WO2021208162A1 - 流化床对撞式气流机械超微粉碎设备与方法 - Google Patents

流化床对撞式气流机械超微粉碎设备与方法 Download PDF

Info

Publication number
WO2021208162A1
WO2021208162A1 PCT/CN2020/089379 CN2020089379W WO2021208162A1 WO 2021208162 A1 WO2021208162 A1 WO 2021208162A1 CN 2020089379 W CN2020089379 W CN 2020089379W WO 2021208162 A1 WO2021208162 A1 WO 2021208162A1
Authority
WO
WIPO (PCT)
Prior art keywords
crushing
grinding
classification
grading
turbine
Prior art date
Application number
PCT/CN2020/089379
Other languages
English (en)
French (fr)
Inventor
刘明政
李长河
李心平
刘向东
杨会民
张彦彬
王晓铭
侯亚丽
Original Assignee
青岛理工大学
河南科技大学
新疆农业科学院农业机械化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 河南科技大学, 新疆农业科学院农业机械化研究所 filed Critical 青岛理工大学
Priority to ZA2021/06685A priority Critical patent/ZA202106685B/en
Publication of WO2021208162A1 publication Critical patent/WO2021208162A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0012Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
    • B02C19/0018Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) using a rotor accelerating the materials centrifugally against a circumferential breaking surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/066Jet mills of the jet-anvil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/30Passing gas through crushing or disintegrating zone the applied gas acting to effect material separation

