WO2021212788A1 - 一种墙面打磨路径规划方法、装置、设备和介质 - Google Patents

一种墙面打磨路径规划方法、装置、设备和介质 Download PDF

Info

Publication number
WO2021212788A1
WO2021212788A1 PCT/CN2020/124131 CN2020124131W WO2021212788A1 WO 2021212788 A1 WO2021212788 A1 WO 2021212788A1 CN 2020124131 W CN2020124131 W CN 2020124131W WO 2021212788 A1 WO2021212788 A1 WO 2021212788A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
protruding
distance
wall surface
current
Prior art date
Application number
PCT/CN2020/124131
Other languages
English (en)
French (fr)
Inventor
袁皓男
陈航英
曹国
舒远
刘牟林
何素韵
张桐欣
陶志成
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Priority to US17/429,233 priority Critical patent/US20220241928A1/en
Priority to AU2020426865A priority patent/AU2020426865A1/en
Priority to EP20916236.1A priority patent/EP3926123A4/en
Priority to JP2021545912A priority patent/JP7162146B2/ja
Priority to CA3127059A priority patent/CA3127059A1/en
Publication of WO2021212788A1 publication Critical patent/WO2021212788A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/18Single-purpose machines or devices for grinding floorings, walls, ceilings or the like
    • B24B7/182Single-purpose machines or devices for grinding floorings, walls, ceilings or the like for walls and ceilings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/16Implements for after-treatment of plaster or the like before it has hardened or dried, e.g. smoothing-tools, profile trowels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45199Polish
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49378Tool path finding, select minimal distance

