔130e,以用于产生变化的磁场;
用于供电的电芯110e;
电路板120e,通过适当的电连接到可充电的电芯110e,用于从将电芯110e输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈50e。而通过向感应线圈50e提供功率,使感应线圈50e产生的变化的磁场,再转而使磁场能量转化为感应加热元件30e的涡流发热,以加热液体基质。电路板120e通过将电芯110e输出的功率,通过感应线圈50e间接地提供功率至感应加热元件30e。
同样地,电路板120e还能通过重复地执行以上控制步骤S10~S30控制输出给感应线圈50e的功率,以使感应加热元件30e的温度保持在所需的目标温度。
或者又一个变化的实施例中,图12示出了又一个实施例的导液元件220f的示意图;导液元件220f至少部分表面用于与储液腔210e流体连通,以接收液体气溶胶生成基质;导液元件220f具有平坦延伸的雾化面221f;感应加热元件30f通过表面贴装、共烧、沉积等方式结合于雾化面221f上,并通过被变化的磁场穿透而发热以加热液体气溶胶生成基质生成气溶胶。感应加热元件30f上具有镂空31f,进而界定用于供气溶胶从雾化面221f溢出的通道。或者在一些实施中,感应加热元件30f可以是网状、条带状或蜿蜒迂回的形状等。
或者又一些变化的实施例中,导液元件220f还可以是平板状、或者是表面具有凹腔的凹型块状、或者是拱形结构的拱形形状等等。
或者又一个变化的实施例中,图13示出了又一个实施例的MCU控制器223的硬件结构示意图,如图13所示,该MCU控制器223包括:
一个或多个处理器2231以及存储器2232,图13中以一个处理器2231为例。
处理器2231和存储器2232可以通过总线或者其他方式连接,图13中以通过总线连接为例。
存储器2232作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电子雾化装置的控制方法对应的程序指令/模块。处理器2231通过运行存储在存储器2232中的非易失性软件程序、指令以及模块,从而执行加热元件40的各种功能应用以及数据处理,即实现上述方法实施例电子雾化装置的控制方法。
存储器2232可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子雾化装 置的使用所创建的数据等。此外,存储器2232可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
上述控制器可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图13中的一个处理器2231,可使得上述一个或多个处理器可执行上述任意方法实施例中的电子雾化装置的控制方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述控制器执行时,使所述控制器能够执行上述任意方法实施例中的电子雾化装置的控制方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种电子雾化装置,其特征在于,包括:
    储液腔,用于存储液体基质;
    加热元件,用于加热液体基质生成供抽吸的气溶胶;
    电芯,用于提供功率输出;
    控制器,被配置为周期性地重复执行控制步骤,以控制所述电芯直接或间接地向所述加热元件提供功率,以使所述加热元件加热液体基质;其中,所述控制步骤包括:
    确定一预设的目标温度;
    获取所述加热元件的当前温度,并根据所述加热元件的当前温度或者当前温度与目标温度的差值,确定在单个周期的预定时段内将所述加热元件加热至目标温度或保持于所述目标温度所需的功率;
    控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件,直至所述预定时段结束;
    所述控制步骤在重复地执行过程中,所述目标温度是恒定或不变的。
  2. 如权利要求1所述的电子雾化装置,其特征在于,还包括:
    第一开关管,所述电芯通过该开关管直接或间接地向所述加热元件提供功率;
    所述控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件包括:根据所述所需的功率确定在所述预定时段内所述第一开关管的所需的导通时间,并根据所述所需的导通时间控制所述第一开关管的导通和断开。
  3. 如权利要求1或2所述的电子雾化装置,其特征在于,所述目标温度介于150~300℃。
  4. 如权利要求1或2所述的电子雾化装置,其特征在于,所述预定时段介于1~100ms。
  5. 如权利要求1或2所述的电子雾化装置,其特征在于,所述控制器被配置为:
