WO2021208273A1 - 用于识别状态参数的系统、吊装定位系统及吊装设备 - Google Patents

用于识别状态参数的系统、吊装定位系统及吊装设备 Download PDF

Info

Publication number
WO2021208273A1
WO2021208273A1 PCT/CN2020/101022 CN2020101022W WO2021208273A1 WO 2021208273 A1 WO2021208273 A1 WO 2021208273A1 CN 2020101022 W CN2020101022 W CN 2020101022W WO 2021208273 A1 WO2021208273 A1 WO 2021208273A1
Authority
WO
WIPO (PCT)
Prior art keywords
hoisting
hook
center
target
point
Prior art date
Application number
PCT/CN2020/101022
Other languages
English (en)
French (fr)
Inventor
徐柏科
付玲
范卿
曾杨
郭纪梅
刘锋
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Publication of WO2021208273A1 publication Critical patent/WO2021208273A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • B66C13/44Electrical transmitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to the technical field of engineering measurement, in particular to a system for identifying state parameters, a hoisting positioning system and hoisting equipment.
  • the wire rope connected to the boom will be affected by the gravity and inertia of the hook or load, which will cause the hook and its load to sway to a certain degree.
  • the swing of the hook is not conducive to the lifting of the crane and the placement of the suspended objects, thereby affecting the operating efficiency of the crane.
  • it also poses a certain threat to the personal safety and property safety of the site.
  • the prior art mainly uses multiple cameras to collect multiple images, and then stitches and processes the collected multiple images to realize the measurement of the posture of the hook.
  • the above method is relatively cumbersome, and certain errors may be introduced in the process of stitching and processing multiple images, which ultimately leads to inaccurate measurement results of the hook posture.
  • the purpose of the present invention is to provide a system for identifying state parameters, a hoisting positioning system and hoisting equipment, which can effectively identify the state parameters involved in the hoisting process, and can realize the automatic hoisting process according to the identified state parameters, For example, not only can the swing angle of the hook be prevented from being too large, but also the effective positioning of the hoisting process can be realized.
  • the first aspect of the present invention provides a system for identifying state parameters.
  • the system includes: an image acquisition device for acquiring preset tags including the upper side of the target object involved in the hoisting process. The top view image of the preset field of view within the device; and a state parameter recognition device for calculating the state parameters in the hoisting process by using a visual recognition method based on the top view image of the preset field of view and a specific geometric relationship.
  • the state parameter identification device includes: a pixel size obtaining module, configured to obtain the pixel size of the preset label based on the top view image of the preset field of view; a pixel physical size calculation module, configured to obtain the pixel size based on the The pixel size and physical size of the preset label are calculated to calculate the physical size of a unit pixel; and a state parameter calculation module is used to calculate the top view image based on the physical size of the unit pixel, the preset field of view, and the specific geometric relationship, Calculate the state parameters in the hoisting process.
  • the system further includes: an image acquisition device for acquiring the top view image of the preset field of view including the preset tag, and sending the top view image to the image acquiring device.
  • an image acquisition device for acquiring the top view image of the preset field of view including the preset tag, and sending the top view image to the image acquiring device.
  • the system further includes: a wireless transmission device for wirelessly transmitting the overhead image collected by the image acquisition device to the image acquisition device.
  • the wireless transmission device is a wireless network bridge
  • the wireless network bridge includes: a wireless transmitting end installed at the top of the boom; The wireless receiver where the transmitter is set face to face.
  • the image acquisition device is a monocular camera installed on the top of the boom.
  • the system further includes: an angle sensor for collecting the tilt angle of the top of the boom; and a first distance sensor , For collecting the height of the top of the boom from the ground; and a first control device for adjusting the angle of the monocular camera according to the tilt angle of the top of the boom, so that the center of the optical axis is always perpendicular to the ground And adjust the focal length of the monocular camera according to the height of the top of the boom from the ground to keep the size of the target object consistent in the top view image.
  • the state parameter calculation module includes: a first pixel coordinate acquisition unit, configured to be based on the preset The top view image of the field of view, obtaining the pixel coordinates of the center of the preset label relative to the center of the top view image, wherein the center of the top view image is the projection point of the top of the boom on the top view image; and a pendulum An angle calculation unit, configured to calculate the pixel coordinates of the center of the preset label relative to the center of the top view image, the physical size of the unit pixel, the distance from the top of the boom to the hook, and the first triangle Relationship, calculate the swing angle of the hook.
  • the swing angle calculation unit includes: a distance calculation component for calculating the preset label based on the pixel coordinates of the center of the preset label relative to the center of the top view image and the physical size of the unit pixel The actual distance from the center of the tag to the center of the top view image; and a swing angle calculation component for calculating the actual distance from the center of the preset tag to the center of the top view image, and the top of the boom to the crane The distance between the hooks and the first triangle relationship is calculated, and the swing angle of the hook is calculated.
  • the swing angle calculation component used to calculate the swing angle of the hook includes: calculating the swing angle ⁇ of the hook according to the sine formula (1), Wherein, L DB is the actual distance from the center of the preset label to the center of the top view image; L OB is the distance from the top of the boom to the hook.
  • the system further includes: a current state parameter acquisition device for acquiring the current rotation angle and the current luffing length of the hoisting equipment, correspondingly, when the target object is a hoisting point or an in-position point and the
  • the state parameter is the target rotation angle and the target luffing length of the hoisting equipment when the hook moves to the hoisting point or the in-situ point
  • the state parameter calculation module includes: second pixel coordinate acquisition Unit for obtaining the pixel coordinates of the center of the preset label relative to the center of the top view image based on the top view image within the preset field of view, wherein the center of the top view image is the The projection point on the top view image; and a rotation angle and variable length calculation unit for calculating the pixel coordinates of the center of the preset label relative to the center of the top view image, the physical size of the unit pixel, and the The current swing angle of the hoisting equipment and the current luffing length and the second triangle relationship are calculated, and the target swing angle and the
  • the rotation angle and luffing length calculation unit includes: a physical coordinate calculation component for calculating the pixel coordinates of the center of the preset label relative to the center of the overhead image and the physical size of the unit pixel, Calculate the physical coordinates of the center of the preset label relative to the center of the top view image; a rotation angle calculation component is used to calculate the physical coordinates of the center of the preset tag relative to the center of the top view image, and the lifting The current turning angle of the equipment, the current luffing length and the second triangle relationship, calculating the target turning angle of the hoisting equipment when the hook moves to the hoisting point or the in-situ point; and calculating the luffing length Component for calculating the hook operation to the second triangle relationship based on the physical coordinates of the center of the preset label relative to the center of the top view image The target luffing length of the hoisting equipment at the hoisting point or the in-situ point.
  • the rotation angle calculation component is used to calculate the target rotation angle of the hoisting equipment when the hook moves to the lifting point or the in-situ point, including: based on the center of the preset label relative to the The physical coordinates ( ⁇ X, ⁇ Y) of the center of the top view image, the current rotation angle ⁇ current of the hoisting equipment and the current luffing length R current and the following formulas are used to calculate that the hook moves to the lifting point or the seating point
  • the luffing length calculation component is used to calculate the target luffing length of the hoisting equipment when the lifting point or the in-situ point is reached, including: relative to the center of the preset label based on The physical coordinates ( ⁇ X, ⁇ Y) of the center of the image, the current luffing length R current of the hoisting equipment and the following formulas are used to calculate the target change of the hoisting equipment when the hoisting point or the in
  • the system further includes: a second distance sensor for collecting the height of the hook from the ground.
  • the state parameter calculation module includes: a first height acquiring unit configured to acquire the predetermined height of the boom tip from the upper side of the target object Set the height of the tag; a second height obtaining unit for obtaining the height of the boom top from the hook according to the height of the boom top from the ground and the height of the hook from the ground; and height calculation Unit for calculating the distance from the hook to the target object according to the height of the top of the boom from the preset label on the upper side of the target object and the height of the top of the boom from the hook The target height of the preset label on the side.
  • the first height acquiring unit for acquiring the height of the top of the boom from the preset label on the upper side of the target object includes: calculating the height of the tip of the boom from the upper side of the target object according to the following formula
  • the present invention creatively obtains the top view image of the preset field of view including the preset label on the upper side of the target object, and then calculates the hoisting process based on the top view image and the specific geometric relationship and using the visual recognition method
  • the state parameters in the hoisting process can be effectively identified.
  • the automatic hoisting process can be realized. For example, it can not only prevent the swing angle of the hook from being too large, but also realize the effective positioning of the hoisting process .
  • a second aspect of the present invention provides a hoisting positioning system.
  • the hoisting positioning system includes: the system for identifying status parameters; State parameters control the actions of the corresponding actuators of the hoisting equipment to realize the automatic hoisting process.
  • the hoisting positioning system further includes: a comparing device for comparing the swing angle of the hook with a swing angle threshold, correspondingly
  • the second control device is used to control the action of the actuator of the hoisting equipment, including: in the case that the swing angle of the hook is equal to the swing angle threshold, controlling the application of the hook to the boom The force of the swing angle in the opposite direction prevents the swing angle of the hook from being too large.
  • the state parameters of the hoisting process are the target rotation angle of the hoisting equipment, the target luffing length, and the target height of the hook from the target object when the hook moves to the hoisting point or the seating point
  • the second control device is used to control the corresponding actuator actions of the hoisting equipment including: according to the current rotation angle of the hoisting equipment, the current luffing length, and the current height of the hook to the ground, the target rotation The angle, the target luffing length and the target height of the hook from the preset label on the upper side of the target object are controlled to control the actions of the corresponding actuators of the lifting equipment to make the hook run to the lifting point Or the in-situ point.
  • the second control device used to control the action of the corresponding actuator of the hoisting equipment includes: controlling the corresponding actuator to stop the action in advance through a preset strategy, so that the hook can accurately run to the hoisting Point or the in-situ point.
  • the second control device includes: a rotation control module, configured to control the rotation mechanism to stop the rotation action when the difference between the target rotation angle and the current rotation angle is equal to a rotation angle threshold; Module for controlling the luffing mechanism to stop the luffing action when the difference between the target luffing length and the current luffing length is equal to the luffing length threshold; and a hoisting control module for the hoist When the difference between the target height of the hook to the ground and the current height of the hook to the ground is equal to the hoisting height threshold, the hoisting mechanism is controlled to stop the hoisting action.
  • a rotation control module configured to control the rotation mechanism to stop the rotation action when the difference between the target rotation angle and the current rotation angle is equal to a rotation angle threshold
  • a hoisting control module for the hoist
  • the present invention creatively controls the actions of the corresponding actuators of the hoisting equipment to realize the automatic hoisting process through the state parameters obtained by the above-mentioned system, thus, the automatic hoisting process can be realized, for example, not only can the hook swing angle be prevented from being excessive Large, it can also realize the effective positioning of the hoisting process.
  • a third aspect of the present invention provides a hoisting equipment, the hoisting equipment includes: the hoisting positioning system.
  • Figure 1 is a structural diagram of a system for identifying state parameters provided by an embodiment of the present invention
  • Figure 2 is a structural diagram of a system for identifying state parameters provided by an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a crane provided by an embodiment of the present invention.