Definitions

  • the embodiments of the present disclosure relate to path planning technology, and in particular, to a method, device, equipment, and medium for planning a wall surface polishing path.
  • the main structure of the building at this stage is generally cast. Before plastering the wall, the wall needs to be polished so that the plastering layer can fully contact the wall and avoid hollowing or cracking of the wall after plastering. Phenomenon.
  • the wall surface sanding machine is mainly used to sand the wall surface, but the machine cannot accurately control the sanding depth, and manual secondary sanding is required, and the labor cost is relatively high. And there is no guarantee that the grinding operation path is optimal, and the grinding efficiency is low.
  • the embodiments of the present disclosure provide a method, device, equipment and medium for planning a polishing path for a wall surface, so as to optimize the polishing path and improve the polishing efficiency.
  • embodiments of the present disclosure provide a method for planning a wall surface polishing path, the method including:
  • the first distance and the second distance are compared, and the first distance is the untraversed protruding point and the current convexity.
  • the distance between the out points, and the second distance is the distance between the candidate protruding point and the current protruding point;
  • an embodiment of the present disclosure also provides a wall surface polishing path planning device, the device includes: a region dividing module configured to obtain protruding points of the wall surface to be polished, and divide the wall surface to be polished Be at least two regions;
  • a candidate protruding point determination module determining a candidate protruding point in the area next to the area where the current protruding point is located;
  • the distance comparison module is configured to compare a first distance with a second distance if the area where the current protruding point is located includes an untraversed protruding point, the first distance being the untraversed protruding point and The distance between the current protruding points, and the second distance is the distance between the candidate protruding point and the current protruding point;
  • a next work point determining module configured to determine a protruding point corresponding to the minimum distance in the first distance and the second distance as the next work point of the current protruding point
  • the polishing path determination module is configured to determine a wall surface polishing path based on the current protruding point and the next work point of the current protruding point.
  • embodiments of the present disclosure also provide a device, which includes:
  • One or more processors are One or more processors;
  • the storage device is configured to store one or more programs
  • the one or more processors implement the wall polishing path planning method described in any of the embodiments of the present disclosure.
  • the embodiments of the present disclosure also provide a storage medium containing computer-executable instructions, wherein the computer-executable instructions are configured to execute any one of the embodiments of the present disclosure when the computer-executable instructions are executed by a computer processor.
  • the method for planning the wall polishing path is also provided.
  • the embodiment of the present disclosure obtains the protruding points of the wall surface to be polished and divides the wall surface to be polished into at least two areas; it is convenient to plan the polishing path, reduce the polishing distance taken by the polishing equipment, and improve the polishing efficiency.
  • the first distance is the distance between the untraversed protrusion point and the current protrusion point
  • the second distance is the distance between the candidate protrusion point and the current protrusion point
  • Make the planned grinding path include more protruding points, reduce the number of grinding path planning, improve the grinding efficiency, solve the problem that the grinding path of the grinding equipment at this stage covers the area that does not need to be polished, and realize the optimization of the working path of the grinding equipment and improve the grinding Efficiency, the effect of reducing grinding costs.
  • FIG. 1 is a flowchart of a method for planning a wall polishing path in Embodiment 1 of the present disclosure
  • Figure 2 is a schematic diagram of the partition of the wall area
  • Figure 3 is a schematic cross-sectional view of the wall
  • Figure 4 is a simplified tree diagram of protruding points on the wall
  • Figure 5 is a schematic diagram of candidate protrusion points calculation
  • FIG. 6 is a flowchart of a method for planning a wall polishing path in the second embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the protruding point judgment grid and diffusion trend
  • Figure 8 is a schematic diagram of the single-point polishing direction
  • FIG. 9 is a structural diagram of a wall polishing path planning device in the third embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a device in the fourth embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for planning a wall polishing path provided in Embodiment 1 of the present disclosure. This embodiment is applicable to the case of polishing a protruding point on a wall.
  • the method can be executed by a wall polishing path planning device. , Specifically including the following steps:
  • the dividing the wall surface to be polished into at least two areas includes: dividing the wall surface to be polished into at least two areas according to the size of the polishing equipment, the width of the area being greater than the diameter of the polishing equipment . If the width of the area is smaller than the diameter of the polishing equipment, when the polishing equipment is polishing the current area, it may polish to the polishing points in other areas, destroying the planned polishing path. Exemplarily, as shown in FIG.
  • the polishing direction of the polishing equipment may be, but not limited to, polishing from the lower left corner of the wall to be polished to the upper right corner of the wall to be polished, and the polished wall is divided into 7 according to the polishing direction. Area, each protruding point is divided into the area, which is convenient for planning the polishing path.
  • the obtaining the protruding points of the wall to be polished includes: obtaining point cloud data of the wall to be polished, wherein the point cloud data includes each grid point in the wall to be polished Parameter information; determine the target wall surface for dividing protrusion points according to the point cloud data; determine the target wall surface based on the mode of the protrusion distance, wherein the target wall surface and the reference wall The distance of the surface is the mode of the protruding distance.
  • a protruding point protruding from the target wall surface is determined.
  • the point cloud data of the wall to be polished is collected based on the three-dimensional laser scanning technology.
  • the wall to be polished is meshed. Let the length of the square. Exemplarily, as shown in Fig. 2, the wall to be polished is divided into a grid of 20 ⁇ 20 mm.
  • the protruding points are represented in the form of a grid, so that they can be reflected to the wall more simply and vividly, which is convenient for locating the protruding points and planning the polishing operation path.
  • determining a target wall surface for dividing protrusion points according to the point cloud data includes: determining, according to the point cloud data, the protrusion of each grid point in the wall surface to be polished and a reference wall surface Distance; the target wall surface is determined based on the mode of the protrusion distance, wherein the distance between the target wall surface and the reference wall surface is the mode of the protrusion distance.
  • a unified reference wall is selected, the protrusion distance of each grid from the reference wall is calculated, and then the mode of all protrusion distances is selected to determine the target wall.
  • the mode of all protrusion distances is the distance between the target wall and the reference wall.
  • the distance between each grid and the target wall is calculated, and the wall to be polished corresponding to the grid protruding from the target wall is used as the protruding point to be polished.
  • the determining the target wall surface based on the mode of the protrusion distance includes: determining the target wall surface based on the mode with the largest protrusion distance among the plurality of modes; or, based on the multiplicity Among the modes, the mode with the smallest protrusion distance determines the target wall surface; or, the target wall surface is determined based on the average value of the plurality of modes.
  • the appropriate mode can be selected according to the actual situation to make the determined target wall more in line with the acceptance standard.
  • S120 Determine a candidate protrusion point in the area next to the area where the current protrusion point is located.
  • the candidate protruding point is the next protruding point that needs to be polished after the current protruding point is polished by the polishing equipment.
  • the candidate protruding point in the area next to the current protruding point must be determined before the polishing path is planned. Point out.
  • determining candidate protrusion points in the area next to the area where the current protrusion point is located includes:
  • the protruding point with the shortest path from the polishing starting point in the polishing path is determined as the candidate protruding point.
  • the protruding points are numbered according to the rule from bottom left to top right, first horizontally and then vertically, 0 point is the starting point of polishing, and N is the ending point of polishing.
  • the protruding points of the same area are in the same sequence.
  • the distance between each protruding point and the protruding point of the next area is calculated separately, and the candidate protruding points are determined according to the Dijkstra algorithm.
  • the calculation result is shown in Figure 5. Since the area next to the starting point 0 contains the protruding points numbered 2, 6, and 3, the candidate protruding points are determined from the protruding points numbered 2, 3, and 6.
  • the starting point The distance to the protruding point numbered 2 is the shortest, so the protruding point numbered 2 is a candidate protruding point, and then the next protruding point candidate after the protruding point numbered 2 is determined.
  • the next area of the area where the number 2 is located contains the protruding points numbered 5, 8, and 1, respectively.
  • the shortest paths from the starting point to the protruding points numbered 5, 8 and 1 are calculated.
  • the number The protruding points of 5, 8 and 1 have the shortest path to the starting point, the protruding point numbered 8, so the next candidate protruding point after the protruding point numbered 2 is the protruding point numbered 8. , Repeat this process until you find the area where the end point is located.
  • the determination of candidate protruding points is the prerequisite for planning the polishing path, and the polishing path planning is based on the candidate protruding points.
  • This step is to optimize the polishing candidate points determined in the previous step. Due to the particularity of the polishing operation, there are multiple protruding points in a single area. For example, as shown in Figure 2, the protruding points numbered 2 in the same area also include numbers 3 and 6 The protruding points of No. 3 and No. 6 are the ones that have not been traversed. The point No. 8 is the candidate point of the next area. The protruding points No. 2 and No. are calculated respectively. The distance between the protruding points No. 3 and No. 6 is compared with the distance between the protruding points No. 2 and No. 8 to determine the next work point.
  • S140 Determine the convex point corresponding to the minimum distance in the first distance and the second distance as the next work point of the current convex point.
  • the distance relationship between the protruding point numbered 2 and the protruding points numbered 8, 3, and 6 is: D 2 ⁇ 3 >D 2 ⁇ 6 >D 2 ⁇ 8 , so the next work point after the protruding point numbered 2 is the protruding point numbered 3. Repeat this step until the end point.
  • S150 Determine a wall surface polishing path based on the current protruding point and the next work point of the current protruding point.
  • the polishing operation points are determined, so that the wall polishing path includes more protruding points, so that the polishing equipment can polish more protruding points during the first polishing, reducing the number of polishing , Improve the polishing efficiency.
  • the method for planning a wall surface polishing path further includes: if the current protruding point does not include an untraversed protruding point, placing the current protruding point in an area next to the area where the current protruding point is located.
  • the determined candidate protruding point is determined as the next work point of the current protruding point.
  • the method for planning a wall surface polishing path further includes: determining the next area of the area where the current protruding point is located based on a preset traversal sequence.
  • the traversal sequence is determined according to the polishing direction.
  • the polishing direction is polishing from the lower left corner to the upper right corner, so the protruding points are also traversed in order from the lower left corner to the upper right corner. Therefore, if the current area is the area where the protruding point numbered 8, the next area is the area where the protruding point numbered 7 is located.
  • the method for planning a wall polishing path further includes: when it is determined according to the preset traversal sequence that there is no next area in the area where the current protruding point is located, based on the preset traversal sequence.
  • the reverse sequence of the sequence determines the next area of the area where the current protruding point is located.
  • the polishing end point has been reached.
  • the current traversal sequence needs to be determined according to the reverse order of the traversal sequence.
  • the area next to the area where the protruding point is located. Exemplarily, as shown in FIG.
  • the current area is the area where the protruding point numbered 10 is located, and the traversal sequence is from the lower left corner to the upper right corner, and the reverse order of the traversal sequence is from the upper right corner to the lower left corner.