    在第一加热时段控制所述电芯向所述加热元件提供功率,以将所述加热元件的温度由初始温度加热至所述目标温度;
    在第二加热时段,将所述加热元件的温度保持于所述目标温度。
  6. 如权利要求5所述的电子雾化装置,其特征在于,所述控制器被配置为在所述第一加热时段以第一频率重复地执行所述控制步骤,以及在所述第二加热时段以第二频率重复地执行所述控制步骤;
    所述第一频率大于所述第二频率。
  7. 如权利要求5所述的电子雾化装置,其特征在于,所述控制步骤在所述第一加热时段执行中的所述预定时段,小于所述控制步骤在所述第二加热时段执行中的所述预定时段。
  8. 如权利要求5所述的电子雾化装置,其特征在于,所述控制器被配置为控制所述电芯在所述第一加热时段向所述加热元件提供的功率,大于在所述第二加热时段向所述加热元件提供的功率。
  9. 如权利要求7所述的电子雾化装置,其特征在于,所述控制步骤在所述第一加热时段执行中的所述预定时段介于1~20ms;
    和/或,所述控制步骤在所述第二加热时段执行中的所述预定时段介于20~100ms。
  10. 如权利要求1或2所述的电子雾化装置,其特征在于,所述控制器还被配置为根据所述电芯提供至所述加热元件的功率,以确定不利条件;以及在存在所述不利条件时,阻止所述电芯向所述加热元件提供功率。
  11. 如权利要求1或2所述的电子雾化装置,其特征在于,所述控制器被配置为根据所述电芯提供至所述加热元件的功率小于预设阈值时,确定提供给所述加热元件的液体基质不足或耗尽。
  12. 如权利要求1或2所述的电子雾化装置,其特征在于,所述控制器被配置为通过检测所述加热元件的电阻值,以获取所述加热元件的当前温度。
  13. 如权利要求1或2所述的电子雾化装置,其特征在于,还包括:
    标准分压电阻;
    第二开关管,可操作地将所述准分压电阻与所述加热元件形成串联的可检测回路;
    所述控制器被配置为检测在所述可检测回路中所述标准分压电阻和/或加热元件的电特性,以获取所述加热元件的当前温度。
  14. 如权利要求1或2所述的电子雾化装置,其特征在于,还包括:
    升压单元,用于对所述电芯的输出电压进行升压。
  15. 如权利要求2所述的电子雾化装置,其特征在于,所述控制器被配置为通过脉冲宽度调制以控制所述第一开关管的导通和断开;
    以及,所述控制步骤中,所述控制器被配置为根据所述所需的导通时间,调节所述脉冲宽度调制的占空比以控制控制所述第一开关管的导通和断开。
  16. 如权利要求1或2所述的电子雾化装置,其特征在于,所述电芯向所述加热元件提供的功率是变化的或非恒定的。
  17. 一种电子雾化装置的控制方法,所述电子雾化装置包括:
    储液腔,用于存储液体基质;
    加热元件,用于加热液体基质生成供抽吸的气溶胶;
    电芯,用于提供功率输出;
    其特征在于,所述方法包括:
    周期性地重复执行控制步骤,以控制所述电芯直接或间接地向所述加热元件提供功率,从而使加热元件加热液体基质;其中,所述控制步骤包括:
    确定一预设的目标温度;
    获取所述加热元件的当前温度,并根据所述加热元件的当前温度或者当前温 度与目标温度的差值,确定在单个周期的预定时段内将所述加热元件加热至目标温度或保持于所述目标温度所需的功率;
    控制所述电芯以所述所需的功率直接或间接地输出至所述加热元件,直至所述预定时段结束;
    所述控制步骤在重复地执行过程中,所述目标温度是恒定或不变的。
  18. 一种控制器,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求17所述的方法。
  19. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被控制器执行时,使所述控制器执行权利要求17所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被电子设备执行时,使所述控制器执行权利要求17所述的方法。
PCT/CN2023/080584 2022-03-11 2023-03-09 电子雾化装置及电子雾化装置的控制方法 WO2023169526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210239470.8A CN116763009A (zh) 2022-03-11 2022-03-11 电子雾化装置及电子雾化装置的控制方法
CN202210239470.8 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023169526A1 true WO2023169526A1 (zh) 2023-09-14