Definitions

  • the present disclosure belongs to the technical field of agricultural products processing, and in particular relates to a fluidized bed collision-type airflow mechanical ultrafine pulverization equipment and method.
  • peanut shells are the shells of peanuts.
  • the polyphenols in peanut shells mainly include flavonoids (mainly luteolin), dihydrogen Flavonoids (mainly saccharol), chromone (mainly 5,7-dihydroxychromone), etc., have good medical, antibacterial and health effects.
  • flavonoids mainly luteolin
  • dihydrogen Flavonoids mainly saccharol
  • chromone mainly 5,7-dihydroxychromone
  • peanut shells are mostly treated as garbage in the actual production process, some are directly burned, and most of them are directly discarded, incinerated or used as coarse feed. Only a small amount is used to extract functional substances. Therefore, the comprehensive utilization efficiency of peanut shells is improved. The demand is also highlighted year by year.
  • the traditional ultrafine pulverization device mainly uses physical and mechanical pulverization methods to perform ultrafine pulverization of materials, and specifically includes: mechanical impact type, airflow type and grinding medium type ultrafine pulverization devices.
  • the mechanical impact type ultrafine pulverization device uses high-speed rotating components to strike, shear, and impact the material to cause the material itself and other components to produce intense impact and collision to complete the ultrafine pulverization
  • the airflow type ultrafine pulverization device is at high speed Under the action of air flow, the impact between the material itself and the impact, friction and shearing with other parts are used, and the air current cuts the material to complete the ultra-fine pulverization
  • the grinding medium ultra-fine pulverization device uses the grinding medium to use the material and the grinding The impact, friction, shearing of the medium and the impact and squeezing between the materials themselves complete the ultrafine crushing.
  • the mechanical impact ultra-fine pulverizing device has a better pulverizing effect on flake and fibrous materials, but the pulverizing process will inevitably generate heat, unable to pulverize heat-sensitive materials, and the particle size after pulverization is relatively large;
  • the particle size distribution of the material particles is uniform, the dispersibility is good, and there is no heat generation, but the air-flow type ultra-fine pulverizing device is difficult to pulverize flake and fibrous materials.
  • the work efficiency of a single pulverization method is very low. After pulverization, the particle size is uneven and the dispersibility is poor.
  • Simple combined pulverization devices such as mechanical impact type ultrafine pulverization device and airflow type ultrafine pulverization device, are used after mechanical impact
  • the materials crushed by the air-flow type ultrafine pulverizing device often cannot enter the airflow type ultrafine pulverization device in time for pulverization, which causes the accumulation of materials in the mechanical impact type ultrafine pulverization device, and the airflow type ultrafine pulverization device cannot perform normal smashing work; simple
  • the combined pulverizing device fails to work well with the grading device, which results in the material particles that have reached the ultra-fine pulverization requirements cannot be discharged in time, and even causes excessive pulverization of the material particles, and the pulverization efficiency is affected to a certain extent.
  • the existing combined pulverizing device, the airflow type ultrafine pulverizing device, the pulverization is usually only performed in the plane area of the space, and the pulverizing area is narrow, and the supersonic airflow cannot be fully utilized to pulverize the material; the pulverized material is under the action of the updraft Entering the classification device, the airflow gradually enters the classification zone during the axial movement, reducing the flow of the axial airflow in the classification zone, resulting in partial separation of particles in the classification zone, making the particle concentration and particle size in the upper and lower regions of the classification zone uneven The size is not uniform, causing the materials to still have the shortcomings of uneven particle size distribution and poor dispersion after crushing and classification.
  • the present disclosure proposes a fluidized bed collision type airflow mechanical ultrafine pulverization equipment and method.
  • the present disclosure can sequentially apply mechanical impact to materials for primary pulverization, collisional airflow secondary pulverization, and turbo centrifugal classification.
  • the grading treatment can complete the ultrafine pulverization of materials and improve the pulverization efficiency.
  • the present disclosure adopts the following technical solutions:
  • the first aspect of the present disclosure provides a fluidized bed collision-type air-flow mechanical ultrafine pulverization equipment, which includes a frame, and is provided with a feeding device, a primary crushing device, a secondary crushing device, and a grading device on the frame, wherein:
  • the primary crushing device is configured to apply impact mechanical crushing, and its feed port is connected to the end of the feeding device.
  • the primary crushing device includes a crushing turntable and an inner liner arranged on the outside of the crushing turntable. A plurality of obliquely arranged impact crushing blades are arranged, and a plurality of protrusions are arranged on the inner edge of the inner liner;
  • the secondary crushing device is configured to exert an impact-type jet crushing effect, and is located on the upper side of the primary crushing device. At least a part of the inner edge of the crushing chamber of the secondary crushing device is in a zigzag shape. There are multiple nozzles, which can form a centripetal reverse jet flow field inside the crushing chamber;
  • the classification device is arranged above the secondary crushing device and communicates with the crushing chamber.
  • the material enters the primary crushing device through the feeding device. Under the impact of the high-speed rotating crushing turntable and the arc-shaped inner liner, the material is subjected to great shearing force, so that the material is crushed once. After the material is crushed by the impact mechanical primary crushing device, under the action of the inclined and upward impact crushing blades, it enters the crushing chamber of the collision type airflow secondary crushing device with the airflow. Nozzles are distributed around the collision type airflow secondary crushing device. , The high-speed jet flow of compressed air generated by the intense expansion and acceleration of the nozzle forms a centripetal reverse jet flow field inside the crushing chamber.
  • the material After the material is crushed by the collision-type airflow secondary crushing device, it moves with the rising airflow to a certain height above the crushing chamber. After the coarse particles stall, they fall along the wall of the crushing chamber under the action of gravity to the collision-type airflow for secondary crushing. The device is pulverized again. The fine powder moves to the upper centrifugal turbine classifier along with the airflow.
  • the fine particles are thrown to the vicinity of the cylinder wall under the action of centrifugal force, and the speed disappears after hitting the wall. And along with the stalled coarse powder, it will fall back to the secondary pulverization device of the collision airflow to be pulverized again; the particles with smaller centrifugal force enter the middle of the turbine grading rotor through the gap of the grading blades on the turbine grading rotor, and then are discharged from the upper discharge port. The entire superfine crushing work.
  • the feeding device is a spiral feeding device, including a feeding hopper, a feeding pipe is arranged on the lower side of the feeding hopper, a screw auger is arranged in the feeding pipe, and the end of the feeding pipe is connected with a primary crushing The feed port of the device is connected.
  • the pitch of the blades of the screw auger is gradually increased along the axial conveying direction of the material.
  • the crushing blades on the crushing turntable are arranged at an angle of 10°-30° with respect to the vertical direction.
  • the crushing blades on the crushing turntable are arranged at an angle of 15° from the vertical direction.
  • the inner wall of the primary crushing device is provided with inner lining plates, and a plurality of arc-shaped grooves are provided on the inner edge of the inner lining plate.
  • the inner lining board can be made of materials with high hardness and good wear resistance, such as silicon carbide and corundum ceramics.
  • the nozzle includes a plurality of nozzles arranged in two layers, each layer has several, and they are arranged obliquely at a certain angle with the vertical direction.
  • the nozzles are all Laval nozzles.
  • the nozzles are arranged at an angle of 70°-80° with respect to the vertical direction.
  • the inner wall of the secondary crushing device is provided with an inner liner, and the surface of the inner liner is sawtooth.
  • the serrated lining board can be made of wear-resistant corundum ceramic material.
  • the classifying device is a centrifugal turbine classifying device, including a classifying drum, a turbine classifying rotor arranged in the classifying drum, and a driving mechanism.
  • a plurality of classifying blades are evenly distributed on the circumference of the turbine classifying rotor, and the turbine classifying rotor passes
  • the closed shaft system is connected with the driving mechanism, and the discharge port is arranged above the grading cylinder.
  • the part corresponding to the grading cylinder and the turbine grading rotor has a certain inclination and tapers upward.
  • the taper angle is 5°-15°.
  • the taper angle is 7°.
  • the grading blades of the turbine grading rotor are arc-shaped, and the spacing of the grading blades gradually expands from the middle in the radial direction.
  • the second aspect of the present disclosure provides a working method based on the above-mentioned equipment.
  • the feeding device feeds the material to be processed into the primary crushing device. Under the impact of the high-speed rotating crushing turntable and the inner liner, the material is subjected to great shearing force. , Make the material smash once;
  • the material after the secondary crushing moves with the rising airflow to a certain height above the crushing chamber. After the coarse particles stall, they fall back along the wall of the crushing chamber under the action of gravity to the secondary crushing device for re-pulverization; the fine powder follows the airflow.
  • the fine particles Moving to the upper classifying device, in the forced vortex field generated by the turbine classifying rotor, the fine particles are thrown to the vicinity of the cylinder wall under the action of centrifugal force, and the speed disappears after hitting the wall, and falls back to the secondary crushing together with the stalled coarse powder. The device is crushed again;
  • the particles enter the middle of the turbine classification rotor through the gaps of the classification blades on the turbine classification rotor, and then are discharged to complete the entire ultrafine pulverization work.
