WO2021208163A1 - 一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法 - Google Patents

一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法 Download PDF

Info

Publication number
WO2021208163A1
WO2021208163A1 PCT/CN2020/089380 CN2020089380W WO2021208163A1 WO 2021208163 A1 WO2021208163 A1 WO 2021208163A1 CN 2020089380 W CN2020089380 W CN 2020089380W WO 2021208163 A1 WO2021208163 A1 WO 2021208163A1
Authority
WO
WIPO (PCT)
Prior art keywords
grading
powder
spiral
peanut shell
ultrafine powder
Prior art date
Application number
PCT/CN2020/089380
Other languages
English (en)
French (fr)
Inventor
王晓铭
李长河
刘明政
李心平
刘向东
杨会民
张彦彬
侯亚丽
Original Assignee
青岛理工大学
河南科技大学
新疆农业科学院农业机械化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 河南科技大学, 新疆农业科学院农业机械化研究所 filed Critical 青岛理工大学
Priority to ZA2021/06686A priority Critical patent/ZA202106686B/en
Publication of WO2021208163A1 publication Critical patent/WO2021208163A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B15/00Combinations of apparatus for separating solids from solids by dry methods applicable to bulk material, e.g. loose articles fit to be handled like bulk material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/20Reducing volume of filled material
    • B65B1/22Reducing volume of filled material by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/30Devices or methods for controlling or determining the quantity or quality or the material fed or filled
    • B65B1/32Devices or methods for controlling or determining the quantity or quality or the material fed or filled by weighing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B39/06Nozzles, funnels or guides for introducing articles or materials into containers or wrappers adapted to support containers or wrappers
    • B65B39/08Nozzles, funnels or guides for introducing articles or materials into containers or wrappers adapted to support containers or wrappers by means of clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/002Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/005Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external rotors, e.g. impeller, ventilator, fan, blower, pump