  • the reverse order of the traversal sequence it is determined that the area next to the area where the current protruding point is located is the area where the protruding point numbered 4 is located.
  • the technical solution of this embodiment obtains the protruding points of the wall to be polished, and divides the wall to be polished into at least two areas; it is convenient to plan the polishing path, reduce the polishing distance of the polishing equipment, and improve the polishing efficient.
  • the first distance is the distance between the untraversed protrusion point and the current protrusion point
  • the second distance is the distance between the candidate protrusion point and the current protrusion point ;
  • Make the planned grinding path include more protruding points, reduce the number of grinding path planning, improve the grinding efficiency, solve the problem that the grinding path of the grinding equipment at this stage covers the area that does not need to be polished, and realize the optimization of the working path of the grinding equipment and improve the grinding Efficiency, the effect of reducing grinding costs.
  • the method for planning a wall polishing path further includes: A protruding point, establish a judgment grid, where the judgment grid includes contour lines that characterize the decreasing diffusion trend of the protruding points, and the contour line of the protruding point diffusion trend can provide a basis for judging the polishing direction
  • the single-point polishing path of the protruding point is determined based on the contour line, which avoids uneven polishing, and can make the polished wall more in line with the acceptance standard. As shown in Figure 6, it specifically includes the following steps:
  • S210 Obtain protruding points of the wall to be polished, and divide the wall to be polished into at least two regions.
  • S220 Determine a candidate protrusion point in the area next to the area where the current protrusion point is located.
  • S250 Determine a wall surface polishing path based on the current protruding point and the next work point of the current protruding point.
  • polishing a single protruding point it is also necessary to determine the polishing path of a single protruding point.
  • first establish a judgment grid for the single protruding point. Include the entire protruding point in the judgment grid, and then determine the diffusion trend of the protruding height of the protruding point, which is reflected in the form of contour lines.
  • the contour line may be a contour line.
  • the protruding points generally show a decreasing trend of diffusion. Through the diffusion trend, the morphological characteristics of the protruding points can be determined, so that the polishing path planned for the protruding points is more accurate.
  • S270 Determine a single-point polishing path of the protruding point based on the contour line.
  • the contour line of the diminishing diffusion trend of the protruding points provides a basis for the planning of the single-point polishing path.
  • determining the single-point polishing path of the protruding point based on the contour line includes: determining the current maximum protrusion direction of the protruding point according to the contour line, and based on the current maximum protrusion Direction determines the current polishing direction of the protruding point; deleting the current maximum protruding value from the judgment grid to update the judgment grid, and determining the next polishing direction based on the updated judgment grid; As shown in Figure 8, according to the contour line of the decreasing diffusion trend of a single convex point in the judgment grid, the maximum value of the convex point protrusion distance is searched from various directions, so as to find the direction of the maximum value of the convex point, that is, polishing direction.
  • the protruding points of the wall to be polished are obtained, and the wall to be polished is divided into at least two areas; it is convenient to plan the polishing path.
  • the candidate protruding point is determined in the area next to the area where the current protruding point is located; if the current protruding point includes an untraversed protruding point in the area where the current protruding point is located, the first distance and the first distance Two distances are compared, the first distance is the distance between the untraversed protruding point and the current protruding point, and the second distance is the distance between the candidate protruding point and the current protruding point
  • the projected point corresponding to the minimum distance in the first distance and the second distance is determined as the next work point of the current projected point; based on the current projected point and the The next work point of the current protruding point determines the wall polishing path, so that the planned polishing path contains more protruding points,
  • the logic device includes: a region dividing module 310, a candidate protrusion point determination module 320, a distance comparison module 330, and a next work point determination Module 340 and grinding path determination module 350.
  • the area dividing module 310 is configured to obtain the protruding points of the wall to be polished, and divide the wall to be polished into at least two areas; the candidate protruding point determination module 320 is configured to be protruding in the current The candidate protrusion point is determined in the area next to the area where the point is located; the distance comparison module 330 is configured to compare the first distance with the untraversed protrusion point in the area where the current protrusion point is located.
  • the second distance is compared, the first distance is the distance between the untraversed protruding point and the current protruding point, and the second distance is the candidate protruding point and the current protruding point.
  • the next work point determining module 340 is configured to determine the convex point corresponding to the minimum distance in the first distance and the second distance as the next work of the current convex point Point; the polishing path determination module 350 is configured to determine the wall surface polishing path based on the current protruding point and the next work point of the current protruding point.
  • the area dividing module 310 includes:
  • a point cloud data acquisition unit configured to acquire point cloud data of the wall surface to be polished, wherein the point cloud data includes parameter information of each grid point in the wall surface to be polished;
  • the target wall surface determining unit is configured to determine the target wall surface for dividing the protruding points according to the point cloud data
  • the protruding point determining unit is configured to determine a protruding point protruding from the target wall surface according to the point cloud data and the target wall surface.
  • the target wall surface determination unit includes:
  • the protrusion distance determining subunit is configured to determine the protrusion distance between each grid point in the wall surface to be polished and a reference wall surface according to the point cloud data;
  • the target wall surface determination subunit is configured to determine the target wall surface based on the mode of the protrusion distance, wherein the distance between the target wall surface and the reference wall surface is the mode of the protrusion distance .
  • the determining the target wall surface based on the mode of the protrusion distance includes: determining the target wall surface based on the mode with the largest protrusion distance among the plurality of modes; or, based on the multiplicity Among the modes, the mode with the smallest protrusion distance determines the target wall surface; or, the target wall surface is determined based on the average value of the plurality of modes.
  • the dividing the wall surface to be polished into at least two areas includes: dividing the wall surface to be polished into at least two areas according to the size of the polishing equipment, the width of the area being greater than the diameter of the polishing equipment .
  • the determining a candidate protrusion point in the area next to the area where the current protrusion point is located includes:
  • the protruding point with the shortest path from the polishing starting point in the polishing path is determined as the candidate protruding point.
  • the candidate protrusion point determined in the area next to the current protrusion point area is determined as the current protrusion point Point the next job point.
  • the wall polishing path planning device further includes:
  • the next area determining module is configured to determine the next area of the area where the current protruding point is located based on a preset traversal sequence
  • the next area determining module in reverse order is configured to, when it is determined that there is no next area in the area where the current protruding point is located according to the preset traversal order, based on the reverse order of the preset traversal order Determine the next area of the area where the current protruding point is located.
  • the wall polishing path planning device further includes:
  • the judgment grid establishment module is configured to establish a judgment grid for any protruding point, wherein the judgment grid includes a contour line that characterizes the decreasing diffusion trend of the protruding point;
  • the single-point polishing path determination module is configured to determine the single-point polishing path of the protruding point based on the contour line.
  • the single-point polishing path determination module includes:
  • the polishing direction determining unit is configured to determine the current maximum protrusion direction of the protrusion point according to the contour line, and determine the current polishing direction of the protrusion point based on the current maximum protrusion direction;
  • the next polishing direction determining unit is configured to delete the current maximum protrusion value from the judgment grid to update the judgment grid, and determine the next polishing direction based on the updated judgment grid;
  • the single-point polishing path determining unit is configured to determine the single-point polishing path of the protruding point based on the current polishing direction and the next polishing direction.
  • the technical solution of this embodiment obtains the protruding points of the wall to be polished, and divides the wall to be polished into at least two areas; it is convenient to plan the polishing path, reduce the polishing distance of the polishing equipment, and improve the polishing efficient.
  • the first distance is the distance between the untraversed protrusion point and the current protrusion point
  • the second distance is the distance between the candidate protrusion point and the current protrusion point ;
  • Make the planned polishing path include more protruding points, reduce the number of polishing path planning, improve the polishing efficiency, solve the problem that the polishing path of the polishing equipment at the present stage covers the area that does not need to be polished, realizes the optimization of the operation path of the polishing equipment, and improves the polishing Efficiency, the effect of reducing grinding costs.
  • the wall polishing path planning device provided by the embodiment of the present disclosure can execute the wall polishing path planning method provided by any embodiment of the present disclosure, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 10 is a schematic structural diagram of a device provided in Embodiment 4 of the disclosure.
  • the device includes a processor 410, a memory 420, an input device 430, and an output device 440; the number of processors 410 in the device may be One or more, one processor 410 is taken as an example in FIG. 10; the processor 410, the memory 420, the input device 430, and the output device 440 in the device may be connected by a bus or other means.
  • a bus connection is taken as an example .
  • the memory 420 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the wall polishing path planning method in the embodiment of the present disclosure (for example, wall surface
  • the processor 410 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 420, that is, realizes the above-mentioned wall polishing path planning method.
  • the memory 420 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 420 may further include a memory remotely provided with respect to the processor 410, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 430 may be configured to receive input numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 440 may include a display device such as a display screen.
  • the fifth embodiment of the present disclosure also provides a storage medium containing computer-executable instructions, the computer-executable instructions, when executed by a computer processor, are configured to execute a method for planning a wall surface polishing path, the method including:
  • the first distance and the second distance are compared, and the first distance is the difference between the untraversed protruding point and the current protruding point.
  • the second distance is the distance between the candidate protruding point and the current protruding point;
  • the wall surface polishing path is determined based on the current protruding point and the next work point of the current protruding point.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present disclosure is not limited to the method operations described above, and can also execute the wall polishing path plan provided by any embodiment of the present disclosure. Related operations in the method.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FLASH Flash memory
  • hard disk or optical disk etc., including several instructions to make a computer device (which can be a personal computer) , A server, or a network device, etc.) execute the method described in each embodiment of the present disclosure.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding function can be realized;
  • the specific names of the functional units are only used to facilitate distinguishing from each other, and are not used to limit the protection scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种墙面打磨路径规划方法、装置、设备和介质,该方法包括:获取待打磨墙面的凸出点(1-N),并将待打磨墙面划分为至少两个区域(S110);在当前凸出点所在的区域的下一区域中确定候选凸出点(S120);若当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,第一距离为未遍历凸出点与当前凸出点之间的距离,第二距离为候选凸出点与当前凸出点之间的距离(S130);将第一距离和第二距离中的距离最小值对应的凸出点确定为当前凸出点的下一作业点(S140);基于当前凸出点和当前凸出点的下一作业点确定墙面打磨路径(S150)。该方法解决了现阶段打磨设备的打磨路径覆盖无需打磨区域的问题,实现优化打磨设备的作业路径,提高打磨效率,降低打磨成本的效果。