  • the ultrafine pulverization equipment of the present disclosure can realize quantitative feeding and reduce heat generation during the feeding process by designing the feeding device of the variable-pitch screw auger.
  • the rotation speed of the screw auger is comparable to the crushing speed of the crushing chamber. In combination, the crushing efficiency of the crushing device as a whole can be improved.
  • the crushing blades on the crushing turntable of the impact-type mechanical primary crushing device of the present disclosure are arranged obliquely to the vertical direction, so that the material particles after the primary crushing can enter the crushing chamber of the collision-type airflow secondary crushing device.
  • the inner wall of the impact-type mechanical primary crushing device of the present disclosure is distributed with arc-shaped lining plates, which are processed by using materials such as silicon carbide and corundum ceramics with high hardness and good wear resistance.
  • the narrow gap formed by the front end of the crushing blade fixed on the crushing turntable and the protruding part of the lining plate causes the material flow channel to suddenly shrink locally and increase the flow resistance.
  • the air flow carries the material particles together at high speed, causing rapid friction and squeezing between the material particles, and accelerating the crushing of the material.
  • the nozzles of the present disclosure are arranged in two layers, each with multiple layers, which are arranged obliquely to the vertical direction.
  • the center lines of the Laval nozzles converge at one point, and the resultant force is zero.
  • the formation of a three-dimensional three-dimensional crushing space further enlarges the crushing area, so that the materials have more opportunities for collision, squeezing and mutual friction in the crushing chamber, thereby improving the crushing efficiency.
  • the internal wall of the collision-type airflow secondary crushing device of the present disclosure is distributed with serrated lining plates, and is processed by wear-resistant corundum ceramics, which increases the impact friction between the material and the crushing chamber and reduces the crushing chamber Wear of the wall.
  • the grading blades of the turbine grading rotor of the present disclosure are arc-shaped, and the distance between the grading blades gradually expands from the middle in the radial direction.
  • the arc-shaped classifying blades can effectively use the centrifugal force of the material particles of different sizes to complete the particle classification and improve the classification accuracy.
  • the drive mechanism of the present disclosure is connected with the turbine classification rotor through a closed shaft system, which prevents coarse particles from being mixed into the fine powder through the gap, thereby ensuring that the particle size of the material is completely controlled by the speed of the servo motor, so that the particle size of the material can be Arbitrary adjustment within the maximum limit ensures the precision and accuracy of the ultrafine classification.
  • Figure 1 is the axial side view of the fluidized bed collision type airflow mechanical ultrafine pulverization equipment
  • Figure 2 is a cross-sectional view of a fluidized bed collision-type air-flow mechanical ultrafine pulverization equipment
  • Figure 3 is a side view of the screw feeding device
  • Figure 4 is an exploded view of the screw feeding device
  • Figure 5 is a side view of an impact mechanical primary crushing device
  • Figure 6 is an exploded view of an impact mechanical primary crushing device
  • Figure 7 is a side view of the colliding airflow secondary crushing device
  • Figure 8 is a cross-sectional view of a turbine grading rotor
  • Figure 9 is a cross-sectional view of a centrifugal turbine classifier
  • Figure 10 is an exploded view of a centrifugal turbine classifier
  • Figure 11 is an exploded view of the turbine stage rotor shafting module
  • Figure 12 is a schematic diagram of the Laval nozzle
  • Figure 13 is a schematic diagram of the expansion section of the Laval nozzle
  • Figure 14 is a schematic diagram of a turbine grading rotor
  • the screw feeder I the impact mechanical primary crushing device II, the collision type airflow secondary crushing device III, the centrifugal turbine classifier IV and the frame V;
  • III-01-Laval nozzle III-02- outer air inlet pipe, III-03-sawtooth inner liner.
  • IV-01-fastening bolt module IV-0101-fastening bolt, IV-0102-spring washer, IV-0103-fastening nut, IV-02-turbine grading rotor shafting module, IV-0201-upper cover , IV-0202-upper rolling bearing, IV-0203-seal cavity, IV-0204-lower cover, IV-0205-lower bearing seat, IV-0206-lower rolling bearing, IV-0207-drive shaft, IV-0208 upper bearing Seat, IV-03-discharge port, IV-04-turbine classifying rotor, IV-0401-classifying blades, IV-05-centrifugal turbine classifying device classification outdoor cylinder, IV-06-on the centrifugal turbine classifying device classification chamber Sleeve, IV-07-coupling, IV-08-servo motor.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure and cannot be understood as a Disclosure restrictions.
  • this application proposes a flow Fluidized bed collision type air-flow mechanical ultrafine pulverization equipment.
  • This application provides a fluidized bed collision type airflow mechanical ultrafine pulverization equipment, including a screw feed device fixed to a frame, an impact type mechanical primary pulverization device, an collision type airflow secondary pulverization device, and a centrifugal turbine classifier
  • the screw feeding device is arranged on one side of the impact mechanical primary crushing device
  • the centrifugal turbine classifying device is arranged above the collision type airflow secondary crushing device
  • the feed inlets are respectively arranged below the collision type airflow secondary crushing device , Impact type mechanical primary crushing device;
  • the screw feeding device includes a feeding hopper, a feeding barrel is arranged on the lower side of the feeding hopper, a screw auger is arranged in the feeding barrel, and the end of the feeding barrel is connected with the crushing chamber;
  • the impact-type mechanical primary crushing device includes an arc-shaped inner liner and a crushing turntable, and the crushing turntable is uniformly provided with a plurality of inclined impact crushing blades;
  • the collision-type airflow secondary crushing device includes a sawtooth-shaped lining board and a Laval nozzle.
  • the Laval nozzle is arranged in two layers, with several in each layer, which are arranged obliquely to the vertical direction;
  • the centrifugal turbine classifying device includes a turbine classifying rotor.
  • a plurality of classifying blades are evenly distributed on the circumference of the turbine classifying rotor.
  • the classifying blades are arc-shaped, and the distance between the classifying blades gradually decreases in the radial direction from both ends.
  • the turbine grading rotor is connected to a high-speed rotating servo motor, and the centrifugal force when the material particles rotate is used to complete the ultra-fine pulverization classification.
  • a fluidized bed collision type airflow mechanical ultrafine pulverization equipment including screw feeder I, impact type mechanical primary crushing device II, and collision type airflow secondary crushing device III , Centrifugal turbine classifier IV and five parts of frame V
  • the spiral feeder I is set on the side of the impact mechanical primary crushing device II
  • the centrifugal turbine classifying device IV is set above the collision airflow secondary crushing device
  • the feed inlet and the impact mechanical primary crushing device II are respectively arranged below the collision type airflow secondary crushing device III
  • the screw feed device I and the impact mechanical primary crushing device II are respectively fixedly installed on the frame V.
  • the screw feeder I sends the peanut shells into the impact mechanical primary crushing device II, and the peanut shells are completed once under the action of the arc-shaped lining plate II-01 and the crushing turntable II-06 in the impact mechanical primary crushing device II. Shattered. After that, it enters into the secondary pulverization device III of the collision type airflow, and completes the secondary pulverization under the action of the supersonic airflow formed by the Laval nozzle III-01.
  • the secondary crushed peanut shell particles enter the centrifugal turbine classifier IV driven by the updraft.
  • the internal turbo classifying rotor IV-05 makes the peanut shell particles generate different centrifugal force to meet the requirements of ultrafine crushing. The material will be discharged from the discharge port IV-03 to complete the ultra-fine grinding work.
  • the screw feeding device I is driven by a stepping motor I-04, and the stepping motor I-04 can control the feeding speed.
  • the stepping motor I-04 is fastened with the frame V through the fastening bolts, and the drive of the screw auger I-03 is driven by the V-shaped transmission belt I-05, the small pulley I-06 and the large pulley I-07.
  • the shaft rotates and combines the rolling bearing I-01, the shaft end cover I-08 and the feed hopper I-09 on the feed barrel I-02 to complete the feeding of the peanut shells.
  • the screw pitch of the screw auger I-03 gradually increases along the axial conveying direction of the peanut shell, which solves the problem of heat generation during the extrusion process of the peanut shell and avoids the change of the material characteristics of the peanut shell.
  • the impact-type mechanical primary crushing device II consists of an arc-shaped inner liner II-01, a crushing turntable shaft II-02, a three-phase stepping motor II-03, and a coupling II- 04, the bottom cover plate II-05, the crushing turntable II-06.
  • the outer cylinder wall of the impact mechanical primary crushing device II is welded to the frame V.
  • the three-phase stepping motor II-03 drives the pulverizing turntable II-06 to rotate through the crushing turntable shaft II-02 and the coupling II-04 to perform a superfine crushing of peanut shells.
  • the arc-shaped inner liner II-01 is located on the inner wall of the impact mechanical primary crushing device II.
  • the crushing blade is fixed on the crushing turntable II-06 at high speed.
  • the narrow gap formed by the front end and the convex part of the liner causes the peanut shell material flow channel to suddenly shrink locally and increase the flow resistance.
  • the air flow carries the peanut shell material particles together at a high speed, causing sharp mutual friction and squeezing between the peanut shell material particles, accelerating the crushing of the peanut shells; the crushing blades on the crushing turntable II-06 are arranged at an angle of 15° from the vertical direction. It is convenient for the peanut shell particles after the primary crushing to enter the collision type airflow secondary crushing device III.
  • the collision-type airflow secondary crushing device III is composed of Laval nozzle III-01, outer air inlet pipe III-02, and sawtooth-shaped convex inner liner III-03.
  • the serrated liner III-03 is located on the inner wall of the collision-type airflow secondary crushing device III. It is made of wear-resistant corundum ceramics, which increases the impact friction between the peanut shell and the crushing chamber and reduces the wear of the crushing chamber wall. .
  • the pulverized gas After drying, high pressure and other processes, the pulverized gas enters the collision air secondary pulverization device III through the external air inlet pipe III-02, and then the pulverized gas passes through the Laval nozzle III-01 to meet the requirements of ultrafine pulverization of peanut shells. Supersonic gas.