Definitions

  • the present disclosure relates to the technical field of peanut processing, in particular to a grading and packaging system and method for spirally dispersing cyclone grading peanut shell ultrafine powder.
  • the physical and chemical properties of peanut shells after ultrafine pulverization have changed.
  • the particle size reaches about 300 meshes, the cell wall is broken, and the degree of pulverization determines the different uses of peanut shells, as shown in the following table:
  • the methods to achieve ultrafine powder classification currently mainly include: (1) According to the medium used, it can be divided into dry classification and wet classification; (2) According to whether there are moving parts, it can be divided into two categories: static Classification and dynamic classification.
  • Common classification equipment includes gravity classifiers, inertial classifiers, cyclones, spiral airflow classifiers, jet classifiers and turbine classifiers.
  • the inventor of the present disclosure found that the current classification equipment has problems such as powder agglomeration, low classification accuracy, and complex post-processing; the traditional powder packaging method is to use electronic weighing, manual bagging for bagging and packaging, and then use The vacuum sealing machine performs vacuum sealing.
  • the disadvantages of this traditional powder packaging method are the large labor and low efficiency, which cannot meet the requirements of large-scale and industrialized production.
  • the present disclosure provides a spiral-scattering cyclone-graded peanut shell ultra-fine powder grading and packaging system and method.
  • the system integrates four major types of peanut shell ultra-fine powder dispersing, grading, automatic weighing, and compact packaging.
  • the function is integrated, the peanut shell ultrafine powder is fully dispersed through the shearing action of the double-headed spiral blade and the high-speed impact of the dry airflow, avoiding the influence of the agglomeration and agglomeration of the ultrafine powder; the symmetrical tangential airflow is in the sieve classification cavity
  • the high-speed rotation of the sieve, the separation of the screen and the high-speed rotation of the grading impeller realize the high-precision grading of the peanut shell bulk materials;
  • the four weighing hoppers with gravity sensor brackets are attached to achieve precise quantification; the compaction is achieved through vibration
  • the joint action of the mechanism and the patting and compacting mechanism realizes the compact packaging of peanut shell ultra-fine powder.
  • the first aspect of the present disclosure provides a grading and packaging system for peanut shell ultra-fine powder with spiral scatter cyclone grading.
  • a grading and packaging system for peanut shell ultrafine powder by spiral scatter cyclone grading includes a dispersing device, a grading device and a packaging device connected in turn.
  • the peanut shell ultrafine powder is dispersed by the dispersing device and then output to the grading device, and the grading device fights against each other
  • the dispersed peanut shell superfine powder is classified and output to the packaging device for packaging;
  • the grading device includes a grading cavity.
  • the grading cavity includes a cylindrical part and a cone part on the lower side of the cylindrical part.
  • a cylindrical sieve grading cavity coaxial with the cylindrical portion is provided in the portion, and a grading impeller coaxial with the cylindrical portion is provided in the sieve grading cavity;
  • the dispersed ultrafine powder is classified once by the rotating airflow formed by the air inlet and the air inlet.
  • the screen cooperates with the rotating airflow to classify the ultrafine powder with a particle size larger than the aperture of the screen for the second time.
  • the grading impeller cooperates with the high-speed rotating airflow.
  • the superfine powder is classified three times.
  • the dispersing device includes a double-headed screw dispersing and feeding device
  • the double-headed spiral dispersing and feeding device includes a screw feeding cavity, and a double-headed screw screw is arranged in the screw feeding cavity.
  • a double-headed spiral blade is fixed on the head screw rod, and the superfine powder is dispersed through the shearing action of the double-headed spiral blade and then sent to the discharge port of the double-headed spiral dispersing and feeding device.
  • the double-headed spiral dispersing and feeding device includes a buffer hopper for receiving ultrafine peanut shell powder into the spiral feeding cavity, and the buffer hopper includes four trapezoidal plates with different inclination angles. The plates are connected end to end in turn to form a ladder-shaped channel.
  • the dispersing device further includes an air dispersing and feeding device, and the air dispersing and feeding device includes a venturi-type tee, and the venturi-type tee includes a shrink tube, a throat tube, and a diffuser tube. After the tube flows through the throat, it impacts the double-headed spiral to disperse the superfine powder received by the venturi tee, and then outputs the dispersed powder to the air inlet of the grading device through the diffuser. mouth.
  • the air inlet and the air inlet are both set with a necking angle of 20°, and the cross-sectional shape is a square.
  • the bottom of the sieve classification cavity is provided with an elliptical bottom plate inclined at a preset angle, and the powder with a particle size larger than the aperture of the sieve falls along the sieve to the elliptical bottom plate, and passes through the coarse powder discharge pipe
  • the grading impeller is fixed between the upper support of the grading impeller and the lower support of the grading impeller, the grading impeller is fixed on the grading impeller, and the grading impeller is fixed on the rotating shaft of the motor;
  • the fine powder is carried to the upper vortex with the upward air flow.
  • the motor drives the grading impeller through the grading impeller blades to intercept the particles with large particle size entrained by the fine powder through collision, and then classify again under the action of the screen, and the uninterrupted fine powder enters the classification.
  • the impeller follows the airflow into the fine powder discharge pipe welded at the center of the top plate of the cylinder.
  • the packaging device includes a feeding funnel and a weighing funnel.
  • the classified ultrafine powder output by the classifying device enters the weighing funnel through the feeding funnel, and the weighing funnel is arranged on a support plate.
  • the bottom of the weighing funnel is provided with a plurality of evenly distributed support rods equipped with gravity sensors for measuring the weight of the ultrafine powder.
  • a discharging pipe is connected to the bottom of the weighing funnel, and both sides of the discharging pipe are connected with the clamping arm through bolts for fixing the packaging bag;
  • the vibrating compaction mechanism includes a vibrating platform, a vibrating platform support, and a spring. The four corners and center positions of the vibrating platform are connected to the vibrating platform support through the spring; the beating compaction mechanism includes a beating disc, A push rod is fixedly connected to the center of the flapping disc to penetrate the rear frame, and the flapping disc is pushed by the push rod to tap the packaging bag.
  • the second aspect of the present disclosure provides a grading and packaging method for peanut shell ultra-fine powder with spiral scatter cyclone grading, using the grading and packaging system for peanut shell ultra-fine powder with spiral scatter cyclone grading according to the first aspect of the present disclosure;
  • the peanut shell ultrafine powder After the peanut shell ultrafine powder is fully dispersed by the dispersing device, it enters the classification cavity through the air inlet under the action of airflow, and divides the vortex in the screen classification cavity into the upper part with the air inlet and the air inlet as the boundary Two parts of whirlpool and lower whirlpool;
  • the peanut shell ultra-fine powder rotates and falls along the screen, and the particles with a smaller diameter pass through the screen and enter the medium powder classification chamber, and fall along the medium powder discharge pipe;
  • the resultant radial force on the fine powder points towards the center and is carried to the upper vortex with the upward airflow.
  • the high-speed rotating classifying impeller passes through its peripheral blades to intercept the entrained particles with large particle size through collisions, and again under the action of the screen For classification, the fine powder enters the grading impeller and then enters the fine powder discharge pipe with the airflow;
  • the peanut shell superfine powder After being classified by the grading device, the peanut shell superfine powder enters the packaging device through each discharge pipe for packaging.
  • the spiral scatter cyclone grading peanut shell ultrafine powder grading and packaging system and method provided by the present disclosure are designed to disperse the feeding device, the shearing action of the double-headed spiral blades and the high-speed impact of the drying airflow can fully disperse the peanut shell ultrafine powder , It can solve the phenomenon of agglomeration and agglomeration of peanut shell superfine powder before grading, fully disperse it, and improve the grading accuracy.
  • the air inlet and the air inlet are both provided with shrinking openings, which can maintain the stability of the flow field and increase the internal speed of the grading cavity;
  • the symmetrical tangential arrangement can enhance the symmetry and stability of the flow field inside the screen classification cavity; it is placed in the middle of the cylinder to achieve high-precision classification.
  • the spiral scatter cyclone grading peanut shell ultrafine powder grading and packaging system and method provided in the present disclosure realize the peanut shells through the high-speed rotation of the symmetrical tangential airflow in the sieve grading cavity, the separation of the sieve and the high-speed rotation of the grading impeller