Description

一种墙面打磨路径规划方法、装置、设备和介质
本公开以2020年04月20日递交的、申请号为202010309247.7且名称为“一种墙面打磨路径规划方法、装置、设备和介质”的专利文件为优先权文件,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及路径规划技术,尤其涉及一种墙面打磨路径规划方法、装置、设备和介质。
背景技术
现阶段的建筑主体结构一般为浇筑式,在对墙体进行抹灰前需要对墙体进行打磨,使抹灰层能够与墙体接触充分,避免抹灰后的墙面出现空鼓或开裂等现象。
现阶段主要利用墙面打磨机对墙面进行打磨,但该机器无法精确控制打磨深度,还需人工进行二次打磨,人工成本较大。且无法保证打磨作业路径最优,打磨效率低。
发明内容
本公开实施例提供一种墙面打磨路径规划方法、装置、设备和介质,以实优化打磨路径,提高打磨效率的效果。
第一方面,本公开实施例提供了一种墙面打磨路径规划方法,该方法包括:
获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;
在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;
若所述当前凸出点所在的所述区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;
将所述第一距离和所述第二距离中的距离最小值对应的所述凸出点确定为所述当前凸出点的下一作业点;
基于所述当前凸出点和所述当前凸出点的所述下一作业点确定墙面打磨路径。
第二方面,本公开实施例还提供了一种墙面打磨路径规划装置,该装置包括:区域划分模块,被配置为获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;
候选凸出点确定模块,在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;
距离比较模块,被配置为若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;
下一作业点确定模块,被配置为将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;
打磨路径确定模块,被配置为基于所述当前凸出点和所述当前凸出点的所述下一作业点确定墙面打磨路径。
第三方面,本公开实施例还提供了一种设备,该设备包括:
一个或多个处理器;
存储装置,被配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本公开实施例中任一所述的墙面打磨路径规划方法。
第四方面,本公开实施例还提供了一种包含计算机可执行指令的存储介质,其特征在于,所述计算机可执行指令在由计算机处理器执行时被配置为执行本公开实施例中任一所述的墙面打磨路径规划方法。
本公开实施例通过获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;便于对打磨路径进行规划,减少打磨设备所走的打磨路程提高打磨效率。在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。使规划的打磨路径中包含更多的凸出点,减少打磨路径规划次数,提高打磨效率,解决了现阶段打磨设备的打磨路径覆盖无需打磨区域的问题,实现优化打磨设备的作业路径,提高打磨效率,降低打磨成本的效果。
附图说明
图1是本公开实施例一中的一种墙面打磨路径规划方法的流程图;
图2是墙面区域划分示意图;
图3是墙体剖面示意图;
图4是墙面凸出点简化树图;
图5是候选凸出点计算示意图;
图6是本公开实施例二中的一种墙面打磨路径规划方法的流程图;
图7是凸出点判断网格和扩散趋势示意图;
图8是单点打磨方向示意图;
图9是本公开实施例三中的一种墙面打磨路径规划装置的结构图;
图10是本公开实施例四中的一种设备的结构示意图。
其中,1、基准墙面;2、墙面凸出点凸出距离。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
实施例一
图1为本公开实施例一提供的一种墙面打磨路径规划方法的流程图,本实施例可适用于墙面凸出点打磨情况,该方法可以由一种墙面打磨路径规划装置来执行,具体包括如下步骤:
S110、获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域。
一般的,在施工建筑的墙面会出现超出验收标准的凸出点,此时需要对凸出点进行打磨,打磨前需根据打磨方向和打磨设备的尺寸将待打磨墙面进行区域划分以便进行打磨路径规划。可选的,所述将所述待打磨墙面划分为至少两个区域,包括:根据打磨设备的尺寸,将待打磨墙面划分为至少两个区域,所述区域的宽度大于打磨设备的直径。若区域的宽度小于打磨设备的直径,打磨设备在当前区域打磨时,有可能会打磨到其他区域的打磨点,破坏规划的打磨路径。示例性的,如图2所示,打磨设备的打磨方向可以是但不限于从待打磨墙面的左下角向待打磨墙面的右上角进行打磨,根据打磨方向将打磨墙面划分为7个区域,将每个凸出点都划分在区域内,方便 对打磨路径进行规划。
可选的,所述获取待打磨墙面的凸出点,包括:获取所述待打磨墙面的点云数据,其中,所述点云数据中包括所述待打磨墙面中各网格点的参数信息;根据所述点云数据确定用于划分凸出点的目标墙面;基于所述凸出距离的众数确定所述目标墙面,其中,所述目标墙面与所述基准墙面的距离为所述凸出距离的众数。根据所述点云数据和所述目标墙面确定凸出于所述目标墙面的凸出点。基于三维激光扫描技术采集待打磨墙面的点云数据,由于点云数据较多,不便获取凸出点的参数信息,所以对待打磨墙面进行网格划分,所述网格为边长为预设长度的正方形。示例性的,如图2所示,将待打磨墙面进行20×20mm的网格划分。以网格的形式表示凸出点,使其更加简单形象地反映至墙面,便于找准凸出点的位置进行打磨作业路径的规划。
可选的,根据所述点云数据确定用于划分凸出点的目标墙面,包括:根据所述点云数据,确定所述待打磨墙面中各网格点与基准墙面的凸出距离;基于所述凸出距离的众数确定所述目标墙面,其中,所述目标墙面与所述基准墙面的距离为所述凸出距离的众数。如图3所示,根据整面墙体的点云数据,选择统一基准墙面,计算每个网格距基准墙面的凸出距离,然后选择所有凸出距离的众数确定目标墙面,所有凸出距离的众数即目标墙面与基准墙面的距离。计算每个网格距目标墙面的距离,将凸出于目标墙面的网格对应的待打磨墙面作为待打磨的凸出点。通过目标墙面的确定及对凸出点凸出距离的计算,精确了打磨深度,使打磨后的墙面更加符合验收标准,提高了打磨效率,降低了打磨成本。
可选的,所述基于所述凸出距离的众数确定所述目标墙面,包括:基于多个众数中所述凸出距离最大的众数确定所述目标墙面;或,基于多个众数中所述凸出距离最小的众数确定所述目标墙面;或,基于多个众数的平均值确定所述目标墙面。可根据实际情况选择合适的众数,使确定的目标墙面更加符合验收标准。
S120、在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点。
需要说明的是,候选凸出点为打磨设备打磨完当前凸出点后,下一个需打磨的凸出点,在打磨路径规划前需确定当前凸出点所在区域的下一区域中的候选凸出点。
可选的,在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点,包括:
将所述当前凸出点所在区域的下一区域中,将距离打磨路径中的打磨起始点路径最短的凸出点确定为候选凸出点。示例性的,如图2所示,为了方便说明将凸出点按照自左下至右上,先横排后竖排的规则进行编号,0点为打磨起始点,N为打磨终止点,通过建立坐标系可获得各凸出点的坐标。根据凸出点划分的区域,将凸出点位置简化为如图4所示的树图,从图中可以看出,同一区域的凸出点在同一数列。根据凸出点坐标,分别计算每个凸出点与下一区域凸出点之间的距离,根据Dijkstra算法确定候选凸出点,计算结果如图5所示。由于起始点0所在区域的下一区域内包含编号为2、6和3的凸出点,故从编号2、3和6的凸出点中确定候选凸出点,由图5可知,起始点距编号为2的凸出点距离最短,故编号为2的凸出点为候选凸出点,之后确定编号为2的凸出点之后的下一个候选凸出点。编号2所在区域的下一个区域中包含编号为5、8和1的凸出点,分别计算从起始点到编号为5、8和1的凸出点所用的最短路径,由图5可知,编号为5、8和1的凸出点中与起始点路径最短的是编号为8的凸出点,故在编号为2的凸出点之后下一候选凸出点为编号为8的凸出点,重复此过程,直到找到终止点所在区域。对候选凸出点的确定是规划打磨路径的前提,以候选凸出点为基础进行打磨路径规划。
S130、若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离。
本步骤是对上一步骤中确定的打磨候选点进行的优化。因打磨作业的特殊性,即存在单独区域内包含多个凸出点,示例性的,如图2所示,与编号为2的凸出点在同一区域的还包括编号为3和编号为6的凸出点,编号为3和编号为6的凸出点为未遍历到的凸出点,编号为8的点为下一个区域的候选点,分别计算编号为2的凸出点与编号为3和编号为6的凸出点之间的距离,与编号为2和编号为8的凸出点之间的距离进行比较,从而确定下一作业点。
S140、将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点。
示例性的,由两点之间的距离公式计算可得编号为2的凸出点与编号为8、3和6的凸出点之间的距离关系为:D 2→3>D 2→6>D 2→8,故在编号为2的凸出点之后的 下一作业点为编号为3的凸出点。重复此步骤,直到终止点。
S150、基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。
根据上述步骤中确定的打磨作业点得到墙面打磨路径。通过对打磨候选点进行优化确定打磨作业点,使得到的墙面打磨路径包含更多的凸出点,使打磨设备在进行第一次打磨时能够打磨到更多的凸出点,减少打磨次数,提高了打磨效率。
在上述实施例的基础上,墙面打磨路径规划方法还包括:若所述当前凸出点所在区域中不包括未遍历凸出点时,将所述当前凸出点所在区域的下一区域中确定的候选凸出点确定为所述当前凸出点的下一作业点。在规划打路径时,会出现当前凸出点所在的区域内没有除当前凸出点外的其他凸出点的情况,此时将当前凸出点所在区域的下一区域中确定的候选凸出点确定为下一作业点。
在上述实施例的基础上,墙面打磨路径规划方法还包括:基于预先设置的遍历顺序,确定所述当前凸出点所在区域的下一区域。遍历顺序根据打磨方向确定,示例性的,如图2所示,打磨方向为从左下角至右上角进行打磨,所以凸出点也按照从左下角至右上角顺序进行遍历。故若当前区域为编号为8的凸出点所在区域,则下一区域为编号为7的凸出点所在区域。
在上述实施例的基础上,墙面打磨路径规划方法还包括:当根据所述预先设置的遍历顺序,确定所述当前凸出点所在区域不存在下一区域时,基于所述预先设置的遍历顺序的反向顺序确定所述当前凸出点所在区域的下一区域。当当前凸出点所在区域不存在下一区域时,即已到达打磨终点,此时在待打磨墙面中可能还存在未遍历到的凸出点,故需根据遍历顺序的反向顺序确定当前凸出点所在区域的下一区域。示例性的,如图2所示,当前区域为编号为10的凸出点所在区域,遍历顺序为从左下角至右上角,则遍历顺序的反向顺序为从右上角至左下角。根据遍历顺序的反向顺序,确定当前凸出点所在区域的下一区域为编号为4的凸出点所在的区域。通过确定当前凸出点所在区域的下一区域,才能确定下一区域内的凸出点,为确定打磨作业点的确定奠定基础。