  • the Laval nozzle III-01 is arranged in two layers, with 3 in each layer, which are arranged at an angle of 74° from the vertical.
  • the center line of the Laval nozzle III-01 converges at one point, and the resultant force is zero, forming a three-dimensional three-dimensional
  • the crushing space further enlarges the crushing area, so that the peanut shells have more opportunities to collide, squeeze and rub against each other in the crushing chamber, thereby improving the crushing efficiency.
  • the number, distribution, and inclination angle of nozzles can be changed according to specific working conditions and environments, as long as it is ensured that each nozzle can generate supersonic gas, and the center lines of each nozzle jointly converge at one point, and The resultant force is zero, forming a three-dimensional crushing space.
  • the design of the Laval nozzle III-01 in the collision-type airflow secondary pulverization device III in this embodiment is described in detail below, according to the working requirements and manufacturing of the collision-type airflow secondary pulverization device III Cost, to make the peanut shells obtain enough crushing kinetic energy, the Laval nozzle can be used to meet the working requirements.
  • the front half of the Laval nozzle nozzle shrinks from large to small to a narrow throat in the middle, and then the narrow throat expands outward from small to large.
  • the gas in the external intake pipe body is subjected to high pressure, flows into the front half of the nozzle, passes through the narrow throat, and escapes from the rear half.
  • This structure can make the speed of the air flow change due to the change of the nozzle cross-sectional area, so that the air flow accelerates from subsonic speed to sonic speed, until it accelerates to supersonic speed. Therefore, to control the airflow to change according to a certain law, the nozzle must have a certain shape.
  • the Laval nozzle includes 4 parts: a stable section, a subsonic contraction section, a throat, and a supersonic expansion section (as shown in Figure 12), and each part must be strictly designed according to the principles of aerodynamics.
  • the Mach number Ma is an important factor that determines the cross-sectional area, pressure, gas density and flow rate of the Laval nozzle. Therefore, in the design process, the Mach number Ma can be used as a main parameter of the nozzle design. According to the relationship between Mach number and cross-sectional area, the curve equation of the nozzle can be derived. The total parameters of the air flow in the isentropic adiabatic flow remain unchanged, and the stagnation parameter can be used to study the change law in the flow field:
  • T * (K) is the stagnation temperature of the gas
  • T (K) is the static temperature of the gas
  • Ma is the Mach number
  • is the adiabatic index
  • P * (MPa) is the stagnation pressure
  • P (MPa) is Static pressure
  • ⁇ * (kg/m 3 ) is the total density
  • ⁇ (kg/m 3 ) is the static density
  • a * (m/s) is the stagnation speed of sound
  • a (m/s) is the local speed of sound.
  • the purpose of the stabilization section is to make the air flow into the nozzle uniform, which is the prerequisite for the contraction section.
  • the diameter of the stable section is related to the diameter of the throat. In theory, the larger the ratio, the better.
  • the length of the stabilization section needs to be long enough to ensure uniform flow. Generally, the length of the stabilization section is about 10 times the diameter of the throat. However, in the actual design, the size of the stable section still needs to be changed in the actual situation.
  • the throat is the transition section where the airflow changes from subsonic to supersonic speed. This section is more important in the design of the entire nozzle. The curve of this section cannot change too fast, so a circular arc should be selected as the transition curve.
  • the cross-sectional area of the mouth and throat is determined by the gas flow rate. When the steam is saturated, the calculation method of the throat diameter is:
  • G (kg/h) is the gas flow
  • P (MPa) is the absolute pressure.
  • C'd 0 C'd 0
  • C' is a constant determined by the expansion ratio E.
  • the nozzle outlet section has a great influence on efficiency. If it is too large, the airflow will over-expand and produce shock waves, which will drop to subsonic speed, and the efficiency will be significantly reduced; if it is too small, the gas will not expand enough, and the airflow will continue to expand after leaving the nozzle, which will also cause energy loss, but it will be less than when it is over-expanded.
  • the cross-sectional area of the outlet should be smaller than the theoretical calculation value to avoid excessive expansion, which is generally 70% to 80% of the theoretical calculation value.
  • the nozzle inlet diameter d can be selected according to the flow rate of 10-30m/s.
  • the function of the subsonic contraction section is to accelerate the airflow, and at the same time, to ensure that the outlet airflow of the contraction section is uniform, straight and stable.
  • the performance of the contraction section depends on the ratio of the inlet area to the outlet area of the contraction section and the curve shape of the contraction section.
  • the half cone angle ⁇ 1 of the entrance cone is generally selected to be relatively large, and the same roughly constant radius of curvature is used for the transition from the contraction section to the throat, and the radius of curvature is slightly larger than the radius of the throat. The purpose of this is In order to make the transition very smooth and gentle, shrink the length of the section:
  • the applicable range of the half apex angle ⁇ 2 of the expansion section (as shown in Fig. 13) generally adopts a smaller angle. Because the expansion angle is too large, the shock wave generated at the nozzle exit is more serious, causing the jet to spread faster; if the expansion angle is too small, the supersonic channel is very long, the surface layer is too thick and pressure loss occurs.
  • the transition from the throat to the expansion section should be very smooth and gentle. The realistic approach is to use the same roughly constant radius of curvature at the transition from the throat to the expansion section. It is better to have a small radius of curvature from the expansion section to the intersection of the nozzle end surface. A large radius of curvature will make the natural gas jet unstable and reduce its penetrating ability.
  • the calculation formula for the length of the expansion section is
  • Me is the Mach number before subtraction.
  • the total pressure is the inlet pressure:
  • T 0 (K) is the temperature at the inlet
  • T e (K) is the temperature at the outlet
  • is the adiabatic index, in this embodiment, 1.33.
  • the grading blade IV-0401 of the turbine grading rotor IV-04 is in the shape of an arc, and the distance between the grading blades gradually expands in the radial direction from the middle.
  • the arc-shaped classifying blades can effectively use the centrifugal force of peanut shell particles of different sizes to complete the particle classification and improve the classification accuracy.
  • the servo motor IV-08 drives the drive shaft and the classification rotor on it to rotate at a high speed.
  • the centrifugal force and centripetal force of the peanut shell particles increase rapidly.
  • the particle classification is realized by the balance of the centrifugal force and the centripetal force of the particles. As shown in Figure 14, suppose the cross section of the grading rotor is S, the particle size at point P is d, and its density is ⁇ s .
  • the centrifugal force of the particles is:
  • the resistance of the medium can be obtained:
  • the resistance of the medium can be obtained:
  • k is the resistance coefficient
  • ⁇ s (g/mL) is the density of the powder
  • ⁇ (g/mL) is the density of the gas
  • ⁇ (Pa ⁇ s) is the aerodynamic viscosity
  • r (cm) is the radius of the grading rotor
  • d th3 ( ⁇ m) is the theoretical critical particle size
  • n (r/min) is the speed of the grading rotor
  • S (cm 2 ) Is the area of a certain section of the rotor
  • Q (cm 3 /s) is the amount of air flowing through the section.
  • d th3 is inversely proportional to n, that is, the higher the rotation speed of the classification rotor, the smaller the particle size after classification; d th3 is proportional to the square root of Q, and d th3 increases with the increase of Q Increase.
  • the centrifugal turbine classifying device IV consists of a fastening bolt module IV-01, a fastening bolt IV-0101, a spring washer IV-0102, a fastening nut IV-0103, and a turbine classifying rotor shafting module IV-02, upper cover IV-0201, upper rolling bearing IV-0202, sealed cavity IV-0203, lower cover IV-0204, lower bearing seat IV-0205, lower rolling bearing IV-0206, drive shaft IV-0207, upper Bearing seat IV-0208, discharge port IV-03, turbine grading rotor IV-04, grading blade IV-0401, centrifugal turbine grading device classification outdoor cylinder IV-05, centrifugal turbine grading device classification chamber upper sleeve IV- 06, It is composed of coupling IV-07 and servo motor IV-08.
  • the servo motor IV-08 is fixed to the upper part of the upper sleeve IV-06 of the classification chamber of the centrifugal turbine classifier through the fastening bolt IV-0101 of the fastening bolt module IV-01, the spring washer IV-0102, and the fastening nut IV-0103.
  • the turbine classifying rotor IV-04 is connected to the servo motor IV-08 through the turbine classifying rotor shaft module IV-02 and the coupling IV-07 to realize the centrifugal turbine classification of peanut shell particles.
  • the grading outdoor cylinder IV-05 of the centrifugal turbine classifying device is tapered upward by 7°. This is because the airflow gradually enters the grading zone during the axial movement, reducing the flow of the axial airflow in the grading zone. The reduction of the axial airflow in the classification zone will cause the particles to be partially separated in the classification zone, resulting in uneven particle concentration and uneven particle size in the upper and lower regions of the classification zone.
  • the centrifugal turbine classifier is tapered upwards by 7°. IV-05 can ensure the uniformity of the axial air flow in the classification zone, so that the gas-solid concentration and particle size distribution above and below the classification zone are uniform, and the classification accuracy is improved.
  • the lower end of the drive shaft IV-0207 of the turbine graded rotor shafting module IV-02 is connected with the turbine graded rotor IV-04, and the upper end is connected with the coupling IV-07.
  • the upper rolling bearing IV-0202 is in contact with the upper cover plate IV-0201 and the upper bearing seat IV-0208
  • the lower rolling bearing IV-0206 is in contact with the lower cover plate IV-0204 and the lower bearing seat IV-0205
  • the sealed cavity IV-0203 is in contact with
  • the upper bearing seat IV-0208 and the lower bearing seat IV-0205 are respectively welded and fixed.
  • the closed connection of the turbine grading rotor shaft module IV-02 is realized, which prevents the peanut shell powder from entering the rolling bearing and affects its normal operation.
  • the peanut shell powder that meets the crushing requirements will enter the next process from the discharge port IV-03.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