Family

ID=87936091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080584 WO2023169526A1 (zh) 2022-03-11 2023-03-09 电子雾化装置及电子雾化装置的控制方法

Country Status (2)

Country Link
CN (1) CN116763009A (zh)
WO (1) WO2023169526A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010530A (zh) * 2011-12-30 2014-08-27 菲利普莫里斯生产公司 浮质产生装置中的浮质形成基质的检测
CN104571190A (zh) * 2015-01-22 2015-04-29 卓尔悦(常州)电子科技有限公司 温控系统及其控制方法、含有温控系统的电子烟
WO2016145634A1 (zh) * 2015-03-18 2016-09-22 惠州市吉瑞科技有限公司 一种电子烟雾化器发热丝加热方法和电子烟
CN112107035A (zh) * 2020-09-11 2020-12-22 惠州市新泓威科技有限公司 恒温控制的电子雾化器
CN112120297A (zh) * 2019-06-25 2020-12-25 惠州市沛格斯科技有限公司 电子烟的控制方法
CN112189907A (zh) * 2020-09-11 2021-01-08 惠州市新泓威科技有限公司 电子雾化器的自动控温方法及具有该方法的电子雾化器
CN113170929A (zh) * 2020-08-13 2021-07-27 深圳麦克韦尔科技有限公司 雾化加热控制方法、装置、气溶胶产生装置及存储介质
CN113811217A (zh) * 2019-03-11 2021-12-17 尼科创业贸易有限公司 用于气溶胶产生装置的设备
CN114145508A (zh) * 2021-12-24 2022-03-08 湖南省拓联精密科技有限公司 电子烟的温度控制方法、装置、电子烟及介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010530A (zh) * 2011-12-30 2014-08-27 菲利普莫里斯生产公司 浮质产生装置中的浮质形成基质的检测
CN104571190A (zh) * 2015-01-22 2015-04-29 卓尔悦(常州)电子科技有限公司 温控系统及其控制方法、含有温控系统的电子烟
WO2016145634A1 (zh) * 2015-03-18 2016-09-22 惠州市吉瑞科技有限公司 一种电子烟雾化器发热丝加热方法和电子烟
CN113811217A (zh) * 2019-03-11 2021-12-17 尼科创业贸易有限公司 用于气溶胶产生装置的设备
CN112120297A (zh) * 2019-06-25 2020-12-25 惠州市沛格斯科技有限公司 电子烟的控制方法
CN113170929A (zh) * 2020-08-13 2021-07-27 深圳麦克韦尔科技有限公司 雾化加热控制方法、装置、气溶胶产生装置及存储介质
CN112107035A (zh) * 2020-09-11 2020-12-22 惠州市新泓威科技有限公司 恒温控制的电子雾化器
CN112189907A (zh) * 2020-09-11 2021-01-08 惠州市新泓威科技有限公司 电子雾化器的自动控温方法及具有该方法的电子雾化器
CN114145508A (zh) * 2021-12-24 2022-03-08 湖南省拓联精密科技有限公司 电子烟的温度控制方法、装置、电子烟及介质

Also Published As

Publication number Publication date
CN116763009A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
RU2721088C2 (ru) Система, генерирующая аэрозоль, с определением частоты использования
US10499688B2 (en) Electronic vapor provision system
EP3826486B1 (en) Aerosol-generating device having improved power supply controller
WO2019227381A1 (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
EP3897249B1 (en) Aerosol generating device and operation method thereof
KR20180085365A (ko) 가열 방식의 미세 입자 발생 장치
WO2021093778A1 (zh) 气溶胶产生装置及其控制方法
JP2023540475A (ja) 吸煙頻度に基づく加熱プロファイルを有する喫煙装置
JP2021531011A (ja) エアロゾル発生システムにおける加熱を制御する方法
WO2022095900A1 (zh) 气溶胶生成装置及其控制方法
CN114902522A (zh) 气溶胶产生装置电力系统
WO2023169526A1 (zh) 电子雾化装置及电子雾化装置的控制方法
EP4316286A1 (en) Inhalation device, control method, and program
EP4316290A1 (en) Inhalation device, control method, and program
KR20220066323A (ko) 전자 에어로졸 제공 시스템 및 방법
EP4353106A1 (en) Inhalation device, base material, and control method
WO2024095476A1 (ja) エアロゾル生成システム、制御方法及びプログラム
EP4388905A1 (en) Inhalation device, base material, and control method
WO2023181280A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2024024004A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2024024003A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2023181279A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
CN114158789B (zh) 雾化处理方法及电子雾化装置
RU2821382C1 (ru) Электронная система подачи аэрозоля и способ
US20240196988A1 (en) Inhalation device, substrate, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766103

Country of ref document: EP

Kind code of ref document: A1