本实施例的技术方案,通过获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;便于对打磨路径进行规划,减少打磨设备所走的打磨路程提高打磨效率。在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;若所述当 前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。使规划的打磨路径中包含更多的凸出点,减少打磨路径规划次数,提高打磨效率,解决了现阶段打磨设备的打磨路径覆盖无需打磨区域的问题,实现优化打磨设备的作业路径,提高打磨效率,降低打磨成本的效果。
实施例二
图6为本公开实施例二提供的一种墙面打磨路径规划方法的流程图,本实施例以上述实施例为基础进行进一步优化,可选的,墙面打磨路径规划方法还包括:对于任一凸出点,建立判断网格,其中,所述判断网格中包括表征所述凸出点的递减扩散趋势的轮廓线,凸出点的扩散趋势的轮廓线可以为打磨方向的判断提供依据;基于所述轮廓线确定所述凸出点的单点打磨路径,避免了打磨不均匀的情况,可以使打磨后的墙面更加符合验收标准。如图6所示,具体包括如下步骤:
S210、获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域。
S220、在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点。
S230、若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离。
S240、将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点。
S250、基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。
S260、对于任一凸出点,建立判断网格,其中,所述判断网格中包括表征所述凸出点的递减扩散趋势的轮廓线。
根据规划好的打磨路径对待打磨墙面进行打磨,在对单个凸出点进行打磨时,还需确定单个凸出点的打磨路径,如图7所示,首先对单个凸出点建立判断网格,将 整个凸出点都包含在判断网格内,然后确定凸出点凸出高度的扩散趋势,以轮廓线的形式体现。示例性的,轮廓线可以是等高线。凸出点一般呈递减的扩散趋势。通过扩散趋势可以确定凸出点的形态特点,使对该凸出点规划的打磨路径更加准确。
S270、基于所述轮廓线确定所述凸出点的单点打磨路径。
凸出点的递减扩散趋势的轮廓线为单点打磨路径的规划提供了依据。可选的,基于所述轮廓线确定所述凸出点的单点打磨路径,包括:根据所述轮廓线确定所述凸出点的当前凸出最大值方向,基于所述当前凸出最大值方向确定所述凸出点的当前打磨方向;从所述判断网格中删除所述当前凸出最大值,以更新所述判断网格,并基于更新后的判断网格确定下一打磨方向;如图8所示,根据判断网格中单个凸出点的递减扩散趋势的轮廓线从各个方向搜索凸出点凸出距离的最大值,从而找到凸出点凸出最大值的方向,即打磨方向。将打磨完成的凸出点最大值排除,重新基于当前打磨位置建立判断网格,并基于新的判断网格确定凸出的最大值,进而确定新的打磨方向,重复此过程,直到完成该凸出点区域的打磨。通过扩散趋势建立的打磨路径,使墙面能够被均匀打磨,并且精确了打磨深度,使打磨后的墙面更加符合验收标准。
本实施例的技术方案,通过获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;便于对打磨路径进行规划。对于当前凸出点,在所述当前凸出点所在区域的下一区域中确定候选凸出点;若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径,使规划的打磨路径中包含更多的凸出点,减少打磨路径规划次数;对于任一凸出点,建立判断网格,其中,所述判断网格中包括表征所述凸出点的递减扩散趋势的轮廓线,为打磨方向的判断提供依据;基于所述轮廓线确定所述凸出点的单点打磨路径,使墙面能够被均匀打磨情况,并且精确了打磨深度,使打磨后的墙面更加符合验收标准。
实施例三
图9为本公开实施例三提供的一种墙面打磨路径规划装置的结构图,该逻装置包括:区域划分模块310、候选凸出点确定模块320、距离比较模块330、下一作业点确定模块340和打磨路径确定模块350。
其中,区域划分模块310,被配置为获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;候选凸出点确定模块320,被配置为在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;距离比较模块330,被配置为若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;下一作业点确定模块340,被配置为将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;打磨路径确定模块350,被配置为基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。
在上述实施例的技术方案中,区域划分模块310,包括:
点云数据获取单元,被配置为获取所述待打磨墙面的点云数据,其中,所述点云数据中包括所述待打磨墙面中各网格点的参数信息;
目标墙面确定单元,被配置为根据所述点云数据确定用于划分凸出点的目标墙面;
凸出点确定单元,被配置为根据所述点云数据和所述目标墙面确定凸出于所述目标墙面的凸出点。
在上述实施例的技术方案中,目标墙面确定单元,包括:
凸出距离确定子单元,被配置为根据所述点云数据,确定所述待打磨墙面中各网格点与基准墙面的凸出距离;
目标墙面确定子单元,被配置为基于所述凸出距离的众数确定所述目标墙面,其中,所述目标墙面与所述基准墙面的距离为所述凸出距离的众数。
可选的,所述基于所述凸出距离的众数确定所述目标墙面,包括:基于多个众数中所述凸出距离最大的众数确定所述目标墙面;或,基于多个众数中所述凸出距离最小的众数确定所述目标墙面;或,基于多个众数的平均值确定所述目标墙面。可选的,所述将所述待打磨墙面划分为至少两个区域,包括:根据打磨设备的尺寸,将待打磨墙面划分为至少两个区域,所述区域的宽度大于打磨设备的直径。
可选的,所述在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点,包括:
将所述当前凸出点所在区域的下一区域中,将距离打磨路径中的打磨起始初点路径最短的凸出点确定为候选凸出点。
可选的,若所述当前凸出点所在区域中不包括未遍历凸出点时,将所述当前凸出点所在区域的下一区域中确定的候选凸出点确定为所述当前凸出点的下一作业点。
在上述实施例的技术方案中,墙面打磨路径规划装置,还包括:
下一区域确定模块,被配置为基于预先设置的遍历顺序,确定所述当前凸出点所在区域的下一区域;
反向顺序下一区域确定模块,被配置为当根据所述预先设置的遍历顺序,确定所述当前凸出点所在区域不存在下一区域时,基于所述预先设置的遍历顺序的反向顺序确定所述当前凸出点所在区域的下一区域。
在上述实施例的技术方案中,墙面打磨路径规划装置,还包括:
判断网格建立模块,被配置为对于任一凸出点,建立判断网格,其中,所述判断网格中包括表征所述凸出点的递减扩散趋势的轮廓线;
单点打磨路径确定模块,被配置为基于所述轮廓线确定所述凸出点的单点打磨路径。
在上述实施例的技术方案中,单点打磨路径确定模块,包括:
打磨方向确定单元,被配置为根据所述轮廓线确定所述凸出点的当前凸出最大值方向,基于所述当前凸出最大值方向确定所述凸出点的当前打磨方向;
下一打磨方向确定单元,被配置为从所述判断网格中删除所述当前凸出最大值,以更新所述判断网格,并基于更新后的判断网格确定下一打磨方向;
单点打磨路径确定单元,被配置为基于所述当前打磨方向和所述下一打磨方向确定所述凸出点的单点打磨路径。
本实施例的技术方案,通过获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;便于对打磨路径进行规划,减少打磨设备所走的打磨路程提高打磨效率。在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选 凸出点与所述当前凸出点之间的距离;将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。使规划的打磨路径中包含更多的凸出点,减少打磨路径规划次数,提高打磨效率,解决了现阶段打磨设备的打磨路径覆盖无需打磨区域的问题,实现优化打磨设备的作业路径,提高打磨效率,降低打磨成本的效果。
本公开实施例所提供的墙面打磨路径规划装置可执行本公开任意实施例所提供的墙面打磨路径规划方法,具备执行方法相应的功能模块和有益效果。
实施例四
图10为本公开实施例四提供的一种设备的结构示意图,如图10所示,该设备包括处理器410、存储器420、输入装置430和输出装置440;设备中处理器410的数量可以是一个或多个,图10中以一个处理器410为例;设备中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或其他方式连接,图10中以通过总线连接为例。
存储器420作为一种计算机可读存储介质,可被配置为存储软件程序、计算机可执行程序以及模块,如本公开实施例中的墙面打磨路径规划方法对应的程序指令/模块(例如,墙面打磨路径规划装置中的区域划分模块310、候选凸出点确定模块320、距离比较模块330、下一作业点确定模块340和打磨路径确定模块350)。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的墙面打磨路径规划方法。
存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器420可进一步包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可被配置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
实施例五
本公开实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时被配置为执行一种墙面打磨路径规划方法,该方法包括:
获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;
在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;
若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;
将所述第一距离和所述第二距离中的距离最小值对应的凸出点确定为所述当前凸出点的下一作业点;
基于所述当前凸出点和所述当前凸出点的下一作业点确定墙面打磨路径。
当然,本公开实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本公开任意实施例所提供的墙面打磨路径规划方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本公开可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
值得注意的是,上述墙面打磨路径规划装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本 公开的保护范围。
注意,上述仅为本公开的较佳实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (15)

