WO2021238115A1 - 全局栅格地图的地图遍历块建立方法、芯片及移动机器人 - Google Patents

全局栅格地图的地图遍历块建立方法、芯片及移动机器人 Download PDF

Info

Publication number
WO2021238115A1
WO2021238115A1 PCT/CN2020/131197 CN2020131197W WO2021238115A1 WO 2021238115 A1 WO2021238115 A1 WO 2021238115A1 CN 2020131197 W CN2020131197 W CN 2020131197W WO 2021238115 A1 WO2021238115 A1 WO 2021238115A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
map traversal
traversal block
block
mapping coordinates
Prior art date
Application number
PCT/CN2020/131197
Other languages
English (en)
French (fr)
Inventor
李明
赖钦伟
李永勇
Original Assignee
珠海一微半导体股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海一微半导体股份有限公司 filed Critical 珠海一微半导体股份有限公司
Priority to US17/791,916 priority Critical patent/US20230337880A1/en
Priority to KR1020227021976A priority patent/KR20220106810A/ko
Priority to EP20937411.5A priority patent/EP4075305A4/en
Priority to JP2022539087A priority patent/JP2023508662A/ja
Publication of WO2021238115A1 publication Critical patent/WO2021238115A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/383Indoor data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • G01C21/3881Tile-based structures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to the technical field of map area segmentation, in particular to a method for establishing a map traversal block of a global grid map, a chip and a mobile robot.
  • the prerequisite for the cleaning robot to efficiently complete the cleaning task is to have a map describing the surrounding environment.
  • robots can use sensors and combine with the existing SLAM (Simultaneous Localization And Mapping) technology to obtain environmental information through edge learning and other methods, and build a grid map describing environmental features based on this. After the map is established, the sweeping robot can perform cleaning work.
  • SLAM Simultaneous Localization And Mapping
  • the present invention discloses a technical solution for processing grids into blocks based on the row and column distribution characteristics of the global map, which are specifically as follows:
  • a method for establishing a map traversal block of a global grid map includes: Step 1. Set the side length of the map traversal block according to the size of the global grid map, so that the map traversal block occupies a large enough grid in the global grid map Area; Step 2.
  • Step 3 Combining the size of the global grid map and the ratio of the side length of the map traversal block determined in Step 1, calculate the coverage of the map traversal block in the direction of each global coordinate axis of the global grid map; Step 3 , According to the constraint effect of the number of map traversal blocks determined in step 2, the side length of the map traversal block determined in step 1 is accumulated row by row and column by row to calculate the mapping coordinates of each map traversal block, so that the map The traversal block is established in each row and each column of the global grid map; wherein, each map traversal block is formed by merging corresponding grids according to its mapping coordinates and side lengths.
  • the present invention merges the grids in each row and column of the map to establish a certain size and number of map traversal blocks, realizes the division of a large-scale global grid map into multiple map sub-regions, and reduces
  • the computing power requirements for the navigation and positioning of mobile robots and the storage space requirements for map data can reduce resource consumption.
  • the map traversal block of each row of the global grid map is set in the direction of the horizontal coordinate axis and the projections on the direction of the vertical coordinate axis coincide
  • the map traversal block of each column of the global grid map is The projections set in the direction of the vertical coordinate axis and in the direction of the horizontal coordinate axis coincide; the direction of the global coordinate axis includes the direction of the vertical coordinate axis and the direction of the horizontal coordinate axis.
  • the grids on the global map are merged and blockized row by row and column by row into regularly distributed map traversal blocks.
  • the step 1 specifically includes: step 11, preset a standard side length; step 12, determine whether the length and width of the global grid map are both greater than twice the standard side length, if yes, set the map
  • the side length of the traversal block is the standard side length, otherwise go to step 13; step 13, determine whether the length and width of the global grid map are both greater than the standard side length, if yes, set the side length of the map traversal block as the standard side Half of the length, otherwise go to step 14; step 14, set the side length of the map traversal block to a quarter of the standard side length; wherein, the global grid map is a rectangular map area.
  • the map traversal block occupies a large enough grid area in the global grid map, which is convenient for the robot to traverse the map path information on the adaptation range of the marker.
  • the step 2 specifically includes: calculating the ratio of the effective length of the global grid map to the side length of the map traversal block, and adding one processing to obtain the global grid map in the vertical coordinate axis direction.
  • the map traversal block of the coverage number is made to completely mark the environmental information of the global working area.
  • step 3 specifically includes: step 31, using the lower left grid position of the global grid map as the reference origin; then proceed to step 32; step 32, starting from this reference origin, set the reference origin on the vertical coordinate axis
  • the upper coordinates plus the side length of the map traversal block are used to calculate and determine the mapping coordinates of the currently established map traversal block on the vertical axis, and at the same time determine the mapping coordinates of the current map traversal block on the horizontal axis and the reference origin in the horizontal coordinate
  • the coordinates on the axes are equal, and then go to step 33; where the reference origin is the position with the smallest coordinate value on each global coordinate axis of the global grid map; step 33, determine the map whose mapping coordinates have been determined in the direction of the vertical coordinate axis Whether the number of traversal blocks is less than the coverage number of the map traversal blocks in the vertical axis direction of the global grid map, if yes, go to step 34, otherwise go to step 35; step 34, place the currently determined map traversal block in the vertical The
  • step 33 Determine whether the number of map traversal blocks whose mapping coordinates have been determined in the horizontal axis direction is less than the coverage number of map traversal blocks in the horizontal axis direction of the global grid map. If yes, return to step 33. Otherwise, it is determined that the mapping coordinates of each map traversal block in the global grid map have been calculated row by row, so that each row and column of the global grid map establishes the map traversal block , Complete the block processing of the global grid map.
  • This technical solution performs a row-by-column accumulation operation on the determined side length of the map traversal block based on the map boundary constraint effect of the coverage number of the map traversal block determined in the foregoing steps, including first traversing the current column, and then traversing the next One column until the map traversal block of all columns distributed in the horizontal coordinate axis direction is traversed, thereby determining the mapping coordinates of each map traversal block, and lay out the map traversal block to each row and column of the global grid map On the regular area block, the global grid map is divided into the map traversal block.
  • step 3 specifically includes: step 31, using the lower left grid position of the global grid map as the reference origin; then proceed to step 32; step 32, starting from this reference origin, set the reference origin on the horizontal coordinate axis Calculate and determine the mapping coordinates of adjacent map traversal blocks on the horizontal axis in the same horizontal axis direction plus the side length of the map traversal block, and determine the mapping of the current map traversal block on the vertical axis at the same time
  • the coordinates are equal to the coordinates of the reference origin on the vertical axis, and then go to step 33; where the reference origin is the position with the smallest coordinate value on each global coordinate axis of the global grid map; step 33, determine the horizontal axis direction If the number of map traversal blocks whose mapping coordinates have been determined above is less than the number of map traversal blocks in the horizontal coordinate axis direction of the global grid map, go to step 34, otherwise go to step 35; step 34, set the current determined The mapping coordinates of the map traversal block on the horizontal axis plus the side length of
  • the coordinates of the grid points traversed by the robot in the direction of the vertical axis are greater than or equal to the mapped coordinates of the map traversal block in the direction of the vertical axis, and the grid points traversed by the robot are in the direction of the vertical axis.
  • the coordinates of is less than or equal to the result of the sum of the mapping coordinates of the map traversal block in the vertical axis direction and the side length of the map traversal block minus one, the coordinates of the grid points traversed by the robot in the horizontal axis direction Greater than or equal to the mapping coordinates of the map traversal block in the horizontal axis direction, and the coordinates of the grid points traversed by the robot in the vertical axis direction are less than or equal to the mapping coordinates of the map traversal block in the horizontal axis direction and this
  • the sum of the side lengths of the map traversal block minus one it is determined that the grid point traversed by the robot is located in the map traversal block, so that when the cleaning robot traverses any grid inside the map traversal block, mark
  • the corresponding map traversal block is a map traversal block that has been traversed.
  • This technical solution defines that the left boundary of the map traversal block is included in its internal area, and the right boundary of the defined map traversal block is included in the adjacent map on the horizontal coordinate axis. Traverse the internal area of the block; define the lower boundary of the map traversal block to be included in its internal area, and define the upper boundary of the map traversal block to include the internal area of the adjacent map traversal block in the vertical axis direction.
  • a mobile robot the mobile robot has a built-in chip.
  • Fig. 1 is a method flowchart of a method for establishing a map traversal block of a global grid map disclosed in an embodiment of the present invention.
  • Fig. 2 is a method flowchart of a method for setting the side length of a map traversal block disclosed in an embodiment of the present invention.
  • Fig. 3 is a method flowchart of a method for calculating the mapping coordinates of a map traversal block disclosed in an embodiment of the present invention.
  • the embodiment of the present invention discloses a method for establishing a map traversal block of a global grid map.
  • the method for establishing a map traversal block can be executed before the cleaning robot cleans and traverses the global working area according to a preset cleaning mode, so as to facilitate the mobile robot to check the block Clean the global working area after chemical treatment.
  • the method for establishing a map traversal block includes: Step S1 The grid area that occupies a certain coverage area in the map, the grid area range is set by those skilled in the art according to the size of the cleaning robot and the working area in which it is located; step S2, combined with the size and step of the global grid map S1 determines the ratio of the side lengths of the map traversal blocks, and calculates the coverage of the map traversal blocks in each global coordinate axis direction of the global grid map (including the X-axis and Y-axis directions of the global coordinate system), where the map traverses The block is equivalent to the sub-region divided by the global grid map; step S3, according to the constraint effect of the coverage number of the map traversal block determined in step S2, the side length of the map traversal block determined in step S1 is accumulated row by row and column by row , To calculate the mapping coordinates of each map traversal block, so that the map traversal block is established in each row and each column of the global grid map, that is, the coverage number
  • the present invention merges the grids in each row and column of the map to establish a certain size and number of map traversal blocks.
  • Each map traversal block corresponds to a small area in the actual environment.
  • the map traversal block creation method realizes the division of a large-scale global grid map into multiple map sub-regions, reducing
  • the calculation power requirements for the navigation and positioning of the mobile robot and the storage space requirements for map data are improved, saving the calculation resources of the grid surface in the global map, and accelerating the data processing speed. It can be used to calculate the coverage and area area of path planning, walking along the side, and refilling path planning.
  • the map traversal block of each row of the global grid map is set in the direction of the horizontal coordinate axis and the projections on the vertical coordinate axis are coincident, and the map traversal of each column of the global grid map
  • the blocks are all arranged in the vertical coordinate axis direction and their projections in the horizontal coordinate axis direction coincide;
  • the global coordinate axis direction includes the vertical coordinate axis direction and the horizontal coordinate axis direction.
  • the grids on the global map are merged row by row and column by row to establish a regularly distributed map traversal block. It is equivalent to dividing the global map into small map blocks.
  • the step S1 specifically includes: step S11, preset a standard side length E, and the maximum value can be set to 16. , So that each map traversal block is filled with a maximum of 16 ⁇ 16 grids, and then step S12 is entered.
  • the global grid map corresponding to the global working area of this embodiment is a rectangular map, and the map traversal block filling and covering the global grid map is a square.
  • Step S12 Determine whether the length and width of the global grid map are both greater than twice the standard side length.
  • step S13 determine what Whether the length and width of the global grid map are both greater than the standard side length, if yes, set the side length of the map traversal block to one-half of the standard side length, otherwise go to step S14; step S14, set the map traversal
  • the side length of the block is a quarter of the standard side length.
  • the ratio of the effective length of the global grid map to the side length of the map traversal block is calculated, and one processing is added to obtain the map traversal block established in the vertical coordinate axis direction of the global grid map
  • the necessity of adding one processing here is that the software system rounds the ratio of the effective length of the global grid map to the side length of the map traversal block, ignoring the decimal part, so it needs to add one processing to ensure the aforementioned
  • the covered number of map traversal blocks completely record the actual covered global working area, which improves the redundancy of the spatial area.
  • the number of map traversal blocks in the direction of each global coordinate axis of the global grid map is determined by calculation, which is specifically divided into: the global grid
  • the number of map traversal blocks in the vertical coordinate axis direction (that is, in the length direction) of the map H the ratio of the effective length of the global grid map to the side length of the map traversal block + 1, the global grid
  • the number of map traversal blocks in the horizontal coordinate axis direction (that is, in the width direction) of the map W the ratio of the effective width of the global grid map to the side length of the map traversal block+1.
  • the effective length and effective width in this embodiment include the grid area for the robot to traverse, and are used to construct the map traversal block.
  • the step S3 specifically includes: step S31, taking the grid position of the lower left corner of the global grid map as Refer to the origin, and then enter step S32; use the lower left corner of the global grid map as the reference origin to calculate the mapping coordinates of the map traversal block.
  • minx and miny are the reference origin coordinates of the global grid map respectively, they are also equivalent to the minimum coordinate value on the X axis of the global grid map and the minimum coordinate value on the Y axis of the global grid map;
  • i is set to the map
  • the offset of the traversal block relative to the reference origin in the X axis direction, i+1 is equivalent to the number of map traversal blocks whose mapping coordinates have been determined in the horizontal coordinate axis direction;
  • j is set to the map traversal block on the Y axis
  • the offset relative to the reference origin in the direction, j+1 is equivalent to the number of map traversal blocks whose mapping coordinates have been determined in the vertical coordinate axis direction;
  • e is the side length of the map traversal block;
  • X(i, j) is the mapping coordinates of the map traversal block in the direction of the horizontal axis of the global grid map
  • Y(i, j) is the mapping coordinates of the map traversal block in the
  • Step S32 Starting from this reference origin coordinate position (minx, miny), add the reference origin coordinates on the vertical coordinate axis to the side length of the map traversal block to calculate and determine the current map traversal block on the vertical coordinate axis.
  • Step S33 Determine whether the number j of map traversal blocks whose mapping coordinates have been determined in the vertical coordinate axis direction is less than the coverage number H of map traverse blocks in the vertical coordinate axis direction of the global grid map, and if yes, proceed to step S34 , Otherwise go to step S35.
  • Step S34 Add the currently determined mapping coordinates of the map traversal block on the vertical axis to the side length of the map traversal block, and calculate and determine that adjacent map traversal blocks in the same vertical axis direction are on the vertical axis.
  • step S34 is entered, j is automatically added 1. Simultaneously determine the mapping coordinates X(i,j+1) of the map traversal blocks adjacent to the same vertical axis on the horizontal axis and the mapping coordinates X(i,j+1) of the currently determined map traversal block on the horizontal axis. i, j) are the same, and then return to step S33 to realize the line-by-line determination of the mapping coordinates of each map traversal block in the same vertical coordinate axis direction under the constraint of the coverage amount in the same vertical coordinate axis direction.
  • Step S35 Add the currently determined mapping coordinates of the map traversal block on the horizontal coordinate axis to the side length of the map traversal block, and calculate and determine the mapping coordinates of the map traversal blocks adjacent to the same horizontal coordinate axis on the horizontal coordinate axis.
  • the mapping coordinates Y(i+1,j) of the adjacent map traversal block on the vertical axis are the same as the mapping coordinates Y(i,j) of the currently determined map traversal block on the vertical axis, and then enter Step S36: Under the constraint of the coverage quantity in the same horizontal coordinate axis direction, the mapping coordinates of each map traversal block in the same horizontal coordinate axis direction are determined column by column.
  • Step S36 Determine whether the number i of map traversal blocks whose mapping coordinates have been determined in the horizontal coordinate axis direction is less than the coverage number W of map traversal blocks in the horizontal coordinate axis direction of the global grid map. If yes, return to step S33, otherwise It is determined that the mapping coordinates of each map traversal block in the global grid map have been calculated row by row, so that each row and each column of the global grid map establishes the map traversal block, completing all The block processing of the global grid map is described.
  • the grid coordinate range that is, the grid coordinate range of the map traversal block in the X axis direction is greater than or equal to X(i,j), but less than or equal to X(i,j)+e-1 ;
  • the grid coordinate range of the map traversal block in the Y-axis direction is greater than or equal to Y(i,j), but less than or equal to Y(i,j)+e-1; thus according to the global grid map
  • the foregoing embodiment performs a row-by-column accumulation operation on the determined side length of the map traversal block according to the map boundary constraint effect of the coverage number of the map traversal block determined in the foregoing steps, including traversing the current column first, and then traversing the next One column until the map traversal block of all columns distributed in the horizontal coordinate axis direction is traversed, thereby determining the mapping coordinates of each map traversal block, and construct the map traversal block into each row and column of the global grid map On the regular area block, the global grid map is divided into the map traversal block.
  • the step S3 may further include: step 31, taking the grid position of the lower left corner of the global grid map as the reference origin; then proceed to step 32; step 32, starting from this reference origin, set the reference origin
  • the mapping coordinates on the horizontal axis plus the side length of the map traversal block are calculated to determine the mapping coordinates of the map traversal blocks adjacent to the same horizontal axis on the horizontal axis, and the current map traversal block is determined to be vertical
  • the mapping coordinates on the coordinate axis are equal to the coordinates of the reference origin on the vertical axis, and then go to step 33; where the reference origin is the position with the smallest coordinate value on each global coordinate axis of the global grid map; step 33, judge It has been determined in the horizontal axis direction whether the number of map traversal blocks with mapping coordinates is less than the coverage number of map traversal blocks in the horizontal axis direction of the global grid map, if yes, go to step 34, otherwise go to step 35; step 34 ⁇ Add the currently determined mapping coordinates of the map travers
  • step 36 Determine whether the number of map traversal blocks whose mapping coordinates have been determined in the direction of the vertical axis is less than the vertical axis direction of the global grid map If the coverage number of the map traversal block on the above is yes, then return to step 33. Otherwise, it is determined that the mapping coordinates of each map traversal block in the global grid map have been calculated row by row and column by row, so that the global grid map is Each row and each column establishes the map traversal block to complete the block processing of the global grid map.
  • this embodiment first traverses the current line, and then traverses the next line, until the traversal of the map traversal block of all lines distributed in the direction of the vertical coordinate axis is completed, and the coordinate value accumulation steps involved are the same as the foregoing embodiment. Similar, so I won't repeat it.
  • the coordinates of the grid points traversed by the robot on the vertical axis are greater than or equal to the mapped coordinates of the map traversal block on the vertical axis, and the grid points traversed by the robot are on the vertical axis.
  • the coordinates of is less than or equal to the result of the sum of the mapped coordinates of the map traversal block on the vertical axis and the side length of the map traversal block minus one, and the coordinates of the grid points traversed by the robot on the horizontal axis are greater than or Equal to the mapped coordinates of the map traversal block on the horizontal axis, and the coordinates of the grid points traversed by the robot on the vertical axis are less than or equal to the mapped coordinates of the map traversal block on the horizontal axis and the edge of the map traversal block.
  • the result of the long sum value minus one determines that the grid point traversed by the robot is located in the map traversal block.
  • the method for judging whether a grid position coordinate (a, b) of the global grid map belongs to one of the traversal map blocks includes: judging whether a is equal to or greater than X(i, j) and less than or Equal to X(i,j)+e-1; at the same time, judge whether b is greater than or equal to Y(i,j) and less than or equal to Y(i,j)+e-1; when the grid position coordinates ( a, b) When the above two judgment conditions are met at the same time, it is determined that the grid position coordinates (a, b) are located in the map traversal block.
  • the corresponding map traversal block is marked as the traversed map traversal block.
  • This embodiment defines that the left boundary of the map traversal block is included in its internal area , Define the right boundary of the map traversal block to include the inner area of the adjacent map traversal block in the horizontal coordinate axis direction, then the area between the left boundary of the map traversal block and the right boundary and the left boundary of the map traversal block are both Belonging to the same map traversal block, the grids contained in it belong to the grids that make up this map traversal block.
  • this embodiment defines that the lower boundary of the map traversal block is included in its internal area, and the upper boundary of the defined map traversal block is included in Adjacent map traversal blocks in the direction of the vertical axis, the area between the lower boundary and the upper boundary of the map traversal block and the lower boundary of the map traversal block belong to the same map traversal block, which contains The grid belongs to the grid that composes the traversal block of this map.
  • the cleaning robot traverses any grid inside the map traversal block according to the preset cleaning method, for example, when the cleaning robot traverses the grid position coordinates (a, b), mark the corresponding map traversal block as having gone Map traversal block; the cleaning path that the cleaning robot has traversed in the global working area is composed of map traversal blocks that have been traversed.
  • the map traversal block records a larger path area range, less The small number of marker blocks used to mark the same section of the path reduces the computing power requirements and storage space requirements of the cleaning robot, and reduces the time for mapping.
  • a chip with a built-in control program for dividing the global grid map constructed by a mobile robot in real time by executing the map traversal block establishment method can be implemented by hardware, software, firmware, middleware, microcode, or any combination thereof.
  • the processing unit can be in one or more application-specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gate arrays ( FPGA), a processor, a controller, a microcontroller, a microprocessor, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASIC application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gate arrays
  • a processor a controller, a microcontroller, a microprocessor, other electronic units designed to perform the functions described herein, or a combination thereof.
  • a mobile robot the mobile robot has a built-in chip.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, and then editing, interpreting, or other suitable media if necessary. The program is processed in a way to obtain the program electronically and then stored in the computer memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Processing Or Creating Images (AREA)
  • Complex Calculations (AREA)

Abstract

全局栅格地图的地图遍历块建立方法、芯片及移动机器人,地图遍历块建立方法包括:步骤1、根据全局栅格地图的尺寸大小设置地图遍历块的边长,使得地图遍历块在全局栅格地图中占据足够大的栅格区域(S1);步骤2、结合全局栅格地图的尺寸大小和步骤1确定的地图遍历块的边长的比值关系,计算全局栅格地图的各个全局坐标轴方向上的地图遍历块的覆盖数量(S2);步骤3、根据步骤2确定的地图遍历块的覆盖数量的约束作用,对步骤1确定的地图遍历块的边长进行逐行逐列的累加操作,以计算出每个地图遍历块的映射坐标,使得地图遍历块建立在全局栅格地图的每一行和每一列(S3),降低了对移动机器人定位运算能力要求和地图数据存储空间要求。

Description

全局栅格地图的地图遍历块建立方法、芯片及移动机器人 技术领域
本发明涉及地图区域分割的技术领域,尤其涉及一种全局栅格地图的地图遍历块建立方法、芯片及移动机器人。
背景技术
清洁机器人能够高效完成清洁任务的前提是具有一张描述周围环境的地图。在环境地图创建方面,机器人可以通过传感器并结合现有的SLAM(Simultaneous Localization And Mapping)技术,通过采用沿边学习等方式获取环境的信息,并以此为基础建立描述环境特征的栅格地图。在地图建立之后,扫地机器人便可以进行清洁工作。
随着人们对清洁机器人工作效率要求的提高,特别是在一些大尺度室内全局环境下,扫地机机器人所需要采集的栅格信息量大幅度增加,这增加构建和使用栅格地图的软件资源,降低机器人使用全局栅格地图进行导航的效率。
发明内容
为了解决上述技术问题,本发明公开一种依靠全局地图的行列分布特征将栅格区块化处理的技术方案,具体如下:
一种全局栅格地图的地图遍历块建立方法,包括:步骤1、根据全局栅格地图的尺寸大小设置地图遍历块的边长,使得地图遍历块在全局栅格地图中占据足够大的栅格区域;步骤2、结合全局栅格地图的尺寸大小和步骤1确定的地图遍历块的边长的比值关系,计算全局栅格地图的各个全局坐标轴方向上的地图遍历块的覆盖数量;步骤3、根据步骤2确定的地图遍历块的覆盖数量的约束作用,对步骤1确定的地图遍历块的边长进行逐行逐列的累加操作,以计算出每个地图遍历块的映射坐标,使得地图遍历块建立在所述全局栅格地图的每一行和每一列;其中,每一个地图遍历块都是依据其映射坐标及其边长合并对应的栅格而成。与现有技术相比,本发明将地图中每行每列的栅格合并建立起一定尺寸大小和数量的地图遍历块,实现将大尺度全局栅格地图划分为多个地图子区域,降低了对移动机器人的导航定位算力要求和地图数据存储空间要求,降低资源消耗。
进一步地,所述全局栅格地图的每一行的地图遍历块都设置在水平坐标轴方向上且在竖直坐标轴方向上的投影重合,所述全局栅格地图的每一列的地图遍历块都设置在竖直坐标轴方向上且在水平坐标轴方向上的投影重合;全局坐标轴方向包括竖直坐标轴方向和水平坐标轴方向。本发明将全局地图上的栅格逐行逐列地合并区块化处理为规则分布的地图遍历块。
进一步地,所述步骤1具体包括:步骤11、预先设置一个标准边长;步骤12、判断所述全局栅格地图的长和宽是否都大于标准边长的2倍,是则设置所述地图遍历块的边长为标准边长,否则进入步骤13;步骤13、判断所述全局栅格地图的长和宽是否都大于标准边长,是则设置所述地图遍历块的边长为标准边长的二分之一,否则进入步骤14;步骤14、设置所述地图遍历块的边长为标准边长的四分之一;其中,所述全局栅格地图是矩形地图区域。使得地图遍历块在全局栅格地图中占据足够大的栅格区域,方便机器人遍历标记适应范围上的地图路径信息。
进一步地,所述步骤2具体包括:计算所述全局栅格地图的有效长度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图在竖直坐标轴方向上的地图遍历块的覆盖数量;计算所述全局栅格地图的有效宽度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图的水平坐标轴方向上建立的地图遍历块的覆盖数量。使得所述覆盖数量的所述地图遍历块完整地标记所述全局工作区域的环境信息。
进一步地,所述步骤3具体包括:步骤31、以全局栅格地图的左下角栅格位置为参考原点;然后进入步骤32;步骤32、从这个参考原点开始,将参考原点在竖直坐标轴上坐标加上地图遍历块的边长来计算确定当前建立的地图遍历块在竖直坐标轴上的映射坐标,同时确定当前的地图遍历块在水平坐标轴上的映射坐标与参考原点在水平坐标轴上的坐标相等,然后进入步骤33;其中,这个参考原点是全局栅格地图的各个全局坐标轴上坐标值最小的位置;步骤33、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量,是则进入步骤34,否则进入步骤35;步骤34、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,同时确定同一竖直坐标轴方向 上相邻的地图遍历块在水平坐标轴上的映射坐标与当前确定的地图遍历块在水平坐标轴上的映射坐标相同,然后返回步骤33,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标;步骤35、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长来,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标与当前确定的地图遍历块在竖直坐标轴上的映射坐标相同,然后进入步骤36,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标;步骤36、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量,是则返回步骤33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历块,完成所述全局栅格地图的区块化处理。该技术方案根据前述步骤确定的地图遍历块的覆盖数量所起到的地图边界约束作用,对确定的地图遍历块的边长进行逐行逐列的累加操作,包括先遍历当前一列,再遍历下一列,直到遍历完水平坐标轴方向上的分布的所有列的地图遍历块,从而确定每个地图遍历块的映射坐标,将地图遍历块布局到所述全局栅格地图的每一行和每一列的规则区域块上,实现在全局栅格地图分割为所述地图遍历块。
进一步地,所述步骤3具体包括:步骤31、以全局栅格地图的左下角栅格位置为参考原点;然后进入步骤32;步骤32、从这个参考原点开始,将参考原点在水平坐标轴上的映射坐标加上地图遍历块的边长,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定当前的地图遍历块在竖直坐标轴上的映射坐标与参考原点在竖直坐标轴上的坐标相等,然后进入步骤33;其中,这个参考原点是全局栅格地图的各个全局坐标轴上坐标值最小的位置;步骤33、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量,是则进入步骤34,否则进入步骤35;步骤34、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长来,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标与当前确定的地图遍历块在竖直坐标轴上的映射坐标相同,然后进入步骤33,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标;步骤35、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,同时确定同一竖直坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标与当前确定的地图遍历块在水平坐标轴上的映射坐标相同,然后返回步骤36,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标;步骤36、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量,是则返回步骤33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历块,完成所述全局栅格地图的区块化处理。该技术方案的技术效果同上书技术方案的相同。
进一步地,机器人遍历过的栅格点在竖直坐标轴方向上的坐标大于或等于地图遍历块在竖直坐标轴方向上的映射坐标,机器人遍历过的栅格点在竖直坐标轴方向上的坐标小于或等于这个地图遍历块在竖直坐标轴方向上的映射坐标与这个地图遍历块的边长的和值减一的结果,机器人遍历过的栅格点在水平坐标轴方向上的坐标大于或等于地图遍历块在水平坐标轴方向上的映射坐标,机器人遍历过的栅格点在竖直坐标轴方向上的坐标小于或等于这个地图遍历块在水平坐标轴方向上的映射坐标与这个地图遍历块的边长的和值减一的结果,确定机器人遍历过的这个栅格点位于这个地图遍历块内,使得当清洁机器人遍历过所述地图遍历块内部的任一栅格时,标记对应的地图遍历块为已走过的地图遍历块,本技术方案定义地图遍历块的左侧边界包含于其内部区域,定义地图遍历块的右侧边界包含于水平坐标轴方向上的相邻地图遍历块内部区域;定义地图遍历块的下侧边界包含于其内部区域,定义地图遍历块的上侧边界包含于竖直坐标轴方向上的相邻地图遍历块内部区域。
一种芯片,内置控制程序,所述控制程序用于通过执行所述地图遍历块建立方法,来划分移动机器人实时构建的全局栅格地图。
一种移动机器人,该移动机器人内置所述的芯片。
附图说明
图1是本发明实施例公开的一种全局栅格地图的地图遍历块建立方法的方法流程图。
图2是本发明实施例公开的地图遍历块的边长设置方法的方法流程图。
图3是本发明的一种实施例公开的地图遍历块的映射坐标的计算方法的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细描述。为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
本发明实施例公开一种全局栅格地图的地图遍历块建立方法,这个地图遍历块建立方法可以在清洁机器人按照预设清扫方式对全局工作区域进行清扫遍历之前执行,以便于移动机器人对区块化处理后的全局工作区域进行清扫。如图1所示,该地图遍历块建立方法包括:步骤S1、根据全局栅格地图的尺寸大小(包括地图长度和宽度)设置地图遍历块的边长,使得地图遍历块建立方法在全局栅格地图中占据一定覆盖范围的栅格区域,这个栅格区域范围是本领域技术人员根据清洁机器人的尺寸大小和所处的工作区域而设置的;步骤S2、结合全局栅格地图的尺寸大小和步骤S1确定的地图遍历块的边长的比值关系,计算全局栅格地图的各个全局坐标轴方向上(包括全局坐标系的X轴和Y轴方向)的地图遍历块的覆盖数量,其中,地图遍历块相当于全局栅格地图划分出的子区域;步骤S3、根据步骤S2确定的地图遍历块的覆盖数量的约束作用,对步骤S1确定的地图遍历块的边长进行逐行逐列的累加操作,以计算出每个地图遍历块的映射坐标,使得地图遍历块建立在所述全局栅格地图的每一行和每一列,即地图遍历块的覆盖数量可以确定出全局栅格地图的边界信息,约束地图遍历块在所述全局栅格地图的每一行和每一列的分布数量和位置,其中,每一个地图遍历块都是依据其映射坐标及其边长合并对应的栅格而成。本发明将地图中每行每列的栅格合并建立起一定尺寸大小和数量的地图遍历块,每一个地图遍历块都与实际环境中占据一个小块区域对应,只要将栅格的大小设置的稍微大一些,可以规划出机器人的大体路径即可,减少计算量,易于机器人进行地图信息的处理;所述地图遍历块建立方法实现将大尺度全局栅格地图划分为多个地图子区域,降低了对移动机器人的导航定位算力要求和地图数据存储空间要求,节约全局地图中的栅格面的运算资源,加快数据处理速度。可运用于路径规划、沿边行走、回充路径规划的覆盖率和区域面积计算。
需要说明的是,所述全局栅格地图的每一行的地图遍历块都设置在水平坐标轴方向上且在竖直坐标轴方向上的投影重合,所述全局栅格地图的每一列的地图遍历块都设置在竖直坐标轴方向上且在水平坐标轴方向上的投影重合;全局坐标轴方向包括竖直坐标轴方向和水平坐标轴方向。本发明将全局地图上的栅格逐行逐列地合并建立为规则分布的地图遍历块。等效于将全局地图分割成一块一块的小地图块。
作为一种实施例,如图2公开的地图遍历块的边长设置方法的流程图所示,所述步骤S1具体包括:步骤S11、预先设置一个标准边长E,其最大值可以设置为16,使得每一个地图遍历块最大填充16X16个栅格,然后进入步骤S12。本实施例的全局工作区域对应的所述全局栅格地图是矩形地图,填充覆盖所述全局栅格地图的地图遍历块是正方形。步骤S12、判断所述全局栅格地图的长和宽是否都大于标准边长的2倍,是则设置所述地图遍历块的边长为标准边长,否则进入步骤S13;步骤S13、判断所述全局栅格地图的长和宽是否都大于标准边长,是则设置所述地图遍历块的边长为标准边长的二分之一,否则进入步骤S14;步骤S14、设置所述地图遍历块的边长为标准边长的四分之一。与现有技术相比,每16X16个地图栅格构成的地图遍历块实现对所述全局栅格地图的栅格膨胀处理,使得地图遍历块在全局栅格地图中占据足够大的栅格区域,方便机器人遍历标记适应范围上的地图路径信息。从而将栅格的大小设置的稍微大一些,只需要规划出机器人的大体路径即可,减少计算量,适合使用于路径规划、沿边行走、回充路径规划。
在本实施例中,计算所述全局栅格地图的有效长度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图的竖直坐标轴方向上建立的地图遍历块的覆盖数量;计算所述全局栅格地图的有效宽度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图的水平坐标轴方向上建立的地图遍历块的覆盖数量。这里的加一处理的必要性在于,软件系统在所述全局栅格地图的有效长度与所述地图遍历块的边长的比值时会取整,忽略掉小数部分,所以需要加一处理保证前述覆盖数量的地图遍历块完整记录实际覆盖的全局工作区域,提高空间区域的冗余度。
在按照前述方法确定所述地图遍历块的边长的基础上,通过计算确定所述全局栅格地图的各个全局坐标轴方向上的地图遍历块的个数,具体分为:所述全局栅格地图的所述竖直坐标轴方向(即长度方向上)的地图遍历块的个数H=全局栅格地图的有效长度与所述地图遍历块的边长的比值+1,所述全局栅格地图的所述水平坐标轴方向(即宽度方向上)的地图遍历块的个数W=全局栅格地图的有效宽度与所述地图遍历块的边长的比值+1。本实施例中的有效长度和有效宽度包括让机器人遍历的栅格区域,用于构建所述地图遍历块。
作为一种实施例,如图3公开的每个地图遍历块的映射坐标的计算方法的流程图所示,所述步骤S3具体包括:步骤S31、以全局栅格地图的左下角栅格位置为参考原点,然后进入步骤S32;以全局栅格地图的左下角为参考原点,计算所述地图遍历块的映射坐标。假设minx、miny分别为全局栅格地图的参考原点坐标,也分别等效于全局栅格地图X轴上的最小坐标值和全局栅格地图Y轴上的最小坐标值;i设置为所述地图遍历块在X轴方向上相对于参考原点的偏移量,i+1相当于在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数;j设置为所述地图遍历块在Y轴方向上相对于参考原点的偏移量,j+1相当于在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数;e为所述地图遍历块的边长;X(i,j)是所述地图遍历块在全局栅格地图的水平坐标轴方向上的映射坐标,Y(i,j)是所述地图遍历块在全局栅格地图的竖直坐标轴方向上的映射坐标。步骤S32、从这个参考原点坐标位置(minx,miny)开始,将竖直坐标轴上的参考原点坐标加上地图遍历块的边长,来计算确定当前的地图遍历块在竖直坐标轴上的映射坐标,即j=0时获得在竖直坐标轴上的最小映射坐标Y(i,j)=j*e+miny=miny,同时确定当前的地图遍历块在水平坐标轴上的映射坐标与参考原点在水平坐标轴上的坐标minx相等,然后进入步骤S33。步骤S33、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数j是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量H,是则进入步骤S34,否则进入步骤S35。步骤S34、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,即Y(i,j+1)=(j+1)*e+miny,形成同一竖直坐标轴方向上相邻的Y轴映射坐标,每进入步骤S34一次,j就自动加一;同时确定同一竖直坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标X(i,j+1)与当前确定的地图遍历块在水平坐标轴上的映射坐标X(i,j)相同,然后返回步骤S33,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标。步骤S35、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,即i=0时获得在水平坐标轴上的最小映射坐标X(i,j)=i*e+minx=minx,其中每进入步骤S35一次,i就自动加一;同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标Y(i+1,j)与当前确定的地图遍历块在竖直坐标轴上的映射坐标Y(i,j)相同,然后进入步骤S36,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标。步骤S36、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数i是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量W,是则返回步骤S33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历块,完成所述全局栅格地图的区块化处理。所以按照所述地图遍历块在X轴和Y轴方向上相对于参考原点的偏移量以及边长,可以计算出所述地图遍历块在X轴方向上最小映射坐标X(i,j)=i*e+minx,以及其在Y轴方向上最小映射坐标Y(i,j)=j*e+miny,由此确定所述全局栅格地图的X轴方向和Y轴方向的地图遍历块所处的栅格坐标范围,即所述地图遍历块在X轴方向所处的栅格坐标范围是大于或等于X(i,j),但小于或等于X(i,j)+e-1;地图遍历块在Y轴方向所处的栅格坐标范围是大于或等于Y(i,j),但小于或等于Y(i,j)+e-1;从而按照所述全局栅格地图的各个全局坐标轴方向上的地图遍历块的个数及其所处的栅格坐标范围,将地图遍历块布局到所述全局栅格地图的每一行和每一列。前述实施例根据前述步骤确定的地图遍历块的覆盖数量所起到的地图边界约束作用,对确定的地图遍历块的边长进行逐行逐列的累加操作,包括先遍历当前一列,再遍历下一列,直到遍历完水平坐标轴方向上的分布的所有列的地图遍历块,从而确定每个地图遍历块的映射坐标,将地图遍历块构建到所述全局栅格地图的每一行和每一列的规则区域块上,实现在全局栅格地图分割为所述地图遍历块。
作为另一种实施例,所述步骤S3还可以包括:步骤31、以全局栅格地图的左下角栅格位置为参考原点;然后进入步骤32;步骤32、从这个参考原点开始,将参考原点在水平坐标轴上的映射坐标加上地图 遍历块的边长,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定当前的地图遍历块在竖直坐标轴上的映射坐标与参考原点在竖直坐标轴上的坐标相等,然后进入步骤33;其中,这个参考原点是全局栅格地图的各个全局坐标轴上坐标值最小的位置;步骤33、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量,是则进入步骤34,否则进入步骤35;步骤34、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长来,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标与当前确定的地图遍历块在竖直坐标轴上的映射坐标相同,然后进入步骤33,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标;步骤35、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,同时确定同一竖直坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标与当前确定的地图遍历块在水平坐标轴上的映射坐标相同,然后返回步骤36,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标;步骤36、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量,是则返回步骤33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历块,完成所述全局栅格地图的区块化处理。与前述实施例相比,本实施例先遍历当前一行,再遍历下一行,直到遍历完竖直坐标轴方向上的分布的所有行的地图遍历块,其中涉及的坐标值累加步骤同前述实施例相似,故不再赘述。
作为一种优选例,机器人遍历过的栅格点在竖直坐标轴上的坐标大于或等于地图遍历块在竖直坐标轴上的映射坐标,机器人遍历过的栅格点在竖直坐标轴上的坐标小于或等于这个地图遍历块在竖直坐标轴上的映射坐标与这个地图遍历块的边长的和值减一的结果,机器人遍历过的栅格点在水平坐标轴上的坐标大于或等于地图遍历块在水平坐标轴上的映射坐标,机器人遍历过的栅格点在竖直坐标轴上的坐标小于或等于这个地图遍历块在水平坐标轴上的映射坐标与这个地图遍历块的边长的和值减一的结果,确定机器人遍历过的这个栅格点位于这个地图遍历块内。因此,判断所述全局栅格地图的一个栅格位置坐标(a,b)是否属于一个所述遍历地图块的方法包括:判断a是否同时满足大于或等于X(i,j),且小于或等于X(i,j)+e-1;同时判断b是否同时满足大于或等于Y(i,j),且小于或等于Y(i,j)+e-1;当这个栅格位置坐标(a,b)同时满足上面两个判断条件时,则确定这个栅格位置坐标(a,b)位于所述地图遍历块内。使得当清洁机器人遍历过所述地图遍历块内部的任一栅格时,标记对应的地图遍历块为已走过的地图遍历块,本实施例定义地图遍历块的左侧边界包含于其内部区域,定义地图遍历块的右侧边界包含于水平坐标轴方向上的相邻地图遍历块内部区域,则地图遍历块的左侧边界与其右侧边界之间的区域和地图遍历块的左侧边界都属于同一地图遍历块,其内部包含的栅格属于组成这个地图遍历块的栅格,同时本实施例定义地图遍历块的下侧边界包含于其内部区域,定义地图遍历块的上侧边界包含于竖直坐标轴方向上的相邻地图遍历块内部区域,则地图遍历块的下侧边界与其上侧边界之间的区域和地图遍历块的下侧边界都属于同一地图遍历块,其内部包含的栅格属于组成这个地图遍历块的栅格。
当清洁机器人按照所述预设清扫方式遍历过所述地图遍历块内部的任一栅格时,比如清洁机器人遍历栅格位置坐标(a,b)时,标记对应所属的地图遍历块为已走过的地图遍历块;使得清洁机器人在全局工作区域内已经遍历的清扫路径由已走过的地图遍历块组成,相对于逐个栅格标记的方式,地图遍历块记录更大的路径区域范围,减小标记同一段路径所用的标记块的数目,降低了对清洁机器人的算力要求和存储空间要求,减少建图时间。
一种芯片,内置控制程序,所述控制程序用于通过执行所述地图遍历块建立方法,来划分移动机器人实时构建的全局栅格地图。要理解本文所述的实施例可以由硬件、软件、固件、中间件、微代码或其任意组合来实现。对于硬件实现方式,处理单元可以在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计以执行本文所述功能的其他电子单元、或其组合内实现。当以软件、固件、中间件或微代码、程序代码或代码段来实现实施例时,可以将它们存储在诸如存储组件的机器可读介 质中。
一种移动机器人,该移动机器人内置所述的芯片。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
上述实施例只为说明本发明的技术构思及特点,其目的是让熟悉该技术领域的技术人员能够了解本发明的内容并据以实施,并不能以此来限制本发明的保护范围。凡根据本发明精神实质所作出的等同变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种全局栅格地图的地图遍历块建立方法,其特征在于,包括:
    步骤1、根据全局栅格地图的尺寸大小设置地图遍历块的边长;
    步骤2、结合全局栅格地图的尺寸大小和步骤1确定的地图遍历块的边长的比值关系,计算全局栅格地图的各个全局坐标轴方向上的地图遍历块的覆盖数量;
    步骤3、根据步骤2确定的地图遍历块的覆盖数量的约束作用,对步骤1确定的地图遍历块的边长进行逐行逐列的累加操作,以计算出每个地图遍历块的映射坐标,使得地图遍历块建立在所述全局栅格地图的每一行和每一列;
    其中,每一个地图遍历块都是依据其映射坐标及其边长合并对应的栅格而成。
  2. 根据权利要求1所述地图遍历块划分方法,其特征在于,所述全局栅格地图的每一行的地图遍历块都设置在水平坐标轴方向上且在竖直坐标轴方向上的投影重合,所述全局栅格地图的每一列的地图遍历块都设置在竖直坐标轴方向上且在水平坐标轴方向上的投影重合;
    全局坐标轴方向包括竖直坐标轴方向和水平坐标轴方向。
  3. 根据权利要求2所述地图遍历块建立方法,其特征在于,所述步骤1具体包括:
    步骤11、预先设置一个标准边长,然后进入步骤12;
    步骤12、判断所述全局栅格地图的长和宽是否都大于标准边长的2倍,是则设置所述地图遍历块的边长为标准边长,否则进入步骤13;
    步骤13、判断所述全局栅格地图的长和宽是否都大于标准边长,是则设置所述地图遍历块的边长为标准边长的二分之一,否则进入步骤14;
    步骤14、设置所述地图遍历块的边长为标准边长的四分之一;
    其中,所述全局栅格地图是矩形地图区域,所述地图遍历块是正方形。
  4. 根据权利要求3所述地图遍历块建立方法,其特征在于,所述步骤2具体包括:
    计算所述全局栅格地图的有效长度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量;
    计算所述全局栅格地图的有效宽度与所述地图遍历块的边长的比值,并加一处理,获得全局栅格地图的水平坐标轴方向上建立的地图遍历块的覆盖数量。
  5. 根据权利要求4所述地图遍历块建立方法,其特征在于,所述步骤3具体包括:
    步骤31、以全局栅格地图的左下角栅格位置为参考原点;然后进入步骤32;
    步骤32、从这个参考原点开始,将参考原点在竖直坐标轴上坐标加上地图遍历块的边长来计算确定当前建立的地图遍历块在竖直坐标轴上的映射坐标,同时确定当前的地图遍历块在水平坐标轴上的映射坐标与参考原点在水平坐标轴上的坐标相等,然后进入步骤33;其中,这个参考原点是全局栅格地图的各个全局坐标轴上坐标值最小的位置;
    步骤33、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量,是则进入步骤34,否则进入步骤35;
    步骤34、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,同时确定同一竖直坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标与当前确定的地图遍历块在水平坐标轴上的映射坐标相同,然后返回步骤33,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标;
    步骤35、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长来,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标与当前确定的地图遍历块在竖直坐标轴上的映射坐标相同,然后进入步骤36,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标;
    步骤36、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量,是则返回步骤33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历 块,完成所述全局栅格地图的区块化处理。
  6. 根据权利要求4所述地图遍历块建立方法,其特征在于,所述步骤3具体包括:
    步骤31、以全局栅格地图的左下角栅格位置为参考原点;然后进入步骤32;
    步骤32、从这个参考原点开始,将参考原点在水平坐标轴上的映射坐标加上地图遍历块的边长,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定当前的地图遍历块在竖直坐标轴上的映射坐标与参考原点在竖直坐标轴上的坐标相等,然后进入步骤33;其中,这个参考原点是全局栅格地图的各个全局坐标轴上坐标值最小的位置;
    步骤33、判断在水平坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的水平坐标轴方向上的地图遍历块的覆盖数量,是则进入步骤34,否则进入步骤35;
    步骤34、将当前确定的地图遍历块在水平坐标轴上的映射坐标加上地图遍历块的边长来,计算确定同一水平坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标,同时确定同一水平坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标与当前确定的地图遍历块在竖直坐标轴上的映射坐标相同,然后进入步骤33,实现在同一水平坐标轴方向的覆盖数量的约束作用下,逐列确定出同一水平坐标轴方向上的每个地图遍历块的映射坐标;
    步骤35、将当前确定的地图遍历块在竖直坐标轴上的映射坐标加上地图遍历块的边长,计算确定出同一竖直坐标轴方向上相邻的地图遍历块在竖直坐标轴上的映射坐标,同时确定同一竖直坐标轴方向上相邻的地图遍历块在水平坐标轴上的映射坐标与当前确定的地图遍历块在水平坐标轴上的映射坐标相同,然后返回步骤36,实现在同一竖直坐标轴方向的覆盖数量的约束作用下,逐行确定出同一竖直坐标轴方向上的每个地图遍历块的映射坐标;
    步骤36、判断在竖直坐标轴方向上已经确定映射坐标的地图遍历块的个数是否小于全局栅格地图的竖直坐标轴方向上的地图遍历块的覆盖数量,是则返回步骤33,否则确定已经逐行逐列地计算出所述全局栅格地图中的每个地图遍历块的映射坐标,使得所述全局栅格地图的每一行和每一列都建立起所述地图遍历块,完成所述全局栅格地图的区块化处理。
  7. 根据权利要求5或6所述地图遍历块建立方法,其特征在于,机器人遍历过的栅格点在竖直坐标轴上的坐标大于或等于地图遍历块在竖直坐标轴上的映射坐标,机器人遍历过的栅格点在竖直坐标轴上的坐标小于或等于这个地图遍历块在竖直坐标轴上的映射坐标与这个地图遍历块的边长的和值减一的结果,机器人遍历过的栅格点在水平坐标轴上的坐标大于或等于地图遍历块在水平坐标轴上的映射坐标,机器人遍历过的栅格点在竖直坐标轴上的坐标小于或等于这个地图遍历块在水平坐标轴上的映射坐标与这个地图遍历块的边长的和值减一的结果,确定机器人遍历过的这个栅格点位于这个地图遍历块内。
  8. 根据权利要求7所述地图遍历块建立方法,其特征在于,当清洁机器人遍历过所述地图遍历块内部的任一栅格时,标记对应的地图遍历块为已走过的地图遍历块。
  9. 一种芯片,内置控制程序,其特征在于,所述控制程序用于通过执行权利要求1至8中任一项所述地图遍历块建立方法,来划分移动机器人实时构建的全局栅格地图。
  10. 一种移动机器人,其特征在于,该移动机器人内置权利要求9所述的芯片。
PCT/CN2020/131197 2020-05-26 2020-11-24 全局栅格地图的地图遍历块建立方法、芯片及移动机器人 WO2021238115A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/791,916 US20230337880A1 (en) 2020-05-26 2020-11-24 Method for Establishing Map Traversal Blocks of Global Grid Map, Chip, and Mobile Robot
KR1020227021976A KR20220106810A (ko) 2020-05-26 2020-11-24 글로벌 그리드 맵의 맵 순회 블록의 구축 방법, 칩 및 이동 로봇
EP20937411.5A EP4075305A4 (en) 2020-05-26 2020-11-24 PROCEDURE FOR CREATING A MAP TRAVERSE BLOCK OF A GLOBAL RASTER MAP, CHIP AND MOBILE ROBOT
JP2022539087A JP2023508662A (ja) 2020-05-26 2020-11-24 グローバルグリッドマップにおけるマップトラバースブロックの構築方法、チップ、及び移動ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010456789.7A CN111631639B (zh) 2020-05-26 2020-05-26 全局栅格地图的地图遍历块建立方法、芯片及移动机器人
CN202010456789.7 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021238115A1 true WO2021238115A1 (zh) 2021-12-02

Family

ID=72323589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131197 WO2021238115A1 (zh) 2020-05-26 2020-11-24 全局栅格地图的地图遍历块建立方法、芯片及移动机器人

Country Status (6)

Country Link
US (1) US20230337880A1 (zh)
EP (1) EP4075305A4 (zh)
JP (1) JP2023508662A (zh)
KR (1) KR20220106810A (zh)
CN (1) CN111631639B (zh)
WO (1) WO2021238115A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111631639B (zh) * 2020-05-26 2021-07-06 珠海市一微半导体有限公司 全局栅格地图的地图遍历块建立方法、芯片及移动机器人
CN112650250B (zh) * 2020-12-23 2024-07-19 深圳市杉川机器人有限公司 一种地图构建方法及机器人
CN113834494B (zh) * 2021-10-15 2024-06-14 珠海一微半导体股份有限公司 一种基于模板覆盖的栅格地图处理方法及芯片
CN114637698B (zh) * 2022-05-18 2022-09-02 深圳市倍思科技有限公司 机器人的地图内存分配方法、装置、机器人及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262988A1 (en) * 2006-05-09 2007-11-15 Pixar Animation Studios Method and apparatus for using voxel mip maps and brick maps as geometric primitives in image rendering process
CN106407408A (zh) * 2016-09-22 2017-02-15 北京数字绿土科技有限公司 一种海量点云数据的空间索引构建方法及装置
CN107316308A (zh) * 2017-06-27 2017-11-03 苏州大学 一种基于改进的多路谱聚类算法的清洁机器人地图分割方法
CN107862048A (zh) * 2017-11-08 2018-03-30 四川易利数字城市科技有限公司 基于四叉树分层网格的地图缓存切片分布式集群管理方法
CN108319655A (zh) * 2017-12-29 2018-07-24 百度在线网络技术(北京)有限公司 用于生成栅格地图的方法和装置
CN111631639A (zh) * 2020-05-26 2020-09-08 珠海市一微半导体有限公司 全局栅格地图的地图遍历块建立方法、芯片及移动机器人

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472823B (zh) * 2013-08-20 2015-11-18 苏州两江科技有限公司 一种智能机器人用的栅格地图创建方法
CN105043396B (zh) * 2015-08-14 2018-02-02 北京进化者机器人科技有限公司 一种移动机器人室内自建地图的方法和系统
CN107016924B (zh) * 2016-12-20 2020-04-07 阿里巴巴集团控股有限公司 虚拟地图中的瓦片地图生成方法、更新方法和装置
CN107837044B (zh) * 2017-11-17 2021-01-08 北京奇虎科技有限公司 清洁机器人的分区清洁方法、装置及机器人
CN107898393B (zh) * 2017-11-17 2020-12-04 北京奇虎科技有限公司 用于清洁机器人的区块调整方法、装置及机器人
CN108896048A (zh) * 2018-06-01 2018-11-27 浙江亚特电器有限公司 用于移动载具的路径规划方法
CN108955696B (zh) * 2018-09-30 2020-07-03 江苏美的清洁电器股份有限公司 扫地机及其路径规划方法和装置
CN111166234A (zh) * 2018-11-09 2020-05-19 北京奇虎科技有限公司 工作区域的分区方法、装置、设备及存储介质
CN109557919B (zh) * 2018-12-17 2020-08-14 盐城工学院 一种融合人工路标信息的可变宽栅格地图构建方法
CN110361017B (zh) * 2019-07-19 2022-02-11 西南科技大学 一种基于栅格法的扫地机器人全遍历路径规划方法
CN111026109A (zh) * 2019-11-18 2020-04-17 杭州晶一智能科技有限公司 室外割草机器人基于gps和在线地图的遍历路径规划方法
CN111080786B (zh) * 2019-12-19 2024-05-28 盈嘉互联(北京)科技有限公司 基于bim的室内地图模型构建方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262988A1 (en) * 2006-05-09 2007-11-15 Pixar Animation Studios Method and apparatus for using voxel mip maps and brick maps as geometric primitives in image rendering process
CN106407408A (zh) * 2016-09-22 2017-02-15 北京数字绿土科技有限公司 一种海量点云数据的空间索引构建方法及装置
CN107316308A (zh) * 2017-06-27 2017-11-03 苏州大学 一种基于改进的多路谱聚类算法的清洁机器人地图分割方法
CN107862048A (zh) * 2017-11-08 2018-03-30 四川易利数字城市科技有限公司 基于四叉树分层网格的地图缓存切片分布式集群管理方法
CN108319655A (zh) * 2017-12-29 2018-07-24 百度在线网络技术(北京)有限公司 用于生成栅格地图的方法和装置
CN111631639A (zh) * 2020-05-26 2020-09-08 珠海市一微半导体有限公司 全局栅格地图的地图遍历块建立方法、芯片及移动机器人

Also Published As

Publication number Publication date
KR20220106810A (ko) 2022-07-29
CN111631639B (zh) 2021-07-06
CN111631639A (zh) 2020-09-08
EP4075305A1 (en) 2022-10-19
US20230337880A1 (en) 2023-10-26
EP4075305A4 (en) 2023-06-21
JP2023508662A (ja) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2021238115A1 (zh) 全局栅格地图的地图遍历块建立方法、芯片及移动机器人
US11914391B2 (en) Cleaning partition planning method for robot walking along boundry, chip and robot
US20240160227A1 (en) Area cleaning planning method for robot walking along boundary, chip and robot
CN111580525B (zh) 沿边行走中返回起点的判断方法、芯片及视觉机器人
CN111596662B (zh) 一种沿全局工作区域一圈的判断方法、芯片及视觉机器人
WO2020134082A1 (zh) 一种路径规划方法、装置和移动设备
CN107773164B (zh) 用于清洁机器人的清洁方法、装置及机器人
CN112017134B (zh) 一种路径规划方法、装置、设备及存储介质
CN104615138A (zh) 一种划分移动机器人室内区域动态覆盖方法及其装置
CN102542035A (zh) 基于扫描线法的多边形栅格化并行转换方法
CN108665117B (zh) 一种室内空间最短路径的计算方法、装置、终端设备以及存储介质
US20230073479A1 (en) Method for Expanding Working Area Based on Laser Map, Chip and Robot
CN111728535A (zh) 一种生成清扫路径的方法、装置、电子设备及存储介质
CN111080786A (zh) 基于bim的室内地图模型构建方法及装置
CN112558611B (zh) 一种路径规划方法、装置、计算机设备及存储介质
CN111061270A (zh) 一种全面覆盖方法、系统及作业机器人
CN112882459A (zh) 一种清扫路径规划方法、清扫路径规划装置和清扫机器人
CN116009552A (zh) 一种路径规划方法、装置、设备及存储介质
CN114839981A (zh) 基于室内三维场景的机器人运动轨迹生成方法及存储介质
CN113124849B (zh) 一种室内路径规划方法、装置、电子设备及存储介质
CN113254127A (zh) 一种输电线路工程测量软件中大数据量图元的处理方法
CN116048069B (zh) 一种基于gps定位的室外全覆盖路径规划方法及机器人
CN110704900B (zh) 龙骨立柱模型和墙龙骨模型之间连接节点放置方法和产品
CN118243121A (zh) 路径覆盖规划方法、装置及机器人
CN116465404A (zh) 基于预设探测距离范围内的最优碰撞点搜索方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539087

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021976

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020937411

Country of ref document: EP

Effective date: 20220715

NENP Non-entry into the national phase

Ref country code: DE