一种流化床对撞式气流机械超微粉碎设备与方法,包括机架(V),设置在机架(V)上的进料装置(I)、一次粉碎装置(II)、二次粉碎装置(III)和分级装置(IV),一次粉碎装置(II)被配置为施加冲击式机械粉碎作用,其进料口与进料装置(I)末端连接,一次粉碎装置(II)包括粉碎转盘(II-06)与设置在粉碎转盘(II-06)外侧的内衬板(II-01),粉碎转盘(II-06)上布设有多个倾斜设置的冲击粉碎叶片,内衬板(II-01)内沿设置有多个凸起;二次粉碎装置(III)被配置为施加对撞式气流粉碎作用,其位于所述一次粉碎装置(II)的上侧,其粉碎室的内沿至少一部分呈锯齿状,粉碎室的四周分布有多个喷嘴(III-01),能够在粉碎室内部形成向心逆喷射流场;分级装置(IV)设置于所述二次粉碎装置(III)的上方,与所述粉碎室连通。该流化床对撞式气流机械超微粉碎设备能够提高粉碎效率。

Description

流化床对撞式气流机械超微粉碎设备与方法 技术领域
本公开属于农产品加工技术领域,具体涉及一种流化床对撞式气流机械超微粉碎设备与方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
很多植物的果实、壳、根茎等物质具有很高的营养成分,例如花生壳,即为花生的果壳,花生壳中的多酚类物质主要包括黄酮(以木犀草素为主)、二氢黄酮(以圣草酚为主)、色原酮(以5,7-二羟基色原酮为主)等,具有很好的医疗、抗菌和保健作用。然而,花生壳在实际生产过程中多被当垃圾处理,有的直接烧掉,大部分则被直接丢弃、焚烧或者作为粗饲料,只有少量用于提取功能性物质,因此,提高花生壳综合利用效率的需求也在逐年凸显。研究发现,经超微粉碎后,花生壳粒径达到微、纳米时,比表面积增加,表面活性增大,自身的性能会发生很大的变化。由于我国机械化生产水平较低,在一定程度上限制了我国超微粉碎加工行业产业化的发展。
据发明人了解,传统的超微粉碎装置主要利用物理机械粉碎的方法对物料进行超微粉碎,具体包括:机械冲击式、气流式以及磨介式超微粉碎装置。其中,机械冲击式超微粉碎装置利用高速旋转的部件对物料进行打击、剪切、冲击等作用使物料自身以及与其他部件产生激烈的冲击碰撞完成超微粉碎;气流式超微粉碎装置在高速气流作用下,利用物料本身之间的撞击以及与其他部件的冲击、摩擦、剪切,气流对物料的剪切完成超微粉碎;磨介式超微粉碎装置通过加入研磨介质,利用物料与研磨介质的冲击、摩擦、剪切以及物料本身之间的撞击、挤压等完成超微粉碎。
发明人发现,机械冲击式超微粉碎装置对片状及纤维状物料粉碎效果较好,但粉碎过程会不可避免的产生热量,无法对热敏性物料进行粉碎,且粉碎后微粒分度较大;气流式超微粉碎装置粉碎后物料微粒粒度分布均匀、分散性较好且不会有热量的产生,但气流式超微粉碎装置难以粉碎片状及纤维状物料。单一的粉碎方法工作效率很低,粉碎后微粒分度不均匀、分散性较差,简单的组合式粉碎装置,如机械冲击式超微粉碎装置与气流式超微粉碎装置组合使用,经过机械冲击式超微粉碎装置粉碎后的物料往往无法及时的进入气流式超微粉碎装置进行粉碎,造成物料在机械冲击式超微粉碎装置的堆积,气流式超微粉碎装置无法正常进行粉碎工作;简单的组合式粉碎装置未能与分级装置较好的配合使用,导致已经达到超微粉碎要求的物料微粒无法及时排出,甚至造成物料微粒的过度粉碎,粉碎效率受到一定影响。现有的组合式粉碎装置,气流式超微粉碎装置粉碎往往只在空间的平面区域进行粉碎,粉碎区域狭小,不能充分利用超音速气流对物料进行粉碎;粉碎后的物料在上升气流的作用下进入分级装置,气流在轴向运动过程中逐步进入分级区,减少了分级区轴向气流的流量,导致颗粒在分级区的部分分离,使得分级区上下区域的颗粒浓度不均匀和颗粒的粒径大小不均匀,造成粉碎分级后物料仍存在微粒粒度分布不均、分散性较差的缺点。
发明内容
本公开为了解决上述问题,提出了一种流化床对撞式气流机械超微粉碎设备与方法,本公开能够依次对物料施加机械冲击的一次粉碎、对撞气流的二次粉碎、涡轮离心分级的分级处理,完成物料的超微粉碎,提高粉碎效率。
根据一些实施例,本公开采用如下技术方案:
本公开的第一方面提供一种流化床对撞式气流机械超微粉碎设备,包括机架,设置有机架上的进料装置、一次粉碎装置、二次粉碎装置和分级装置,其中:
所述一次粉碎装置被配置为施加冲击式机械粉碎作用,其进料口与进料装置末端连接,所述一次粉碎装置包括粉碎转盘与设置在粉碎转盘外侧的内衬板,所述粉碎转盘上布设有多个倾斜设置的冲击粉碎叶片,内衬板内沿设置有多个凸起;
所述二次粉碎装置被配置为施加对撞式气流粉碎作用,其位于所述一次粉碎装置的上侧,所述二次粉碎装置的粉碎室的内沿至少一部分呈锯齿状,粉碎室的四周分布有多个喷嘴,能够在粉碎室内部形成向心逆喷射流场;
所述分级装置设置于所述二次粉碎装置的上方,与所述粉碎室连通。
上述方案中,物料通过进料装置进入一次粉碎装置,在高速旋转的粉碎转盘及圆弧形内衬板的冲击下,物料受到极大的剪切力,使物料进行一次粉碎。物料经过冲击式机械一次粉碎装置粉碎后,在倾斜上翘的冲击粉碎叶片的作用下,随气流进入对撞式气流二次粉碎装置的粉碎室,对撞式气流二次粉碎装置四周分布有喷嘴,压缩空气通过喷嘴激烈膨胀加速产生的高速喷射流,在粉碎室内部形成向心逆喷射流场。在压差的作用下,一次粉碎后的物料微粒流态化,被加速的物料微粒在喷嘴的交汇点汇合,产生剧烈的冲击、碰撞而被二次粉碎。物料经过对撞式气流二次粉碎装置粉碎后,随上升的气流一起运动至粉碎室上部的一定高度,粗颗粒失速后,在重力的作用下沿粉碎室壁面回落到对撞式气流二次粉碎装置进行再次粉碎。细粉随气流一起运动到上部的离心式涡轮分级装置,在高速转动的涡轮分级转子所产生的强制涡流场内,细颗粒在离心力的作用下被抛向筒壁附近,撞壁后速度消失,并随失速粗粉一起回落到对撞式气流二次粉碎装置进行再次粉碎;离心力较小的微粒通过涡轮分级转子上分级叶片的间隙进入涡轮分级转子中部,进而自上方的出料口排出,完成整个超微粉碎工作。
作为可选择的技术方案,所述进料装置为螺旋式进料装置,包括进料斗,进料斗下侧设置进料管,进料管内设置有螺旋绞龙,进料管末端与一次粉碎装置的进料口连接。
作为可选择的技术方案,所述螺旋绞龙的叶片螺距沿物料轴向输送方向逐渐增大。这种设置方式解决了物料进料过程中挤压产热的问题,避免了粉碎物料特性的改变。
作为可选择的技术方案,所述粉碎转盘上的粉碎叶片与竖直方向呈10°-30°倾斜布置。
优选的,所述粉碎转盘上的粉碎叶片与竖直方向呈15°倾斜布置。
作为可选择的技术方案,所述一次粉碎装置内壁分布有内衬板,所述内衬板的内沿设置有多个圆弧形凹槽,相邻的圆弧形凹槽之间,形成所述凸起。
所述内衬板可以采用碳化硅、刚玉陶瓷等硬度大、耐磨性好的材料加工制作。
作为可选择的技术方案,所述喷嘴包括多个,分上下两层布置,每层具有若干个,分别与竖直方向呈一定夹角倾斜布置。
优选的,所述喷嘴均为拉瓦尔喷嘴。
优选的,所述喷嘴与竖直方向呈70°-80°倾斜布置。
作为可选择的技术方案,所述二次粉碎装置的内壁设置有内衬板,所述内衬板表面为锯齿形。
锯齿形内衬板可以采用耐磨的刚玉陶瓷材料进行加工制作。
作为可选择的技术方案,所述分级装置为离心式涡轮分级装置,包括分级筒、设置在分级筒内的涡轮分级转子和驱动机构,涡轮分级转子圆周均匀分布多个分级叶片,涡轮分级转子通过密闭的轴系连接驱动机构,分级筒的上方设置出料口。
作为可选择的技术方案,所述分级筒与涡轮分级转子对应的部分具有一定的倾斜,向上渐缩。
优选的,渐缩角度为5°-15°。
优选的,渐缩角度为7°。
作为可选择的技术方案,涡轮分级转子的分级叶片呈圆弧状,且分级叶片间距自中部沿径向逐渐扩大。
本公开的第二方面提供基于上述设备的工作方法,进料装置将待处理的物料送入一次粉碎装置,在高速旋转的粉碎转盘及内衬板的冲击下,物料受到极大的剪切力,使物料进行一次粉碎;
在倾斜上翘的冲击粉碎叶片的作用下,随气流进入二次粉碎装置的粉碎室,压缩空气通过喷嘴激烈膨胀加速产生的高速喷射流,在粉碎室内部形成向心逆喷射流场;在压差的作用下,一次粉碎后的物料微粒流态化,被加速的物料微粒在喷嘴的交汇点汇合,产生剧烈的冲击、碰撞而被二次粉碎;
二次粉碎后的物料随上升的气流一起运动至粉碎室上部的一定高度,粗颗粒失速后,在重力的作用下沿粉碎室壁面回落到对二次粉碎装置进行再次粉碎;细粉随气流一起运动到上部分级装置,在涡轮分级转子所产生的强制涡流场内,细颗粒在离心力的作用下被抛向筒壁附近,撞壁后速度消失,并随失速粗粉一起回落到二次粉碎装置进行再次粉碎;
微粒通过涡轮分级转子上分级叶片的间隙进入涡轮分级转子中部,进而排出,完成整个超微粉碎工作。
与现有技术相比,本公开的有益效果为:
本公开的有益效果为:
(1)本公开的超微粉碎设备,通过设计变螺距螺旋绞龙的进料装置,可以实现定量进料以及减少进料过程中的产热,通过螺旋绞龙的转速与粉碎室粉碎速度相配合,可以提高粉碎装置整体的粉碎效率。
(2)本公开的冲击式机械一次粉碎装置粉碎转盘上的粉碎叶片与竖直方向呈倾斜布置,便于一次粉碎后的物料微粒进入对撞式气流二次粉碎装置的粉碎室。
(3)本公开的冲击式机械一次粉碎装置内壁分布有圆弧形内衬板,并采用碳化硅、刚玉陶瓷等硬度大、耐磨性好的材料加工制作。高速运动粉碎转盘上固定的粉碎叶片前端和衬板凸起部分所形成的狭窄间隙,使物料流的通道在此处突然局部收缩、流动阻力增大。而空气流携带物料粒高速汇集而来,使物料粒间产生急剧的相互摩擦和挤压,加速物料的粉碎。
(4)本公开的喷嘴分上下两层布置,每层多个,分别与竖直方向呈倾斜布置,拉瓦尔喷嘴的中心线共同交汇于一点,且合力为零。形成三维立体的粉碎空间,进一步加大了粉碎区域,使得物料在粉碎室内获得了更多的碰撞、挤压和相互摩擦的机会,进而提高粉碎效率。
(5)本公开的对撞式气流二次粉碎装置内壁分布有锯齿形内衬板,并采用耐磨的刚玉陶瓷进行加工制作,在加大了物料与粉碎室冲击摩擦的同时减轻了粉碎室内壁的磨损。
(6)本公开的分级装置的设置,由于气流在轴向运动过程中逐步进入分级区,减少了分级区轴向气流的流量。分级区轴向气流的减少,会导致颗粒在分级区的部分分离,使得分级区上下区域的颗粒浓度不均匀和颗粒的粒径大小不均匀。因此,离心式涡轮分级装置外筒壁向上渐缩,以保证分级区轴向气流的均匀性,从而使分级区上下的气固浓度及颗粒的大小分布均匀,提高了分级精度。
(7)本公开的涡轮分级转子的分级叶片呈圆弧状,且分级叶片间距自中部沿径向逐渐扩大。在涡轮分级转子高速转动时,圆弧状分级叶片能够有效利用不同大小的物料微粒的离心力完成微粒分级,提高分级精度。
(8)本公开的驱动机构与涡轮分级转子通过密闭的轴系连接,避免了粗颗粒经间隙混入微粉中,从而保证了物料微粒粒度完全由伺服电机的转速进行控制,使物料微粒粒度可在最大限度内任意调节,确保了超微分级的精密性和准确性。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为流化床对撞式气流机械超微粉碎设备轴侧图;
图2为流化床对撞式气流机械超微粉碎设备剖视图;
图3为螺旋进料装置轴侧图;
图4为螺旋进料装置爆炸图;
图5为冲击式机械一次粉碎装置轴侧图;
图6为冲击式机械一次粉碎装置爆炸图;
图7为对撞式气流二次粉碎装置轴侧图;
图8为涡轮分级转子剖视图;
图9为离心式涡轮分级装置剖视图;
图10为离心式涡轮分级装置爆炸图;
图11为涡轮分级转子轴系模块爆炸图;