  • Figure 4 is a structural diagram of a state parameter identification device provided by an embodiment of the present invention.
  • Figures 5(a), 5(b) and 5(c) are respectively schematic diagrams of the checkerboard tags provided by the embodiments of the present invention presented in different top-view images;
  • Fig. 6 is a structural diagram of a state parameter calculation module provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of swing angle detection provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a target offset provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of target height calculation provided by an embodiment of the present invention.
  • Figure 10 is a structural diagram of a hoisting positioning system provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the operating state of the boom provided by the embodiment of the present invention.
  • Fig. 12 is a flowchart of a hoisting positioning process provided by an embodiment of the present invention.
  • Image acquisition device 20 State parameter recognition device
  • Pixel size acquisition module 24 Pixel physical size calculation module
  • Second pixel coordinate acquisition unit 266 Rotation angle and luffing length calculation unit
  • FIG. 1 is a structural diagram of a system for recognizing state parameters (hereinafter may be referred to as recognition system 100 for short) provided by an embodiment of the present invention.
  • the recognition system 100 may include: an image acquisition device 10 configured to acquire a top view image of a preset field of view including a preset label on the upper side of the target object involved in the hoisting process; and
  • the state parameter recognition device 20, which can be connected to the image acquisition device 10, is used to calculate the hoisting process by using a visual recognition method based on the top view image of the preset field of view and a specific geometric relationship State parameters in.
  • the target object may be a hook, a lifting point or an in-situ point, etc.
  • the identification system 100 may further include: an image capture device 30, which may be installed on the top of the boom for capturing the The top view image of the field of view is preset, and the top view image is sent to the image acquisition device 10.
  • the image acquisition device 30 may be a monocular camera 35 installed on the top of the boom, as shown in FIG. 3.
  • the identification system 100 may further include: an angle sensor 40, which may be installed on the top of the boom for collecting the tilt angle of the top of the boom; A distance sensor 50 for collecting the height of the top of the boom from the ground; and a first control device 60 that can be connected to the angle sensor 40 and the first distance sensor 50, Used to adjust the angle of the monocular camera according to the tilt angle of the top of the boom so that the center of its optical axis is always perpendicular to the ground; and adjust the focal length of the monocular camera according to the height of the top of the boom from the ground , So as to keep the size of the target object consistent in the overhead image.
  • an angle sensor 40 which may be installed on the top of the boom for collecting the tilt angle of the top of the boom
  • a distance sensor 50 for collecting the height of the top of the boom from the ground
  • a first control device 60 that can be connected to the angle sensor 40 and the first distance sensor 50, Used to adjust the angle of the monocular camera according to the tilt angle of the top of the boom so that the center of
  • a pan/tilt head (not shown) can be set for self-checking on the monocular camera and the top of the boom, so that the first control device 60 can control the rotation of the pan/tilt according to the tilt angle of the top of the boom, so as to Adjust the angle of the monocular camera.
  • This embodiment is based on the self-decision zooming method of monocular vision, which realizes automatic zooming in combination with the height of the top of the boom to the ground during the hoisting process, and realizes the online recognition and precise positioning of the hoisting or in-situ target with a height of ⁇ 100m and detection positioning.
  • the accuracy can reach 3cm.
  • the angle sensor 40 may be a single-axis angle sensor 45.
  • the inclination angle of the top of the boom collected by the single-axis angle sensor 45 is 0, ensure that the axial direction of the single-axis angle sensor 45 is consistent with the direction of the body of the hoisting equipment (for example, crane) to ensure the measured angle data Validity;
  • the first control device 60 adjusts the angle of the monocular camera 35 so that its lens faces vertically downward.
  • the first control device 60 controls the rotation of the pan/tilt according to the collected tilt angle to adjust the center of the optical axis of the monocular camera 35 to be perpendicular to the ground.
  • the height of the top of the boom to the ground collected by the first distance sensor 50 also changes accordingly, so that the first control device 60 can adjust the focal length of the monocular camera 35 according to the collected height value.
  • the preset field of view may at least include the field of view where the preset tag is located; and in the case where the target object is a lifting point (or seating point), so The preset field of view includes at least the field of view where the lifting point (or seating point) and the hook are located.
  • the identification system 100 may further include: a wireless transmission device 70, which may be installed on the boom, and used to capture the image collected by the image acquisition device 30
  • the overhead image is wirelessly transmitted to the image acquisition device 10. Therefore, the wireless transmission device 70 can realize the stable and reliable long-distance (for example, distance ⁇ 120m) transmission of the image data source, which can effectively solve the problem of the limited field of view of the manipulator, and monitor the hoisting scene in a large space in real time.
  • the target object plays a role in assisting and guiding the hoisting.
  • the top view image may be a top view picture, a top view video image, or the like.
  • the wireless transmission device 70 may be a wireless network bridge.
  • the wireless network bridge may include: a wireless transmitting terminal 72 installed at the top of the boom; and a wireless receiving terminal 74 installed on the side of the base arm of the boom and arranged face to face with the wireless transmitting terminal 72, As shown in Figure 3. Wherein, the face-to-face arrangement of the wireless sending end 72 and the wireless receiving end 74 can realize the most effective wireless transmission of data.
  • the state parameter identification device 20 may include: a pixel size obtaining module 22, configured to obtain the pixel size of the preset label based on the top view image of the preset field of view; a pixel physical size calculation module 24.
  • the pixel physical size calculation module 24 can be connected to the pixel size acquisition module 22 for calculating the physical size of a unit pixel based on the pixel size and physical size of the preset label; and the state parameter calculation module 26 ,
  • the state parameter calculation module 26 and the pixel physical size calculation module 24 are configured to calculate the hoisting process based on the physical size of the unit pixel, the top view image of the preset field of view, and the specific geometric relationship State parameters in.
  • the preset label may be a non-graphic label or a graphical label (for example, a checkerboard label).
  • the pixel size acquisition module 22 determines the pixel size occupied by the non-graphic label in the horizontal and vertical directions of the corresponding top view image, which are w 1 pixel and h 1 pixel , respectively;
  • the physical size calculation module 24 calculates the horizontal physical size and the vertical physical size of the unit pixel as L pixels x according to the pixel sizes w 1 pixel and h 1 pixel without graphic tags and the corresponding physical sizes W 1 actual and H 1 actual.
  • the dots are the detected feature corners of the target, no matter what state the boom is running in .
  • the actual physical size between the target feature corner points (which can be referred to as the maximum internal corner point) at the two ends of the checkerboard label in the transverse direction (in the direction of AB, A 1 B 1 or A 2 B 2 ) is W 2 actual , W'2 actual and W" 2 actual ;
  • the maximum internal corner coordinates of the checkerboard label in the transverse direction are A(x a , y a ), B(x b , y b )
  • the pixel size acquisition module 22 determines the pixel distance between the largest inner corner points in the horizontal direction (that is, the pixel size occupied by the checkerboard label in the horizontal direction) as:
  • the pixel size occupied by the checkerboard label in the vertical direction is equal to the pixel size
  • the physical size corresponding to the unit pixel can be accurately calculated.
  • the state parameter calculation module 26 includes: a first pixel coordinate acquisition unit 260, configured to be based on the preset field of view A range of the top view image, obtaining the pixel coordinates of the center of the preset label relative to the center of the top view image, wherein the center of the top view image is the projection point of the top of the boom on the top view image; and a swing angle
  • the calculation unit 262, the swing angle calculation unit 262 may be connected to the first pixel coordinate acquisition unit 260, and is configured to be based on the pixel coordinates of the center of the preset label relative to the center of the top view image, and the unit
  • the physical size of the pixel, the distance from the top of the boom to the hook, and the first triangle relationship are used to calculate the swing angle of the hook, as shown in FIG. 6.
  • the swing angle calculation unit 262 may include: a distance calculation component (not shown) for calculating the pixel coordinates of the center of the preset label relative to the center of the overhead image and the physical value of the unit pixel. Size, calculating the actual distance from the center of the preset label to the center of the top view image; and a swing angle calculation component (not shown), which can be connected to the distance calculation component (Not shown) connected to calculate based on the actual distance from the center of the preset label to the center of the top view image, the distance from the top of the boom to the hook, and the first triangular relationship The swing angle of the hook.
  • the swing angle calculation component used to calculate the swing angle of the hook includes: calculating the swing angle ⁇ of the hook according to the sine formula (1),
  • L DB is the actual distance from the center of the preset label to the center of the top view image
  • L OB is the distance from the top of the boom to the hook.
  • the projected point of the boom top on the image plane is the origin
  • the horizontal central axis of the image is the X axis
  • the vertical central axis is the Y axis
  • the direction perpendicular to the image plane is the Z axis to establish a three-dimensional
  • the coordinate system (the three-dimensional coordinate system is the same unless otherwise specified in this article)
  • the plane of the top view image of the preset field of view including the non-graphic label 1 on the upper side of the hook is parallel to the XY plane
  • the center point D is the projection point of the top O point of the boom on the overhead image.
  • the pixel coordinates w 1 offset and h 1 offset of the center point B of the non-graphic label 1 relative to the point D can be obtained. Therefore, the offset of w 1, the offset of h 1 and the unit pixel can be obtained.
  • the swing angle of the hook can be calculated according to DB and the distance L OB from the top of the boom to the hook, combined with the above sine formula (1)
  • the non-graphic label can be replaced with a checkerboard label or other suitable label, and the center of the preset label in the first triangle relationship used to calculate the swing angle of the hook can be replaced with this Preset any other geometric points in the label.
  • a tag is installed on the upper side of the hook (for example, on the upper side of the pulley of the hook), and the yaw angle of the hook is calculated in real time online by means of visual inspection.
  • the above-mentioned system has the advantages of low cost, low computational complexity, real-time performance and reliability, etc., and can be applied to the anti-swing control of the hook to realize smooth hoisting.
  • the visual recognition technology is combined with the data detected by the multi-sensor to identify the relative position offset vectors ⁇ X, ⁇ Y of the target object relative to the projection point of the top of the boom on the overhead image and the hook distance
  • the target height ⁇ Z of the preset label on the upper side of the target object can be obtained when the hook moves to the target object.
  • the identification system 100 may further include: a current state parameter obtaining device 80, configured to obtain the current rotation angle and the current luffing length of the hoisting equipment.
  • the state parameter is the target rotation angle and target amplitude of the hoisting equipment when the hook moves to the lifting point or the in-position point
  • the state parameter calculation module 26 may include: a second pixel coordinate obtaining unit 264, configured to obtain the center of the preset label relative to the top view image based on the top view image in the preset field of view.
  • the physical dimensions of the hoisting equipment, the current rotation angle of the hoisting equipment and the current luffing length and the second triangle relationship, calculating the target rotation angle of the hoisting equipment when the hook moves to the hoisting point or the in-position point and The target luffing length is shown in Figure 6.
  • the rotation angle and luffing length calculation unit 266 may include: a physical coordinate calculation component (not shown), which is used to calculate the pixel coordinates based on the center of the preset label relative to the center of the top view image and all the pixels.
  • the physical size of the unit pixel calculate the physical coordinates of the center of the preset label relative to the center of the top view image; a rotation angle calculation component (not shown), the rotation angle calculation component (not shown) can be combined with
  • the physical coordinate calculation component (not shown) is connected to the physical coordinates based on the center of the preset label relative to the center of the top view image, the current rotation angle and the current luffing length of the hoisting equipment, and
  • the second triangular relationship calculates the target rotation angle of the hoisting equipment when the hook moves to the hoisting point or the seating point; and a luffing length calculation component (not shown), the luffing
  • the length calculation component (not shown) can be connected to the physical coordinate calculation component (not shown), and is used
