WO2021208635A1 - 一种机台气路流量调整系统及方法 - Google Patents

一种机台气路流量调整系统及方法 Download PDF

Info

Publication number
WO2021208635A1
WO2021208635A1 PCT/CN2021/079599 CN2021079599W WO2021208635A1 WO 2021208635 A1 WO2021208635 A1 WO 2021208635A1 CN 2021079599 W CN2021079599 W CN 2021079599W WO 2021208635 A1 WO2021208635 A1 WO 2021208635A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
running
preset
air flow
cargo
Prior art date
Application number
PCT/CN2021/079599
Other languages
English (en)
French (fr)
Inventor
张海龙
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/609,467 priority Critical patent/US20230028662A1/en
Publication of WO2021208635A1 publication Critical patent/WO2021208635A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to the technical field of semiconductor measurement equipment, and in particular to a system and method for adjusting the air flow of a machine.
  • the photolithography process is the most important link.
  • the purpose of the photolithography process is to form a patterned photoresist (Photo Resist, PR), and then use the patterned photoresist as a mask to etch the exposed material layer, thereby patterning the material layer.
  • the critical dimension (CD) of the patterned material layer Changes in critical dimensions have a significant impact on the characteristics of electronic components. In order to ensure the quality of electronic components, it is necessary to measure the critical dimensions after the photolithography process.
  • the wafer to be measured needs to be placed on the CD measuring machine for measurement.
  • the gas for the CD measuring machine it is necessary to set the gas for the CD measuring machine.
  • the road system removes impurities and ensures the stability of the measurement environment of the CD measurement machine. It should be noted that in order to ensure stable pressure in the cavity of the CD measuring machine and ensure good measurement accuracy, the gas flow rate needs to be limited within a certain range.
  • the embodiments of the present disclosure provide a system and method for adjusting the air flow of a machine to solve the problems of delay in the delivery process and complicated operation of the related air flow adjustment scheme.
  • embodiments of the present disclosure provide a machine air flow adjustment system, including:
  • Machine running cargo task prediction unit gas flow monitoring unit, gas flow control unit;
  • the machine running cargo task prediction unit is used to collect production line information, and predict the machine running schedule according to the production line information
  • the gas flow monitoring unit is used to monitor the gas flow of the machine in real time
  • the gas path flow control unit is respectively communicatively connected with the machine running task prediction unit and the gas path flow monitoring unit, and the gas path flow control unit is used to determine the gas path according to the gas path flow rate. Whether the flow exceeds the preset flow range, when the gas flow exceeds the preset flow range, the gas flow control unit judges according to the cargo running schedule provided by the machine running task prediction unit The current cargo running status of the machine, and the corresponding flow control command is made according to the running cargo status.
  • embodiments of the present disclosure also provide a method for adjusting the air flow of a machine, including:
  • the machine running cargo task prediction unit collects production line information, and predicts the machine running schedule according to the production line information
  • the gas flow monitoring unit monitors the gas flow of the machine in real time
  • the gas flow control unit determines whether the gas flow exceeds a preset flow range according to the gas flow. When the gas flow exceeds the preset flow range, the gas flow control unit determines whether the gas flow exceeds the preset flow range.
  • the cargo running schedule provided by the machine running task prediction unit judges the current running status of the machine, and makes corresponding flow control instructions according to the running status.
  • the machine gas flow adjustment system includes a machine running cargo task prediction unit, a gas flow monitoring unit, and a gas flow control unit to realize automatic adjustment of the machine gas flow.
  • the machine running task prediction unit predicts the machine running schedule based on the collected production line information.
  • the gas flow monitoring unit can monitor the machine's gas flow in real time.
  • the gas flow control unit is set with a preset flow range. , When the air flow rate exceeds the preset flow rate range, the air flow control unit can determine the current machine's running state according to the running schedule, that is, to determine whether the current machine is in the running journey, and based on the running schedule.
  • the cargo status makes corresponding flow control instructions, so that the gas flow control unit adjusts the gas flow to the preset flow range during the time outside the cargo running stroke, so as not to affect the normal cargo running process of the machine.
  • the air flow is automatically adjusted, the adjustment process is simple, and there is no need to repeatedly borrow the machine to adjust the air flow, saving manpower burden.
  • the air flow adjustment process of the embodiment of the present disclosure does not delay each cargo running journey, improves the working efficiency of the machine measurement, and speeds up the product manufacturing process.
  • Figure 1 is a schematic structural diagram of a machine air flow adjustment system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a machine air flow adjustment system provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a method for adjusting the air flow rate of a machine according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for adjusting the air flow of a machine according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another method for adjusting the air flow of a machine according to an embodiment of the present disclosure.
  • the CD measuring machine when the air flow rate is adjusted, after the pressure value of the machine exceeds the standard range, the CD measuring machine needs to be suspended, and the pressure is increased and decreased by turning the adjusting valve adjustment screw left and right, and the pressure value is adjusted to the allowable value.
  • the operation of suspending the machine will delay the entire cargo delivery process and affect the normal production efficiency. After the machine is suspended, it needs to be manually adjusted to the marked range. The operation is complicated and the labor burden is increased. When it needs to be adjusted to a specific The value needs to be adjusted repeatedly. And because of the vibration of the machine, the tightening nut is prone to loosening, which also causes the air flow to fluctuate.
  • the embodiment of the present disclosure provides a machine air flow adjustment system, which includes a machine running cargo task prediction unit, a gas flow monitoring unit, and a gas flow control unit.
  • the machine running task prediction unit is used to collect production line information and predict the machine running schedule based on the production line information.
  • the air flow monitoring unit is used to monitor the air flow of the machine in real time.
  • the air flow control unit is respectively connected to the machine running task prediction unit and the air flow monitoring unit.
  • the air flow control unit is used to determine whether the air flow exceeds the preset flow range according to the air flow.
  • the gas flow control unit judges the current machine's running status according to the running schedule provided by the machine running task prediction unit, and makes corresponding flow control instructions according to the running status.
  • the machine gas flow adjustment system includes a machine running cargo task prediction unit, a gas flow monitoring unit, and a gas flow control unit to realize automatic adjustment of the machine gas flow.
  • the machine running task prediction unit predicts the machine running schedule based on the collected production line information.
  • the gas flow monitoring unit can monitor the machine's gas flow in real time.
  • the gas flow control unit is set with a preset flow range. , When the air flow rate exceeds the preset flow rate range, the air flow control unit can determine the current machine's running state according to the running schedule, that is, to determine whether the current machine is in the running journey, and based on the running schedule.
  • the cargo status makes corresponding flow control instructions, so that the gas flow control unit adjusts the gas flow to the preset flow range during the time outside the cargo running stroke, so as not to affect the normal cargo running process of the machine.
  • the air flow is automatically adjusted, the adjustment process is simple, and there is no need to repeatedly borrow the machine to adjust the air flow, saving manpower burden.
  • the air flow adjustment process of the embodiment of the present disclosure does not delay each cargo running journey, improves the working efficiency of the machine measurement, and speeds up the product manufacturing process.