图12为拉瓦尔喷嘴简图;
图13为拉瓦尔喷嘴扩张段示意图;
图14为涡轮分级转子原理图;
图中,螺旋进料装置I,冲击式机械一次粉碎装置II,对撞式气流二次粉碎装置III,离心式涡轮分级装置IV以及机架Ⅴ;
I-01-滚动轴承,I-02-进料筒,I-03-螺旋绞龙,I-04-步进电机,I-05-V型传动带,I-06-小带轮,I-07-大带轮,I-08-轴端盖板,I-09-进料斗。
Ⅱ-01-圆弧形内衬板,Ⅱ-02-粉碎转盘轴,Ⅱ-03-三相步进电机,Ⅱ-04-联轴器,Ⅱ-05-底部盖板,Ⅱ-06-粉碎转盘。
Ⅲ-01-拉瓦尔喷嘴,Ⅲ-02-外进气管路,Ⅲ-03-锯齿形内衬板。
IV-01-紧固螺栓模块,IV-0101-紧固螺栓,IV-0102-弹簧垫圈,IV-0103-紧固螺母,IV-02-涡轮分级转子轴系模块,IV-0201-上盖板,IV-0202-上部滚动轴承,IV-0203-密封腔,IV-0204-下盖板,IV-0205-下部轴承座,IV-0206-下部滚动轴承,IV-0207-传动轴,IV-0208上部轴承座,IV-03-出料口,IV-04-涡轮分级转子,IV-0401-分级叶片,IV-05-离心式涡轮分级装置分级室外筒,IV-06-离心式涡轮分级装置分级室上套筒,IV-07-联轴器,IV-08-伺服电机。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
正如背景技术所介绍的,发明人发现,现有超微粉碎装置的粉碎效果并不理想,普遍存在单位能耗高,经济性差的缺点,为了解决如上的技术问题,本申请提出了一种流化床对撞式气流机械超微粉碎设备。
本申请提供了一种流化床对撞式气流机械超微粉碎设备,包括固定于机架的螺旋进料装置、冲击式机械一次粉碎装置、对撞式气流二次粉碎装置和离心式涡轮分级装置,所述螺旋进料装置设置于冲击式机械一次粉碎装置一侧,离心式涡轮分级装置设置于对撞式气流二次粉碎装置上方,对撞式气流二次粉碎装置下方分别设置进料口、冲击式机械一次粉碎装置;
所述螺旋进料装置包括进料斗,进料斗下侧设置进料筒,进料筒内设置有螺旋绞龙,进料筒末端与粉碎室连接;
所述冲击式机械一次粉碎装置包括圆弧形内衬板、粉碎转盘,粉碎转盘均布设置了多个倾斜的冲击粉碎叶片;
所述对撞式气流二次粉碎装置包括锯齿形内衬板、拉瓦尔喷嘴,拉瓦尔喷嘴分上下两层布置,每层若干个,分别与竖直方向呈倾斜布置;
所述离心式涡轮分级装置包括涡轮分级转子,涡轮分级转子圆周均匀分布多个分级叶片,分级叶片为圆弧状,分级叶片间距自两端沿径向逐渐缩小。涡轮分级转子连接高速转动的伺服电机,利用物料微粒转动时的离心力完成超微粉碎的分级。
实施例1
下面结合附图1-附图14对本实施例公开的一种流化床对撞式气流机械超微粉碎设备做进一步的说明;在本实施例中,以花生壳作为物料进行说明,但在其他实施例中,并不限定于此,还可以处理其他物料,如人参等。
参照附图1和附图2所示,一种流化床对撞式气流机械超微粉碎设备,包括螺旋进料装置I、冲击式机械一次粉碎装置II、对撞式气流二次粉碎装置III、离心式涡轮分级装置IV以及机架Ⅴ五部分,所述螺旋进料装置I设置于冲击式机械一次粉碎装置II一侧,离心式涡轮分级装置IV设置于对撞式气流二次粉碎装置上方,对撞式气流二次粉碎装置III下方分别设置进料口、冲击式机械一次粉碎装置II,螺旋进料装置I与冲击式机械一次粉碎装置II分别固定安装于机架Ⅴ上。
螺旋进料装置I将花生壳送入冲击式机械一次粉碎装置II,花生壳在冲击式机械一次粉碎装置II内的圆弧形内衬板Ⅱ-01及粉碎转盘Ⅱ-06的作用下完成一次粉碎。之后进入对撞式气流二次粉碎装置III,在拉瓦尔喷嘴Ⅲ-01所形成的超音速气流的作用下完成二次粉碎。二次粉碎后的花生壳微粒在上升气流的带动下进入离心式涡轮分级装置IV,其内部的涡轮分级转子IV-05使花生壳微粒产生不同大小的离心力,达到超微粉碎要求的花生壳微粒将从出料口IV-03出料,完成超微粉碎工作。
参照附图3和附图4所示,螺旋进料装置I由步进电机I-04驱动,步进电机I-04可以控制进料的速度。步进电机I-04通过紧固螺栓与机架Ⅴ紧固连接,通过V型传动带I-05、小带轮I-06和大带轮I-07的传动驱动螺旋绞龙I-03的传动轴转动,并结合滚动轴承I-01、轴端盖板I-08以及进料筒I-02上的进料斗I-09完成花生壳的进料工作。螺旋绞龙I-03的螺距沿花生壳轴向输送方向逐渐增大,解决了花生壳进料过程中挤压产热的问题,避免了花生壳的物料特性的改变。
参照附图5和附图6所示,冲击式机械一次粉碎装置II由圆弧形内衬板Ⅱ-01,粉碎转盘轴Ⅱ-02,三相步进电机Ⅱ-03,联轴器Ⅱ-04,底部盖板Ⅱ-05,粉碎转盘Ⅱ-06组成。冲击式机械一次粉碎装置II外筒壁与机架Ⅴ焊接固定。三相步进电机Ⅱ-03通过粉碎转盘轴Ⅱ-02及联轴器Ⅱ-04带动粉碎转盘Ⅱ-06转动,进行花生壳的一次超微粉碎。圆弧形内衬板Ⅱ-01位于冲击式机械一次粉碎装置II内壁,采用碳化硅、刚玉陶瓷等硬度大、耐磨性好的材料加工制作,高速运动粉碎转盘Ⅱ-06上固定的粉碎叶片前端和衬板凸起部分所形成的狭窄间隙,使花生壳物料流的通道在此处突然局部收缩、流动阻力增大。空气流携带花生壳物料粒高速汇集,使花生壳物料粒间产生急剧的相互摩擦和挤压,加速花生壳的粉碎;粉碎转盘Ⅱ-06上的粉碎叶片与竖直方向呈15°倾斜布置,便于一次粉碎后的花生壳微粒进入对撞式气流二次粉碎装置III。
参照附图7所示,对撞式气流二次粉碎装置III由拉瓦尔喷嘴Ⅲ-01,外进气管路Ⅲ-02,锯齿形凸起内衬板Ⅲ-03组成。锯齿形内衬板Ⅲ-03位于对撞式气流二次粉碎装置III内壁,采用耐磨的刚玉陶瓷进行加工制作,在加大了花生壳与粉碎室冲击摩擦的同时减轻了粉碎室内壁的磨损。经过干燥、高压等工序处理的粉碎气体通过外进气管路Ⅲ-02进入对撞式气流二次粉碎装置III中,之后粉碎气体经过拉瓦尔喷嘴Ⅲ-01,成为达到花生壳超微粉碎要求的超音速气体。拉瓦尔喷嘴Ⅲ-01分上下两层布置,每层3个,分别与竖直方向呈74°倾斜布置,拉瓦尔喷嘴Ⅲ-01的中心线共同交汇于一点,且合力为零,形成三维立体的粉碎空间,进一步加大了粉碎区域,使得花生壳在粉碎室内获得了更多的碰撞、挤压和相互摩擦的机会,进而提高粉碎效率。
当然,在其他实施例中,可以根据具体工况和环境,改变喷嘴的个数、分布形式以及倾斜角度,只要保证各喷嘴能够产生超音速气体,且各喷嘴的中心线共同交汇于一点,且合力为零,形成三维立体的粉碎空间。
如图12和图13所示,下面详细介绍对本实施例中的撞式气流二次粉碎装置III中拉瓦尔喷嘴Ⅲ-01的设计,根据对撞式气流二次粉碎装置III的工作要求和制造成本,要使花生壳获得足够的粉碎动能,可采用拉瓦尔喷嘴来满足工作要求。
拉瓦尔喷嘴喷管的前半部由大变小向中间收缩至一个窄喉,窄喉之后又由小变大向外扩张。外部进气管体中的气体受高压,流入喷嘴的前半部,穿过窄喉后,由后半部逸出。这一架构可使气流的速度因喷嘴截面积的变化而变化,使气流从亚音速加速到音速,直到加速至超音速。因此,要控制气流按一定的规律变化,就必须使喷嘴具有一定的形状。假定喷嘴的形状不致于产生压缩波的聚集,那么通过音速的加速过程就能很光滑地(无激波)进行。如果气体在最小截面处能达到最大流速,气流进入喷嘴的扩张部分,流速将继续增加,因而出现了超音速的气流。合理的管道截面积变化规律对于喷嘴的效率影响极大。
在本实施例中,拉瓦尔喷嘴包括4部分:稳定段、亚音速收缩段、喉部、超音速扩张段(如图12所示),每一部分都要按空气动力学的原理进行严格设计。
马赫数Ma是决定拉瓦尔喷嘴截面积、压力、气体密度以及流量变化的重要因素,因此在设计过程中,可以把马赫数Ma作为喷嘴设计的一个主要参数。根据马赫数与截面积之间的关系可以导出喷嘴的曲线方程。在等熵绝能流动中气流的总参数保持不变,可以用滞止参数来研究该流场中的变化规律:
Figure PCTCN2020089379-appb-000001
Figure PCTCN2020089379-appb-000002
Figure PCTCN2020089379-appb-000003
Figure PCTCN2020089379-appb-000004
式中:T *(K)为气流的滞止温度;T(K)为气体的静温;Ma为马赫数;γ为绝热指数;P *(MPa)为滞止压力;P(MPa)为静压;ρ *(kg/m 3)为总密度;ρ(kg/m 3)为静密度;a *(m/s)为滞止音速;a(m/s)为当地音速。由式(1-3)可以看出,对拉瓦尔喷嘴,当Ma<1时,随 着马赫数的增大,流体的温度、压力和密度都降低;当Ma>1时,随着马赫数的增大,流体的温度、压力和密度也降低,以实现流体的膨胀减压增速。
*稳定段长度的确定
稳定段的目的是使进入喷嘴的气流均匀,是收缩段的前提。稳定段的直径和喉部的直径有关,理论上说二者比值越大越好。稳定段的长度需要有足够的长度才能保证来流均匀,一般可取稳定段长度是喉部直径的10倍左右。但是在实际设计中稳定段的尺寸还需实际情况有所变动。
*喉部直径的确定
喉部是气流从亚音速转变为超音速的过渡段,这一段在整个喷嘴设计中比较重要,该段曲线变化不能太快,因此需选用一段圆弧作为过渡曲线。口喉部截面积决定于气体流量,在饱和蒸气时,喉部直径计算方法为:
Figure PCTCN2020089379-appb-000005
式中:G(㎏/h)为气体流量;P(MPa)为绝对压力。取喉部直线长度l 0=3~5mm,喷嘴出口直径d 1=C'd 0,其中C'为决定于膨胀比E的常数。实践表明,喷嘴出口截面对效率影响很大。过大则气流过度膨胀,产生冲击波,降为亚声速,效率显著的降低;过小则气体膨胀不足,气流离开喷嘴后还继续膨胀,也引起能量损失,但比过度膨胀时要小。实验表明,出口截面积应小于理论计算值,以免产生过度膨胀,一般为理论计算值的70%~80%。喷嘴入口直径d可按流速10~30m/s选取。
*收缩段长度的确定
亚音速收缩段的作用是加速气流,同时要保证收缩段的出口气流均匀、平直而且稳定。收缩段的性能取决于收缩段进口面积和出口面积的比值及收缩段曲线形状,收缩段的设计方法有多种。入口锥管的半锥角α 1一般选取比较大,同时从收缩段到喉口过渡部分用同一个大致不变的曲率半径,其曲率半径稍大于喉口半径就可以了,这样做的目的是为了使过渡非常光滑和平缓,则收缩段长度:
Figure PCTCN2020089379-appb-000006
*扩张段长度的确定
扩张段半顶角α 2(如图13所示)的适用范围一般采用较小的角度。因为扩张角太大,在喷头出口处产生的激波比较严重,导致射流扩散比较快;扩张角太小,则超音速通道很长,附面层过厚和产生压力损失。从喉口到扩张段的过渡应该非常光滑和平缓。现实的办法是喉口到扩张段的过渡处,采用同一个大致不变的曲率半径。从扩张段到喷头端面相交处有一小的曲率半径为好,大的曲率半径会使天然气射流不稳定,减少其穿透能力。扩张段长度的计算式为
Figure PCTCN2020089379-appb-000007
*压强计算
由气体动力学函数公式,可以得出出口截面上气流的压强:
P e=P *π(λ e)     (8)
这样令P 1=P e,其中,
Figure PCTCN2020089379-appb-000008
称为速度系数,a为当地音速。
Figure PCTCN2020089379-appb-000009