  • the high-precision classification of bulk materials makes the particle size distribution more uniform and reduces the degree of powder doping.
  • the spiral-scattering cyclone grading peanut shell ultrafine powder grading and packaging system and method provided by the present disclosure realize the compaction of the peanut shell ultrafine powder in the packaging process through the cooperation of the vibrating compaction mechanism and the flapping compaction mechanism, reducing packaging costs and reducing packaging costs. Provide convenience for subsequent transportation.
  • the spiral scatter cyclone grading peanut shell ultrafine powder grading and packaging system and method provided by the present disclosure are integrated by multiple systems and have a high degree of automation. It can be used in mass production operations, shortening labor time, saving labor, and reducing processing The cost, which better solves the problems of difficult control of ultrafine powder grading particle size, low grading accuracy, low packaging efficiency, and poor compacting effect.
  • Fig. 1 is an axial view of the grading and packaging system for peanut shell ultrafine powder with spiral scatter cyclone grading provided in Example 1 of the present disclosure.
  • Fig. 2 is an axial view of the dispersing and feeding device provided in embodiment 1 of the disclosure.
  • FIG. 3 is an exploded view of the double-headed screw dispersing and feeding device provided in Embodiment 1 of the disclosure.
  • Fig. 4 is a cross-sectional view of the double-headed screw dispersing and feeding device provided in Embodiment 1 of the disclosure.
  • Fig. 5 is a force analysis diagram of the double-headed screw dispersing and feeding device provided in Embodiment 1 of the disclosure.
  • FIG. 6 is a motion analysis diagram of the double-headed screw dispersing and feeding device provided in Embodiment 1 of the disclosure.
  • FIG. 7 is a cross-sectional view of the venturi-type tee provided in Embodiment 1 of the disclosure.
  • FIG. 8 is an axial view of the cyclone sieve plate classification device provided in Embodiment 1 of the disclosure.
  • FIG. 9 is a partial cross-sectional view of the cyclone sieve plate classification device provided by Embodiment 1 of the disclosure.
  • FIG. 10 is a top view of the internal structure of the cavity of the cyclone sieve classification device provided by Embodiment 1 of the disclosure.
  • FIG. 11 is an exploded view of the cyclone sieve plate classification device provided in Embodiment 1 of the disclosure.
  • FIG. 12 is a side view of the classifying impeller provided in Embodiment 1 of the disclosure.
  • FIG. 13 is a perspective view of the quantitative compact packaging device provided in Embodiment 1 of the disclosure.
  • FIG. 14 is an axial view of the weighing mechanism provided by Embodiment 1 of the disclosure.
  • the dispersing and feeding device I the cyclone sieve grading device II, and the quantitative and dense packaging device III;
  • I-01-Double-head spiral dispersing and feeding device I-02-High-speed airflow dispersing and feeding device, I-03-Spiral feeding cavity bracket, II-01-Inlet air inlet, II-02-Air inlet, II-03-Cylinder part, II-04-Cone part, II-05-Cylinder part top plate, II-06-Screen classification device, II-07-Classifying impeller classification device, II-08-Medium powder classification room , II-09-medium powder discharge pipe, II-10-coarse powder discharge pipe, II-11-fine powder discharge pipe, II-12-medium powder outlet butterfly valve, II-13-sieve classification chamber;
  • III-01-Feeding hopper III-02-Feeding hopper butterfly valve, III-03-weighing mechanism, III-04-packaging and unloading pipe, III-05-gripping arm, III-06-bolt, III -07-clamping ring, III-08-vibration compaction mechanism, III-09-beating compaction mechanism, III-10-conveyor belt, III-11-transport rack, III-12-display screen, III-13-control cabinet ,III-14-button;
  • I-0101-storage bin I-0102-buffer hopper, I-0103-screw feeding cavity, I-0104-double screw screw, I-0105-screw blade, I-0106-discharge port, I- 0107-screw feed motor, I-0108-discharge funnel, I-0201-air compressor, I-0202-air tank, I-0203-air dryer, I-0204-venturi tube tee, I -0205-Shrink tube, I-0206-throat tube, I-0207-diffusion tube;
  • III-0301-weighing hopper III-0302-weighing hopper butterfly valve, III-0303-gravity sensor, III-0304-support plate, III-0305-support rod, III-0306-weighing mechanism cabinet door, III- 0801-vibrating platform, III-0802-vibrating platform support, III-0803-spring, III-0901-beating disc, III-0902-push rod.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure and cannot be understood as a Disclosure restrictions.
  • the present disclosure proposes a method.
  • the present disclosure provides a spiral-scattering cyclone grading peanut shell ultrafine powder grading and packaging system, which includes a smashing and feeding device, a cyclone sieve plate grading device, and a quantitative compact packaging device.
  • the smashing and feeding device is arranged on the cyclone sieve grading device
  • the quantitative compact packaging device is set under the cyclone sieve grading device;
  • the dispersing and feeding device is a cyclone sieve grading device that continuously and uniformly transports the bulk materials.
  • the cyclone sieve grading device classifies the peanut shell ultrafine powder three times, and the high-speed rotating air current classifies the bulk materials at one time.
  • the rotating air stream classifies the particles with large particle size twice.
  • the grading impeller classifier cooperates with the high-speed rotating air stream to classify the doped powder three times.
  • the classified powder falls into the weighing mechanism of the quantitative compact packaging device, and passes through the vibrating compaction mechanism and flapping.
  • the compacting mechanism compacts the ultra-fine powder in the bag, and finally transports it through the conveyor belt, working in cycles.
  • FIG. 1 is an isometric view of the system of this embodiment, it can be seen from the figure that the present invention includes three major parts, namely, the dispersing feeding device I, the cyclone sieve classification device II, and the quantitative Compact packaging device III.
  • the dispersing and feeding device I includes a double-headed spiral dispersing and feeding device I-01 and a high-speed airflow dispersing and feeding device I-02, and the discharge port I- of the double-headed spiral dispersing and feeding device I-01 0106 is connected to the high-speed airflow dispersing and feeding device I-02 through the venturi three-way I-0207.
  • the double-head screw dispersing and feeding device includes a storage bin I-0101, a buffer funnel I-0102 is arranged under the storage bin I-0101, the buffer funnel I-0102 is welded above the spiral feeding cavity I-0103, and the buffer funnel I
  • the inclination of the four walls of -0102 is different, and its function is to differentiate the speed of the peanut shell superfine powder from the four falling directions of the buffer funnel, and then differentiate the falling speed of the powder to avoid arching.
  • the screw feeding cavity is provided with a double-headed screw screw of equal diameter and pitch.
  • the gap between the double-headed screw and the screw feeding cavity is set to 4mm.
  • the screw feeding motor I-0107 drives the double-headed screw I-0104.
  • the shearing action of the spiral blade I-0105 fully breaks up the powder material and sends it to the discharge port; the air flow introduced from the air compressor I-0201 passes through the air storage tank I-0202 and the air dryer I-0203 in turn.
  • the function is to fully dry the air and reduce the external factors of the agglomeration of powder materials.
  • the ultra-fine peanut shell powder in its own gravity and the throat I-0206 produce negative pressure adsorption into the Venturi three.
  • the high-speed airflow has a strong impact on the micropowder, and the agglomerates are broken and disperse completely.
  • the spiral feeding cavity is connected with a double-headed spiral screw I-0104 of equal diameter and equal spiral.
  • the shape of the double-headed spiral blade I-0105 is a spiral curved surface.
  • the spiral blade exerts a normal thrust F 1 on the peanut shell ultrafine powder.
  • This thrust and the frictional force F 2 between the material and the blade are combined into a force F, and the resultant force is decomposed wherein the radial component F 3 push the material forward movement (lateral movement), while another component force F 4 is vertically downward, the component which makes the material leaving the blade, since the F 3 and F 4 Together, the material does not rotate with the spiral blade, and the normal thrust and axial component force exerted by the spiral blade make the material only move in the axial direction with the trough.
  • V 0 the speed of the ultrafine powder particles involved in the movement
  • the screw speed will affect the amount of heat generated and the temperature of the material.
  • the screw speed is fast and the shearing force is large, resulting in high rising material temperature; the screw speed is slow and the shearing force is small, resulting in low rising material temperature. But it is not that the faster the screw speed, the better the mixing effect.
  • ⁇ 0 The angle between the absolute velocity of the ultrafine powder particle movement and the horizontal line
  • g gravitational acceleration
  • f 1 coefficient of friction between the particle and the shell
  • R 1 The average radius of the particle from the axis center
  • the number of thread heads is usually divided into single-thread, double-thread and triple-thread.
  • Single-threaded components have thick thread edges and small leakage gap; double-threaded components have low shearing effect and are mainly used for powder transportation; three-threaded components have high shearing effect, shallow screw grooves, and are mainly used For molten materials.
  • the double-thread lead is twice that of the single-thread lead, and the thread with a larger lead has less force on the micropowder particles in the axial direction, and the heat generation is relatively reduced.
  • double-threaded threads are used.
  • the temperature inside the spiral feeding cavity is ensured to be stable within an appropriate range.
  • the Venturi tube tee I-0204 includes a long tube formed by a shrink tube I-0205, a throat tube I-0206 and a diffuser tube I-0207, and a discharge funnel I-0108. Venturi tube type three links are explained in detail:
  • the air enters the contraction tube from the air dryer After the air enters the contraction tube from the air dryer, it gradually accelerates, forcing it to pass at a high speed at the neck of the throat, and then reduces the air velocity through the diffuser tube. Therefore, according to the Bernoulli equation and the continuity equation, it can be known that the neck of the throat is at the neck of the throat. Negative pressure is generated, so that the superfine powder is sucked into the venturi tee from the discharge funnel and mixed with the high-speed airflow.
  • venturi The working principle of venturi can be expressed by Bernoulli equation and continuous equation. For this reason, the equations of the two sections of the contraction tube and the throat can be solved according to the energy equation and the continuity equation.
  • ⁇ h is the head difference of the two-section pressure measuring tube
  • K is the constant of the Venturi flowmeter, which is a constant for a given pipe diameter.
  • the air inlet of the traditional cyclone classifier is at the top, and the axial velocity in the side wall area is negative, and the airflow flows downward; except for the negative axial velocity in the small center area, the axial velocity in most areas inside the classifier is positive. , Which indicates that the airflow is basically in a rotating ascending state, and the maximum speed of the airflow rising is 0.4 ⁇ 0.46 times of the inlet air velocity.
  • the classification device described in this embodiment takes the air inlet as the boundary, and two upper and lower vortices are formed in the classifier.
  • the airflow axial velocity distribution of the lower vortex is similar to that of a traditional cyclone classifier. There is a reverse flow in the center, but the speed of the upward airflow is significantly lower than that of the traditional cyclone classifier, which is conducive to the timely settlement of coarse powder and reduces the running loss of coarse products.
  • the axial velocity of the upper vortex is positive, and the maximum axial velocity is basically the same as that of the traditional cyclone classifier.
  • the airflow in this space is upward flow, and the upward airflow at the side wall can entrain in the coarse powder in time.
  • the return of fine particles to the central area is beneficial to improving the classification accuracy.
  • the ultra-fine powder enters the screen classification chamber II-13 through the air inlet II-01.
  • the particles with large particle size rotate and fall along the screen II-0601, and the particle size is smaller than the aperture.
  • the sieve II-0601 into the intermediate powder classification room II-08, and fall along the intermediate powder discharge pipe II-09 below the cone II-04.
  • Particles larger than the aperture fall along the screen II-0601 to an obliquely placed elliptical bottom plate II-0602 with a smooth surface.
  • the elliptical bottom plate II-0602 is fixed on the cylinder by four evenly distributed screen support frames II-0603 Part II-03, the screen support frame II-0603 forms an angle of 90°, and the coarse powder discharge pipe II-10 is located at the lowest part of the oval bottom plate II-0602;
  • a cone part is connected below the cylindrical part, and a middle powder outlet butterfly valve II-12 is arranged at the lower end of the cone part, which communicates with the quantitative compact packaging device through a middle powder discharge pipe.
  • the choice of the shape of the screen mesh depends on the size of the screened product and the requirements for the production capacity of the screen.
  • the sieve mesh usually adopts round, square, and rectangular pore shapes.
  • the shape of the mesh holes is set to be circular, and the mesh number is set to 400 meshes.
  • the screen classification cavity is fixed to the cylindrical part by six evenly distributed screen support frames, and an included angle of 60° is formed between the screen support frames.
  • the grading impeller blades II-0702 are fixed between the upper support of the grading impeller II-0703 and the lower support of the grading impeller II-0704.
  • the grading impeller II-0701 is fixed on the rotating shaft II-0709.
  • the output shaft of the geared motor II-0705 is connected to the small Synchronous wheel II-0707 is fixed coaxially, small synchronous wheel II-0707 and large synchronous wheel II-0708 are driven by synchronous belt II-0706, and large synchronous wheel II-0708 is fixed on the outside of rotating shaft II-0709 to drive the grading impeller II-0701 rotates; the fine powder is carried to the upper vortex with the upward airflow, and the high-speed rotating classification impeller II-0701 passes through the grading impeller blades around it II-0702 to intercept the entrained particles with large particle size by collision, and classify them on the screen Under the action of impeller blade II-0601, the fine powder enters the grading impeller II-0701 and then follows the airflow into the fine powder discharge pipe II-11 welded to the center of the cylinder top plate II-05.
  • the classified peanut shell ultrafine powder falls through the feeding hopper III-01 to the weighing mechanism III-03, and the weighing mechanism III-03 includes the weighing hopper III-0301,
  • the support plate III-0304 is welded to the frame to support the weighing hopper III-0301.
  • the two sides of the packaging and unloading pipe III-04 are connected with the clamping arm III-05 by bolts III-06, and its function is to fix the packaging bag.
  • the weighing hopper is set in the cabinet of the weighing mechanism, and the cabinet is opened and closed through the door of the weighing mechanism III-0306.
  • the bottom of the quantitative compact packaging device is provided with a vibration compaction mechanism.
  • the vibration compaction mechanism III-08 includes a vibration platform III-0801, a vibration platform support III-0802 and a spring III-0803, the four corners and the center position of the vibration platform III-0801 It is connected to the vibration platform support III-0802 through spring III-0803;
  • the flap compaction mechanism III-09 includes a flap disk III-0901, and the center of the flap disk III-0901 is fixedly connected with a push rod III-0902 penetrates the rear side of the machine
  • the feeding funnel butterfly valve III-02 is closed, the weighing hopper butterfly valve III-0302 is opened, and the peanut shell ultra-fine powder falls into the bag.
  • the vibration compaction mechanism III-08 and the flap compaction mechanism III-09 work together , Complete the compaction work, and then transport it out through the conveyor belt III-10 on the transport frame III-11.
  • control cabinet III-13 The various functions in this embodiment are controlled and realized by the control cabinet III-13, and the control cabinet is provided with a display screen III-12 and a button III-14.
  • Embodiment 2 of the present disclosure provides a method for grading and packaging peanut shell ultrafine powder with spiral scatter cyclone classification, using the grading and packaging system for spiral scatter cyclone grading peanut shell ultrafine powder described in Example 1;
  • the ultra-fine peanut shell powder falls from the storage bin to the buffer funnel. Due to the difference in the inclination of the four walls of the buffer funnel, the falling speed of the powder is differentiated to avoid arching. After reaching the spiral feeding cavity, the shearing effect of the double-headed spiral blade Fully break up the powder materials and send them to the discharge port;
  • the airflow introduced from the compressor is fully dried by the air dryer to reduce the external factors of the powder material agglomeration.
  • the airflow flows through the venturi three-way throat.
  • the airflow accelerates sharply.
  • the peanut shell superfine powder is The suction force generated by the negative pressure adsorption by the throat pipe enters the venturi tee, and the high-speed airflow produces a strong impact on the micro powder, and the agglomerates are broken and completely dispersed.
  • the peanut shell ultra-fine powder After the peanut shell ultra-fine powder is fully dispersed by the multi-stage dispersing device, it enters the classification cavity through the air inlet under the action of high-speed airflow, and the vortex in the screen classification cavity is defined by the air inlet and the air inlet. Divided into two parts, the upper whirlpool and the lower whirlpool;
  • the peanut shell ultra-fine powder rotates and falls along the screen, and the particles with a smaller diameter pass through the screen and enter the medium powder classification chamber, and fall along the medium powder discharge pipe;
  • the radial resultant force on the fine powder points to the center and is carried to the upper vortex with the upward airflow.
  • the high-speed rotating classifying impeller passes through its peripheral blades to intercept the entrained particles of large particle size by collision, and again under the action of the screen For classification, the fine powder enters the grading impeller and then enters the fine powder discharge pipe with the airflow.
  • the coarse powder of peanut shell enters the feeding funnel through the coarse powder discharge pipe, the butterfly valve of the feeding funnel is opened, and the coarse powder falls to the weighing hopper of the weighing mechanism.
  • the mechanical arm fixes the cloth bag
  • the butterfly valve of the weighing hopper opens, and the weighed peanut shell coarse powder is dropped into the cloth bag.
  • the vibrating platform and the beating disc continuously vibrate and compact the coarse powder in the cloth bag. After the coarse powder has fallen down, the conveyor belt will transfer the cloth bag to pack the next bag, and work in a cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法,包括打散装置、分级装置和包装装置,属于花生加工技术领域,分级装置包括分级腔,分级腔包括圆筒部(II-03)和与圆筒部(II-03)下侧的圆锥部(II-04),进风进料口(II-01)和进风口(II-02)对称切向布置在圆筒部(II-03)的中间位置,圆筒部(II-03)内设有与圆筒部(II-03)同轴的圆筒状筛网分级腔(II-0604),筛网分级腔(II-0604)内设有与圆筒部(II-03)同轴的分级叶轮(II-0701);通过进风进料口(II-01)和进风口(II-02)形成的旋转气流将打散后的超微粉进行一次分级,筛网(II-0601)配合旋转气流将粒径大于筛网(II-0601)孔径的超微粉进行二次分级,分级叶轮(II-0701)配合高速旋转气流将超微粉三次分级;该系统解决了超微粉分级粒度控制不易、分级精度低及包装效率低、密实效果差的问题,极大的提高了花生壳超微粉的打散、分级和包装效率。

Description

一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法 技术领域
本公开涉及花生加工技术领域,特别涉及一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术,并不必然构成现有技术。
花生壳超微粉碎之后的物理化学特性均发生了改变,粒径达到300目左右,细胞壁破裂,粉碎程度的不同决定了花生壳的不同用途,如下表所示:
Figure PCTCN2020089380-appb-000001
随着花生产量和市场需求不断地增加,花生深加工也成为科研和生产中日益凸显的问题。其中,花生壳超微粉分级包装是深加工流水线最后一道但至关重要的程序。与超微粉密切相关的高新尖端技术行业,出现了对其原料要求越来越严格的趋势,不仅要求原料超微细化,而且还要求其粒度分布均匀合理,即物料粒度在一定范围内既不能过大也不能过小,而用机械法生产的粉体处于一个大的粒度分布范围,往往不能满足对超细粉体一定粒度范围的要求,所以需要对花生壳超微粉体进行分级。由于超微粉体颗粒的比表面积大,比表面能高,在制备和加工处理过程中,极易产生自发凝并、团聚现象,团聚的细颗粒往往表现为粗颗粒性质,达不到优良的分级效果,导致了超微粉体优越性不能充分发挥,使新材料性能劣化。因此,充分分散物料和提高分级精度已然成为花生壳超微粉分级的关键所在。针对花生壳自身的特性,研究高效可靠的花生壳超微粉分级装置具有重要意义,紧随其后的包装也是深加工所面临的问题。花生壳微粉具有蓬松、含气量大、堆密度小的特点,如直接包装,不仅包装材料的耗费大,而且给运输也带来很大的困难。花生壳微粉包装的机械化能在提高包装效率的同时大大节省劳动力成本,且包装的品质十分稳定。因此,排气密实和采用PLC的控制精确实现自动定量包装也已然成为花生壳超微粉体包装的关键所在。
现有技术中,实现超微粉体分级的方法目前主要有:(1)按所用介质可分为干法分级和湿法分级;(2)按是否具有运动部件可划分为两大类:静态分级和动态分级。常见的分级设备有重力分级机、惯性分级机、旋风分离器、螺旋线式气流分级机、射流分级机和涡轮式分级机等。
本公开发明人发现,目前的分级设备存在着粉体团聚、分级精度低、后处理复杂等问题;传统的粉体包装方法是使用电子台称量、人工装袋进行装袋包装,然后再用真空封口机进行抽真空封口,这种传统的粉料包装方法的不足之处在于劳动量大、效率低,无法满足规模化和工业化生产要求。
发明内容
为了解决现有技术的不足,本公开提供了一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法,所述系统集花生壳超微粉打散、分级、自动称量、密实包装四大功能于一体,通过双头螺旋叶片的剪切作用及干燥气流的高速冲击对花生壳超微粉充分打散,避免了超微粉团聚和结块的影响;通过对称切向气流在筛网分级腔内的高速旋转、筛网的分离及分级叶轮的高速旋转,实现了花生壳散体物料的高精度分级;通过附有四根带有重力传感器支架的称重料斗,实现了精准定量;通过振动密实机构和拍打密实机构的共同作用,实现了花生壳超微粉的密实包装。
为了实现上述目的,本公开采用如下技术方案:
本公开第一方面提供了一种螺旋打散旋风分级花生壳超微粉分级包装系统。
一种螺旋打散旋风分级花生壳超微粉分级包装系统,包括依次通过连接的打散装置、分级装置和包装装置,花生壳超微粉通过打散装置打散后输出到分级装置,分级装置对打散后的花生壳超微粉进行分级后输出到包装装置进行包装;
所述分级装置包括分级腔,所述分级腔包括圆筒部和与圆筒部下侧的圆锥部,进风进料口和进风口对称切向布置在圆筒部的中间位置,所述圆筒部内设有与圆筒部同轴的圆筒状筛网分级腔,所述筛网分级腔内设有与圆筒部同轴的分级叶轮;
通过进风进料口和进风口形成的旋转气流将打散后的超微粉进行一次分级,筛网配合旋转气流将粒径大于筛网孔径的超微粉进行二次分级,分级叶轮配合高速旋转气流将超微粉三次分级。
作为可能的一些实现方式,所述打散装置包括双头螺旋打散送料装置,所述双头螺旋打散送料装置包括螺旋送料腔体,螺旋送料腔体内设有双头螺旋螺杆,所述双头螺旋杆上固定有双头螺旋叶片,通过双头螺旋叶片剪切作用对超微粉进行打散后送至双头螺旋打散送料装置的出料口。
作为进一步的限定,所述双头螺旋打散送料装置包括缓冲料斗,用于承接花生壳超微粉进入螺旋送料腔体,所述缓冲料斗包括四个倾斜角度不同的梯形板,所述四个梯形板依次首尾连接构成梯台形通道。
作为进一步的限定,所述打散装置还包括气流打散送料装置,所述气流打散送料装置包括文丘里管式三通,文丘里管式三通包括收缩管、喉管和扩散管,收缩管流经喉管后冲击文丘里管式三通接收到的双头螺旋打散送料装置打散后的超微粉,并通过扩散管将打散后的粉体输出给分级装置的进风进料口。
作为可能的一些实现方式,所述进风进料口和进风口均设置20°的缩口角度,且截面形状为正方形。
作为可能的一些实现方式,所述筛网分级腔的底部设有倾斜预设角度的椭圆形底板,粒径大于筛网孔径的粉体沿筛网下落至椭圆形底板,经粗粉出料管输出;粒径小于孔径的粉体穿过筛网进入中粉分级室,经圆锥部下方的中粉出料管输出。
作为可能的一些实现方式,所述分级叶轮固定在分级叶轮上支架和分级叶轮下支架之 间,所述分级叶轮上固定有分级叶轮片,分级叶轮固定在电机旋转轴上;
细粉体随上行气流携带至上漩涡,电机带动分级叶轮通过分级叶轮叶片将细粉体夹带的粒径大的颗粒通过碰撞拦截,在筛网的作用下再次分级,未被拦截的细粉进入分级叶轮后随气流进入焊接在圆筒部顶板中心位置的细粉出料管。
作为可能的一些实现方式,所述包装装置包括进料漏斗和称重漏斗,分级装置输出的分级后的超微粉通过进料漏斗进入称重漏斗,所述称重漏斗设置在支撑板上,所述称重漏斗底部设有多个均匀分布的安装有重力传感器的支撑杆,用于计量超微粉的重量。
作为进一步的限定,所述称重漏斗底部连接有下料管道,下料管道两侧通过螺栓与夹持机臂连接,用于固定包装袋;
还包括振动密实机构和拍打密实机构,所述振动密实机构包括振动平台、振动平台支架和弹簧,振动平台的四角和中心位置通过弹簧与振动平台支架连接;所述拍打密实机构包括拍打圆盘,拍打圆盘中心固定连接一根推杆穿透于后侧机架,通过推杆推动拍打圆盘拍打包装袋。
本公开第二方面提供了一种螺旋打散旋风分级花生壳超微粉分级包装方法,利用本公开第一方面所述的螺旋打散旋风分级花生壳超微粉分级包装系统;
花生壳超微粉经打散装置充分打散后,在气流的作用下经进风进料口进入分级腔,以进风进料口和进风口为界限将筛网分级腔内的漩涡分为上漩涡和下漩涡两部分;
花生壳超微粉在下漩涡的作用下,粒径大的颗粒沿筛网旋转下落,粒径小于孔径的穿过筛网进入中粉分级室,沿中粉出料管下落;
粒径大于孔径的则沿筛网下落至表面光滑的倾斜底板,滑至粗粉出料口,同时气流不断地对筛网冲刷,避免筛网堵塞;
细粉受到的径向合力指向中心,随上行气流携带至上漩涡,此时高速旋转的分级叶轮通过其周边的叶片将其中夹带的粒径大的颗粒通过碰撞拦截下来,在筛网的作用下再次分级,细粉进入分级叶轮后随气流进入细粉出料管;
花生壳超微粉经分级装置分级后,通过各个出料管进入到包装装置进行包装。
与现有技术相比,本公开的有益效果是:
1、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统及方法,通过设计打散送料装置,双头螺旋叶片的剪切作用及干燥气流的高速冲击对花生壳超微粉充分打散,可以解决分级前花生壳超微粉结块、团聚的现象,充分打散,提高分级精度。
2、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统,进风进料口和进风口均设置有缩口,能维持流场的稳定性,使分级腔内部速度有所提高;对称切向布置能够增强筛网分级腔内部流场的对称性及稳定性;置于圆筒部的中间位置,实现高精度分级。
3、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统及方法,通过对称切向气流在筛网分级腔内的高速旋转、筛网的分离及分级叶轮的高速旋转,实现花生壳散体物料的高精度分级,粒度分布更加均匀,降低了粉体的掺杂程度。
4、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统及方法,支撑板与称重料斗之间设置4根安装有重力传感器的支撑杆连接,通过多个重力传感器检测重量,能够保证称重精度。
5、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统及方法,通过振动密实机构和拍打密实机构的配合,实现了花生壳超微粉在包装过程的密实工作,减少包装成本并为后续运输提供便利。
6、本公开提供的螺旋打散旋风分级花生壳超微粉分级包装系统及方法,由多个系统集成,自动化程度高,可以用于大批量的生产作业中,缩短劳动时间及节约劳动力,降低加工成本,较好的解决了超微粉分级粒度控制不易、分级精度低及包装效率低、密实效果差的问题。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本公开实施例1提供的螺旋打散旋风分级花生壳超微粉分级包装系统轴侧图。
图2为本公开实施例1提供的打散送料装置轴侧图。
图3为本公开实施例1提供的双头螺旋打散送料装置爆炸图。
图4为本公开实施例1提供的双头螺旋打散送料装置剖视图。
图5为本公开实施例1提供的双头螺旋打散送料装置受力分析图。
图6为本公开实施例1提供的双头螺旋打散送料装置运动分析图。
图7为本公开实施例1提供的文丘里管式三通剖视图。
图8为本公开实施例1提供的旋风筛板分级装置轴侧图。
图9为本公开实施例1提供的旋风筛板分级装置局部剖视图。
图10为本公开实施例1提供的旋风筛板分级装置腔体内部结构俯视图。
图11为本公开实施例1提供的旋风筛板分级装置爆炸图。
图12为本公开实施例1提供的分级叶轮轴侧图。
图13为本公开实施例1提供的定量密实包装装置轴侧图。
图14为本公开实施例1提供的称重机构轴侧图。
图中,打散送料装置I、旋风筛板分级装置Ⅱ、定量密实包装装置Ⅲ;
I-01-双头螺旋打散送料装置,I-02-高速气流打散送料装置,I-03-螺旋送料腔体支架,Ⅱ-01-进风进料口,Ⅱ-02-进风口,Ⅱ-03-圆筒部,Ⅱ-04-圆锥部,Ⅱ-05-圆筒部顶板,Ⅱ-06-筛网分级装置,Ⅱ-07-分级叶轮分级装置,Ⅱ-08-中粉分级室,Ⅱ-09-中粉出料管,Ⅱ-10-粗粉出料管,Ⅱ-11-细粉出料管,Ⅱ-12-中粉出口蝶阀,Ⅱ-13-筛网分级腔;
Ⅲ-01-进料漏斗,Ⅲ-02-进料漏斗蝶阀,Ⅲ-03-称重机构,Ⅲ-04-包装下料管道,Ⅲ-05-夹持机臂,Ⅲ-06-螺栓,Ⅲ-07-夹持圈,Ⅲ-08-振动密实机构,Ⅲ-09-拍打密实机构,Ⅲ-10-传送带,Ⅲ-11-运输机架,Ⅲ-12-显示屏,Ⅲ-13-控制柜,Ⅲ-14-按钮;
I-0101-储料仓,I-0102-缓冲料斗,I-0103-螺旋送料腔体,I-0104-双头螺旋螺杆,I-0105-螺旋叶片,I-0106-出料口,I-0107-螺旋送料电机,I-0108-出料漏斗,I-0201-空气压缩机,I-0202-储气罐,I-0203-空气干燥器,I-0204-文丘里管式三通,I-0205-收缩管,I-0206-喉管,I-0207-扩散管;
Ⅱ-0101-进风进料口缩口,Ⅱ-0201-进风口缩口,Ⅱ-0601-筛网,Ⅱ-0602-底板,Ⅱ-0603-筛网支撑架,Ⅱ-0604-筛网分级腔,Ⅱ-0701-分级叶轮,Ⅱ-0702-分级叶轮叶片,Ⅱ-0703-分级叶轮上支架,Ⅱ-0704-分级叶轮下支架,Ⅱ-0705-减速电机,Ⅱ-0706-同步带,Ⅱ-0707-小同步轮,Ⅱ-0708-大同步轮,Ⅱ-0709-旋转轴;
Ⅲ-0301-称重料斗,Ⅲ-0302-称重料斗蝶阀,Ⅲ-0303-重力传感器,Ⅲ-0304-支撑板,Ⅲ-0305-支撑杆,Ⅲ-0306-称重机构柜门,Ⅲ-0801-振动平台,Ⅲ-0802-振动平台支架,Ⅲ-0803-弹簧,Ⅲ-0901-拍打圆盘,Ⅲ-0902-推杆。
具体实施方式
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
正如背景技术所介绍的,发明人发现,现有超微粉分级包装装置的分级包装效果并不理想,普遍存在分级精度低、定量不精确的缺点,为了解决如上的技术问题,本公开提出了一种螺旋打散旋风分级花生壳超微粉分级包装系统。
本实公开提供了一种螺旋打散旋风分级花生壳超微粉分级包装系统,包括打散送料装置、旋风筛板分级装置、定量密实包装装置,所述打散送料装置设置于旋风筛板分级装置的左侧,定量密实包装装置设置于旋风筛板分级装置的下方;
所述打散送料装置为旋风筛板分级装置持续均匀输送散体物料,所述旋风筛板分级装置对花生壳超微粉三次分级,高速旋转气流将散体物料一次分级,筛网分级装置配合高速旋转气流将粒径大的颗粒二次分级,分级叶轮分级装置配合高速旋转气流将掺杂粉体三次分级,分级后的粉体落入定量密实包装装置的称重机构,通过振动密实机构和拍打密实机构将布袋内超微粉密实,最后通过传送带将其输送,循环工作。
实施例1
下面结合附图和实施例对本发明进一步说明;
参照附图1所示,为本实施例所述系统的等轴测图,从图中可以看出本发明总体包括三大部分,分别为打散送料装置Ⅰ、旋风筛板分级装置Ⅱ、定量密实包装装置Ⅲ。
参照附图2所示,打散送料装置Ⅰ包括双头螺旋打散送料装置Ⅰ-01和高速气流打散送料装置Ⅰ-02,双头螺旋打散送料装置Ⅰ-01的出料口Ⅰ-0106通过文丘里管式三通Ⅰ-0207与高速气流打散送料装置Ⅰ-02连接。
所述双头螺旋打散送料装置包括储料仓Ⅰ-0101,储料仓Ⅰ-0101下方设置缓冲漏斗Ⅰ-0102,缓冲漏斗Ⅰ-0102焊接在螺旋送料腔体Ⅰ-0103上方,缓冲漏斗Ⅰ-0102的四壁倾斜度各不相同,其作用是使花生壳超微粉从缓冲漏斗四个落下的方向的速度差异化,进而使粉体下落速度产生差异化而避免结拱。
螺旋送料腔体内设置一跟等直径等螺距双头螺旋螺杆,所述双头螺旋螺杆与螺旋送料腔体的间隙设置为4mm,螺旋送料电机Ⅰ-0107驱动双头螺旋螺杆Ⅰ-0104,双头螺旋叶片Ⅰ-0105的剪切作用对粉体物料充分打散并送至出料口;从空气压缩机Ⅰ-0201引入的气流依次经过储气罐Ⅰ-0202、空气干燥器Ⅰ-0203,其作用为充分干燥空气,减除粉体物料团聚的外部因素。
气流流经文丘里管式三通Ⅰ-0204喉管Ⅰ-0206处,气流急剧加速,同时花生壳超微粉在自身重力与喉管Ⅰ-0206产生负压吸附的吸力作用进入文丘里管式三通Ⅰ-0204,高速气流对微粉产生强烈的冲击作用,聚团被破碎,进行完全打散。
参照附图3-附图6所示,螺旋送料腔体内连接一根等直径等螺旋的双头螺旋螺杆Ⅰ-0104,以下对双头螺旋打散送料装置Ⅰ-02组件进行详细说明:
双头螺旋叶片Ⅰ-0105的形状是一个螺旋曲面。当转轴受驱动而转动时,在任一半径r处,螺旋叶片对花生壳超微粉施加法向推力F 1,该推力和物料与叶片间的摩擦力F 2合成为力F,对该合力进行分解,其中的径向分力F 3推动物料向前运动(横向移动),而合力的另一分力F 4是竖直向下的,该分力促使物料离开叶片,由于F 3和F 4的共同作用,使得物料不会同螺旋叶片一起旋转,受螺旋叶片施加的法向推力、轴向分力,使得物料只会随料槽做轴向方向的运动。
根据受力运动分析图可得:
V hcosβ=V 0sinα,
而:
Figure PCTCN2020089380-appb-000002
故:
Figure PCTCN2020089380-appb-000003
颗粒的圆周速度V z
Figure PCTCN2020089380-appb-000004
由于:
Figure PCTCN2020089380-appb-000005
令:
f=tanβ
则得出:圆周速度:
Figure PCTCN2020089380-appb-000006
轴向速度:
Figure PCTCN2020089380-appb-000007
式中,S—螺杆的螺距,mm;n—螺旋轴的转速,r/min;
R—粉体颗粒M到螺杆轴线的距离,mm;α—螺旋面升角;
F—颗粒与螺旋面的摩擦系数;V h—合速度;
V 0—超微粉颗粒牵连运动的速度;
螺杆转速的选取:
螺杆的转速会影响产生热量的多少,影响物料的温度,螺杆转速快,剪切力大,导致上升的物料温度高;螺杆转速慢,剪切力小,导致升高的物料温度低。但并不是螺杆转速越快混合作用越好,螺杆转速快剪切力增强,混合力度变大,但是混合时间变短,聚合物物料不一定能够达到最佳的混合效果。
以下述推导公式确定螺杆转速:
Figure PCTCN2020089380-appb-000008
式中:θ—螺旋叶片的螺旋角;
γ 0—超微粉颗粒运动绝对速度与水平线间的夹角;
g—重力加速度;f 1——颗粒与外壳之间的摩擦系数;
R 1—颗粒距轴中心的平均半径;
螺纹头数的选用:
螺纹头数通常分为单头螺纹、双头螺纹和三头螺纹。单头螺纹元件螺棱厚,漏流间隙小;双头螺纹元件具有较低的剪切作用,主要用于粉体输送;三头螺纹元件具有较高的剪切作用,螺槽浅,主要用于熔融物料。在同螺距的情况下,双线导程是单线导程的两倍,而导程大的螺纹,微粉颗粒轴向受力较小,产热相对减少。考虑到花生壳超微粉耐热性能差,在送料的过程中如果温升过大,会使花生壳超微粉变性,从而失去自身原有的价值,因此,选用双头螺纹。在输送物料并将结块团聚的花生和超微粉打散的前提下,保证螺旋送料腔体内部的温度稳定在适当的范围内。
参照附图7所示,文丘里管式三通Ⅰ-0204包括收缩管Ⅰ-0205、喉管Ⅰ-0206和扩散管Ⅰ-0207形成的一根长管及出料漏斗Ⅰ-0108,以下对文丘里管式三通进行详细说明:
空气由空气干燥器进入收缩管后,逐步加速,在喉颈缩口处迫使它以高速通过,又经扩散管使气速降低,因此根据伯努利方程和连续方程可知在喉颈缩口处产生负压,使超微粉从出料漏斗吸入文丘里管式三通内与高速气流混合。
当流体通道面积在收缩管处突然变窄时,流率增大,使颗粒浓度增大;而当流体通道面积在扩散管处突然变宽时,流率减小,使颗粒浓度减小。因而增加了颗粒相互碰撞的机会,促使颗粒加剧分散与团聚颗粒分解,使进入旋风筛板分级装置中的团聚颗粒几乎不存在。
文丘里管的工作原理可以用伯努利方程和连续方程来表达。为此,可根据能量方程式和连续性方程式对收缩管和喉管两断面列方程求解。
取管轴线为基准,先忽略阻力,列柏努利方程得:
Figure PCTCN2020089380-appb-000009
Q′=A 1V 1=A 2V 2
Figure PCTCN2020089380-appb-000010
由以上两式解得
Figure PCTCN2020089380-appb-000011
因此:
Figure PCTCN2020089380-appb-000012
Figure PCTCN2020089380-appb-000013
Figure PCTCN2020089380-appb-000014
式中,△h为两断面测压管水头差;K为文丘里流量计常数,对给定管径是常数。
由于阻力的存在,实际通过的流量Q恒小于Q′。今引入一无量纲系数μ=Q/Q′(μ称为流量系数),对计算所得的流量值进行修正。
Figure PCTCN2020089380-appb-000015
所以,
Figure PCTCN2020089380-appb-000016
其中μ=0.98-0.99
参照附图8-附图12所示:进风进料口Ⅱ-01和进风口Ⅱ-02对称切向布置在腔体的圆筒部的中间,结构相同,均设置20°的缩口角度,且截面形状为正方形,以下对其详细说明:
传统旋风分级器进风口位于顶部,边壁区域轴向速度为负值,气流呈下行流动;除中心很小区域内轴向速度为负值外,分级器内侧大部分区域的轴向速度为正值,表明气流基本呈旋转上升状态,气流上升的最大速度值为入口气速的0.4~0.46倍。
本实施例所述的分级装置,以进风口为界,分级器内形成上下两个旋涡,下旋涡的气流轴向速度分布形态与传统旋风分级器类似,外侧为下行气流,内侧为上行气流,中心出现逆流,但上行气流的速度较传统型旋风分级器明显降低,这有利于粗粉的及时沉落,减少粗产品的跑损。
进风口以上部分,上旋涡的轴向速度均为正值,最大轴向速度与传统旋风分级器基本相同,该空间气流为上行流动,边壁处的上行气流可及时将夹带在粗粉中的细颗粒返回至中心区,对提高分级精度有利。
超微粉在高速气流的作用下经进风进料口Ⅱ-01进入筛网分级腔Ⅱ-13,在下漩涡的作用下,粒径大的颗粒沿筛网Ⅱ-0601旋转下落,粒径小于孔径的穿过筛网Ⅱ-0601进入中粉分级室Ⅱ-08,沿圆锥部Ⅱ-04下方的中粉出料管Ⅱ-09下落。
粒径大于孔径的则沿筛网Ⅱ-0601下落至表面光滑的倾斜放置的椭圆形底板Ⅱ-0602,椭圆形底板Ⅱ-0602通过四个均匀分布的筛网支撑架Ⅱ-0603固定在圆筒部Ⅱ-03,筛网支撑架Ⅱ-0603之间成90°夹角,粗粉出料管Ⅱ-10位于椭圆形底板Ⅱ-0602的最低处;
同时强烈的气流不断地对筛网Ⅱ-0601冲刷,避免堵塞。
所述圆筒部下方连接圆锥部,所述圆锥部下端设置有中粉出口蝶阀Ⅱ-12,通过中粉出料管与定量密实包装装置连通。
对筛网孔形状的确定:
筛网孔形状的选择,取决于对筛分产物粒度和对筛网生产能力的要求。筛网通常采用的筛孔形状有圆形、正方形、长方形。
编织筛面则有长方形和正方形两种,当花生壳超微粉细胞壁破坏时,粉体颗粒的形状会特别不规则,且在高速气流的携带作用下,微粉颗粒的空间位置也是多样化,因此,为 了避免这些因素影响分级精度,本实施例中将筛网孔的形状设置为圆形,目数设置为400目。
本实施例中,所述筛网分级腔通过六个均匀分布的筛网支撑架固定在圆筒部,筛网支撑架之间成60°夹角。
分级叶轮叶片Ⅱ-0702固定在分级叶轮上支架Ⅱ-0703和分级叶轮下支架Ⅱ-0704之间,分级叶轮Ⅱ-0701固定在旋转轴Ⅱ-0709上,减速电机Ⅱ-0705的输出轴与小同步轮Ⅱ-0707同轴固定,小同步轮Ⅱ-0707与大同步轮Ⅱ-0708通过同步带Ⅱ-0706传动,大同步轮Ⅱ-0708固定在旋转轴Ⅱ-0709的外侧,进而带动分级叶轮Ⅱ-0701转动;细粉随上行气流携带至上漩涡,高速旋转的分级叶轮Ⅱ-0701通过其周边的分级叶轮叶片Ⅱ-0702将其中夹带的粒径大的颗粒通过碰撞拦截下来,在筛网分级叶轮叶片Ⅱ-0601的作用下再次分级,细粉进入分级叶轮Ⅱ-0701后随气流进入焊接在圆筒部顶板Ⅱ-05中心的细粉出料管Ⅱ-11。
参照附图13-附图14所示,分级后的花生壳超微粉经进料漏斗Ⅲ-01落至称重机构Ⅲ-03,所述称重机构III-03包括称重料斗Ⅲ-0301,支撑板Ⅲ-0304焊接在机架上,用于支撑称重料斗Ⅲ-0301。
通过四个均匀分布的安装有重力传感器Ⅲ-0303的支撑杆Ⅲ-0305与称重料斗Ⅲ-0301连接,用于计量超微粉的重量。
包装下料管道Ⅲ-04两侧通过螺栓Ⅲ-06与夹持机臂Ⅲ-05连接,其作用是固定包装袋,所述下料管道的额底部套设有夹持圈Ⅲ-07,所述称重料斗设置在称重机构柜体内,通过称重机构柜门Ⅲ-0306打开与关闭柜体。
所述定量密实包装装置的最下方设置有振动密实机构,振动密实机构Ⅲ-08包括振动平台Ⅲ-0801、振动平台支架Ⅲ-0802和弹簧Ⅲ-0803,振动平台Ⅲ-0801的四角和中心位置通过弹簧Ⅲ-0803与振动平台支架Ⅲ-0802连接;拍打密实机构Ⅲ-09包括拍打圆盘Ⅲ-0901,拍打圆盘Ⅲ-0901中心固定连接一根推杆Ⅲ-0902穿透于后侧机架,定量完毕后,进料漏斗蝶阀Ⅲ-02关闭,称重料斗蝶阀Ⅲ-0302打开,花生壳超微粉下落至布袋里,同时,振动密实机构Ⅲ-08和拍打密实机构Ⅲ-09共同作用,完成密实工作,然后通过运输机架Ⅲ-11上的传送带Ⅲ-10传送出去。
本实施例中的各项功能通过控制柜III-13来控制实现,控制柜上设有显示屏Ⅲ-12和按钮Ⅲ-14。
实施例2:
本公开实施例2提供了一种螺旋打散旋风分级花生壳超微粉分级包装方法,利用实施例1所述的螺旋打散旋风分级花生壳超微粉分级包装系统;
包括打散方法、分级方法和包装方法,具体如下:
打散方法:
花生壳超微粉从储料仓下落至缓冲漏斗,由于缓冲漏斗的四壁倾斜度不同使粉体下落速度产生差异化而避免结拱,到达螺旋送料腔体后,双头螺旋叶片的剪切作用对粉体物料 充分打散并送至出料口;
从压缩机引入的气流,经空气干燥器充分干燥,减除粉体物料团聚的外部因素,气流流经文丘里管式三通喉管处,气流急剧加速,同时花生壳超微粉在自身重力与喉管产生负压吸附的吸力作用进入文丘里管式三通,高速气流对微粉产生强烈的冲击作用,聚团被破碎,进行完全打散。
分级方法:
花生壳超微粉经多级打散装置充分打散后,在高速气流的作用下经进风进料口进入分级腔,以进风进料口和进风口为界限将筛网分级腔内的漩涡分为上漩涡和下漩涡两部分;
花生壳超微粉在下漩涡的作用下,粒径大的颗粒沿筛网旋转下落,粒径小于孔径的穿过筛网进入中粉分级室,沿中粉出料管下落;
粒径大于孔径的则沿筛网下落至表面光滑的倾斜底板,滑至粗粉出料口,同时强烈的气流不断地对筛网冲刷,避免筛网堵塞;
细粉受到的径向合力指向中心,随上行气流携带至上漩涡,此时高速旋转的分级叶轮通过其周边的叶片将其中夹带的粒径大的颗粒通过碰撞拦截下来,在筛网的作用下再次分级,细粉进入分级叶轮后随气流进入细粉出料管。
包装方法:
花生壳粗粉经粗粉出料管进入进料漏斗,进料漏斗蝶阀打开,粗粉落至称重机构的称重料斗,重力传感器将粗粉重量转化为电信号传达至控制柜的显示屏,设置两个初始值m、M(m=0.95M),重量达到m时减速下料,当到达M时停止下料,进料漏斗蝶阀关闭;
此时机械臂将布袋固定住,称重料斗蝶阀打开,将称重完毕的花生壳粗粉下落至布袋里,同时振动平台和拍打圆盘不停地对布袋内的粗粉振动密实。待粗粉下落完毕后,传送带将布袋转移,进行下一袋的包装,循环工作。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,包括依次通过连接的打散装置、分级装置和包装装置,花生壳超微粉通过打散装置打散后输出到分级装置,分级装置对打散后的花生壳超微粉进行分级后输出到包装装置进行包装;
    所述分级装置包括分级腔,所述分级腔包括圆筒部和与圆筒部下侧的圆锥部,进风进料口和进风口对称切向布置在圆筒部的中间位置,所述圆筒部内设有与圆筒部同轴的圆筒状筛网分级腔,所述筛网分级腔内设有与圆筒部同轴的分级叶轮;
    通过进风进料口和进风口形成的旋转气流将打散后的超微粉进行一次分级,筛网配合旋转气流将粒径大于筛网孔径的超微粉进行二次分级,分级叶轮配合高速旋转气流将超微粉三次分级。
  2. 如权利要求1所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述打散装置包括双头螺旋打散送料装置,所述双头螺旋打散送料装置包括螺旋送料腔体,螺旋送料腔体内设有双头螺旋螺杆,所述双头螺旋杆上固定有双头螺旋叶片,通过双头螺旋叶片剪切作用对超微粉进行打散后送至双头螺旋打散送料装置的出料口。
  3. 如权利要求2所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述双头螺旋打散送料装置包括缓冲料斗,用于承接花生壳超微粉进入螺旋送料腔体,所述缓冲料斗包括四个倾斜角度不同的梯形板,所述四个梯形板依次首尾连接构成梯台形通道。
  4. 如权利要求2所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述打散装置还包括气流打散送料装置,所述气流打散送料装置包括文丘里管式三通,文丘里管式三通包括收缩管、喉管和扩散管,收缩管流经喉管后冲击文丘里管式三通接收到的双头螺旋打散送料装置打散后的超微粉,并通过扩散管将打散后的粉体输出给分级装置的进风进料口。
  5. 如权利要求1所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述进风进料口和进风口均设置20°的缩口角度,且截面形状为正方形。
  6. 如权利要求1所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述筛网分级腔的底部设有倾斜预设角度的椭圆形底板,粒径大于筛网孔径的粉体沿筛网下落至椭圆形底板,经粗粉出料管输出;粒径小于孔径的粉体穿过筛网进入中粉分级室,经圆锥部下方的中粉出料管输出。
  7. 如权利要求1所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述分级叶轮固定在分级叶轮上支架和分级叶轮下支架之间,所述分级叶轮上固定有分级叶轮片,分级叶轮固定在电机旋转轴上;
    细粉体随上行气流携带至上漩涡,电机带动分级叶轮通过分级叶轮叶片将细粉体夹带的粒径大的颗粒通过碰撞拦截,在筛网的作用下再次分级,未被拦截的细粉进入分级叶轮后随气流进入焊接在圆筒部顶板中心位置的细粉出料管。
  8. 如权利要求1所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于, 所述包装装置包括进料漏斗和称重漏斗,分级装置输出的分级后的超微粉通过进料漏斗进入称重漏斗,所述称重漏斗设置在支撑板上,所述称重漏斗底部设有多个均匀分布的安装有重力传感器的支撑杆,用于计量超微粉的重量。
  9. 如权利要求7所述的螺旋打散旋风分级花生壳超微粉分级包装系统,其特征在于,所述称重漏斗底部连接有下料管道,下料管道两侧通过螺栓与夹持机臂连接,用于固定包装袋;
    还包括振动密实机构和拍打密实机构,所述振动密实机构包括振动平台、振动平台支架和弹簧,振动平台的四角和中心位置通过弹簧与振动平台支架连接;所述拍打密实机构包括拍打圆盘,拍打圆盘中心固定连接一根推杆穿透于后侧机架,通过推杆推动拍打圆盘拍打包装袋。
  10. 一种螺旋打散旋风分级花生壳超微粉分级包装方法,其特征在于,利用权利要求1-9任一项所述的螺旋打散旋风分级花生壳超微粉分级包装系统;
    花生壳超微粉经打散装置充分打散后,在气流的作用下经进风进料口进入分级腔,以进风进料口和进风口为界限将筛网分级腔内的漩涡分为上漩涡和下漩涡两部分;
    花生壳超微粉在下漩涡的作用下,粒径大的颗粒沿筛网旋转下落,粒径小于孔径的穿过筛网进入中粉分级室,沿中粉出料管下落;
    粒径大于孔径的则沿筛网下落至表面光滑的倾斜底板,滑至粗粉出料口,同时气流不断地对筛网冲刷,避免筛网堵塞;
    细粉受到的径向合力指向中心,随上行气流携带至上漩涡,此时高速旋转的分级叶轮通过其周边的叶片将其中夹带的粒径大的颗粒通过碰撞拦截下来,在筛网的作用下再次分级,细粉进入分级叶轮后随气流进入细粉出料管;
    花生壳超微粉经分级装置分级后,通过各个出料管进入到包装装置进行包装。
PCT/CN2020/089380 2020-04-13 2020-05-09 一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法 WO2021208163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/06686A ZA202106686B (en) 2020-04-13 2021-09-09 Spiral dispersing and cyclone grading type grading and packaging system and method for peanut shell superfine powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010286124.6 2020-04-13
CN202010286124.6A CN111468411A (zh) 2020-04-13 2020-04-13 一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法

Publications (1)

Publication Number Publication Date
WO2021208163A1 true WO2021208163A1 (zh) 2021-10-21

Family

ID=71752269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089380 WO2021208163A1 (zh) 2020-04-13 2020-05-09 一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法

Country Status (3)

Country Link
CN (1) CN111468411A (zh)
WO (1) WO2021208163A1 (zh)
ZA (1) ZA202106686B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493258A (zh) * 2023-06-28 2023-07-28 绵阳九方环保节能科技有限公司 一种防积灰水平涡流选粉机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974678A (zh) * 2020-09-11 2020-11-24 连云港秉文科技有限公司 碳化硅微粉用新型涡流空气分级机
CN113231317B (zh) * 2021-05-27 2024-05-03 福建茶叶进出口有限责任公司 一种白茶去杂和拼配的加工生产工艺
CN114713501B (zh) * 2022-04-15 2023-05-19 新疆晶硕新材料有限公司 一种用于高温水解纳米材料的粒径分级装置
CN115258720B (zh) * 2022-09-29 2022-12-23 德州晶华药用玻璃有限公司 一种用于玻璃生产线的呼吸式纯碱料罐
CN116284489A (zh) * 2023-05-18 2023-06-23 汕头市捷成生物科技有限公司 魔芋葡甘露聚糖的提取纯化方法及其在凝胶类食品的应用
CN116371298B (zh) * 2023-06-06 2023-08-22 江苏泰禾金属工业有限公司 一种高纯氧化亚镍氨络合沉淀法生产设备
CN117463477B (zh) * 2023-12-27 2024-03-19 烟台金蕊女性用品有限公司 一种天山雪莲多糖的提取设备及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300283A (ja) * 1998-04-22 1999-11-02 Tiger Kawashima Co Ltd 縦型穀類選別計量機
CN2832664Y (zh) * 2005-07-28 2006-11-01 常熟市三禾计量设备厂 包装机的称重和加密机构
CN204710715U (zh) * 2015-06-10 2015-10-21 嵊州市联丰粉碎设备有限公司 一种应用于微粉分离的超微米气流分级机
CN107264879A (zh) * 2017-07-26 2017-10-20 蓬莱圣为智能设备有限公司 一种吨袋自动供袋装置及吨袋自动包装系统
CN109530234A (zh) * 2018-12-03 2019-03-29 河北科技大学 微米级三产品旋风分级筛
CN110404653A (zh) * 2019-07-16 2019-11-05 上海源方节能科技有限公司 一种超微粉粉碎腔新型结构装置及其粉碎方法
CN110788005A (zh) * 2019-11-06 2020-02-14 中国矿业大学 一种用于超细粉体的离心式空气分级机
CN111317148A (zh) * 2020-04-13 2020-06-23 青岛理工大学 一种花生全流程生产线及方法
CN212035877U (zh) * 2020-04-13 2020-12-01 青岛理工大学 一种花生加工流水线

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300283A (ja) * 1998-04-22 1999-11-02 Tiger Kawashima Co Ltd 縦型穀類選別計量機
CN2832664Y (zh) * 2005-07-28 2006-11-01 常熟市三禾计量设备厂 包装机的称重和加密机构
CN204710715U (zh) * 2015-06-10 2015-10-21 嵊州市联丰粉碎设备有限公司 一种应用于微粉分离的超微米气流分级机
CN107264879A (zh) * 2017-07-26 2017-10-20 蓬莱圣为智能设备有限公司 一种吨袋自动供袋装置及吨袋自动包装系统
CN109530234A (zh) * 2018-12-03 2019-03-29 河北科技大学 微米级三产品旋风分级筛
CN110404653A (zh) * 2019-07-16 2019-11-05 上海源方节能科技有限公司 一种超微粉粉碎腔新型结构装置及其粉碎方法
CN110788005A (zh) * 2019-11-06 2020-02-14 中国矿业大学 一种用于超细粉体的离心式空气分级机
CN111317148A (zh) * 2020-04-13 2020-06-23 青岛理工大学 一种花生全流程生产线及方法
CN212035877U (zh) * 2020-04-13 2020-12-01 青岛理工大学 一种花生加工流水线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116493258A (zh) * 2023-06-28 2023-07-28 绵阳九方环保节能科技有限公司 一种防积灰水平涡流选粉机
CN116493258B (zh) * 2023-06-28 2023-09-05 绵阳九方环保节能科技有限公司 一种防积灰水平涡流选粉机

Also Published As

Publication number Publication date
ZA202106686B (en) 2021-10-27
CN111468411A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021208163A1 (zh) 一种螺旋打散旋风分级花生壳超微粉分级包装系统及方法
CN102397841B (zh) 双向气流超微粉筛选机
EP1534436B1 (en) Apparatus and method for separating particles
WO2021208161A1 (zh) 一种花生全流程生产线及方法
CN104399607B (zh) 一种旋风分离装置及基于该装置的旋风分离系统
CN113399058A (zh) 一种高效立式干法搅拌磨机及其应用
CN205414308U (zh) 铸造砂冷却器
CN209501889U (zh) 一种可控颗粒度的流化床气流粉碎机
CN108224903A (zh) 颗粒物料连续分级筛选气流干燥器
CA2047494A1 (en) Classifier for powdery material
CN114455593B (zh) 硅微粉分级加工生产设备
CN205236217U (zh) 一种气旋打散广口下导流分级机
CN206050963U (zh) 纳米碳酸钙滤饼料的气流输送装置
CN212099535U (zh) 一种花生壳超微粉打散分级包装系统
CN211134337U (zh) 一种双锥旋风分级机
CN2848361Y (zh) 高效旋风分离器
CN205008241U (zh) 一种窄级别两级涡轮气流分级机分级系统
CN207894121U (zh) 颗粒物料连续分级筛选气流干燥器
CN214077294U (zh) 一种气相粉体分级设备
CN205236215U (zh) 一种高速导流气旋打散分级机
CN208321129U (zh) 涡流式分级调节装置
CN202877124U (zh) 一种废电路板干式回收生产线用的超微粉体分级机
CN209124103U (zh) 一种高纯镁粉气流破碎机
CN205462789U (zh) 一种高速导流气旋打散上出口分级机
CN219291677U (zh) 卧式高效旋风粉体颗粒多段分级分离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930701

Country of ref document: EP

Kind code of ref document: A1