  • Fig. 1 is a schematic structural diagram of a machine air flow adjustment system provided by an embodiment of the present disclosure. As shown in Fig. 1, the machine air flow adjustment system includes a machine running task prediction unit 12 and a gas flow monitoring unit 13 and the air flow control unit 11.
  • the gas flow monitoring unit 13 can be installed in the machine equipment cavity to measure the gas flow, and can send the gas flow to the gas flow control unit 11 in real time, so that the gas flow control unit 11 can monitor the gas flow Conduct monitoring.
  • the gas flow monitoring unit 13 may be a pressure sensor, which obtains the gas flow according to the pressure value in the equipment cavity.
  • the gas flow control unit 11 stores a gas flow range determined according to the monitoring effect of key dimensions. In this embodiment, this range is a preset flow range. When the gas flow is within the preset flow range, it is considered that the machine is at this time In the normal range of flow.
  • the machine run-off task prediction unit 13 can collect production line information and predict the run-off situation within a certain period of time based on the production line information, or it can enter the run-off situation in the machine run-off task prediction unit 13, that is, the machine
  • the cargo running task prediction unit 13 can obtain the cargo running schedule of the machine.
  • the cargo running schedule records the cargo running travel time of each cargo running of the machine in the future.
  • the machine running The cargo task prediction unit 13 records the cargo trip time of each cargo trip in the next 24 hours or the next 48 hours.
  • Table 1 is the running schedule provided by the embodiment of the present disclosure, and Table 1 shows the running number of the running trip and the running trip time corresponding to the running number one-to-one. . There is a time interval between two adjacent cargo running trips.
  • Table 1 Schedule of running goods provided by the embodiments of the present disclosure
  • the gas flow control unit 11 can compare the measured gas flow with the boundary value of the preset flow range in real time. When the measured gas flow is not in the preset flow range, the gas flow control unit 11 can be based on the above-mentioned running time.
  • the meter judges the running status of the machine, and makes corresponding flow control instructions according to the running status, thereby adjusting the air flow rate so that the air flow rate is adjusted to be within the preset flow rate range.
  • the air flow can be adjusted in the first time period between normal cargo running trips, so that there will be no delay in each cargo running trip, and avoid affecting the normal cargo running process of the machine.
  • the machine air flow adjustment system may further include an adjustment motor 14 and an air adjustment valve 15 mechanically connected to the adjustment motor 14.
  • the adjustment motor 14 can rotate under the control of the air flow control unit 11.
  • the air path regulating valve 15 is driven to rotate to adjust the air path flow rate.
  • the air flow control unit 11 judges the current cargo running status of the machine according to the cargo running schedule provided by the machine running task prediction unit 12, and makes corresponding flow control instructions based on the running cargo status.
  • the process can specifically include: when the air flow rate exceeds the preset flow rate range, the air flow control unit 11 calculates the time interval between the current time and the next time of the cargo run according to the cargo run schedule, and judges that the current machine is idle The state is still running.
  • the air flow is controlled; if the machine is running and the time interval is not less than the preset time, wait After the cargo run is over, the air flow is controlled; if the time interval is less than the preset time, the flow control will not be performed this time, and the machine continues to run according to the cargo run schedule. When the next cargo run is completed, the air flow The flow control unit 11 repeats the above process until the time interval is not less than the preset duration to control the flow of the gas path.
  • the gas flow control unit 11 When the gas flow rate exceeds the preset flow rate range, the gas flow control unit 11 first calculates the time interval between the current time and the next cargo run according to the cargo running schedule, and obtains the current cargo running status of the machine.
  • the running status includes: idle status and running status. If the machine is currently in an idle state, and the time interval from the next cargo run is not less than the preset time, the gas flow control unit 11 controls the gas flow. If the machine is currently running, it will After the end of the cargo run, adjust the air flow.
  • the air flow control unit 11 can repeatedly detect the time interval between the current time and the next running cargo until the time interval is not less than the preset duration, and the air flow control unit 11 Channel flow is controlled.
  • the air flow is adjusted in the first time period between two adjacent cargo running trips to ensure that each cargo running trip is executed in accordance with the cargo running schedule and prevent the delay of the cargo running trip. It can effectively meet the adjustment of the gas flow at any time, without having to make an appointment by opportunity, without stopping or interfering with the machine's running process, and improving the efficiency of machine detection.
  • the preset time period includes at least the flow rate adjustment period and the machine stabilization period.
  • the above preset time length reserves the adjustment time period of the gas flow control unit 11 for the gas flow, which provides sufficient adjustment time for each gas flow adjustment process, and avoids insufficient adjustment time, resulting in inability to adjust accurately.
  • the machine stable time is reserved, so that the machine can perform the next cargo running stroke in a stable state and improve the measurement accuracy of the machine.
  • the preset duration may be greater than or equal to 15 minutes.
  • the time interval in order to ensure the smooth progress of the air flow adjustment, the time interval cannot be selected too short.
  • a time interval with a duration greater than or equal to 15 minutes will be selected.
  • the air flow control unit 11 Communicating with the machine running task prediction unit 13 continues until the air flow control unit 11 detects a time interval whose duration is greater than the preset time period, and then adjusts the machine air flow.
  • first time period there may be more than one first time period.
  • the first time period with the longest duration in each first time period can be screened to adjust the gas flow rate, which can complete the adjustment task and avoid delays in subsequent follow-ups. It is possible to avoid the situation of machine stacking.
  • the preset flow range can be 57L/min ⁇ 63L/min.
  • the preset flow rate range can be set from 57L/min to 63L/min to meet the measurement accuracy of the machine.
  • the gas flow control unit 11 is further configured to set a preset monitoring interval according to a preset flow range; the preset monitoring interval is within the preset flow range, and the preset monitoring interval is smaller than the preset flow range;
  • the road flow control unit 11 is also used for judging the current running status of the machine when the gas flow exceeds the preset monitoring interval, and making corresponding flow control instructions according to the running status.
  • this embodiment can also set a preset monitoring interval.
  • the preset monitoring interval and the preset flow rate range have a certain difference.
  • the preset monitoring interval can be set to be located at the preset Within the flow range, and the preset monitoring interval is less than the preset flow range, when the gas flow control unit 11 detects that the gas flow exceeds the preset monitoring interval, it adjusts the gas flow according to the status of the cargo to realize early warning To improve the measurement accuracy of the machine.
  • the preset flow rate range is 57L/min ⁇ 63L/min
  • the preset monitoring interval can be set to 59L/min ⁇ 61L/min. This embodiment does not specifically limit the preset monitoring interval.
  • the intermediate value of the preset monitoring interval may be the intermediate value N of the preset flow rate range; the preset monitoring interval is (N-0.5) ⁇ (N+0.5) L/min.
  • the intermediate value N in order to further limit the gas flow rate to a numerical range with good measurement results, that is, close to the intermediate value N of the preset flow rate range, the intermediate value N is an ideal value of the gas flow rate, which will be close to the intermediate value N.