  • the rotation angle calculation component (not shown) is used to calculate the target rotation angle of the hoisting equipment when the hook moves to the lifting point or the in-situ point, including: based on the preset label The physical coordinates ( ⁇ X, ⁇ Y) of the center relative to the center of the top view image, the current rotation angle ⁇ current of the hoisting equipment and the current luffing length R current and formula (2), calculate the operation to the lifting point or the lifting point The target rotation angle ⁇ target of the hoisting equipment at the positioning point,
  • the luffing length calculation component (not shown) is used to calculate the target luffing length of the hoisting equipment when the lifting point or the in-situ point is reached, including: based on the preset label The physical coordinates of the center relative to the center of the image ( ⁇ X, ⁇ Y), the current luffing length of the hoisting equipment R current and formula (3), calculate when the hook moves to the hoisting point or the in-position point The target luffing length of the hoisting equipment,
  • FIG. 8 shows the plane where the top view image of the preset field of view including the checkerboard label 2 on the upper side of the hook is located, and the center D point (x D , y D ) of the top view image is the arm
  • the projection point of the top O point on the top view image, and the pixel coordinates of the corner point corresponding to the center C point of the checkerboard label 2 are (x c , y c ).
  • the current rotation angle and the current luffing length of the hoisting equipment can be collected and acquired by a rotation angle sensor and a length sensor, respectively.
  • the target rotation angle can be estimated
  • the length R of the current amplitude of the current can be estimated target amplitude length
  • the boom is determined
  • the identification system 100 may further include: a second distance sensor 90 for collecting the height of the hook from the ground.
  • the state parameter calculation module 26 Including: a first height acquiring unit 268, configured to acquire the height of the top of the boom from the preset label on the upper side of the target object; a second height acquiring unit 270, the second height acquiring unit 270 can interact with the The second distance sensor 90 is connected to obtain the height of the boom top from the hook according to the height of the boom top from the ground and the height of the hook from the ground; and a height calculation unit 272,
  • the height calculation unit 272 can be connected to the first height acquisition unit 268 and the second height acquisition unit 270, and is configured to determine the height of the preset tag on the upper side of the target object from the top of the boom. And the height of the top of the boom from the hook
  • the first height obtaining unit 268 for obtaining the height of the top of the boom from the preset label on the upper side of the target object may include: calculating the top of the boom from the target object according to formula (4) The height of the preset label on the upper side is H1,
  • f is the focal length of the monocular camera
  • L pixel is the physical size of the unit pixel.
  • the lifting point of the target object is taken as an example.
  • the height H1 of the camera (or the top of the boom) relative to the lifting point is calculated by formula (4); and the difference between the boom top and boom height H of the hook from the ground height from the ground of the hook H, to give a height H2 from the top of the boom to the hook; and finally obtaining the camera (Or the top of the boom)
  • the hoisting mechanism's lifting (up and down) direction when Z>0, hoist down (lower); when Z ⁇ 0, roll Raise (rise).
  • the checkerboard label can be replaced with a non-graphic label or other suitable label, and the above-mentioned calculation can be used to calculate the lifting point when the hook is moved to the lifting point or the seating point.
  • the center of the preset label in the triangular relationship between the target luffing length of the device and the target rotation angle is replaced with any other geometric point in the preset label.
  • the above embodiments can be applied to various complex hoisting scenarios such as ground hoisting, high platform hoisting and side hoisting.
  • the target rotation angle and target luffing length of the hoisted object or the positioning point can be calculated through real-time online target detection.
  • the hook is used for controlled positioning, which can realize the precise positioning problem when the lifting object or the seating point is blocked.
  • the present invention creatively obtains a top view image of a preset field of view including a preset label on the upper side of the target object, and then calculates the hoisting process based on the top view image and a specific geometric relationship using a visual recognition method.
  • the state parameters in the hoisting process the state parameters involved in the hoisting process can be effectively identified.
  • the automatic hoisting process can be realized. For example, it can not only prevent the swing angle of the hook from being too large, but also realize the effective positioning of the hoisting process .
  • the embodiment of the present invention also provides a structural diagram of a hoisting positioning system.
  • the hoisting positioning system may include: the system for identifying status parameters (referred to as the identification system 100 for short); and a second control device 200, which may be connected to the identification system 100, According to the status parameters of the hoisting process acquired by the identification system 100, the corresponding actuators of the hoisting equipment act to realize the automatic hoisting process.
  • the hoisting positioning system may further include: a comparison device (not shown), and the comparison device (not shown) and the identification system 100 It is connected to the second control device 200 and is used to compare the swing angle of the hook with the swing angle threshold.
  • the second control device 200 is used to control the action of the actuator of the hoisting equipment, including: in the case that the swing angle of the hook is equal to the swing angle threshold, controlling the application of the lifting hook to the swing angle threshold.
  • the swing angle of the hook has a force in the opposite direction to prevent the swing angle of the hook from being too large.
  • the implementation of this embodiment is simple, and the hook anti-sway control can be effectively performed.
  • the state parameters are the target rotation angle of the hoisting equipment when the hook moves to the hoisting point or the in-position point, the target luffing length, and the target height of the hook from the target object, and the current state parameters are all
  • the second control device 200 is used to control the corresponding actuator actions of the hoisting equipment including: according to the The current swivel angle of the hoisting equipment, the current luffing length and the current height of the hook to the ground, the target swivel angle, the target luffing length, and the preset label where the hook is above the target object Control the action of the corresponding actuator of the hoisting equipment to make the hook move to the hoisting point or the seating point.
  • the current height of the hook to the ground and the height of the load itself can be calculated to obtain the The current height of the hook from the preset label on the upper side of the target object.
  • the second control device 200 used to control the actions of the corresponding actuators of the lifting equipment may include: controlling the corresponding actuators to stop actions in advance through a preset strategy, so that the lifting The hook runs accurately to the lifting point or the seating point.
  • the second control device 200 may include: a rotation control module (not shown), and the rotation control device (not shown) may be connected to the identification system 100 and the current state parameter acquisition device 80 , For controlling the slewing mechanism to stop the slewing action when the difference between the target slewing angle and the current slewing angle is equal to the threshold angle; a luffing control module (not shown), the luffing control module (not shown (Shown) can be connected to the identification system 100 and the current state parameter acquisition device 80, and is used to control the change when the difference between the target luffing length and the current luffing length is equal to a threshold length
  • the frame mechanism stops the luffing action; and a winch control module (not shown), the winch control module (not shown) can be connected to the identification system 100 and the current state parameter acquisition device 80 for When the difference between the target height of the hook to the ground and the current height of the hook to the ground is equal to the threshold height, the hoisting mechanism is controlled to stop the hoist
  • time t is the sum of image transmission delay time, image processing delay time, that is, control delay time
  • speed V is the speed at which the crane runs at a constant speed
  • the ordinate axis can indicate the rotation angle, luffing length, or Hoist height.
  • the corresponding threshold parameters for example, the swing angle threshold ⁇ threshold , the luffing length threshold R threshold, and the hoisting height threshold Z threshold
  • the swing angle threshold ⁇ threshold , the variable amplitude length threshold R threshold, and the hoisting height threshold Z threshold can be obtained through the crane's operation control curve, control current and other characteristics.
  • the foregoing embodiment uses the detected target rotation angle, target luffing length, hoist height parameters and current boom motion corresponding values to perform real-time approximation calculations, thereby achieving control positioning (positioning accuracy up to 10 cm).
  • the hoisting positioning system may further include: a display device (not shown) for displaying the running posture of the target object in a way of highlighting frame selection and tracking.
  • the display device may be installed in the cab of the hoisting equipment, and it may be equipment such as an industrial touch display screen, a computer display screen, or a display screen of a mobile terminal.
  • the display device can track and display the target object by highlighting frame selection, and through the corresponding positioning function of one-key touch, it can monitor the hoisting scene in real time, thereby guiding the operator to do At the same time, it gives the crane movement status display.
  • the first control device 60 and the second control device 200 may be a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor (DSP), multiple microprocessors, one or more associated with DSP cores. Microprocessor, controller, microcontroller, application specific integrated circuit (ASIC), programmable logic controller (PLC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. Wait. Moreover, the first control device 60 and the second control device 200 may be separate components or the same component, and the first control device 60 and the second control device 200 may be installed in the lifting equipment Inside the cab.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLC programmable logic controller
  • FPGA field programmable gate array
  • the hoisting positioning process may include steps S1201-S1210.
  • Step S1201 Collect the top view image A of the preset field of view including the no-graphic label 1 on the upper side of the hook and the checkerboard label 2 on the upper side of the lifting point (or seating point) in the preset field of view. Look down on image B.
  • top view image A and the top view image B are on different planes (that is, they are not coplanar).
  • Step S1202 Calculate the physical size of each unit pixel according to the pixel size and physical size of the non-graphic label 1 and the checkerboard label 2, respectively, and execute step S1203 and step S1207.
  • Step S1203 Calculate the actual distance between the non-graphic label 1 and the center of the overhead image A based on the pixel coordinates of the center of the non-graphic label 1 relative to the center of the top view image A and the physical size of the unit pixel of the non-graphic label 1 .
  • the horizontal azimuth angle ⁇ of the swing angle can also be calculated in this step S1203.
  • Step S1204 Obtain the length of the lowered rope of the force limiter to obtain the distance from the top of the boom to the hook.
  • Step S1205 Calculate the swing angle of the hook according to the actual distance from the center of the non-graphic label 1 to the center of the top view image A, the distance from the top of the boom to the hook, and the corresponding triangle relationship.
  • step S1206 the operating posture of the boom is controlled according to the swing angle and the swing angle threshold of the hook.
  • Step S1207 Calculate the center of the checkerboard label 2 relative to the top view image B according to the pixel coordinates of the center of the checkerboard label 2 relative to the center of the top view image B and the physical size of the unit pixel of the checkerboard label 2 The physical coordinates of the center.
  • Step S1208 Calculate the target rotation of the crane according to the physical coordinates of the center of the checkerboard label 2 relative to the center of the top view image B, the current rotation angle of the crane and the current luffing length, and the corresponding triangle relationship Angle and target luffing length.
  • Step S1209 Calculate the target height of the hook from the lifting point (or seating point).
  • Step S1210 according to the target swing angle of the crane, the target luffing length, the target height of the hook from the lifting point (or in-position point), and the corresponding current state parameters of the crane, a preset strategy is adopted to control the action of the corresponding actuator , So that the hook is accurately positioned to the lifting point (or seating point).
  • the embodiment of the present invention can realize automatic locking and control positioning of the target object through vision and multi-sensing fusion technology, which improves the safety of operation, enables the crane to have environmental perception and autonomous decision-making functions, and realizes the unmanned automatic hoisting function.
  • the above-mentioned hoisting process can improve the environment perception and automation level of the crane, thereby effectively improving the working efficiency of the crane.
  • the present invention creatively controls the actions of the corresponding actuators of the hoisting equipment to realize the automatic hoisting process through the state parameters acquired by the above-mentioned system, thus, the automatic hoisting process can be realized, for example, not only can the hook swing angle be prevented from being excessive Large, it can also realize the effective positioning of the hoisting process.
  • the embodiment of the present invention also provides a hoisting device, and the hoisting device may include: the hoisting positioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种用于识别状态参数的系统、吊装定位系统及吊装设备。其包括:图像获取装置(10),用于获取包括吊装过程所涉及的目标对象上侧的预设标签在内的预设视野范围的俯视图像;以及状态参数识别装置(20),用于基于预设视野范围的俯视图像及特定几何关系,采用视觉识别方法计算吊装过程中的状态参数,可对吊装过程所涉及的状态参数进行有效识别,并且根据所识别的状态参数实现自动吊装,不仅能够防止吊钩摆角过大,还能实现吊装过程的有效定位。