Figure PCTCN2020089379-appb-000010
式中Me为减前马赫数。
Figure PCTCN2020089379-appb-000011
总压为入口压强:
P e=P *π(λ e)    (12)
*温度计算
温度关系为:
Figure PCTCN2020089379-appb-000012
此处温度:
Figure PCTCN2020089379-appb-000013
式中:T 0(K)为入口处温度;T e(K)为出口处温度;γ为绝热指数,在本实施例中,取1.33。
参照图8-图10所示,下面详细介绍涡轮分级转子IV-04的设计。根据分级装置的要求和制造成本,要提高微粒的分级精度并保证粉碎后微粒具有较好的分散性,采用涡轮分级转子来满足工作要求。涡轮分级转子IV-04的分级叶片IV-0401呈圆弧状,且分级叶片间距自中部沿径向逐渐扩大。在涡轮分级转子IV-04高速转动时,圆弧状分级叶片能够有效利用不同大小的花生壳微粒的离心力完成微粒分级,提高分级精度。
经对撞式气流二次粉碎装置III粉碎后的花生壳颗粒,在上升气流的作用下,进入离心式涡轮分级装置IV。伺服电机IV-08带动传动轴轴及其上的分级转子进行高速旋转,花生壳颗粒受到的离心力和向心力迅速增加,通过颗粒受离心力和向心力的平衡作用实现了颗粒的分级。如图14所示,设分级转子截面为S,P点颗粒粒径为d,其密度为ρ s,该颗粒所受的离心力:
Figure PCTCN2020089379-appb-000014
颗粒所受向心力:
Figure PCTCN2020089379-appb-000015
通过式(15)与式(16)可得F与d 3成正比,R与d 2成正比。因此,当进入到分级机中的物料颗粒粒径较大时,F>R,合力方向与F相同,颗粒向圆周方向运动;当进入到分级机中的物料颗粒小时,F<R,合力方向与R同向,颗粒向回转中心运动。基于以上原理能够实现对粒度大小不同的颗粒的收集。当F=R时,颗粒将绕半径为r的分级圆轨道中不停地旋转,在此条件下的颗粒直径被称为分级粒径d th,由式(15)和式(16)可得:
Figure PCTCN2020089379-appb-000016
得:
Figure PCTCN2020089379-appb-000017
若分级状态为层流,由斯托克斯公式,可得介质阻力:
R 1=3πμdU rr  (18)
将式(18)代入(15)得F=R时的分级粒径:
Figure PCTCN2020089379-appb-000018
若分级状态为紊流,由牛顿公式,可得介质阻力:
R 2=π/8kρd 2U r  (20)
将式(20)代入式(15)得F=R时分级粒径:
Figure PCTCN2020089379-appb-000019
在气流粉碎分级中,由于粉碎生成的颗粒较细,分级后细颗粒的沉降可按斯托克斯定律计算,分级状态为层流,分级粒径由式(19)表示:
又分机转子的圆周速度
U θ=2πnr    (22)
向心气流速度
Figure PCTCN2020089379-appb-000020
将式(22)、式(23)代入式(21)得:
Figure PCTCN2020089379-appb-000021
式中,k为阻力系数;ρ s(g/mL)为粉体的密度;ρ(g/mL)为气体的密度;μ(Pa·s)为气体动力黏度,μ(Pa·s)为空气的动力黏度,μ=0.18×10 -4;r(cm)为分级转子的半径;d th3(μm)为理论临界粒径;n(r/min)为分级转子的转速;S(cm 2)为转子某截面的面积;Q(cm 3/s)为流经截面的风量。
由(24)可得,d th3与n成反比,也就是说分级转子的转速越高,分级后得到的颗粒粒径越小;d th3与Q的平方根成正比,d th3随Q的增加而增加。
参照附图11-13所示,离心式涡轮分级装置IV由紧固螺栓模块IV-01,紧固螺栓IV-0101,弹簧垫圈IV-0102,紧固螺母IV-0103,涡轮分级转子轴系模块IV-02,上盖板IV-0201,上部滚动轴承IV-0202,密封腔IV-0203,下盖板IV-0204,下部轴承座IV-0205,下部滚动轴承IV-0206,传动轴IV-0207,上部轴承座IV-0208,出料口IV-03,涡轮分级转子IV-04,分级叶片IV-0401,离心式涡轮分级装置分级室外筒IV-05,离心式涡轮分级装置分级室上套筒IV-06,联轴器IV-07,伺服电机IV-08组成。伺服电机IV-08通过紧固螺栓模块IV-01的紧固螺栓IV-0101、弹簧垫圈IV-0102、紧固螺母IV-0103固定在离心式涡轮分级装置分级室上套筒IV-06上部。涡轮分级转子IV-04通过涡轮分级转子轴系模块IV-02及联轴器IV-07与伺服电机IV-08连接,实现了花生壳微粒的离心涡轮分级。
在本实施例中,离心式涡轮分级装置分级室外筒IV-05向上渐缩7°,这是因为气流在轴向运动过程中逐步进入分级区,减少了分级区轴向气流的流量。分级区轴向气流的减少,会导致颗粒在分级区部分分离,形成分级区上下区域的颗粒浓度不均匀和颗粒的粒径大小不均匀,向上渐缩7°的离心式涡轮分级装置分级室外筒IV-05能够保证分级区轴向气流的均匀性,从而使分级区上下的气固浓度及颗粒的大小分布均匀,提高分级精度。
涡轮分级转子轴系模块IV-02的传动轴IV-0207下端与涡轮分级转子IV-04相连接,上端与联轴器IV-07相连接。上部滚动轴承IV-0202与上盖板IV-0201及上部轴承座IV-0208接触配合,下部滚动轴承IV-0206与下盖板IV-0204及下部轴承座IV-0205接触配合,密封腔IV-0203与上部轴承座IV-0208及下部轴承座IV-0205分别焊接固定。实现了涡轮分级转子轴系模块IV-02密闭连接,避免了花生壳微粉进入滚动轴承,影响其正常工作,同时避免了粗颗粒经间隙混入微粉中,从而保证了花生壳微粒粒度完全由伺服电机IV-08的转速进行控制,使花生壳微粒粒度可在最大限度内任意调节,确保了超微分级的精密性及准确性。通过离心式涡轮分级装置IV完成分级后,达到粉碎要求的花生壳微粉将从出料口IV-03进入下一道工序。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种流化床对撞式气流机械超微粉碎设备,其特征是:包括机架,设置有机架上的进料装置、一次粉碎装置、二次粉碎装置和分级装置,其中:
    所述一次粉碎装置被配置为施加冲击式机械粉碎作用,其进料口与进料装置末端连接,所述一次粉碎装置包括粉碎转盘与设置在粉碎转盘外侧的内衬板,所述粉碎转盘上布设有多个倾斜设置的冲击粉碎叶片,内衬板内沿设置有多个凸起;
    所述二次粉碎装置被配置为施加对撞式气流粉碎作用,其位于所述一次粉碎装置的上侧,所述二次粉碎装置的粉碎室的内沿至少一部分呈锯齿状,粉碎室的四周分布有多个喷嘴,能够在粉碎室内部形成向心逆喷射流场;
    所述分级装置设置于所述二次粉碎装置的上方,与所述粉碎室连通。
  2. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述进料装置为螺旋式进料装置,包括进料斗,进料斗下侧设置进料管,进料管内设置有螺旋绞龙,进料管末端与一次粉碎装置的进料口连接;
    或,所述螺旋绞龙的叶片螺距沿物料轴向输送方向逐渐增大。
  3. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述粉碎转盘上的粉碎叶片与竖直方向呈10°-30°倾斜布置;
    或,所述粉碎转盘上的粉碎叶片与竖直方向呈15°倾斜布置。
  4. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述一次粉碎装置内壁分布有内衬板,所述内衬板的内沿设置有多个圆弧形凹槽,相邻的圆弧形凹槽之间,形成所述凸起。
  5. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述喷嘴包括多个,分上下两层布置,每层具有若干个,分别与竖直方向呈一定夹角倾斜布置。
  6. 如权利要求5所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述喷嘴均为拉瓦尔喷嘴;
    或,所述喷嘴与竖直方向呈70°-80°倾斜布置。
  7. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述二次粉碎装置的内壁设置有内衬板,所述内衬板表面为锯齿形。
  8. 如权利要求1所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述分级装置为离心式涡轮分级装置,包括分级筒、设置在分级筒内的涡轮分级转子和驱动机构,涡轮分级转子圆周均匀分布多个分级叶片,涡轮分级转子通过密闭的轴系连接驱动机构,分级筒的上方设置出料口。
  9. 如权利要求8所述的一种流化床对撞式气流机械超微粉碎设备,其特征是:所述分级筒与涡轮分级转子对应的部分具有一定的倾斜,向上渐缩;
    或,渐缩角度为5°-15°;
    或,渐缩角度为7°;
    或,涡轮分级转子的分级叶片呈圆弧状,且分级叶片间距自中部沿径向逐渐扩大。
  10. 基于权利要求1-9中任一项所述的设备的工作方法,其特征是:进料装置将待处理的物料送入一次粉碎装置,高速旋转的粉碎转盘及内衬板给物料施加剪切力,实现物料 的一次粉碎;
    倾斜上翘的冲击粉碎叶片的作用,使得一次粉碎后的物料随气流进入二次粉碎装置的粉碎室,喷嘴进行喷射,在粉碎室内部形成向心逆喷射流场,粉碎室内的压差环境将一次粉碎后的物料微粒流态化,并产生剧烈的冲击、碰撞而被二次粉碎;
    上升的气流将二次粉碎后的物料输送至粉碎室上部的一定高度,二次粉碎装置接收在重力作用下回落的粗颗粒物料,并对其进行再次粉碎;分级装置接收细颗粒,涡轮分级转子产生强制涡流场,对进入的细颗粒施加离心力,使物料被抛向筒壁附近,并随失速粗颗粒一起回落到二次粉碎装置进行再次粉碎;
    涡轮分级转子上分级叶片的间隙使微粒通过,并进入涡轮分级转子中部,进而排出,完成整个超微粉碎工作。
PCT/CN2020/089379 2020-04-13 2020-05-09 流化床对撞式气流机械超微粉碎设备与方法 WO2021208162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/06685A ZA202106685B (en) 2020-04-13 2021-09-09 Fluidized bed collision type airflow mechanical superfine pulverization equipment and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010286281.7A CN111359762B (zh) 2020-04-13 2020-04-13 流化床对撞式气流机械超微粉碎设备与方法
CN202010286281.7 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208162A1 true WO2021208162A1 (zh) 2021-10-21

Family

ID=71201331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089379 WO2021208162A1 (zh) 2020-04-13 2020-05-09 流化床对撞式气流机械超微粉碎设备与方法

Country Status (3)

Country Link
CN (1) CN111359762B (zh)
WO (1) WO2021208162A1 (zh)
ZA (1) ZA202106685B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485058A (zh) * 2022-03-07 2022-05-13 江苏特而灵新干燥成套设备有限公司 一种高效粉碎闪蒸干燥机
CN114950613A (zh) * 2022-04-18 2022-08-30 戴贞照 一种儿科临床用药物精准分量器
CN116251648A (zh) * 2023-03-28 2023-06-13 佛山市华洋动物营养品有限公司 一种转动式的饲料风磨粉机
CN117861828A (zh) * 2024-03-11 2024-04-12 山东红点新材料有限公司 用于等静压石墨骨料焦炭磨粉的超微粉碎机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996426B (zh) * 2021-10-21 2023-03-14 山东鑫海矿业技术装备股份有限公司 一种分段式涡旋破碎装置
CN114918023B (zh) * 2022-05-30 2024-05-24 郑州磨料磨具磨削研究所有限公司 一种纳米孪晶金刚石磨粒及其制备方法和应用
CN115228579B (zh) * 2022-06-17 2023-11-14 南京市江宁区艾机机械厂 一种超高压水动力破壁机
CN115382646B (zh) * 2022-09-29 2024-02-23 绵阳西力达超细材料有限公司 微粒加工设备
CN115672511A (zh) * 2022-10-09 2023-02-03 青岛理工大学 一种根茎类中药超微粉碎系统
CN116099625A (zh) * 2022-11-24 2023-05-12 苏州金远胜智能装备股份有限公司 一种流化床气流粉碎机
CN117861809B (zh) * 2024-03-11 2024-05-28 福建美宏科技有限公司 流化床对冲式气流磨

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3140294A1 (de) * 1981-10-10 1983-04-28 Alpine Ag, 8900 Augsburg Verfahren und vorrichtung zum trennen eines gutgemisches in komponenten unterschiedlicher mahlbarkeit
JPH04161257A (ja) * 1990-10-23 1992-06-04 Kurimoto Ltd 粉砕媒体を使用した気流粉砕方法
CN2294781Y (zh) * 1997-02-28 1998-10-21 石增明 多喷嘴流化床气流粉碎机
US6224004B1 (en) * 1998-06-29 2001-05-01 Minolta Co., Ltd. Mill provided with partition within milling chamber
CN201475991U (zh) * 2009-09-03 2010-05-19 王昌祺 大型流化床超微粉碎设备
CN203355834U (zh) * 2013-07-30 2013-12-25 山东申达作物科技有限公司 一种用于生物农药生产的流化床气流粉碎装置
CN203990835U (zh) * 2014-08-25 2014-12-10 邢台九明科技有限公司 流化床超微气流粉碎机
CN212069101U (zh) * 2020-04-13 2020-12-04 青岛理工大学 超微粉碎设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133504A (en) * 1990-11-27 1992-07-28 Xerox Corporation Throughput efficiency enhancement of fluidized bed jet mill
CN2171415Y (zh) * 1993-01-08 1994-07-13 武汉工业大学 复式气流粉碎机
US6895245B2 (en) * 1998-03-06 2005-05-17 Telefonaktiebolaget Lm Ericssion(Publ) Telecommunications interexchange measurement transfer
ES2379275T3 (es) * 2000-07-06 2012-04-24 Vrtx Technologies, Llc Aparato para el tratamiento de fluidos
CN2555933Y (zh) * 2002-07-01 2003-06-18 株洲金科实业有限公司 一种立式气流冲击微粉磨机
US20120325942A1 (en) * 2011-06-27 2012-12-27 General Electric Company Jet milling of boron powder using inert gases to meet purity requirements
DE102012111431A1 (de) * 2012-11-26 2014-05-28 Klafs Gmbh & Co. Kg Mikronisator
CN205341015U (zh) * 2015-12-16 2016-06-29 眉山利达华锐机械有限公司 一种超微粉碎机的喂料器
CN206454764U (zh) * 2016-12-31 2017-09-01 宜春万申制药机械有限公司 一种机械和气流一体式粉碎机
CN206924879U (zh) * 2017-01-19 2018-01-26 贵阳永乐药业有限公司 超微粉碎机喂料装置
CN208583423U (zh) * 2018-06-08 2019-03-08 玖龙纸业(沈阳)有限公司 一种环保型废纸粉碎装置
CN210279412U (zh) * 2019-05-30 2020-04-10 营口鑫源粉体设备有限公司 流化床对撞式气流粉碎机
CN110976007B (zh) * 2019-12-24 2021-07-06 山东天聚安普瑞农牧发展有限公司 一种气动反弹式畜牧饲料破碎干燥装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3140294A1 (de) * 1981-10-10 1983-04-28 Alpine Ag, 8900 Augsburg Verfahren und vorrichtung zum trennen eines gutgemisches in komponenten unterschiedlicher mahlbarkeit
JPH04161257A (ja) * 1990-10-23 1992-06-04 Kurimoto Ltd 粉砕媒体を使用した気流粉砕方法
CN2294781Y (zh) * 1997-02-28 1998-10-21 石增明 多喷嘴流化床气流粉碎机
US6224004B1 (en) * 1998-06-29 2001-05-01 Minolta Co., Ltd. Mill provided with partition within milling chamber
CN201475991U (zh) * 2009-09-03 2010-05-19 王昌祺 大型流化床超微粉碎设备
CN203355834U (zh) * 2013-07-30 2013-12-25 山东申达作物科技有限公司 一种用于生物农药生产的流化床气流粉碎装置
CN203990835U (zh) * 2014-08-25 2014-12-10 邢台九明科技有限公司 流化床超微气流粉碎机
CN212069101U (zh) * 2020-04-13 2020-12-04 青岛理工大学 超微粉碎设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485058A (zh) * 2022-03-07 2022-05-13 江苏特而灵新干燥成套设备有限公司 一种高效粉碎闪蒸干燥机
CN114950613A (zh) * 2022-04-18 2022-08-30 戴贞照 一种儿科临床用药物精准分量器
CN116251648A (zh) * 2023-03-28 2023-06-13 佛山市华洋动物营养品有限公司 一种转动式的饲料风磨粉机
CN116251648B (zh) * 2023-03-28 2023-10-31 佛山市华洋动物营养品有限公司 一种转动式的饲料风磨粉机
CN117861828A (zh) * 2024-03-11 2024-04-12 山东红点新材料有限公司 用于等静压石墨骨料焦炭磨粉的超微粉碎机
CN117861828B (zh) * 2024-03-11 2024-05-31 山东红点新材料有限公司 用于等静压石墨骨料焦炭磨粉的超微粉碎机

Also Published As

Publication number Publication date
CN111359762B (zh) 2022-02-11
ZA202106685B (en) 2021-10-27
CN111359762A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021208162A1 (zh) 流化床对撞式气流机械超微粉碎设备与方法
CN111450970B (zh) 同腔集成立式核桃壳高速多级超微粉碎装置及方法
CN105536957B (zh) 一种叶轮及超细粉磨机、超细粉磨系统
CN110788005B (zh) 一种用于超细粉体的离心式空气分级机
WO2019223367A1 (zh) 一种筒状磨粉转子及其工作方法
JP2007111574A (ja) 粉砕装置
CN212069101U (zh) 超微粉碎设备
CN212092690U (zh) 一种用于核桃壳多级粉碎的同腔集成立式粉碎装置
JP6463096B2 (ja) 原料粉砕装置
CN108435370A (zh) 一种超微中草药粉碎机
JP2792576B2 (ja) 竪型粉砕機
CN208302949U (zh) 一种超微中草药粉碎机
CN204503270U (zh) 一种造纸钛白生产用气流粉碎机
CN103191813A (zh) 一种改良的流化床气流粉碎机
CN207478753U (zh) 一种可控颗粒细度的流化床气流粉碎机
JP2002119920A (ja) 気流式分級機
US2552596A (en) Combined hammer mill crushing and oversize particle separating apparatus
CN203437172U (zh) 一种流化床气流粉碎机
CN207805773U (zh) 一种直接喂入式干蘑菇低温超细粉碎机
WO2016041336A1 (zh) 一种多级旋风涡流研磨机
EP3393669B1 (en) Device and method for micronization of solid materials
CN208082901U (zh) 多产品多级分级机
JPH02265660A (ja) 遠心流動粉砕装置
US2821344A (en) Self-classifying pulverizer
CN104888893B (zh) 一种鱼粉粉碎装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931586

Country of ref document: EP

Kind code of ref document: A1