  • (N-0.5) ⁇ (N+0.5)L/min is set as the intermediate value interval to further improve the measurement accuracy of the machine.
  • the preset flow rate range is 57L/min ⁇ 63L/min
  • the intermediate value N is 60L/min.
  • the gas flow rate can be adjusted to the intermediate value interval of 59.5-60.5L/min.
  • the air flow control unit 11 can limit the air flow to the preset monitoring In the interval, avoid that the gas flow rate is close to the boundary value of the preset flow rate range to ensure the stability of the critical dimension measurement environment and improve the measurement accuracy of the machine.
  • the air flow is adjusted when the air flow is just close to the boundary value to prevent the machine from being undetected when a warning occurs, thereby avoiding the machine's downtime, and reducing the machine's adjustment time and downtime.
  • FIG. 2 is a schematic structural diagram of a machine air flow adjustment system provided by an embodiment of the present disclosure.
  • the adjustment motor 14 may be a servo motor; the machine air flow adjustment system may further include: a motor driver 18 ; The air flow control unit 11 controls and regulates the movement of the motor 14 through the motor driver 18.
  • the servo motor can control the running parts of the mechanical components, the speed is controllable, the position accuracy is accurate, and the voltage signal can be converted into torque and speed to drive the air circuit regulating valve 15.
  • the rotor speed of the servo motor is controlled by the input signal and can react quickly. In the automatic control system, it is used as an actuator to convert the received electrical signal into the angular displacement or angular velocity output on the motor shaft. It should be noted that when the signal voltage is zero, there is no rotation phenomenon. After the adjustment, the regulating valve is in a locked state and will not be loosened. This ensures the adjustment accuracy of the gas circuit regulating valve 15 and thus ensures the gas circuit flow. The adjustment accuracy.
  • the servo motor can achieve precise positioning of 0.001mm, which has a strong positioning advantage over other motors.
  • the air flow adjustment system of the machine may further include: a display device 17; the display device 17 is communicatively connected with the air flow monitoring unit 13 for real-time display of the air flow of the machine.
  • the display device 17 is electrically connected to the air flow control unit 11 for real-time display of the air flow, so that the user can see the air flow value in time, so as to control the air flow of the machine.
  • the machine air flow adjustment system may further include: a manual adjustment device 16; the manual adjustment device 16 is used to receive the set air flow rate input by the user, so that the air flow monitoring unit 11 can be adjusted according to the set air flow rate. Corresponding flow control instructions are made for road flow and cargo running status.
  • the manual adjustment device 16 may be integrated on the display device 17 and realized through a touch function.
  • the manual adjustment device 16 is used to receive the gas flow rate input by the user, and send the gas flow rate input by the user to the gas flow control unit 11; the gas flow control unit 11 is also used to adjust the motor 14 to input the gas flow
  • the flow rate is set to the current gas flow rate.
  • the air flow adjustment system of the machine is equipped with a monitor to display various working parameters of the machine, for example, the measurement parameters of key dimensions, air flow, etc., but the air flow adjustment system of the machine is performed separately During adjustment, a display device 17 is installed near the gas path regulating valve 15 to separately display the gas path flow rate. If the gas path flow rate is within the preset monitoring interval, the background color of the gas path flow rate display frame can be set to green.
  • the background color of the display frame of the gas flow can be set to yellow.
  • the display device 17 may also be provided with a manual adjustment device 16, which can receive the gas flow rate input by the user, and set the current gas flow rate to the gas flow rate input by the user. For example, if the ideal gas flow rate is 60L /min, and the air flow adjustment system of the machine finally sets the air flow to 59.94L/min, and then manually corrects the air flow to 60L/min to make the machine work in the best condition.
  • the manual adjustment device 16 can use the "increase button" (indicated by the "+" in FIG.
  • FIG. 3 is a schematic flowchart of a machine gas path flow adjustment method provided by an embodiment of the present disclosure. As shown in FIG. 3, the method of this embodiment includes The following steps:
  • Step S110 the machine running cargo task prediction unit collects production line information, and predicts the machine running schedule based on the production line information.
  • Step S120 the gas flow monitoring unit monitors the gas flow of the machine in real time.
  • Step S130 The gas flow control unit judges whether the gas flow exceeds the preset flow range according to the gas flow. When the gas flow exceeds the preset flow range, the gas flow control unit predicts according to the machine running task.
  • the cargo running timetable is used to judge the current cargo running status of the machine, and make corresponding flow control instructions according to the running cargo status.
  • the machine gas flow adjustment system includes a machine running cargo task prediction unit, a gas flow monitoring unit, and a gas flow control unit to realize automatic adjustment of the machine gas flow.
  • the machine running task prediction unit predicts the machine running schedule based on the collected production line information.
  • the gas flow monitoring unit can monitor the machine's gas flow in real time.
  • the gas flow control unit is set with a preset flow range. , When the air flow rate exceeds the preset flow rate range, the air flow control unit can determine the current machine's running state according to the running schedule, that is, to determine whether the current machine is in the running journey, and based on the running schedule.
  • the cargo status makes corresponding flow control instructions, so that the gas flow control unit adjusts the gas flow to the preset flow range during the time outside the cargo running stroke, so as not to affect the normal cargo running process of the machine.
  • the air flow is automatically adjusted, the adjustment process is simple, and there is no need to repeatedly borrow the machine to adjust the air flow, saving manpower burden.
  • the air flow adjustment process of the embodiment of the present disclosure does not delay each cargo running journey, improves the working efficiency of the machine measurement, and speeds up the product manufacturing process.
  • FIG. 4 4 is a schematic flowchart of another method for adjusting the air flow of a machine according to an embodiment of the present disclosure.
  • the method for adjusting air flow of a machine according to the embodiment of the present disclosure further includes the following steps:
  • Step S210 The gas flow control unit sets a preset monitoring interval according to the preset flow range; the preset monitoring interval is located within the preset flow range, and the preset monitoring interval is smaller than the preset flow range.
  • Step S220 When the air flow exceeds the preset monitoring interval, judge the current running status of the machine, and make a corresponding flow control command according to the running status.
  • a preset monitoring interval is set for the air flow rate, and the range of the preset monitoring interval is smaller than the preset flow rate range, which effectively prevents the air flow rate from approaching the boundary value of the preset flow rate range, and further limits the air flow rate to the preset flow rate.
  • the intermediate value of the preset monitoring interval is the intermediate value N of the preset flow rate range; the preset monitoring interval is (N-0.5) ⁇ (N+0.5) L/min.
  • the intermediate value N is an ideal value of the gas flow rate, which will be close to the intermediate value N.
  • (N-0.5) ⁇ (N+0.5)L/min is set as the intermediate value interval to further improve the measurement accuracy of the machine.
  • the air flow control unit judges the current machine running status according to the running time schedule provided by the machine running task prediction unit, and makes the corresponding flow according to the running status Control instructions, including: when the air flow exceeds the preset flow range, the air flow control unit calculates the time interval between the current time and the next time of the goods according to the cargo running schedule, and judges that the current machine is in an idle state It is still running, if the machine is idle and the time interval is not less than the preset time, the air flow is controlled; if the machine is running and the time interval is not less than the preset time, wait for it After the end of the cargo run, the air flow is controlled; if the time interval is less than the preset time, no flow control will be performed this time, and the machine will continue to run according to the cargo run schedule. When the next cargo run is completed, the air flow will be The control unit repeats the above process until the time interval is not less than the preset duration, and controls the air flow.
  • FIG. 5 is a schematic flow chart of another method for adjusting the flow rate of a machine gas path provided by an embodiment of the present disclosure.
  • the flow adjustment method also includes the following steps:
  • Step S310 the machine running cargo task prediction unit collects production line information, and predicts the machine running schedule based on the production line information.
  • Step S320 the gas flow monitoring unit monitors the gas flow of the machine in real time.
  • Step S330 When the air flow rate exceeds the preset flow rate range, it is determined whether the time interval between the current time and the next run time is less than the preset time period, if not, step S340 is performed, and if yes, step S330 is returned to.
  • Step S340 If the machine is in an idle state, the air flow is controlled; if the machine is in a cargo running state, the air flow is controlled after waiting for the cargo running trip.
  • step S350 the air flow control unit drives the adjusting motor in a time interval longer than the preset time period, so that the air flow is adjusted to the preset monitoring interval.
  • the middle value of the preset monitoring interval is the middle value N of the preset flow range; the middle value interval is (N-0.5) ⁇ (N+0.5) L/min.
  • Step S360 The air flow control unit determines whether the adjusted air flow is in the preset monitoring interval, if yes, execute step S370, if not, execute step S350.
  • Step S370 End the adjustment process of the gas flow.
  • This embodiment is dedicated to restricting the gas flow rate to the preset monitoring interval within the preset flow rate range to improve the measurement accuracy of the machine, and adjust the gas flow rate once it approaches the boundary value of the preset flow rate range. It realizes the convenient and accurate adjustment of the air flow of the machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Flow Control (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

机台气路流量调整系统及方法,机台气路流量调整系统包括:机台跑货任务预测单元(12)、气路流量监控单元(13)、气路流量控制单元(11);机台跑货任务预测单元(12)预测机台跑货时间表,气路流量监控单元(13)实时监测气路流量,气路流量控制单元(11)用于当气路流量超出预设流量范围时,根据跑货时间表,判断当下机台跑货状态,并根据跑货状态做出相应的流量控制指令。

Description

一种机台气路流量调整系统及方法
交叉引用
本公开要求于2020年4月14日提交的申请号为202010290176.0、名称为“一种机台气路流量调整系统及方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及半导体量测设备技术领域,尤其涉及一种机台气路流量调整系统及方法。
背景技术
在半导体制作工艺各阶段中,光刻工艺是最重要的一个环节。光刻工艺的目的在于形成图案化光阻(Photo Resist,PR),然后以此图案化光阻为掩膜刻蚀暴露出来的材料层,从而使材料层图案化。当图案化的材料层的关键尺寸(Critical Dimension,CD)。关键尺寸的变化对电子元件的特性有重大影响,为了保证电子元件的品质,需要在光刻工艺后,对关键尺寸进行测量。
在测量关键尺寸时,需要将待测量晶圆放置于CD量测机台进行测量,为了保证关键尺寸测量的准确性,避免其他杂质对测量结果产生误差影响,需要为CD量测机台设置气路系统,去除杂质,保证CD量测机台测量环境的稳定。需要注意的是,为了保证CD量测机台腔内压力稳定,保证良好的测量精度,气路流量的大小需要限制在一定范围内。
然而相关技术中,气路流量调整容易降低生产效率,且需要人工反复调节,操作复杂,增加人力负担。。
发明内容
本公开实施例提供了一种机台气路流量调整系统及方法,以解决相关气路流量调整方案延误跑货进程且操作复杂的问题。
根据本公开的一方面,本公开实施例提供了一种机台气路流量调整系统,包括:
机台跑货任务预测单元、气路流量监控单元、气路流量控制单元;
所述机台跑货任务预测单元用于收集产线信息,并根据所述产线信息预测所述机台的跑货时间表;
所述气路流量监测单元用于实时监测所述机台的气路流量;
所述气路流量控制单元分别与所述机台跑货任务预测单元以及所述气路流量监测单元通信连接,所述气路流量控制单元用于根据所述气路流量,判断所述气路流量是否超出预设流量范围,当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
根据本公开的另一方面,本公开实施例还提供了一种机台气路流量调整方法,包括:
机台跑货任务预测单元收集产线信息,并根据所述产线信息预测所述机台的跑货时间表;
气路流量监测单元实时监测所述机台的气路流量;
气路流量控制单元根据所述气路流量,判断所述气路流量是否超出预设流量范围,当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
本公开中,机台气路流量调整系统包括机台跑货任务预测单元、气路流量监控单元、气路流量控制单元以实现机台气路流量的自动调整。具体的,机台跑货任务预测单元根据收集的产线信息预测机台跑货时间表,气路流量监控单元能够实时监测机台的气路流量,气路流量控制单元设置有预设流量范围,当气路流量超出预设流量范围内时,气路流量控制单元能够根据跑货时间表判断当前机台的跑货状态,也即,判断当前机台是否处于跑货行程中,并根据跑货状态做出相应的流量控制指令,使得气路流量控制单元在跑货行程之外的时间将气路流量调整至预设流量范围内,从而在不影响机台正常跑货进程的前提下,对气流流量进行自动调节,调节过程简单,不需要反复借下机台进行气路流量的调整,节省人力负担。本公开实施例的气路流量调整过程,不会延误各个跑货行程,提高机台测量的工作效率,加快产品制作进程。
附图说明
通过参照附图详细描述其示例实施方式,本发明的上述和其它特征及优点将变得更加明显。
图1是本公开实施例提供的一种机台气路流量调整系统的结构示意图;
图2是本公开另一实施例提供的一种机台气路流量调整系统的结构示意图;
图3是本公开实施例提供的一种机台气路流量调整方法的流程示意图;
图4是本公开实施例提供的另一种机台气路流量调整方法的流程示意图;
图5是本公开实施例提供的另一种机台气路流量调整方法的流程示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
相关技术中,气路流量调整时,在机台压力值超过标准范围后,需要将CD量测机台暂停,通过左右转动调节阀调整螺丝实现压力的增大和减小,将压力值调整到允许范围内。这种暂停机台的操作对整个跑货进程产生延时,影响正常的生产效率,并且机台暂停后,需要人工反复调节至标注范围,操作复杂,增加人力负担,当需要调整至某个具体数值时需要多次反复调节。并且因为机台震动,紧固螺母容易出现松动的现象,也造成气路流量波动。
本公开实施例提供了一种机台气路流量调整系统,包括:机台跑货任务预测单元、气路流量监控单元、气路流量控制单元。
机台跑货任务预测单元用于收集产线信息,并根据产线信息预测机台的跑货时间表。
气路流量监测单元用于实时监测机台的气路流量。
气路流量控制单元分别与机台跑货任务预测单元以及气路流量监测单元通信连接,气路流量控制单元用于根据气路流量,判断气路流量是否超出预设流量范围,当气路流量超出预设流量范围时,气路流量控制单元根据机台跑货任务预测单元提供的跑货时间表,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令。
本公开实施例中,机台气路流量调整系统包括机台跑货任务预测单元、气路流量监控单元、气路流量控制单元以实现机台气路流量的自动调整。具体的,机台跑货任务预测单元根据收集的产线信息预测机台跑货时间表,气路流量监控单元能够实时监测机台的气路流量,气路流量控制单元设置有预设流量范围,当气路流量超出预设流量范围内时,气路流量控制单元能够根据跑货时间表判断当前机台的跑货状态,也即,判断当前机台是否处于跑货行程中,并根据跑货状态做出相应的流量控制指令,使得气路流量控制单元在跑货行程之外的时间将气路流量调整至预设流量范围内,从而在不影响机台正常跑货进程的前提下,对气流流量进行自动调节,调节过程简单,不需要反复借下机台进行气路流量的调 整,节省人力负担。本公开实施例的气路流量调整过程,不会延误各个跑货行程,提高机台测量的工作效率,加快产品制作进程。
以上是本公开的核心思想,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的一种机台气路流量调整系统的结构示意图,如图1所示,机台气路流量调整系统包括机台跑货任务预测单元12、气路流量监控单元13和气路流量控制单元11。
气路流量监控单元13可设置于机台设备腔体内,用于测量气路流量,并能够实时将气路流量发送至气路流量控制单元11,使得气路流量控制单元11能够对气路流量进行监测。示例性的,气路流量监控单元13可以为压力传感器,根据设备腔体内的压力值获取气路流量。气路流量控制单元11保存有根据关键尺寸监测效果确定的气路流量范围,本实施例中,该范围为预设流量范围,当气路流量处于该预设流量范围内时,认为此时机台处于流量正常范围。
机台跑货任务预测单元13能够收集产线信息,并根据产线信息预测一定时间段内的跑货情况,或者可以在机台跑货任务预测单元13中录入跑货情况,也即,机台跑货任务预测单元13能够获取机台的跑货时间表,该跑货时间表记录了该机台在未来一段时间内的各跑货行程的跑货行程时间,示例性的,机台跑货任务预测单元13记录有未来24小时或未来48小时的各跑货行程的跑货行程时间。示例性的,如表1所示,表1是本公开实施例提供的跑货时间表,表1示出了跑货行程的跑货编号,以及与跑货编号一一对应的跑货行程时间。在相邻两个跑货行程之间存在时间间隔。
表1:本公开实施例提供的跑货时间表
跑货行程 跑货行程时间
101 2019-10-29 11:24:30
102 2019-10-29 11:26:33
103 2019-10-29 11:28:48
104 2019-10-29 11:53:38
105 2019-10-29 12:13:15
106 2019-10-29 12:36:39
气路流量控制单元11可实时将测量的气路流量与预设流量范围的边界值进行比较, 当测量的气路流量不在该预设流量范围时,气路流量控制单元11根据上述跑货时间表判断机台的跑货状态,并根据跑货状态做出相应的流量控制指令,从而对气路流量进行调整,使得气路流量调整至位于该预设流量范围。
本实施例能够在正常跑货行程之间的第一时间段内对气路流量进行调整,使得各跑货行程不会存在延误情况,避免影响机台的正常的跑货进程。
在一实施例中,机台气路流量调整系统还可以包括调节电机14,以及与调节电机14机械连接的气路调节阀15,调节电机14能够在气路流量控制单元11的控制下转动,从而带动气路调节阀15转动,以对气路流量进行调节。
在一实施例中,气路流量控制单元11根据机台跑货任务预测单元12提供的跑货时间表,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令的过程具体可以包括:当气路流量超出预设流量范围时,气路流量控制单元11根据跑货时间表,计算当下时间与下一次跑货时间之间的时间间隔,并判断当下机台处于空闲状态还是跑货中状态,如机台处于空闲状态,且时间间隔不小于预设时长,对气路流量进行控制;如机台处于跑货中状态,且时间间隔不小于预设时长,则待该次跑货行程结束后,对气路流量进行控制;若时间间隔小于预设时长,则此次不进行流量控制,机台按照跑货时间表继续运行,当下一次跑货完成后,气路流量控制单元11重复上述过程,直至时间间隔不小于预设时长,对气路流量进行控制。
当气路流量超出预设流量范围时,气路流量控制单元11首先根据跑货时间表,计算当前时间与下一次跑货的时间间隔,并获取机台当前跑货状态,本实施例中,跑货状态包括:空闲状态和跑货中状态。若机台当前处于空闲状态,且距离下一次跑货的时间间隔不小于预设时长,则气路流量控制单元11对气路流量进行控制,若机台当前处于跑货中状态,则在该次跑货行程结束后,进行气路流量的调整。
若当气路流量超出预设流量范围时,当前时间与下一次跑货的时间间隔小于预设时长,则无论机台处于空闲状态,还是跑货中状态,均不进行气路流量的调整,使得机台按照跑货时间表继续运行,并且气路流量控制单元11可重复检测当前时间与下一次跑货的时间间隔,直至获取时间间隔不小于预设时长,并在该时间间隔内对气路流量进行控制。
本实施例在相邻两个跑货行程之间的第一时间段内调整气路流量,保证各跑货行程按照跑货时间表进行执行,防止跑货行程的延误。能够有效满足对气路流量的随时调整,不需要进行借机预约,不需要停止或干扰机台的跑货进程,提高机台检测的工作效率。
在一实施例中,预设时长至少包括流量调节时长和机台稳定时长。上述预设时长预留 出了气路流量控制单元11对气路流量的调节时长,为每个气体流量的调节过程提供充足的调节时间,避免调节时间不够用,导致无法调整准确的情况。并预留出了调节完成后,机台稳定时长,使得机台能够在稳定状态下进行下一次跑货行程,提高机台的测量精度。
在一实施例中,预设时长可以大于或等于15min。本实施例中,为了保证气路流量调节的顺利进行,时间间隔的选取不能太短,本实施例将选取时长大于或等于15min的时间间隔,继续参考表1,可知跑货行程103的跑货行程时间为11:28:48,跑货行程104的跑货行程时间为11:53:38,两个跑货行程之间的第一时间段为25min,该第一时间段的时长大于15min,则在第一时间段内进行气路流量的调整时间大于15min,如此可保证在气路流量调整完毕后,还有剩余的时间,因此可等待机台稳定后再次进行跑货,满足了机台气路流量调整所需的时间,但在本实施例中,不一定能够存在时长大于预设时长的时间间隔,有可能所有的时间间隔的时长均小于15min,则此时气路流量控制单元11和机台跑货任务预测单元13可持续通信,直至气路流量控制单元11检测到时长大于预设时长的时间间隔后,再进行机台气路流量调整。
本实施例中,上述第一时间段也可能有多个,可筛选各第一时间段中时长最长的第一时间段进行气路流量的调整,既能够完成调节任务,又能够避免延误后续的跑货行程,避免机台堆货的情况。
预设流量范围可以为57L/min~63L/min。本实施例中,可设置预设流量范围为57L/min~63L/min,以满足机台的测量精度。
在一实施例中,气路流量控制单元11还用于根据预设流量范围设定预设监测区间;预设监测区间位于预设流量范围内,且预设监测区间小于预设流量范围;气路流量控制单元11还用于在气路流量超出预设监测区间时,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令。
在预设流量范围的基础上,本实施例还可以设定一个预设监测区间,预设监测区间同预设流量范围存在一定的差值,本实施例中可设置预设监测区间位于预设流量范围内,并且预设监测区间小于预设流量范围,当气路流量控制单元11在检测到气路流量超出预设监测区间时,根据跑货状态对气路流量进行调整,从而实现提前预警的效果,以提高机台的测量精度。示例性的,若预设流量范围为57L/min~63L/min,可设置预设监测区间为59L/min~61L/min。本实施例对预设监测区间不进行具体限定。进一步的,预设监测区间的中间值可以为预设流量范围的中间值N;所述预设监测区间为(N-0.5)~(N+0.5)L/min。本实施例为了进一步将气路流量限定在测量效果良好的数值范围,即靠近预设流量范围的 中间值N,中间值N为一个气路流量的理想值,将接近中间值N的一个小区间(N-0.5)~(N+0.5)L/min设置为中间值区间,以进一步改善机台的测量精准度。示例性的,若预设流量范围为57L/min~63L/min,则中间值N为60L/min,本实施例可将气路流量调节至中间值区间59.5~60.5L/min。
即使机台气路流量位于预设流量范围内,若机台气路流量长时间处于边界值,同样会影响机台的测量精度,气路流量控制单元11能够将气路流量限制在预设监测区间内,避免气路流量接近预设流量范围的边界值,以保证关键尺寸测量环境的稳定,提高机台的测量精度。本实施在气路流量刚接近边界值的时候即进行调节,防止机台出现警告情况而未被发现,进而避免引发机台的宕机情况,减少机台的调整时间和宕机时间。
图2是本公开实施例提供的一种机台气路流量调整系统的结构示意图,如图2所示,调节电机14可以为伺服电机;机台气路流量调整系统还可以包括:电机驱动器18;气路流量控制单元11通过电机驱动器18控制调节电机14运动。
伺服电机可以控制机械元件运转的部件,速度可控,位置精度准确,可以将电压信号转化为转矩和转速以驱动气路调节阀15。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。需要注意的是,当信号电压为零时无自转现象,在调节完之后,调节阀处于锁死状态,不会出现松动的情况,保证了气路调节阀15的调节精度,进而保证气路流量的调节精度。伺服电机可以达到0.001mm的精确定位,相对于其他电机具有较强的定位优势。
继续参考图2,机台气路流量调整系统还可以包括:显示装置17;显示装置17与气路流量监控单元13通信连接,用于实时显示机台的气路流量。显示装置17与气路流量控制单元11电连接,用于实时显示气路流量,便于用户及时看到气路流量值,从而对机台气路流量进行把控。
如图2所示,机台气路流量调整系统还可以包括:手动调节装置16;手动调节装置16用于接收用户输入的设定气路流量,以使气路流量监测单元11根据设定气路流量以及跑货状态做出相应的流量控制指令。手动调节装置16可集成在显示装置17上,通过触控功能实现。
手动调节装置16用于接收用户输入的气路流量,并将用户输入的气路流量发送至气路流量控制单元11;气路流量控制单元11还用于通过调节电机14将用户输入的气路流量设置为当前气路流量。一般情况下,机台气路流量调整系统设置有机台显示器用于显示 机台的各类工作参数,例如,关键尺寸的测量参数,气路流量等,但是单独对机台气路流量调整系统进行调整时,在气路调节阀15附近设置显示装置17,用于单独显示气路流量,若气路流量位于预设监测区间内,可将气路流量的显示框的背景色设置为绿色,若气路流量超出预设监测区间,接近预设流量范围的临界值,则可将气路流量的显示框的背景色设置为黄色。此外,该显示装置17还可以设置有手动调节装置16,可接收用户输入的气路流量,并将当前气路流量设置为用户输入的气路流量,示例性的,若理想气路流量为60L/min,而机台气路流量调整系统最终将气路流量设置为59.94L/min,则手动将气路流量修正为60L/min,使得机台工作在最佳状态。本实施例中,手动调节装置16可通过图2所示的显示装置17上的“增大按键”(以如图2中的“+”表示)和“减小按键”(以如图2中的“-”表示)按钮实现,通过上述按钮逐次增大或减小当前气路流量,与机台气路流量调整系统的自动调节方式相互补充。
基于同一构思,本公开实施例还提供一种机台气路流量调整方法。适用于本公开任意实施例提供的机台气路调整装置,图3是本公开实施例提供的一种机台气路流量调整方法的流程示意图,如图3所示,本实施例的方法包括如下步骤:
步骤S110、机台跑货任务预测单元收集产线信息,并根据产线信息预测机台的跑货时间表。
步骤S120、气路流量监测单元实时监测机台的气路流量。
步骤S130、气路流量控制单元根据气路流量,判断气路流量是否超出预设流量范围,当气路流量超出预设流量范围时,气路流量控制单元根据机台跑货任务预测单元提供的跑货时间表,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令。
本公开实施例中,机台气路流量调整系统包括机台跑货任务预测单元、气路流量监控单元、气路流量控制单元以实现机台气路流量的自动调整。具体的,机台跑货任务预测单元根据收集的产线信息预测机台跑货时间表,气路流量监控单元能够实时监测机台的气路流量,气路流量控制单元设置有预设流量范围,当气路流量超出预设流量范围内时,气路流量控制单元能够根据跑货时间表判断当前机台的跑货状态,也即,判断当前机台是否处于跑货行程中,并根据跑货状态做出相应的流量控制指令,使得气路流量控制单元在跑货行程之外的时间将气路流量调整至预设流量范围内,从而在不影响机台正常跑货进程的前提下,对气流流量进行自动调节,调节过程简单,不需要反复借下机台进行气路流量的调整,节省人力负担。本公开实施例的气路流量调整过程,不会延误各个跑货行程,提高机台测量的工作效率,加快产品制作进程。
在上述实施例已经将气路流量限制在预设流量范围内的基础上,为了避免气路流量长时间接近预设流量范围的边界值,影响机台的关键尺寸测量效果,如图4所示,图4是本公开实施例提供的另一种机台气路流量调整方法的流程示意图,本公开实施例的机台气路流量调整方法还包括如下步骤:
步骤S210、气路流量控制单元根据预设流量范围设定预设监测区间;预设监测区间位于预设流量范围内,且预设监测区间小于预设流量范围。
步骤S220、当气路流量超出预设监测区间时,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令。
本实施例中,为气流流量设定一个预设监测区间,预设监测区间的范围小于预设流量范围,有效避免气路流量靠近预设流量范围的边界值,进一步将气路流量限定在预设流量范围内不靠近边界值的范围内,防止机台压力长时间接近边界值从而影响机台的关键尺寸测量效果,提高测量精度,加快测量进程,延长机台使用寿命。
在上述实施例的基础上,预设监测区间的中间值为预设流量范围的中间值N;预设监测区间为(N-0.5)~(N+0.5)L/min。
本实施例为了进一步将气路流量限定在测量效果良好的数值范围,即靠近预设流量范围的中间值N,中间值N为一个气路流量的理想值,将接近中间值N的一个小区间(N-0.5)~(N+0.5)L/min设置为中间值区间,以进一步改善机台的测量精准度。
当气路流量超出预设流量范围时,气路流量控制单元根据机台跑货任务预测单元提供的跑货时间表,判断当下机台的跑货状态,并根据跑货状态做出相应的流量控制指令,包括:当气路流量超出预设流量范围时,气路流量控制单元根据跑货时间表,计算当下时间与下一次跑货时间之间的时间间隔,并判断当下机台处于空闲状态还是跑货中状态,如机台处于空闲状态,且时间间隔不小于预设时长,对气路流量进行控制;如机台处于跑货中状态,且时间间隔不小于预设时长,则待该次跑货行程结束后,对气路流量进行控制;若时间间隔小于预设时长,则此次不进行流量控制,机台按照跑货时间表继续运行,当下一次跑货完成后,气路流量控制单元重复上述过程,直至时间间隔不小于预设时长,对气路流量进行控制。
以下以一个示例对本实施例的方案进行具体详述,如图5所示,图5是本公开实施例提供的另一种机台气路流量调整方法的流程示意图,本示例的机台气路流量调整方法还包括如下步骤:
步骤S310、机台跑货任务预测单元收集产线信息,并根据产线信息预测机台的跑货 时间表。
步骤S320、气路流量监测单元实时监测机台的气路流量。
步骤S330、当气路流量超出预设流量范围时,判断当下时间与下一次跑货时间之间的时间间隔是否小于预设时长,若否,则执行步骤S340,若是,则返回执行步骤S330。
步骤S340、若机台处于空闲状态,则对气路流量进行控制;若机台处于跑货中状态,则等待该次跑货行程后,对气路流量进行控制。
步骤S350、气路流量控制单元在时长大于预设时长的时间间隔内驱动调节电机,使得气路流量向预设监测区间调节。
预设监测区间的中间值为预设流量范围的中间值N;中间值区间为(N-0.5)~(N+0.5)L/min。
步骤S360、气路流量控制单元判断调节后的气路流量是否处于预设监测区间,若是,则执行步骤S370,若否,则执行步骤S350。
步骤S370、结束气路流量的调节进程。
本实施例,致力于将气路流量限制于预设流量范围内的预设监测区间内,以提高机台的测量精度,并且从气路流量一旦靠近预设流量范围的边界值即进行调节,实现了对机台气路流量的便捷、精准的调节。
注意,上述仅为本公开的较佳实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种机台气路流量调整系统,包括:机台跑货任务预测单元、气路流量监控单元、气路流量控制单元;
    所述机台跑货任务预测单元用于收集产线信息,并根据所述产线信息预测所述机台的跑货时间表;
    所述气路流量监测单元用于实时监测所述机台的气路流量;
    所述气路流量控制单元分别与所述机台跑货任务预测单元以及所述气路流量监测单元通信连接,所述气路流量控制单元用于根据所述气路流量,判断所述气路流量是否超出预设流量范围,当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
  2. 根据权利要求1所述的机台气路流量调整系统,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令的过程具体包括:
    当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述跑货时间表,计算当下时间与下一次跑货时间之间的时间间隔,并判断当下所述机台处于空闲状态还是跑货中状态,如所述机台处于空闲状态,且所述时间间隔不小于预设时长,对所述气路流量进行控制;如所述机台处于跑货中状态,且所述时间间隔不小于预设时长,则待该次跑货行程结束后,对所述气路流量进行控制;
    若所述时间间隔小于所述预设时长,则此次不进行流量控制,所述机台按照所述跑货时间表继续运行,当下一次跑货完成后,所述气路流量控制单元重复上述过程,直至所述时间间隔不小于所述预设时长,对所述气路流量进行控制。
  3. 根据权利要求2所述的机台气路流量调整系统,所述预设时长至少包括流量调节时长和机台稳定时长。
  4. 根据权利要求1所述的机台气路流量调整系统,所述气路流量控制单元还用于根据所述预设流量范围设定预设监测区间;所述预设监测区间位于所述预设流量范围内,且所述预设监测区间小于所述预设流量范围;
    所述气路流量控制单元还用于在所述气路流量超出所述预设监测区间时,判断当下所 述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
  5. 根据权利要求1所述的机台气路流量调整系统,还包括:显示装置;所述显示装置与所述气路流量监控单元通信连接,用于实时显示所述机台的气路流量。
  6. 根据权利要求1所述的机台气路流量调整系统,还包括:手动调节装置;所述手动调节装置用于接收用户输入的设定气路流量,以使所述气路流量监测单元根据所述设定气路流量以及所述跑货状态做出相应的流量控制指令。
  7. 一种机台气路流量调整方法,包括:
    机台跑货任务预测单元收集产线信息,并根据所述产线信息预测所述机台的跑货时间表;
    气路流量监测单元实时监测所述机台的气路流量;
    气路流量控制单元根据所述气路流量,判断所述气路流量是否超出预设流量范围,当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
  8. 根据权利要求7所述的机台气路流量调整方法,当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述机台跑货任务预测单元提供的所述跑货时间表,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令,包括:
    当所述气路流量超出所述预设流量范围时,所述气路流量控制单元根据所述跑货时间表,计算当下时间与下一次跑货时间之间的时间间隔,并判断当下所述机台处于空闲状态还是跑货中状态,如所述机台处于空闲状态,且所述时间间隔不小于预设时长,对所述气路流量进行控制;如所述机台处于跑货中状态,且所述时间间隔不小于预设时长,则待该次跑货行程结束后,对所述气路流量进行控制;
    若所述时间间隔小于所述预设时长,则此次不进行流量控制,所述机台按照所述跑货时间表继续运行,当下一次跑货完成后,所述气路流量控制单元重复上述过程,直至所述时间间隔不小于所述预设时长,对所述气路流量进行控制。
  9. 根据权利要求7所述的机台气路流量调整方法,还包括:
    所述气路流量控制单元根据所述预设流量范围设定预设监测区间;所述预设监测区间位于所述预设流量范围内,且所述预设监测区间小于所述预设流量范围;
    当所述气路流量超出所述预设监测区间时,判断当下所述机台的跑货状态,并根据所述跑货状态做出相应的流量控制指令。
  10. 根据权利要求7所述的机台气路流量调整方法,还包括:
    所述气路流量控制单元接收用户输入的设定气路流量;
    根据所述设定气路流量以及所述跑货状态做出相应的流量控制指令。
PCT/CN2021/079599 2020-04-14 2021-03-08 一种机台气路流量调整系统及方法 WO2021208635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/609,467 US20230028662A1 (en) 2020-04-14 2021-03-08 System and method for adjusting gas path flow of apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010290176.0A CN113534855B (zh) 2020-04-14 2020-04-14 一种机台气路流量调整系统及方法
CN202010290176.0 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021208635A1 true WO2021208635A1 (zh) 2021-10-21

Family

ID=78085037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079599 WO2021208635A1 (zh) 2020-04-14 2021-03-08 一种机台气路流量调整系统及方法

Country Status (3)

Country Link
US (1) US20230028662A1 (zh)
CN (1) CN113534855B (zh)
WO (1) WO2021208635A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307841B (zh) * 2022-09-29 2022-12-30 江苏邑文微电子科技有限公司 腔内漏率测试的自动控制方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041500A1 (en) * 1999-05-13 2001-11-15 Micron Technology, Inc. Method for conserving a resource by flow interruption
CN1538507A (zh) * 2003-04-14 2004-10-20 华邦电子股份有限公司 半导体机台气体反应室的气体配送系统及方法
US20110220342A1 (en) * 2010-03-12 2011-09-15 Applied Materials, Inc. Methods and apparatus for selectively reducing flow of coolant in a processing system
CN102941201A (zh) * 2012-10-12 2013-02-27 上海华力微电子有限公司 机台传送部件自清洗方法以及机台传送部件
CN103000547A (zh) * 2012-11-28 2013-03-27 上海华力微电子有限公司 一种优化cdsem跑货顺序的方法
US20130317640A1 (en) * 2012-05-24 2013-11-28 Globalfoundries Singapore Pte. Ltd Vacuum pump controller
CN106086810A (zh) * 2016-06-29 2016-11-09 苏州新纳晶光电有限公司 调节mocvd反应室压力克服led外延结构雾边的方法及系统
US20170298532A1 (en) * 2014-04-18 2017-10-19 Lam Research Corporation Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460942B (en) * 1999-08-31 2001-10-21 Mitsubishi Material Silicon CVD device, purging method, method for determining maintenance time for a semiconductor making device, moisture content monitoring device, and semiconductor making device with such moisture content monitoring device
CN101819438A (zh) * 2009-02-26 2010-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 真空测量装置控制系统及半导体加工装置
CN102074454B (zh) * 2009-11-20 2012-04-11 无锡华润上华半导体有限公司 刻蚀工艺的监控方法和监控系统
CN104731116B (zh) * 2013-12-24 2017-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工设备中气路控制的方法及系统
CN106292557B (zh) * 2015-05-22 2018-10-19 中芯国际集成电路制造(上海)有限公司 一种控制机台自动测机的时间间隔约束方法
US20170010605A1 (en) * 2015-07-10 2017-01-12 Macronix International Co., Ltd. Method and System for Providing an Improved Wafer Transport System
JP2019066254A (ja) * 2017-09-29 2019-04-25 株式会社安川電機 分注システム及び分注方法
CN109772811A (zh) * 2017-11-10 2019-05-21 中芯国际集成电路制造(上海)有限公司 清扫装置及清扫系统
CN108008707B (zh) * 2017-11-28 2020-02-18 上海华力微电子有限公司 一种自动监控产品跑货状况的方法
CN110957234A (zh) * 2018-09-26 2020-04-03 长鑫存储技术有限公司 半导体制造设备的排气监控系统及排气监控方法
CN109740813B (zh) * 2018-12-29 2020-11-24 上海华力微电子有限公司 晶圆制造中在线产品批次跑货状态的分析预测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041500A1 (en) * 1999-05-13 2001-11-15 Micron Technology, Inc. Method for conserving a resource by flow interruption
CN1538507A (zh) * 2003-04-14 2004-10-20 华邦电子股份有限公司 半导体机台气体反应室的气体配送系统及方法
US20110220342A1 (en) * 2010-03-12 2011-09-15 Applied Materials, Inc. Methods and apparatus for selectively reducing flow of coolant in a processing system
US20130317640A1 (en) * 2012-05-24 2013-11-28 Globalfoundries Singapore Pte. Ltd Vacuum pump controller
CN102941201A (zh) * 2012-10-12 2013-02-27 上海华力微电子有限公司 机台传送部件自清洗方法以及机台传送部件
CN103000547A (zh) * 2012-11-28 2013-03-27 上海华力微电子有限公司 一种优化cdsem跑货顺序的方法
US20170298532A1 (en) * 2014-04-18 2017-10-19 Lam Research Corporation Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes
CN106086810A (zh) * 2016-06-29 2016-11-09 苏州新纳晶光电有限公司 调节mocvd反应室压力克服led外延结构雾边的方法及系统

Also Published As

Publication number Publication date
CN113534855A (zh) 2021-10-22
CN113534855B (zh) 2023-07-21
US20230028662A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021208635A1 (zh) 一种机台气路流量调整系统及方法
CN105197685B (zh) 一种收放卷设备的张力控制方法、装置及系统
CA1261433A (en) Method and apparatus for controlling a winder for stop-to-length or stop-to-roll diameter
JP2007055037A (ja) シート成形装置およびその制御方法
WO2010125958A1 (ja) 指令生成装置
JP2015078034A (ja) エレベータ気圧制御装置
CN106585424B (zh) 电动汽车倒车时的车速限制方法、装置和电动汽车
JPH0239327B2 (zh)
CN111118553A (zh) 一种故障状态下能够调节收卷辊转速的生箔机及调节方法
CN111824865A (zh) 收放卷控制方法和收放卷系统
JP2000516189A (ja) 永久磁石付きエレベータ同期モータを制御する電気駆動回路のパラメータ決定方法
WO2018178509A1 (en) Adjustment device mechanism for anodes of an aluminium smelter and method for adjusting anodes of an aluminium smelter
JPH07157210A (ja) エレベータの速度制御装置
US7070141B2 (en) Method for controlling winder
CN109318360B (zh) 一种基于接近开关的混凝土布料机自动预标定方法
JPS60111751A (ja) 連続鋳造機鋳型振動装置の異常監視方法
JPH11229798A (ja) 道路トンネルの換気制御システム
JP2007288829A (ja) 機械の異常検出方法およびその装置
JPH07107766A (ja) サーボゲインパラメータチューニング装置
JP4787404B2 (ja) 綾巻きボビンの直径を算出する方法
JPH1080948A (ja) インフレーション成形工程におけるフィルム厚さ制御装置
WO2023160695A1 (zh) 车辆及其主动减振的控制方法和整车控制器
KR100563869B1 (ko) 고무시트 제조방법 및 제조장치
JPH01285558A (ja) ブレーキ装置の劣化判定装置
JPS60191953A (ja) 多連巻取ユニツトの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788377

Country of ref document: EP

Kind code of ref document: A1