  1. 一种墙面打磨路径规划方法,其特征在于,包括:
    获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;
    在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;
    若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;
    将所述第一距离和所述第二距离中的距离最小值对应的所述凸出点确定为所述当前凸出点的下一作业点;
    基于所述当前凸出点和所述当前凸出点的所述下一作业点确定墙面打磨路径。
  2. 根据权利要求1所述的方法,其特征在于,所述获取待打磨墙面的凸出点,包括:获取所述待打磨墙面的点云数据,其中,所述点云数据中包括所述待打磨墙面中各网格点的参数信息;
    根据所述点云数据确定用于划分所述凸出点的目标墙面;
    根据所述点云数据和所述目标墙面确定凸出于所述目标墙面的所述凸出点。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述点云数据确定用于划分所述凸出点的目标墙面,包括:
    根据所述点云数据,确定所述待打磨墙面中各网格点与基准墙面的凸出距离;
    基于所述凸出距离的众数确定所述目标墙面,其中,所述目标墙面与所述基准墙面的距离为所述凸出距离的众数。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述凸出距离的众数确定所述目标墙面,包括:
    基于多个所述众数中所述凸出距离最大的所述众数确定所述目标墙面;
    或,基于多个所述众数中所述凸出距离最小的所述众数确定所述目标墙面;
    或,基于多个所述众数的平均值确定所述目标墙面。
  5. 根据权利要求1所述的方法,其特征在于,所述将所述待打磨墙面划分为至少两个区域,包括:
    根据打磨设备的尺寸,将所述待打磨墙面划分为至少两个所述区域,所述区域的宽度大于所述打磨设备的直径。
  6. 根据权利要求1所述的方法,其特征在于,所述在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点,包括:
    将所述当前凸出点所在的所述区域的下一所述区域中,将距离打磨路径中的打磨起始点路径最短的所述凸出点确定为候选凸出点。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述当前凸出点所在的所述区域中不包括所述未遍历凸出点时,将所述候选凸出点确定为所述当前凸出点的所述下一作业点。
  8. 根据权利要求1所述的方法,其特征在于,还包括:
    基于预先设置的遍历顺序,确定所述当前凸出点所在的所述区域的下一所述区域;
    当根据所述预先设置的遍历顺序,确定所述当前凸出点所在的所述区域不存在下一所述区域时,基于所述预先设置的遍历顺序的反向顺序确定所述当前凸出点所在的所述区域的下一所述区域。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,还包括:
    对于任一所述凸出点,建立判断网格,其中,所述判断网格中包括表征所述凸出点的递减扩散趋势的轮廓线;
    基于所述轮廓线确定所述凸出点的单点打磨路径。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述轮廓线确定所述凸出点的单点打磨路径,包括:
    根据所述轮廓线确定所述凸出点的当前凸出最大值方向,基于所述当前凸出最大值方向确定所述凸出点的当前打磨方向;
    从所述判断网格中删除所述当前凸出最大值,以更新所述判断网格,并基于更新后的所述判断网格确定下一打磨方向;
    基于所述当前打磨方向和所述下一打磨方向确定所述凸出点的所述单点打磨路径。
  11. 一种墙面打磨路径规划装置,其特征在于,包括:
    区域划分模块,被配置为获取待打磨墙面的凸出点,并将所述待打磨墙面划分为至少两个区域;
    候选凸出点确定模块,被配置为,在当前凸出点所在的所述区域的下一所述区域中确定候选凸出点;
    距离比较模块,被配置为若所述当前凸出点所在区域中包括未遍历凸出点时,将第一距离和第二距离进行比较,所述第一距离为所述未遍历凸出点与所述当前凸出点之间的距离,所述第二距离为所述候选凸出点与所述当前凸出点之间的距离;
    下一作业点确定模块,被配置为将所述第一距离和所述第二距离中的距离最小值对应的所述凸出点确定为所述当前凸出点的下一作业点;
    打磨路径确定模块,被配置为基于所述当前凸出点和所述当前凸出点的所述下一作业点确定墙面打磨路径。
  12. 根据权利要求11所述的装置,其特征在于,所述区域划分模块,包括:
    点云数据获取单元,被配置为获取所述待打磨墙面的点云数据,其中,所述点云数据中包括所述待打磨墙面中各网格点的参数信息;
    目标墙面确定单元,被配置为根据所述点云数据确定用于划分所述凸出点的目标墙面;凸出点确定单元,被配置为根据所述点云数据和所述目标墙面确定凸出于所述目标墙面的所述凸出点。
  13. 根据权利要求12所述的装置,其特征在于,所述目标墙面确定单元,包括:
    凸出距离确定子单元,被配置为根据所述点云数据,确定所述待打磨墙面中各网格点与基准墙面的凸出距离;
    目标墙面确定子单元,被配置为基于所述凸出距离的众数确定所述目标墙面,其中,所述目标墙面与所述基准墙面的距离为所述凸出距离的众数。
  14. 一种设备,其特征在于,所述设备包括:
    一个或多个处理器;
    存储装置,被配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-10中任一所述的墙面打磨路径规划方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-10中任一所述的墙面打磨路径规划方法。
PCT/CN2020/124131 2020-04-20 2020-10-30 一种墙面打磨路径规划方法、装置、设备和介质 WO2021212788A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/429,233 US20220241928A1 (en) 2020-04-20 2020-10-30 Method and device for planning wall surface polishing path, apparatus and medium
AU2020426865A AU2020426865A1 (en) 2020-04-20 2020-10-30 Method and device for planning wall surface polishing path, apparatus and medium
EP20916236.1A EP3926123A4 (en) 2020-04-20 2020-10-30 METHOD AND APPARATUS FOR SANDING PATH PLANNING OF A WALL SURFACE, DEVICE AND HOLDER
JP2021545912A JP7162146B2 (ja) 2020-04-20 2020-10-30 壁面研磨経路計画方法、装置、機器及び媒体
CA3127059A CA3127059A1 (en) 2020-04-20 2020-10-30 Method and device for planning wall surface polishing path, apparatus and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010309247.7A CN111203766B (zh) 2020-04-20 2020-04-20 一种墙面打磨路径规划方法、装置、设备和介质
CN202010309247.7 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021212788A1 true WO2021212788A1 (zh) 2021-10-28