Description

用于识别状态参数的系统、吊装定位系统及吊装设备 技术领域
本发明涉及工程测量技术领域,具体地,涉及一种用于识别状态参数的系统、吊装定位系统及吊装设备。
背景技术
在起重机作业过程中,臂架所连接的钢丝绳会受吊钩或吊载的重力和惯性的影响,由此导致吊钩及其吊载总出现一定程度的摇摆。然而,吊钩的摇摆不利于起重机的起吊和放置吊载物,进而影响起重机的作业效率,同时,其也会给现场的人身安全和财产安全造成一定的威胁。针对此缺陷,现有技术主要采用多相机采集多个图像,然后对所采集的多个图像进行拼接和处理来实现对吊钩的姿态的测量。但上述方法比较繁琐,并且在对多个图像进行拼接和处理的过程中可能引进一定的误差,从而最终导致吊钩姿态的测量结果不准确。
发明内容
本发明的目的是提供一种用于识别状态参数的系统、吊装定位系统及吊装设备,其可对吊装过程所涉及的状态参数进行有效识别,并且根据所识别的状态参数可实现自动吊装过程,例如不仅可防止吊钩摆角过大,还可实现吊装过程的有效定位。
为了实现上述目的,本发明第一方面提供一种用于识别状态参数的系统,所述系统包括:图像获取装置,用于获取包括所述吊装过程所涉及的目标对象上侧的预设标签在内的预设视野范围的俯视图像;以及状态参数识别装置,用于基于所述预设视野范围的俯视图像及特定几何关系,采用视觉识别方法计算所述吊装过程中的状态参数。
优选地,所述状态参数识别装置包括:像素大小获取模块,用于基于所述预设视野范围的俯视图像,获取所述预设标签的像素大小;像素物理尺寸计算模块,用于基于所述预设标签的像素大小与物理尺寸,计算单位像素的物理尺寸;以及状态参数计算模块,用于基于所述单位像素的物理尺寸、所述预设视野范围的俯视图像及所述特定几何关系,计算所述吊装过程中的状态参数。
优选地,所述系统还包括:图像采集装置,用于采集所述包括所述预设标签在内的预设视野范围的俯视图像,并将该俯视图像发送至所述图像获取装置。
优选地,所述系统还包括:无线传输装置,用于将所述图像采集装置所采集的所述俯视图像无线传输至所述图像获取装置。
优选地,所述无线传输装置为无线网桥,所述无线网桥包括:被安装在所述臂架顶端的无线发 送端;以及被安装在所述臂架的基础臂侧面且与所述无线发送端面对面设置的无线接收端。
优选地,所述图像采集装置为被安装在所述臂架顶端的单目相机,相应地,所述系统还包括:角度传感器,用于采集所述臂架顶端的倾斜角;第一距离传感器,用于采集所述臂架顶端距地面的高度;以及第一控制装置,用于根据所述臂架顶端的倾斜角调整所述单目相机的角度,以使其光轴中心始终垂直于地面;并根据所述臂架顶端距地面的高度调节所述单目相机的焦距,以保持所述目标对象在所述俯视图像中的大小一致。
优选地,在所述目标对象为吊钩且所述状态参数为所述吊钩的摆角的情况下,所述状态参数计算模块包括:第一像素坐标获取单元,用于基于所述预设视野范围的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图像上的投影点;以及摆角计算单元,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标、所述单位像素的物理尺寸、所述臂架顶端到所述吊钩的距离及第一三角关系,计算所述吊钩的摆角。
优选地,所述摆角计算单元包括:距离计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心到所述俯视图像的中心的实际距离;以及摆角计算组件,用于基于所述预设标签的中心到所述俯视图像的中心的实际距离、所述臂架顶端到所述吊钩的距离及所述第一三角关系,计算所述吊钩的摆角。
优选地,所述摆角计算组件用于计算所述吊钩的摆角包括:根据正弦公式(1)计算所述吊钩的摆角γ,
Figure PCTCN2020101022-appb-000001
其中,L DB为所述预设标签的中心到所述俯视图像的中心的实际距离;L OB为所述臂架顶端到所述吊钩的距离。
优选地,所述系统还包括:当前状态参数获取装置,用于获取所述吊装设备的当前回转角度与当前变幅长度,相应地,在所述目标对象为起吊点或就位点且所述状态参数为所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度的情况下,所述状态参数计算模块包括:第二像素坐标获取单元,用于基于所述预设视野范围内的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图像上的投影点;以及回转角度与变幅长度计算单元,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标、所述单位像素的物理尺寸、所述吊装设备的当前回转角度与当前变幅长度及第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度。
优选地,所述回转角度与变幅长度计算单元包括:物理坐标计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心相对于所述俯视图像的中心的物理坐标;回转角度计算组件,用于基于所述预设标签的中心相对 于所述俯视图像的中心的物理坐标、所述吊装设备的当前回转角度与当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度;以及变幅长度计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标、所述吊装设备的当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度。
优选地,所述回转角度计算组件用于计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度包括:基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前回转角度θ 当前与当前变幅长度R 当前及以下公式,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度θ 目标
Figure PCTCN2020101022-appb-000002
180/π,所述变幅长度计算组件用于计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度包括:基于所述预设标签的中心相对于所述图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前变幅长度R 当前及以下公式,计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度,
Figure PCTCN2020101022-appb-000003
优选地,所述系统还包括:第二距离传感器,用于采集所述吊钩距地面的高度,相应地,在所述目标对象为起吊点或就位点且所述状态参数为所述吊钩距所述目标对象上侧的预设标签的目标高度的情况下,所述状态参数计算模块包括:第一高度获取单元,用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度;第二高度获取单元,用于根据所述臂架顶端距地面的高度及所述吊钩距地面的高度,获取所述臂架顶端距所述吊钩的高度;以及高度计算单元,用于根据所述臂架的顶端距所述目标对象上侧的预设标签的高度及所述臂架的顶端距离所述吊钩的高度,计算所述吊钩距所述目标对象上侧的预设标签的目标高度。
优选地,所述第一高度获取单元用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度包括:根据以下公式计算所述臂架顶端距所述目标对象上侧的预设标签的高度H1,H1=L 像素*f,其中,f为所述单目相机的焦距;以及L 像素为所述单位像素的物理尺寸。
通过上述技术方案,本发明创造性地通过获取包括目标对象上侧的预设标签在内的预设视野范围的俯视图像,然后根据所述俯视图像与特定几何关系,并采用视觉识别方法计算吊装过程中的状态参数,由此可对吊装过程所涉及的状态参数进行有效识别,根据所述状态参数可实现自动吊装过程,例如不仅可防止吊钩摆角过大,还可实现吊装过程的有效定位。
本发明第二方面提供一种吊装定位系统,所述吊装定位系统包括:所述的用于识别状态参数的系统;以及第二控制装置,用于根据由所述系统获取的所述吊装过程的状态参数,控制吊装设备的相应执行机构动作以实现自动吊装过程。
优选地,在所述吊装过程的状态参数为吊钩的摆角的情况下,所述吊装定位系统还包括:比较装置,用于将所述吊钩的摆角与摆角阈值相比较,相应地,所述第二控制装置用于控制所述吊装设备的执行机构动作包括:在所述吊钩的摆角等于所述摆角阈值的情况下,控制对臂架施加与所述吊钩的摆角方向相反的力以防止所述吊钩的摆角过大。
优选地,在所述吊装过程的状态参数为吊钩运行至起吊点或就位点时所述吊装设备的目标回转角度、目标变幅长度及所述吊钩距目标对象的目标高度的情况下,所述第二控制装置用于控制所述吊装设备的相应执行机构动作包括:根据所述吊装设备的当前回转角度、当前变幅长度及所述吊钩对地面的当前高度、所述目标回转角度、所述目标变幅长度及所述吊钩距所述目标对象上侧的预设标签的目标高度,控制所述吊装设备的相应执行机构动作以使得所述吊钩运行至所述起吊点或所述就位点。
优选地,所述第二控制装置用于控制所述吊装设备的相应执行机构动作包括:通过预设策略提前控制所述相应执行机构停止动作,以使得所述吊钩准确地运行至所述起吊点或所述就位点。
优选地,所述第二控制装置包括:回转控制模块,用于在所述目标回转角度与所述当前回转角度的差值等于回转角度阈值的情况下,控制回转机构停止回转动作;变幅控制模块,用于在所述目标变幅长度与所述当前变幅长度的差值等于变幅长度阈值的情况下,控制变幅机构停止变幅动作;以及卷扬控制模块,用于所述吊钩对地面的目标高度与所述吊钩对地面的当前高度的差值等于卷扬高度阈值的情况下,控制卷扬机构停止卷扬动作。
通过上述技术方案,本发明创造性地通过由上述系统获取的状态参数,控制吊装设备的相应执行机构动作以实现自动吊装过程,由此,可实现自动吊装过程,例如不仅可防止吊钩摆角过大,还可实现吊装过程的有效定位。
本发明第三方面提供一种吊装设备,所述吊装设备包括:所述的吊装定位系统。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明实施例提供的用于识别状态参数的系统的结构图;
图2是本发明实施例提供的用于识别状态参数的系统的结构图;
图3是本发明实施例提供的起重机的结构示意图;
图4是本发明实施例提供的状态参数识别装置的结构图;
图5(a)、图5(b)及图5(c)分别是本发明实施例提供的棋盘格标签在不同俯视图像中呈现 的示意图;
图6是本发明实施例提供的状态参数计算模块的结构图;
图7是本发明实施例提供的摆角检测示意图;
图8是本发明实施例提供的目标偏移量示意图;
图9是本发明实施例提供的目标高度计算示意图;
图10是本发明实施例提供的吊装定位系统的结构图;
图11是本发明实施例提供的臂架运行状态示意图;以及
图12是本发明实施例提供的吊装定位过程的流程图。
附图标记说明
1          无图形标签                     2          棋盘格标签
10         图像获取装置                   20         状态参数识别装置
22         像素大小获取模块               24         像素物理尺寸计算模块
26         状态参数计算模块               30         图像采集装置
35         单目相机                       40         角度传感器
45         单轴角度传感器                 50         第一距离传感器
60         第一控制装置                   70         无线传输装置
72         无线发送端                     74         无线接收端
80         当前状态参数获取装置           90         第二距离传感器
100        识别系统                       200        第二控制装置
260        第一像素坐标获取单元           262        摆角计算单元
264        第二像素坐标获取单元           266        回转角度与变幅长度计算单元
268        第一高度获取单元               270        第二高度获取单元
272        高度计算单元
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1是本发明实施例提供的用于识别状态参数的系统(下文可简称为识别系统100)的结构图。如图1所示,所述识别系统100可包括:图像获取装置10,用于获取包括所述吊装过程所涉及的目标对象上侧的预设标签在内的预设视野范围的俯视图像;以及状态参数识别装置20,所述状态参数 识别装置20可与所述图像获取装置10相连接,用于基于所述预设视野范围的俯视图像及特定几何关系,采用视觉识别方法计算所述吊装过程中的状态参数。其中,所述目标对象可为吊钩、起吊点或就位点等。
如图2所示,所述识别系统100还可包括:图像采集装置30,所述图像采集装置30可被安装在所述臂架顶端,用于采集所述包括所述预设标签在内的预设视野范围的俯视图像,并将该俯视图像发送至所述图像获取装置10。其中,所述图像采集装置30可为被安装在所述臂架顶端的单目相机35,如图3所示。
相应地,如图2所示,所述识别系统100还可包括:角度传感器40,所述角度传感器40可被安装在所述臂架顶端,用于采集所述臂架顶端的倾斜角;第一距离传感器50,用于采集所述臂架顶端距地面的高度;以及第一控制装置60,所述第一控制装置60可与所述角度传感器40及所述第一距离传感器50相连接,用于根据所述臂架顶端的倾斜角调整所述单目相机的角度,以使其光轴中心始终垂直于地面;并根据所述臂架顶端距地面的高度调节所述单目相机的焦距,以保持所述目标对象在所述俯视图像中的大小一致。在一实施例中,可在所述单目相机与臂架顶端自检设置云台(未示出),从而第一控制装置60可根据所述臂架顶端的倾斜角控制云台旋转,以调整所述单目相机的角度。
本实施例基于单目视觉的自决策变焦法,在吊装过程中结合臂架顶端对地面的高度实现自动变焦,实现了高度≥100m以上的起吊或就位目标的在线识别与精准定位,检测定位精度可达3cm。
如图3所示,角度传感器40可为单轴角度传感器45。当所述单轴角度传感器45采集的臂架顶端的倾斜角为0时,确保该单轴角度传感器45的轴向与吊装设备(例如,起重机)的车身方向一致,以保证其测量的角度数据的有效性;此时,所述第一控制装置60调整单目相机35的角度以使其镜头垂直朝下。当臂架幅长(变幅或缩/展臂的情况)发生变化时,臂架顶端的倾斜角也相应地发生变化,由此单轴角度传感器45所采集的倾斜角发生变化;然后,所述第一控制装置60根据所采集的倾斜角控制云台旋转,以将单目相机35的光轴中心调整至垂直于地面。与此同时,所述第一距离传感器50所采集的臂架顶端对地面的高度也相应地发生变化,由此所述第一控制装置60可根据所采集的高度值调节单目相机35的焦距,以使目标对象在所采集的图像画面中的大小一致,从而可保证所采集的图像的清晰度,进而可对该图像进行有效的识别以准确地识别相应的状态参数。例如,在目标对象为吊钩的情况下,所述预设视野范围至少包括所述预设标签所在的视野范围即可;而在目标对象为起吊点(或就位点)的情况下,所述预设视野范围至少包括起吊点(或就位点)与吊钩所在的视野范围。
如图2所示,所述识别系统100还可包括:无线传输装置70,所述无线传输装置70可被安装在所述臂架上,用于将所述图像采集装置30所采集的所述俯视图像无线传输至所述图像获取装置 10。由此,通过无线传输装置70可实现图像数据源的稳定可靠的远距离(例如,距离≥120m)传输,从而可有效地解决机手视野受限的问题,实时监控大空间范围吊装场景中的目标对象,进而起到辅助引导吊装的作用。其中,所述俯视图像可为俯视图片、俯视视频图像等。
在优选实施例中,所述无线传输装置70可为无线网桥。所述无线网桥可包括:被安装在所述臂架顶端的无线发送端72;以及被安装在所述臂架的基础臂侧面且与所述无线发送端72面对面设置的无线接收端74,如图3所示。其中,所述无线发送端72与无线接收端74的面对面设置可实现数据的最有效无线传输。
如图4所示,所述状态参数识别装置20可包括:像素大小获取模块22,用于基于所述预设视野范围的俯视图像,获取所述预设标签的像素大小;像素物理尺寸计算模块24,所述像素物理尺寸计算模块24可与所述像素大小获取模块相连接22,用于基于所述预设标签的像素大小与物理尺寸,计算单位像素的物理尺寸;以及状态参数计算模块26,所述状态参数计算模块26与所述像素物理尺寸计算模块24,用于基于所述单位像素的物理尺寸、所述预设视野范围的俯视图像及所述特定几何关系,计算所述吊装过程中的状态参数。其中,所述预设标签可为无图形标签或图形标签(例如棋盘格标签)。
对于无图形标签,由所述像素大小获取模块22确定所述无图形标签在相应俯视图像的水平方向及垂直方向上所占的像素大小,分别为w 1像素、h 1像素;由所述像素物理尺寸计算模块24根据所述无图形标签的像素大小w 1像素、h 1像素与相应的物理尺寸W 1实际、H 1实际,计算单位像素的水平物理尺寸及垂直物理尺寸分别为L 像素x=W 1实际/w 1像素及L 像素y=H 1实际/h 1像素(一般而言,L 像素x约等于L 像素y,下文公式(4)中的L 像素=L 像素x或L 像素y)。
对于图形标签(以棋盘格标签为例),如图5(a)、5(b)及5(c)所示,圆点为检测到的目标特征角点,无论臂架运行在什么状态时,设棋盘格标签的横向上(沿AB、A 1B 1或A 2B 2方向)的两端处目标特征角点(可简称为最大内角点)之间的实际物理尺寸分别为W 2实际、W’ 2实际及W” 2实际;并且以图5(a)为例,棋盘格标签的横向上的最大内角点坐标分别为A(x a,y a)、B(x b,y b),故由所述像素大小获取模块22确定横向上的最大内角点之间的像素距离(即棋盘格标签横向上所占的像素大小)为:
Figure PCTCN2020101022-appb-000004
棋盘格标签纵向上所占的像素大小与横向上所占的像素大小相等;由所述像素物理尺寸计算模块24根据所述棋盘格标签的像素大小l AB与相应的物理尺寸W 2实际,计算单位像素的物理尺寸L 像素=W 2实际/l AB
因此,不论预设标签是否存在旋转,均可精准计算单位像素对应的物理尺寸。
在所述目标对象为吊钩且所述状态参数为所述吊钩的摆角的情况下,所述状态参数计算模块26包括:第一像素坐标获取单元260,用于基于所述预设视野范围的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图 像上的投影点;以及摆角计算单元262,所述摆角计算单元262可与所述第一像素坐标获取单元260相连接,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标、所述单位像素的物理尺寸、所述臂架顶端到所述吊钩的距离及第一三角关系,计算所述吊钩的摆角,如图6所示。
具体地,所述摆角计算单元262可包括:距离计算组件(未示出),用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心到所述俯视图像的中心的实际距离;以及摆角计算组件(未示出),所述摆角计算组件(未示出)可与所述距离计算组件(未示出)相连接,用于基于所述预设标签的中心到所述俯视图像的中心的实际距离、所述臂架顶端到所述吊钩的距离及所述第一三角关系,计算所述吊钩的摆角。
其中,所述摆角计算组件(未示出)用于计算所述吊钩的摆角包括:根据正弦公式(1)计算所述吊钩的摆角γ,
Figure PCTCN2020101022-appb-000005
其中,L DB为所述预设标签的中心到所述俯视图像的中心的实际距离;L OB为所述臂架顶端到所述吊钩的距离。
具体而言,如图7所示,以臂架顶端在图像平面上的投影点为原点,图像水平中轴线为X轴,垂直中轴线为Y轴以及垂直于图像平面方向为Z轴,建立三维坐标系(本文如无特别说明,三维坐标系均相同),包括吊钩上侧的无图形标签1在内的预设视野范围的俯视图像所在的平面与XY平面相平行,且该俯视图像的中心D点为臂架顶端O点在该俯视图像上的投影点。根据所述俯视图像,可获取无图形标签1的中心B点相对于D点的像素坐标w 1偏移、h 1偏移,由此,可根据w 1偏移、h 1偏移及单位像素在水平方向与垂直方向上的物理尺寸,计算直角三角形BCD的边DC的长度L DC与边BC的长度L BC;然后在直角三角形BCD中,根据勾股定理计算B点到D点的实际距离
Figure PCTCN2020101022-appb-000006
Figure PCTCN2020101022-appb-000007
然后,在直角三角形ODB中,根据DB及臂架顶端到吊钩的距离L OB,结合上述正弦公式(1)可计算得到所述吊钩的摆角
Figure PCTCN2020101022-appb-000008
当然,在直角三角形BCD中,还可计算得到摆角的水平方位角θ=arccos(L 像素x*w 1偏移/L DB)*180/π。
当然,在上述实施例中,可将无图形标签替换为棋盘格标签或其他合适的标签,并且可将上述用于计算吊钩摆角的第一三角关系中的预设标签的中心替换为该预设标签中的其他任意几何点。
上述实施例在吊钩上侧(例如在吊钩的滑轮上侧)安装标签,通过视觉检测的方式,实现在线实时计算吊钩的偏摆角度。上述系统具备成本低、计算复杂度低、具有实时性与可靠性等优点,其可应用到吊钩防摆控制中,从而实现平稳吊装。
在本发明其他实施例中,还通过视觉识别技术结合多传感器检测的数据识别目标对象相对臂架顶端在俯视图像上的投影点的相对位置偏移向量ΔX、ΔY及所述吊钩距所述目标对象上侧的预设标签的目标高度ΔZ。由此,可进而根据ΔX、ΔY及ΔZ可获取所述吊钩运行至目标对象时所述吊装设备 的目标回转角度、目标变幅长度及所述吊钩距所述目标对象上侧的预设标签的目标高度。
首先,介绍识别目标对象相对臂架顶端在俯视图像上的投影点的相对位置偏移向量ΔX、ΔY的过程。
如图2所示,所述识别系统100还可包括:当前状态参数获取装置80,用于获取所述吊装设备的当前回转角度与当前变幅长度。相应地,在所述目标对象为起吊点或就位点且所述状态参数为所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度的情况下,所述状态参数计算模块26可包括:第二像素坐标获取单元264,用于基于所述预设视野范围内的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图像上的投影点;以及回转角度与变幅长度计算单元266,所述回转角度与变幅长度计算单元266可与所述第二像素坐标获取单元264及所述当前状态参数获取装置80相连接,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标、所述单位像素的物理尺寸、所述吊装设备的当前回转角度与当前变幅长度及第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度,如图6所示。
具体地,所述回转角度与变幅长度计算单元266可包括:物理坐标计算组件(未示出),用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心相对于所述俯视图像的中心的物理坐标;回转角度计算组件(未示出),所述回转角度计算组件(未示出)可与所述物理坐标计算组件(未示出)相连接,用于基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标、所述吊装设备的当前回转角度与当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度;以及变幅长度计算组件(未示出),所述变幅长度计算组件(未示出)可与所述物理坐标计算组件(未示出)相连接,用于基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标、所述吊装设备的当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度。
其中,所述回转角度计算组件(未示出)用于计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度包括:基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前回转角度θ 当前与当前变幅长度R 当前及公式(2),计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度θ 目标
Figure PCTCN2020101022-appb-000009
其中,所述变幅长度计算组件(未示出)用于计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度包括:基于所述预设标签的中心相对于所述图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前变幅长度R 当前及公式(3),计算所述吊钩运行至所述起吊点或所述就位点 时所述吊装设备的目标变幅长度,
Figure PCTCN2020101022-appb-000010
具体而言,图8所示为包括吊钩上侧的棋盘格标签2在内的预设视野范围的俯视图像所在的平面,且该俯视图像的中心D点(x D,y D)为臂架顶端O点在该俯视图像上的投影点,棋盘格标签2的中心C点所对应的角点的像素坐标为(x c,y c)。其中,所述吊装设备的当前回转角度与当前变幅长度可分别通过回转角度传感器及长度传感器采集获取。
根据所述俯视图像,可推算出中心C点相对于D点在水平与垂直方向的物理位置偏移ΔX、ΔY分别为:ΔX=(x c-x D)*L 像素;以及ΔY=(y c-y D)*L 像素。然后,在直角三角形EFC中,根据当前回转角度θ 当前及当前变幅长度R 当前,可推算目标回转角度
Figure PCTCN2020101022-appb-000011
根据当前变幅长度R 当前,可推算目标变幅长度
Figure PCTCN2020101022-appb-000012
依据棋盘格标签2的中心C点对应的角点像素坐标(x c,y c)相对于俯视图像的中心D(x 0,y 0)的物理位置偏移ΔX、ΔY,确定所述臂架的运动方向:x c-x D>0:臂架左回转;x c-x D<0:臂架右回转;y c-y D>0:臂架起变幅;以及y c-y D<0:臂架落变幅。
接着,介绍识别所述吊钩距所述目标对象上侧的预设标签的目标高度ΔZ的过程。
如图2所示,所述识别系统100还可包括:第二距离传感器90,用于采集所述吊钩距地面的高度。相应地,在所述目标对象为起吊点或就位点且所述状态参数为所述吊钩距所述目标对象上侧的预设标签的目标高度的情况下,所述状态参数计算模块26包括:第一高度获取单元268,用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度;第二高度获取单元270,所述第二高度获取单元270可与所述第二距离传感器90相连接,用于根据所述臂架顶端距地面的高度及所述吊钩距地面的高度,获取所述臂架顶端距所述吊钩的高度;以及高度计算单元272,所述高度计算单元272可与所述第一高度获取单元268及所述第二高度获取单元270相连接,用于根据所述臂架的顶端距离所述目标对象上侧的预设标签的高度及所述臂架的顶端距离所述吊钩的高度,计算所述吊钩距所述目标对象上侧的预设标签的目标高度,如图6所示。
其中,所述第一高度获取单元268用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度可包括:根据公式(4)计算所述臂架顶端距所述目标对象上侧的预设标签的高度H1,
H1=L 像素*f  (4),
其中,f为所述单目相机的焦距;以及L 像素为所述单位像素的物理尺寸。
具体而言,如图9所示,所述目标对象以起吊点为例,根据单目相机的成像原理,通过公式(4)计算出相机(或臂架顶端)相对起吊点的高度H1;然后求取所述臂架顶端距地面的高度H 臂架与所述吊钩距地面的高度H 吊钩之差,以得到所述臂架的顶端距所述吊钩的高度H2;最后求取相机(或臂架顶端)相对起吊点的距离H1与所述臂架的顶端距所述吊钩的高度H2之差,以得到所述吊钩距 所述目标对象上侧的预设标签的目标高度ΔZ=H1-H2=H1-(H 臂架-H 吊钩)。
根据所述吊钩距所述目标对象上侧的预设标签的目标高度ΔZ,判定卷扬机构升降(起落)方向:当Z>0时,卷扬落(降);当Z<0时,卷扬起(升)。
当然,在上述各个实施例中,可将棋盘格标签替换为无图形标签或其他合适的标签,并且可将上述用于计算吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度与目标回转角度的三角关系中的预设标签的中心替换为该预设标签中的其他任意几何点。
上述各个实施例可适用于地面吊装、高台吊装及侧面吊装等各类复杂吊装场景,通过实时在线目标检测,解算出吊装物或就位点的目标回转角度、目标变幅长度等状态参数,对吊钩进行控制定位,可实现吊装物或就位点被遮挡时的精准定位问题。
综上所述,本发明创造性地通过获取包括目标对象上侧的预设标签在内的预设视野范围的俯视图像,然后根据所述俯视图像与特定几何关系,并采用视觉识别方法计算吊装过程中的状态参数,由此可对吊装过程所涉及的状态参数进行有效识别,根据所述状态参数可实现自动吊装过程,例如不仅可防止吊钩摆角过大,还可实现吊装过程的有效定位。
如图10所示,本发明实施例还提供一种吊装定位系统的结构图。所述吊装定位系统可包括:所述的用于识别状态参数的系统(简称为识别系统100);以及第二控制装置200,所述第二控制装置200可与所述识系统100相连接,用于根据由所述识别系统100获取的所述吊装过程的状态参数,吊装设备的相应执行机构动作以实现自动吊装过程。
在所述吊装过程的状态参数为吊钩的摆角的情况下,所述吊装定位系统还可包括:比较装置(未示出),所述比较装置(未示出)与所述识别系统100及所述第二控制装置200相连接,用于将所述吊钩的摆角与摆角阈值相比较。相应地,所述第二控制装置200用于控制所述吊装设备的执行机构动作包括:在所述吊钩的摆角等于所述摆角阈值的情况下,控制对臂架施加与所述吊钩的摆角方向相反的力以防止所述吊钩的摆角过大。本实施例的实现方式简单,并且可有效地进行吊钩防摇控制。
在所述吊装过程的状态参数为吊钩运行至起吊点或就位点时所述吊装设备的目标回转角度、目标变幅长度及所述吊钩距目标对象的目标高度且当前状态参数为所述吊装设备的当前回转角度、当前变幅长度及所述吊钩对地面的当前高度的情况下,所述第二控制装置200用于控制所述吊装设备的相应执行机构动作包括:根据所述吊装设备的当前回转角度、当前变幅长度及所述吊钩对地面的当前高度、所述目标回转角度、所述目标变幅长度及所述吊钩距所述目标对象上侧的预设标签的目标高度,控制所述吊装设备的相应执行机构动作以使得所述吊钩运行至所述起吊点或所述就位点。在所述目标对象为起吊点的情况下,由于吊载物本身的高度已知,故可根据所述吊钩对地面的当前高度及所述吊载物本身的高度之间,计算得出所述吊钩距所述目标对象上侧的预设标签的当前高度。
由于图像无线传输、图像识别及控制执行等过程均需要花费一定时间,而在该时间内,臂架(吊 钩)在运动,由此导致定位结果计算值与吊钩的当前位置不一致。因此,为保证定位的精度,还可采用一定的减速控制策略,完成自动化的精准吊装。
在本发明的优选实施例中,所述第二控制装置200用于控制所述吊装设备的相应执行机构动作可包括:通过预设策略提前控制所述相应执行机构停止动作,以使得所述吊钩准确地运行至所述起吊点或所述就位点。
具体地,所述第二控制装置200可包括:回转控制模块(未示出),所述回转控制装置(未示出)可与所述识别系统100及所述当前状态参数获取装置80相连接,用于在所述目标回转角度与所述当前回转角度的差值等于阈值角度的情况下,控制回转机构停止回转动作;变幅控制模块(未示出),所述变幅控制模块(未示出)可与所述识别系统100及所述当前状态参数获取装置80相连接,用于在所述目标变幅长度与所述当前变幅长度的差值等于阈值长度的情况下,控制变幅机构停止变幅动作;以及卷扬控制模块(未示出),所述卷扬控制模块(未示出)可与所述识别系统100及所述当前状态参数获取装置80相连接,用于所述吊钩对地面的目标高度与所述吊钩对地面的当前高度的差值等于阈值高度的情况下,控制卷扬机构停止卷扬动作。
具体而言,如图11所示,时间t为图像传输延迟时间、图像处理延迟时间即控制延迟时间的总和,速度V为起重机匀速运行的速度,纵坐标轴可表示回转角度、变幅长度或卷扬高度。在控制相应的执行机构停止运行之后,在起重机减速运行期间还可运行相应的阈值参量(例如,回转角度阈值θ 阈值、变幅长度阈值R 阈值和卷扬高度阈值Z 阈值)。其中,回转角度阈值θ 阈值、变幅长度阈值R 阈值和卷扬高度阈值Z 阈值,可通过起重机的运行控制曲线、控制电流等特性来获取。
上述实施例以检测的目标回转角度、目标变幅长度、卷扬高度参数和当前臂架动作对应值进行实时逼近运算,从而实现控制定位(定位精度达10cm)。
此外,所述吊装定位系统还可包括:显示装置(未示出),用于以高亮框选跟踪的方式显示所述目标对象的运行姿态。其中,所述显示装置可被安装在吊装设备的驾驶室内,其可为工业触摸显示屏、电脑显示屏或移动终端的显示屏等设备。具体地,在起重机的臂架运动过程中,显示装置可通过高亮框选的方式跟踪显示目标对象,并通过一键触控相应的定位功能,可实时监控吊装场景画面,从而引导机手做出有效动作,与此同时,给予起重机运动状态的显示。
所述第一控制装置60及第二控制装置200可为通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、可编程逻辑控制器(PLC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)、状态机等等。并且,所述第一控制装置60及第二控制装置200可为单独的部件,也可为同一部件,且所述第一控制装置60及第二控制装置200可被安装在所述吊装设备的驾驶室内。
下面对起重机的吊装定位过程进行说明和解释,如图12所示。
具体地,所述吊装定位过程可包括步骤S1201-S1210。
步骤S1201,分别采集吊钩上侧的无图形标签1在内的预设视野范围的俯视图像A与起吊点(或就位点)上侧的棋盘格标签2在内的预设视野范围内的俯视图像B。
其中,俯视图像A与俯视图像B所在的平面不同(即不共面)。
步骤S1202,分别根据无图形标签1与棋盘格标签2的像素大小、物理尺寸,计算各自的单位像素的物理尺寸,并执行步骤S1203及步骤S1207。
步骤S1203,根据无图形标签1的中心相对于俯视图像A的中心的像素坐标及所述无图形标签1的单位像素的物理尺寸,计算所述无图形标签1到俯视图像A的中心的实际距离。
当然,还可在该步骤S1203中计算出摆角的水平方位角θ。
步骤S1204,获取力限器卷扬下放的绳长,以获取所述臂架顶端到所述吊钩的距离。
步骤S1205,根据所述无图形标签1的中心到俯视图像A的中心的实际距离、所述臂架顶端到所述吊钩的距离及相应的三角关系,计算所述吊钩的摆角。
步骤S1206,根据所述吊钩的摆角及摆角阈值,控制控制臂架的运行姿态。
步骤S1207,根据棋盘格标签2的中心相对于俯视图像B的中心的像素坐标及所述棋盘格标签2的单位像素的物理尺寸,计算所述棋盘格标签2的中心相对于所述俯视图像B的中心的物理坐标。
步骤S1208,根据所述棋盘格标签2的中心相对于所述俯视图像B的中心的物理坐标、所述起重机的当前回转角度与当前变幅长度及相应的三角关系,计算所述起重机的目标回转角度与目标变幅长度。
步骤S1209,计算吊钩距起吊点(或就位点)的目标高度。
步骤S1210,根据所述起重机的目标回转角度、目标变幅长度、吊钩距起吊点(或就位点)的目标高度及所述起重机相应的当前状态参数,采用预设策略控制相应执行机构动作,以使得吊钩准确定位到起吊点(或就位点)。
本发明实施例可通过视觉与多传感融合技术实现目标对象的自动锁定与控制定位,提升了作业安全性,使得起重机具备环境感知与自主决策功能,实现了无人自动化的吊装功能。也就是说,上述吊装过程可提升起重机的环境感知能力和自动化水平,从而有效地提高起重机的工作效率。
综上所述,本发明创造性地通过由上述系统获取的状态参数,控制吊装设备的相应执行机构动作以实现自动吊装过程,由此,可实现自动吊装过程,例如不仅可防止吊钩摆角过大,还可实现吊装过程的有效定位。
本发明实施例还提供一种吊装设备,所述吊装设备可包括:所述的吊装定位系统。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型 均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (20)

  1. 一种用于识别状态参数的系统,其特征在于,所述系统包括:
    图像获取装置,用于获取包括吊装过程所涉及的目标对象上侧的预设标签在内的预设视野范围的俯视图像;以及
    状态参数识别装置,用于基于所述预设视野范围的俯视图像及特定几何关系,采用视觉识别方法计算所述吊装过程中的状态参数,
    其中所述特定几何关系与吊装设备的臂架顶端在所述俯视图像上的投影点及所述预设标签的几何点相关。
  2. 根据权利要求1所述的用于识别状态参数的系统,其特征在于,所述状态参数识别装置包括:
    像素大小获取模块,用于基于所述预设视野范围的俯视图像,获取所述预设标签的像素大小;
    像素物理尺寸计算模块,用于基于所述预设标签的像素大小与物理尺寸,计算单位像素的物理尺寸;以及
    状态参数计算模块,用于基于所述单位像素的物理尺寸、所述预设视野范围的俯视图像及所述特定几何关系,计算所述吊装过程中的状态参数。
  3. 根据权利要求2所述的用于识别状态参数的系统,其特征在于,所述系统还包括:
    图像采集装置,用于采集所述包括所述预设标签在内的预设视野范围的俯视图像,并将该俯视图像发送至所述图像获取装置。
  4. 根据权利要求3所述的用于识别状态参数的系统,其特征在于,所述系统还包括:
    无线传输装置,用于将所述图像采集装置所采集的所述俯视图像无线传输至所述图像获取装置。
  5. 根据权利要求4所述的用于识别状态参数的系统,其特征在于,所述无线传输装置为无线网桥,
    所述无线网桥包括:被安装在所述臂架顶端的无线发送端;以及被安装在所述臂架的基础臂侧面且与所述无线发送端面对面设置的无线接收端。
  6. 根据权利要求3所述的用于识别状态参数的系统,其特征在于,所述图像采集装置为被安装在所述臂架顶端的单目相机,
    相应地,所述系统还包括:
    角度传感器,用于采集所述臂架顶端的倾斜角;
    第一距离传感器,用于采集所述臂架顶端距地面的高度;以及
    第一控制装置,用于根据所述臂架顶端的倾斜角调整所述单目相机的角度,以使其光轴中心始终垂直于地面;并根据所述臂架顶端距地面的高度调节所述单目相机的焦距,以保持所述目标对象在所述俯视图像中的大小一致。
  7. 根据权利要求6所述的用于识别状态参数的系统,其特征在于,在所述目标对象为吊钩且所述状态参数为所述吊钩的摆角的情况下,所述状态参数计算模块包括:
    第一像素坐标获取单元,用于基于所述预设视野范围的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图像上的投影点;以及
    摆角计算单元,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标、所述单位像素的物理尺寸、所述臂架顶端到所述吊钩的距离及第一三角关系,计算所述吊钩的摆角。
  8. 根据权利要求7所述的用于识别状态参数的系统,其特征在于,所述摆角计算单元包括:
    距离计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心到所述俯视图像的中心的实际距离;以及
    摆角计算组件,用于基于所述预设标签的中心到所述俯视图像的中心的实际距离、所述臂架顶端到所述吊钩的距离及所述第一三角关系,计算所述吊钩的摆角。
  9. 根据权利要求8所述的用于识别状态参数的系统,其特征在于,所述摆角计算组件用于计算所述吊钩的摆角包括:
    根据以下正弦公式计算所述吊钩的摆角γ,
    Figure PCTCN2020101022-appb-100001
    其中,L DB为所述预设标签的中心到所述俯视图像的中心的实际距离;L OB为所述臂架顶端到所述吊钩的距离。
  10. 根据权利要求1所述的用于识别状态参数的系统,其特征在于,所述系统还包括:
    当前状态参数获取装置,用于获取吊装设备的当前回转角度与当前变幅长度,
    相应地,在所述目标对象为起吊点或就位点且所述状态参数为吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度的情况下,所述状态参数计算模块包括:
    第二像素坐标获取单元,用于基于所述预设视野范围内的俯视图像,获取所述预设标签的中心相对于所述俯视图像的中心的像素坐标,其中所述俯视图像的中心为所述臂架顶端在该俯视图像上的投影点;以及
    回转角度与变幅长度计算单元,用于基于所述预设标签的中心相对于所述俯视图像的中心的 像素坐标、所述单位像素的物理尺寸、所述吊装设备的当前回转角度与当前变幅长度及第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度及目标变幅长度。
  11. 根据权利要求10所述的用于识别状态参数的系统,其特征在于,所述回转角度与变幅长度计算单元包括:
    物理坐标计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的像素坐标及所述单位像素的物理尺寸,计算所述预设标签的中心相对于所述俯视图像的中心的物理坐标;
    回转角度计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标、所述吊装设备的当前回转角度与当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度;以及
    变幅长度计算组件,用于基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标、所述吊装设备的当前变幅长度及所述第二三角关系,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度。
  12. 根据权利要求11所述的用于识别状态参数的系统,其特征在于,所述回转角度计算组件用于计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度包括:
    基于所述预设标签的中心相对于所述俯视图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前回转角度θ 当前与当前变幅长度R 当前及以下公式,计算所述吊钩运行至所述起吊点或所述就位点时所述吊装设备的目标回转角度θ 目标
    Figure PCTCN2020101022-appb-100002
    所述变幅长度计算组件用于计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度包括:
    基于所述预设标签的中心相对于所述图像的中心的物理坐标(ΔX,ΔY)、吊装设备的当前变幅长度R 当前及以下公式,计算所述运行至所述起吊点或所述就位点时所述吊装设备的目标变幅长度,
    Figure PCTCN2020101022-appb-100003
  13. 根据权利要求6所述的用于识别状态参数的系统,其特征在于,所述系统还包括:
    第二距离传感器,用于采集吊钩距地面的高度,
    相应地,在所述目标对象为起吊点或就位点且所述状态参数为所述吊钩距所述目标对象上侧的预设标签的目标高度的情况下,所述状态参数计算模块包括:
    第一高度获取单元,用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度;
    第二高度获取单元,用于根据所述臂架顶端距地面的高度及所述吊钩距地面的高度,获取所述臂架顶端距所述吊钩的高度;以及
    高度计算单元,用于根据所述臂架的顶端距所述目标对象上侧的预设标签的高度及所述臂架的顶端距离所述吊钩的高度,计算所述吊钩距所述目标对象上侧的预设标签的目标高度。
  14. 根据权利要求13所述的用于识别状态参数的系统,其特征在于,所述第一高度获取单元用于获取所述臂架顶端距所述目标对象上侧的预设标签的高度包括:
    根据以下公式计算所述臂架顶端距所述目标对象上侧的预设标签的高度H1,
    H1=L 像素*f,
    其中,f为所述单目相机的焦距;以及L 像素为所述单位像素的物理尺寸。
  15. 一种吊装定位系统,其特征在于,所述吊装定位系统包括:
    根据权利要求1-14中的任一项权利要求所述的用于识别状态参数的系统;以及
    第二控制装置,用于根据由所述系统获取的所述吊装过程的状态参数,控制吊装设备的相应执行机构动作以实现自动吊装过程。
  16. 根据权利要求15所述的吊装定位系统,其特征在于,在所述吊装过程的状态参数为吊钩的摆角的情况下,所述吊装定位系统还包括:
    比较装置,用于将所述吊钩的摆角与摆角阈值相比较,
    相应地,所述第二控制装置用于控制所述吊装设备的执行机构动作包括:在所述吊钩的摆角等于所述摆角阈值的情况下,控制对臂架施加与所述吊钩的摆角方向相反的力以防止所述吊钩的摆角过大。
  17. 根据权利要求15所述的吊装定位系统,其特征在于,在所述吊装过程的状态参数为吊钩运行至起吊点或就位点时所述吊装设备的目标回转角度、目标变幅长度及所述吊钩距目标对象的目标高度的情况下,所述第二控制装置用于控制所述吊装设备的相应执行机构动作包括:
    根据所述吊装设备的当前回转角度、当前变幅长度及所述吊钩对地面的当前高度、所述目标回转角度、所述目标变幅长度及所述吊钩距所述目标对象上侧的预设标签的目标高度,控制所述吊装设备的相应执行机构动作以使得所述吊钩运行至所述起吊点或所述就位点。
  18. 根据权利要求17所述的吊装定位系统,其特征在于,所述第二控制装置用于控制所述吊装设备的相应执行机构动作包括:
    通过预设策略提前控制所述相应执行机构停止动作,以使得所述吊钩准确地运行至所述起吊点或所述就位点。
  19. 根据权利要求18所述的吊装定位系统,其特征在于,所述第二控制装置包括:
    回转控制模块,用于在所述目标回转角度与所述当前回转角度的差值等于回转角度阈值的情 况下,控制回转机构停止回转动作;
    变幅控制模块,用于在所述目标变幅长度与所述当前变幅长度的差值等于变幅长度阈值的情况下,控制变幅机构停止变幅动作;以及
    卷扬控制模块,用于所述吊钩对地面的目标高度与所述吊钩对地面的当前高度的差值等于卷扬高度阈值的情况下,控制卷扬机构停止卷扬动作。
  20. 一种吊装设备,其特征在于,所述吊装设备包括:根据权利要求15-19中的任一项权利要求所述的吊装定位系统。
PCT/CN2020/101022 2020-04-16 2020-07-09 用于识别状态参数的系统、吊装定位系统及吊装设备 WO2021208273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010298341.7A CN111204662B (zh) 2020-04-16 2020-04-16 用于识别状态参数的系统、吊装定位系统及吊装设备
CN202010298341.7 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021208273A1 true WO2021208273A1 (zh) 2021-10-21

Family

ID=70781915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101022 WO2021208273A1 (zh) 2020-04-16 2020-07-09 用于识别状态参数的系统、吊装定位系统及吊装设备

Country Status (2)

Country Link
CN (1) CN111204662B (zh)
WO (1) WO2021208273A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120583A (zh) * 2021-11-15 2022-03-01 机械科学研究总院青岛分院有限公司 一种基于机器视觉的行车安全预警装置
CN114211494A (zh) * 2021-12-28 2022-03-22 核动力运行研究所 一种多关节机械臂拆装蒸汽发生器堵板螺栓定位系统和方法
CN115306165A (zh) * 2022-08-25 2022-11-08 中国建筑第二工程局有限公司 一种装配式预制构件安装系统
CN115594086A (zh) * 2022-10-10 2023-01-13 北京迈思发展科技有限责任公司(Cn) 一种钢筋加工厂材料跟踪系统
WO2023116097A1 (zh) * 2021-12-21 2023-06-29 段采标 实现机械触觉的方法及电子设备
CN117536118A (zh) * 2023-11-28 2024-02-09 保利长大工程有限公司 用于桥面吊机系统的梁段智能吊装方法及桥面吊机系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204662B (zh) * 2020-04-16 2020-08-21 中联重科股份有限公司 用于识别状态参数的系统、吊装定位系统及吊装设备
CN111487610A (zh) * 2020-06-24 2020-08-04 中联重科股份有限公司 起重机及其吊装作业的定位系统和定位方法、存储介质
CN111847256B (zh) * 2020-07-03 2022-03-04 中联重科股份有限公司 机械结构的回转监控方法、系统及工程机械
CN111874812B (zh) * 2020-07-31 2023-01-06 三一汽车起重机械有限公司 方位调节系统、方位调节方法及工程机械
DE102020120699A1 (de) * 2020-08-05 2022-02-10 Konecranes Global Corporation Auslegerdrehkran mit einer Kamera sowie Verfahren zur Reduzierung von Lastpendelungen im Kranbetrieb
CN114803832B (zh) * 2022-04-22 2023-02-03 中联重科股份有限公司 吊钩的定位方法、处理器、吊装设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315005A1 (de) * 1993-05-06 1994-11-10 Deutsche Aerospace Vorrichtung zur meßtechnischen Erfassung von Winkellagen eines bewegten Gegenstandes gegenüber seiner Ausgangsstellung
JP2011207571A (ja) * 2010-03-30 2011-10-20 Tadano Ltd クレーンの制御装置及びクレーン
CN102515027A (zh) * 2012-01-09 2012-06-27 三一汽车起重机械有限公司 起重机的操作控制系统及其控制方法
CN104003307A (zh) * 2014-04-11 2014-08-27 湖南中联重科智能技术有限公司 塔机视频监控控制设备、方法、系统及塔机
CN106081907A (zh) * 2016-05-15 2016-11-09 大连海事大学 一种非接触式行吊吊绳摆角监测装置
CN107572373A (zh) * 2017-08-31 2018-01-12 武汉理工大学 基于机器视觉的新型起重机主动防斜拉控制系统及其控制方法
CN108100880A (zh) * 2017-11-13 2018-06-01 徐州重型机械有限公司 一种轮式起重机操纵室自动变幅系统及方法
CN108675142A (zh) * 2018-03-18 2018-10-19 武汉理工大学 基于单目相机的多高度标定测量方法及起重机防斜拉和精确定位方法
CN109019335A (zh) * 2018-09-04 2018-12-18 大连理工大学 一种基于深度学习的吊装安全距离检测方法
CN109179229A (zh) * 2018-11-20 2019-01-11 义乌恒邦建筑智能科技有限公司 塔吊可视化安全监视系统及监视方法
CN111204662A (zh) * 2020-04-16 2020-05-29 中联重科股份有限公司 用于识别状态参数的系统、吊装定位系统及吊装设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030166B1 (ko) * 2009-05-06 2011-04-18 박대규 크레인 안전장치
CN107758513B (zh) * 2017-09-07 2019-04-23 北汽福田汽车股份有限公司 施工信息的获取方法、装置、起重机、存储介质和处理器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315005A1 (de) * 1993-05-06 1994-11-10 Deutsche Aerospace Vorrichtung zur meßtechnischen Erfassung von Winkellagen eines bewegten Gegenstandes gegenüber seiner Ausgangsstellung
JP2011207571A (ja) * 2010-03-30 2011-10-20 Tadano Ltd クレーンの制御装置及びクレーン
CN102515027A (zh) * 2012-01-09 2012-06-27 三一汽车起重机械有限公司 起重机的操作控制系统及其控制方法
CN104003307A (zh) * 2014-04-11 2014-08-27 湖南中联重科智能技术有限公司 塔机视频监控控制设备、方法、系统及塔机
CN106081907A (zh) * 2016-05-15 2016-11-09 大连海事大学 一种非接触式行吊吊绳摆角监测装置
CN107572373A (zh) * 2017-08-31 2018-01-12 武汉理工大学 基于机器视觉的新型起重机主动防斜拉控制系统及其控制方法
CN108100880A (zh) * 2017-11-13 2018-06-01 徐州重型机械有限公司 一种轮式起重机操纵室自动变幅系统及方法
CN108675142A (zh) * 2018-03-18 2018-10-19 武汉理工大学 基于单目相机的多高度标定测量方法及起重机防斜拉和精确定位方法
CN109019335A (zh) * 2018-09-04 2018-12-18 大连理工大学 一种基于深度学习的吊装安全距离检测方法
CN109179229A (zh) * 2018-11-20 2019-01-11 义乌恒邦建筑智能科技有限公司 塔吊可视化安全监视系统及监视方法
CN111204662A (zh) * 2020-04-16 2020-05-29 中联重科股份有限公司 用于识别状态参数的系统、吊装定位系统及吊装设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120583A (zh) * 2021-11-15 2022-03-01 机械科学研究总院青岛分院有限公司 一种基于机器视觉的行车安全预警装置
WO2023116097A1 (zh) * 2021-12-21 2023-06-29 段采标 实现机械触觉的方法及电子设备
CN114211494A (zh) * 2021-12-28 2022-03-22 核动力运行研究所 一种多关节机械臂拆装蒸汽发生器堵板螺栓定位系统和方法
CN114211494B (zh) * 2021-12-28 2024-01-12 核动力运行研究所 一种多关节机械臂拆装蒸汽发生器堵板螺栓定位系统和方法
CN115306165A (zh) * 2022-08-25 2022-11-08 中国建筑第二工程局有限公司 一种装配式预制构件安装系统
CN115594086A (zh) * 2022-10-10 2023-01-13 北京迈思发展科技有限责任公司(Cn) 一种钢筋加工厂材料跟踪系统
CN115594086B (zh) * 2022-10-10 2023-11-24 北京迈思发展科技有限责任公司 一种钢筋加工厂材料跟踪系统
CN117536118A (zh) * 2023-11-28 2024-02-09 保利长大工程有限公司 用于桥面吊机系统的梁段智能吊装方法及桥面吊机系统
CN117536118B (zh) * 2023-11-28 2024-04-12 保利长大工程有限公司 用于桥面吊机系统的梁段智能吊装方法及桥面吊机系统

Also Published As

Publication number Publication date
CN111204662B (zh) 2020-08-21
CN111204662A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2021208273A1 (zh) 用于识别状态参数的系统、吊装定位系统及吊装设备
EP4056518A1 (en) Crane hook positioning method, apparatus and system, and engineereing machinery
CN212425180U (zh) 吊装信息识别系统、吊装定位系统及吊装设备
JP6838782B2 (ja) コンテナクレーンの制御システム及びコンテナクレーンの制御方法
KR101699672B1 (ko) 컨테이너 크레인을 사용하여 랜딩 타깃 상에 컨테이너들을 자동적으로 랜딩하기 위한 방법 및 시스템
CN110869306B (zh) 用于远程起重机控制的装置和方法
WO2015154508A1 (zh) 塔机视频监控控制设备、方法、系统及塔机
CN105271004A (zh) 采用单目视觉的吊具空间定位装置及方法
CN111943043A (zh) 引导信息显示装置和具备该装置的起重机、引导信息显示方法
CN106629399A (zh) 一种集装箱对箱引导系统
CN113860178B (zh) 一种塔式起重机吊装物体识别及碰撞信息测量系统及方法
WO2010009570A1 (zh) 一种起吊定位方法及起吊智能视觉系统
JP2011079648A (ja) 固定映像表示システム
JP6550803B2 (ja) 画像表示装置
CN111487610A (zh) 起重机及其吊装作业的定位系统和定位方法、存储介质
CN107055331A (zh) 集装箱对箱引导系统
CN106643661B (zh) 基于机器视觉的轨道式起重机吊具位姿检测系统及方法
JP6257947B2 (ja) 作業車の周囲情報取得装置
JP6097063B2 (ja) 高さ測定装置及び高さ測定方法
CN115215221A (zh) 塔式起重机及其控制方法、控制装置和控制器
CN214422133U (zh) 一种吊钩摆角检测装置及起重机
CN111496795B (zh) 一种抓取多层物料的方法及装置
CN113955640B (zh) 基于机器视觉的吊具精准定位系统及方法
JP7295602B2 (ja) 制御システムおよび位置ずれ検出方法
JP7063516B2 (ja) クレーンの操作支援システムおよび操作支援方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931608

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20931608

Country of ref document: EP

Kind code of ref document: A1