Family

ID=70781958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124131 WO2021212788A1 (zh) 2020-04-20 2020-10-30 一种墙面打磨路径规划方法、装置、设备和介质

Country Status (7)

Country Link
US (1) US20220241928A1 (zh)
EP (1) EP3926123A4 (zh)
JP (1) JP7162146B2 (zh)
CN (1) CN111203766B (zh)
AU (1) AU2020426865A1 (zh)
CA (1) CA3127059A1 (zh)
WO (1) WO2021212788A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203766B (zh) * 2020-04-20 2020-08-14 广东博智林机器人有限公司 一种墙面打磨路径规划方法、装置、设备和介质
CN111890154B (zh) * 2020-07-31 2021-08-31 广东博智林机器人有限公司 打磨方法
CN111958330B (zh) * 2020-08-06 2022-04-12 上海高仙自动化科技发展有限公司 一种区域维护方法、装置、晶面机及存储介质
CN111815078B (zh) * 2020-09-02 2020-12-08 广东博智林机器人有限公司 一种拼缝打磨路径生成方法、装置、机器人及存储介质
CN111922793B (zh) * 2020-09-09 2021-01-22 广东博智林机器人有限公司 一种建筑物打磨方法、装置、系统、处理器及存储介质
CN112388511B (zh) * 2020-09-23 2021-11-12 广东博智林机器人有限公司 打磨机器人的控制方法、装置、电子设备及存储介质
CN112257788B (zh) * 2020-10-23 2023-08-04 广东博智林机器人有限公司 拼缝作业点的确定方法及装置
CN112686836B (zh) * 2020-11-05 2023-11-28 广东博智林机器人有限公司 墙壁施工方法及装置
TWI807564B (zh) * 2021-12-29 2023-07-01 友達光電股份有限公司 自動研磨系統及其操作方法
CN114488943B (zh) * 2022-01-07 2024-01-12 华中科技大学 面向配合工况下的随机多区域高效打磨路径规划方法
CN117428581B (zh) * 2023-12-21 2024-02-27 苏州博宏源机械制造有限公司 基于机械抛光的处理效率优化方法、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106639267A (zh) * 2015-10-28 2017-05-10 苏州宝时得电动工具有限公司 墙面处理机器人
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
WO2019127024A1 (en) * 2017-12-26 2019-07-04 Abb Schweiz Ag Method and apparatus for robotic machining
CN110202585A (zh) * 2019-07-30 2019-09-06 广东博智林机器人有限公司 喷涂控制方法、装置、喷涂机器人以及存储介质
CN111203766A (zh) * 2020-04-20 2020-05-29 广东博智林机器人有限公司 一种墙面打磨路径规划方法、装置、设备和介质

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504Y2 (zh) * 1987-03-20 1993-01-08
JP2001289638A (ja) 2000-04-11 2001-10-19 Sumitomo Densetsu Corp 自走式作業装置
SE530893C2 (sv) * 2007-02-15 2008-10-07 Htc Sweden Ab System. anordning och metod för planing av golv
KR101235281B1 (ko) * 2010-12-28 2013-02-28 (주)아이엠기술단 원격조종 콘크리트 표면절삭 시스템 및 그 방법
CN102359784B (zh) * 2011-08-01 2013-07-24 东北大学 一种室内移动机器人自主导航避障系统及方法
JP5906837B2 (ja) * 2012-03-12 2016-04-20 富士通株式会社 経路探索方法、経路探索装置、及びプログラム
CN103995934B (zh) * 2014-05-22 2018-04-17 智慧工匠(北京)科技有限公司 自动打磨的实现方法及装置
CN105252363B (zh) * 2015-11-03 2017-08-04 晋江兴翼机械有限公司 一种智能地坪研磨机控制系统及控制方法
DE102015119240B3 (de) * 2015-11-09 2017-03-30 ATENSOR Engineering and Technology Systems GmbH Automatisches detektieren und robotergestütztes bearbeiten von oberflächendefekten
CN106271941A (zh) * 2016-09-28 2017-01-04 朱德进 智能墙面打磨机器人
CN106607293A (zh) 2016-12-19 2017-05-03 徐州赛欧电子科技有限公司 一种刷漆机器人及其控制方法
WO2018183935A1 (en) * 2017-03-31 2018-10-04 Canvas Construction, Inc. Automated drywall painting system and method
CN108326853B (zh) * 2018-01-17 2021-08-24 广东工业大学 一种打磨机器人系统
CN108398950A (zh) * 2018-03-13 2018-08-14 安捷睿(厦门)机器人有限公司 一种地面磨平机器人及地面磨平机器人控制方法
CN108803621B (zh) * 2018-07-27 2021-06-25 广州大学 一种钢轨焊缝修磨机器人路径规划方法
CN109773791B (zh) * 2019-01-31 2020-05-15 北京华航唯实机器人科技股份有限公司 路径生成方法及装置
CN109955122A (zh) * 2019-04-23 2019-07-02 四川工程职业技术学院 基于机器视觉的全自动打磨系统及全自动打磨方法
CN110109466B (zh) * 2019-05-31 2021-07-16 东北大学 基于多传感器的自主地面打磨机器人控制系统
CN110103118A (zh) * 2019-06-18 2019-08-09 苏州大学 一种打磨机器人的路径规划方法、装置、系统及存储介质
CN110625491A (zh) * 2019-08-29 2019-12-31 中车青岛四方机车车辆股份有限公司 打磨设备以及打磨方法
CN110528830A (zh) * 2019-08-30 2019-12-03 广东博智林机器人有限公司 墙面处理机器人及其精度对位装置和精度校正方法
CN110774102B (zh) * 2019-11-04 2021-07-27 广东博智林机器人有限公司 一种打磨点定位系统及定位方法
CN110977767B (zh) * 2019-11-12 2021-07-02 长沙长泰机器人有限公司 一种铸件瑕疵分布检测方法以及铸件打磨方法
CN110977620B (zh) * 2019-11-13 2021-05-28 广东博智林机器人有限公司 墙壁打磨方法及打磨机器人
CN110962046B (zh) * 2019-11-25 2021-05-25 佛山缔乐视觉科技有限公司 五金件的缺陷识别方法、系统及存储介质
CN110860983A (zh) * 2019-12-09 2020-03-06 中国电子科技集团公司第二十八研究所 三维空间爬壁打磨抛光机器人及打磨能效控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106639267A (zh) * 2015-10-28 2017-05-10 苏州宝时得电动工具有限公司 墙面处理机器人
WO2019127024A1 (en) * 2017-12-26 2019-07-04 Abb Schweiz Ag Method and apparatus for robotic machining
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN110202585A (zh) * 2019-07-30 2019-09-06 广东博智林机器人有限公司 喷涂控制方法、装置、喷涂机器人以及存储介质
CN111203766A (zh) * 2020-04-20 2020-05-29 广东博智林机器人有限公司 一种墙面打磨路径规划方法、装置、设备和介质

Also Published As

Publication number Publication date
EP3926123A1 (en) 2021-12-22
US20220241928A1 (en) 2022-08-04
AU2020426865A1 (en) 2021-11-04
CN111203766B (zh) 2020-08-14
CN111203766A (zh) 2020-05-29
EP3926123A4 (en) 2022-05-18
JP2022528593A (ja) 2022-06-15
JP7162146B2 (ja) 2022-10-27
CA3127059A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2021212788A1 (zh) 一种墙面打磨路径规划方法、装置、设备和介质
CN110285754B (zh) 基于激光扫描的工件定位方法、装置、系统和存储介质
US20150081203A1 (en) Shortest path determination for large graphs
US20200125115A1 (en) Methods and systems of distributing task regions for a plurality of cleaning devices
WO2021238115A1 (zh) 全局栅格地图的地图遍历块建立方法、芯片及移动机器人
CN114485611B (zh) 基于北斗网格码的三维空间最短路径规划方法和装置
CN108112018B (zh) 一种移动通信网络待优化区域边界的确定方法及装置
WO2022100457A1 (zh) 作业路线规划方法、装置、电子设备以及可读存储介质
CN114972687A (zh) 基于消除三角形网格对的网格调整方法
CN111161288A (zh) 图像处理方法和装置
CN113256029A (zh) 建筑内寻路方法、装置、设备及存储介质
CN111243092B (zh) 一种适合电力智慧社区的三维可视化系统
CN105306503A (zh) 区域分析图实现方法及其系统
CN113255047A (zh) 框架梁布设方法、装置、设备及存储介质
CN114428984A (zh) 模型中墙体处理方法、装置、计算机设备和存储介质
KR20230116513A (ko) 기지국의 설치 위치를 결정하는 방법 및 그 장치
CN111179375B (zh) 建筑承台的轮廓图形的自动生成方法、装置及计算机存储介质
CN108668289B (zh) 一种移动通信网络待优化区域边界的提取方法
CN112381715A (zh) 海量遥感影像并行生成地图瓦片的方法和装置
CN111310261B (zh) 内墙饰面砖模型生成方法、装置、计算机设备和存储介质
KR20060062154A (ko) 하프 변환을 이용한 건물외곽선 추출 장치 및 그 방법
KR100965843B1 (ko) 레이저 점으로 이루어진 객체들의 최 외곽 벡터 추출 방법
Cook et al. Geodesic Fréchet distance with polygonal obstacles
CN111274642B (zh) 陶土瓦坡屋面的生成方法、装置、计算机设备和存储介质
CN103457876A (zh) 一种确定最近接入网络资源的方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545912

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020916236

Country of ref document: EP

Effective date: 20210804

ENP Entry into the national phase

Ref document number: 3127059

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020426865

Country of ref document: AU

Date of ref document: 20201030

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE