WO2021200783A1 - アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物 - Google Patents

アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2021200783A1
WO2021200783A1 PCT/JP2021/013184 JP2021013184W WO2021200783A1 WO 2021200783 A1 WO2021200783 A1 WO 2021200783A1 JP 2021013184 W JP2021013184 W JP 2021013184W WO 2021200783 A1 WO2021200783 A1 WO 2021200783A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyisocyanate
imidazolium
formula
compound
Prior art date
Application number
PCT/JP2021/013184
Other languages
English (en)
French (fr)
Other versions
WO2021200783A9 (ja
Inventor
元嘉 宮城
光貴 小野田
Original Assignee
広栄化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 広栄化学株式会社 filed Critical 広栄化学株式会社
Priority to JP2022512184A priority Critical patent/JPWO2021200783A1/ja
Priority to EP21780685.0A priority patent/EP4129984A4/en
Priority to CN202180025102.7A priority patent/CN115397814A/zh
Priority to US17/914,995 priority patent/US20230202988A1/en
Priority to KR1020227034722A priority patent/KR20220161344A/ko
Publication of WO2021200783A1 publication Critical patent/WO2021200783A1/ja
Publication of WO2021200783A9 publication Critical patent/WO2021200783A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2895Compounds containing active methylene groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8093Compounds containing active methylene groups

Definitions

  • the present invention relates to an amidate compound, a method for producing the same, a blocking agent dissociation catalyst, and a thermosetting resin composition.
  • Non-Patent Document 1 a method of reacting N-heterocyclic carbene (hereinafter referred to as NHC carbene) with isocyanate is known (Non-Patent Document 1).
  • Patent Document 1 discloses an amidate compound that can be used as a blocking agent dissociation catalyst.
  • Non-Patent Document 1 In the method of reacting NHC carbene with isocyanate described in Non-Patent Document 1, it is generally necessary to use NHC carbene which is unstable to oxygen and water, and water is prohibited or prohibited by using special equipment such as a glove box. Manufacture under oxygen conditions is required.
  • An object of the present invention is to provide a method for producing an amidate compound, which does not require special equipment such as a glove box.
  • the present invention provides the following amidate compounds, methods for producing the same, blocking agent dissociation catalysts, and thermosetting resin compositions. [1] The following formula (1)
  • R 1 and R 4 represent the same or different hydrocarbon groups having 1 to 20 carbon atoms which may be substituted with heteroatoms.
  • R 2 and R 3 are the same or different and represent hydrogen. It represents a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with an atom or a heteroatom, or R 2 and R 3 form a ring structure together with the carbon atom to which they are bonded.
  • R 5 indicates a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom or a hetero atom.
  • the imidazolium carboxylate represented by and the following formula (2)
  • A is a residue obtained by removing the isocyanate group from at least one polyisocyanate selected from the group consisting of aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates and aromatic aliphatic polyisocyanates, or
  • An x indicates a residue obtained by removing the isocyanate group from a modified isocyanate formed from at least one selected from the group consisting of an aliphatic polyisocyanate, an alicyclic polyisocyanate, an aromatic polyisocyanate and an aromatic aliphatic polyisocyanate. It is an integer of 20 or more.
  • a method for producing an amidate compound represented by. [2] The method for producing an amidate compound according to [1], wherein the polyisocyanate compound represented by the formula (2) is an aromatic polyisocyanate.
  • polyisocyanate compound represented by the formula (2) consists of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate or polymethylene polyphenyl polyisocyanate.
  • the polyisocyanate compound represented by the formula (2) is at least one selected from the group consisting of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate or polymethylene polyphenyl polyisocyanate.
  • [5] The method for producing an amidate compound according to any one of [1] to [4], wherein R 2 and R 3 are hydrogen atoms. [6] Equation (3)
  • y and z are integers of 1 or more and 19 or less, and the total of y and z is 2 or more and 20 or less. Even if R 1 and R 4 are the same or different and are substituted with heteroatoms. It indicates a good hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 and R 3 indicate a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom or a hetero atom, which may be the same or different. Alternatively, R 2 and R 3 may form a ring structure together with the carbon atom to which they are bonded.
  • R 5 may be substituted with a hydrogen atom or a hetero atom and has 1 to 20 carbon atoms.
  • amidate compound represented by the formula (3) that can be produced by the present invention is a novel compound and is useful as a blocking agent dissociation catalyst.
  • the amidate compound represented by the formula (3) is an imidazolium carboxylate represented by the formula (1) (hereinafter, imidazolium carboxylate (1). )
  • the polyisocyanate compound represented by the formula (2) (hereinafter referred to as the polyisocyanate compound (2)) are reacted in the presence of a solvent, if necessary.
  • the imidazolium carboxylate (1) and the polyisocyanate compound (2) may be used.
  • the imidazolium carboxylic acid salt (1) is produced by the method for producing the imidazolium carboxylic acid salt (1) described later, the carboxylic acid (6) may remain in the imidazolium carboxylic acid salt (1).
  • the number of moles of the imidazolium carboxylate (1) is a
  • the number of moles of the carboxylic acid (6) remaining in the imidazolium carboxylate (1) is b
  • the reaction proceeds advantageously at a reaction temperature of ⁇ 10 ° C. or higher, preferably 0 ° C. to 150 ° C., and a reaction time of 0.5 to 12 hours.
  • the solvent may or may not be used.
  • a solvent specific examples thereof include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic or alicyclic hydrocarbons such as methylcyclohexane, cyclohexane, hexane, heptane and octane, dichloromethane, chloroform, and four.
  • examples thereof include halogenated hydrocarbons such as carbon chloride and 1,2-dichloroethane, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, and ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane, preferably aromatics.
  • the amount of the solvent used is usually 50 parts by mass or less, preferably 0.1 to 10 parts by mass, based on 1 part by mass of the imidazolium carboxylate (1).
  • the reaction may be carried out in an inert gas atmosphere that does not affect the reaction of nitrogen, argon, helium, etc.
  • the solvent can be obtained by concentrating or filtering the reaction solution to obtain the amidate compound (3), and if necessary, purification such as recrystallization or column preparative use may be performed. Twice
  • R 1 and R 4 represent hydrocarbon groups having 1 to 20 carbon atoms which may be substituted with a heteroatom, and preferably have 1 to 12 carbon atoms which may be substituted with a heteroatom.
  • Hydrocarbon groups particularly preferably hydrocarbon groups having 1 to 8 carbon atoms which may be substituted with heteroatoms, can be mentioned.
  • the hydrocarbon group an aliphatic hydrocarbon group is preferable, and an alkyl group is more preferable.
  • the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hetero atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group.
  • methyl group, ethyl group, butyl group, octyl group, 2-ethylhexyl group and benzyl group are particularly preferable.
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hydrocarbon group may contain, for example, a group such as -O-, -N ⁇ , -S-, -SO 2-.
  • the hydrocarbon chain is interrupted by these groups.
  • the hydrocarbon group is substituted with a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, the hydrocarbon group is substituted with an oxygen atom and the hydrocarbon chain is interrupted by an —O— group. Is preferable.
  • R 2 and R 3 represent a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom or a hetero atom, and are preferably a hydrogen atom. Further, the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a heteroatom is preferably substituted with a hydrocarbon group having 1 to 6 carbon atoms which may be substituted with a heteroatom, and particularly preferably substituted with a heteroatom. It is a hydrocarbon group having 1 to 4 carbon atoms which may be present.
  • the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hetero atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl.
  • octyl group 2-ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, allyl group, benzyl group, cyclohexyl group, adamantyl group, phenyl group, 2,6-diisopropylphenyl group, 2, Examples thereof include a 4,6-trimethylphenyl group, a 2-methoxyethyl group, a 2-ethoxyethyl group and a 2- (dimethylamino) ethyl group.
  • Preferred examples include a methyl group, an ethyl group, a butyl group, a 2-methoxyethyl group, a 2-ethoxyethyl group and a 2- (dimethylamino) ethyl group.
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hydrocarbon group may contain, for example, a group such as -O-, -N ⁇ , -S-, -SO 2-.
  • the hydrocarbon chain is interrupted by these groups.
  • the hydrocarbon group is substituted with a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, the hydrocarbon group is substituted with an oxygen atom and the hydrocarbon chain is interrupted by an —O— group. Is preferable.
  • R 2 and R 3 may form a ring structure together with the carbon atom to which they are bonded.
  • R 2 and R 3 may form a ring structure together with the carbon atom to which they are bonded, for example, they can take a benzoimidazolium ring structure as shown below.
  • R 1 , R 4 and R 5 are as defined above.
  • R w , R x , R y and R z represent hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms, respectively.
  • the hydrocarbon groups having 1 to 20 carbon atoms represented by R w , R x , R y and R z include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group and tert-butyl.
  • R 5 represents a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom or a hetero atom, and is preferably a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hetero atom.
  • the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a heteroatom is preferable, and the hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a heteroatom is particularly preferable. It is a hydrocarbon group having 1 or 2 carbon atoms which may be used.
  • As the hydrocarbon group an aliphatic hydrocarbon group is preferable, and an alkyl group is more preferable.
  • the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hetero atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group.
  • the hetero atom in R 5, a nitrogen atom, an oxygen atom and a sulfur atom.
  • the hydrocarbon group is substituted with a hetero atom such as an oxygen atom, a nitrogen atom, a sulfur atom
  • the hydrocarbon group is, for example, -O-, -N ⁇ , -NH-, -S-, -SO 2- Etc., and the hydrocarbon chain is interrupted by these groups.
  • the hydrocarbon group is substituted with a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom
  • the hydrocarbon group is substituted with an oxygen atom and the hydrocarbon chain is interrupted by an —O— group. Is preferable.
  • hydrocarbon group having a group such as -OH or -NH 2 is formed. Is also good.
  • Examples of the imidazolium carboxylate (1) include 1,3-dimethylimidazolium formate, 1-ethyl-3-methylimidazolium formate, 1-butyl-3-methylimidazolium formate, and 1-methyl.
  • -3-octyl imidazolium formate 1-methyl-3- (1,1,3,3-tetramethylbutyl) imidazolium formate, 1-methyl-3- (2-ethylhexyl) imidazolium formate, 1 -Dodecyl-3-methylimidazolium formate, 1-methyl-3-octadecil imidazolium formate, 1-benzyl-3-methylimidazolium formate, 1,3-dibutylimidazolium formate, 1-butyl-3 -Ethyl imidazolium formate, 1-butyl-3-octyl imidazolium formate, 1-butyl-3- (1,1,3,3-tetramethylbutyl)
  • Preferred imidazolium carboxylate (1) is 1,3-dimethylimidazolium acetate, 1-butyl-3-methylimidazolium acetate, 1-methyl-3-octylimidazolium acetate, 1-methyl-3.
  • imidazolium carboxylate (1) Commercially available imidazolium carboxylate (1) may be used.
  • the imidazolium carboxylate (1) one obtained by a known method may be used, or one produced by a method described below may be used.
  • a dicarbonyl compound represented by the following formula (4), a primary amine compound represented by the following formula (5a) and the following formula (5b), formaldehyde, and a carboxylic acid represented by the following formula (6) are reacted.
  • the imidazolium carboxylate of formula (1) is obtained.
  • Equation (4)
  • Equation (6)
  • the dicarbonyl compound represented by the formula (4) (hereinafter referred to as the dicarbonyl compound (4)) is preferably glyoxal, diacetyl, 3,4-hexanedione, 2,3-pentandione, 2,3-. Heptandione, 5-methyl-2,3-hexanedione, 3-methyl-2,3-cyclopentanedione, 1,2-cyclohexanedione, 1-phenyl-1,2-propanedione, dibenzoyl, and more. Glyoxal and diacetyl are preferable, and glyoxal is more preferable.
  • a primary amine compound represented by the formula (5a) (hereinafter referred to as a primary amine compound (5a)) and a primary amine compound represented by the formula (5b) (hereinafter referred to as a primary amine compound (5b).
  • a primary amine compound represented by the formula (5a) (hereinafter referred to as a primary amine compound (5a)) and a primary amine compound represented by the formula (5b) (hereinafter referred to as a primary amine compound (5b).
  • the carboxylic acid represented by the formula (6) is preferably formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, hepanoic acid, octanoic acid and 2-ethyl.
  • an aqueous solution or an alcohol solution such as methanol or butanol may be used as it is.
  • the amount of the primary amine compound (5a) and the primary amine compound (5b) (hereinafter, the primary amine compound (5a) and the primary amine compound (5b) are collectively referred to as the amine compound (5)) is used.
  • the amine compound (5) is 0.1 to 10 mol, preferably 0.5 to 3 mol, with respect to 1 mol of the dicarbonyl compound (4). 2 mol of the amine compound (5) reacts with 1 mol of the dicarbonyl compound (4) to form 1 mol of the imidazolium carboxylate (1).
  • the purpose is In addition to the imidazolium carboxylate (1), a polymer of the dicarbonyl compound (4) (raw material) and the dicarbonyl compound (4) is present. Further, when more than 2 mol of the amine compound (5) is used for 1 mol of the dicarbonyl compound (4), an excess amount of the amine compound (5) is present in addition to the target imidazolium carboxylate (1). become.
  • the amidated compound (3) can also be obtained by using the imidazolium carboxylate (1) in which a compound other than these imidazolium carboxylates (1) coexists.
  • the compound of the formula (1) has the following formula. It can be a mixture of compounds represented by (1-1), formula (1-2), and formula (1-3).
  • formaldehyde an aqueous solution or an alcohol solution such as methanol or butanol may be used as it is.
  • the amount of formaldehyde used is usually 0.1 to 10 mol, preferably 0.5 to 5.0 mol, with respect to 1 mol of the dicarbonyl compound (6).
  • the amount of the carboxylic acid (6) to be used is usually 0.1 to 10 mol, preferably 0.5 to 2 mol, and more preferably 1 to 1 mol with respect to 1 mol of the dicarbonyl compound (4). It is 5 mol.
  • the optimum reaction temperature varies depending on the raw materials used, the solvent, etc., but is usually ⁇ 10 ° C. or higher, preferably 0 ° C. to 100 ° C.
  • the reaction time is not particularly limited, but is preferably 0.5 to 48 hours.
  • the solvent may or may not be used.
  • the solvent used is not particularly limited as long as it does not affect the reaction.
  • Specific examples of the solvent include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic or alicyclic hydrocarbons such as methylcyclohexane, cyclohexane, hexane, heptane and octane, dichloromethane, chloroform, carbon tetrachloride, 1, Hydrocarbons such as 2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane, lower alcohols such as methanol and ethanol, N, N-dimethylformamide, acetonitrile, water and the like are preferable.
  • aromatic hydrocarbons such as toluene, benzene and xylene
  • aliphatic or alicyclic hydrocarbons such as methylcyclohe
  • the amount of the solvent used is usually 50 parts by mass or less, preferably 0.1 to 10 parts by mass, based on 1 part by mass of the dicarbonyl compound (4).
  • the reaction may be carried out in an inert gas atmosphere that does not affect the reaction of nitrogen, argon, helium, etc.
  • the imidazolium carboxylate (1) can be isolated by removing impurities (for example, unreacted raw materials) by washing with an organic solvent, concentrating the reaction solution, etc., and it is necessary. Depending on the situation, purification such as recrystallization may be performed.
  • the carboxylic acid (6) used in excess of the stoichiometric amount may remain in the imidazolium carboxylate (1).
  • the remaining carboxylic acid (6) can be converted into the corresponding ester compound by reacting with the carbonic acid ester.
  • the carbonate ester examples include dialkyl carbonate such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, dipentyl carbonate and dihexyl carbonate, and cyclic alkylene carbonate such as ethylene carbonate, propylene carbonate and butylene carbonate, which are preferable. It is dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, and particularly preferably dimethyl carbonate.
  • the amount of carbonic acid ester used is usually 1 mol or more, preferably 1 to 6 mol, with respect to 1 mol of the remaining carboxylic acid (6).
  • the reaction temperature is 30 to 100 ° C. and the reaction time is 1 to 8 hours, so that the carboxylic acid (6) can be converted into the corresponding ester compound.
  • the carboxylic acid (6) contained in the imidazolium carboxylate (1) can be removed as a result. Further, even when an imidazolium carboxylate (1) containing an ester compound converted with a carbonic acid ester is used, the desired amidate compound (3) can be obtained according to the production method of the present invention.
  • A represents any of the following residues (i) to (v) (hereinafter, may be simply referred to as "residue”).
  • Residues obtained by removing isocyanate groups from aliphatic polyisocyanates (i) Residues obtained by removing isocyanate groups from aliphatic polyisocyanates, (ii) Residues obtained by removing isocyanate groups from alicyclic polyisocyanates, (iii) Residues obtained by removing isocyanate groups from aromatic polyisocyanates, (iv) Residues obtained by removing isocyanate groups from aromatic aliphatic polyisocyanates, (v) Residues obtained by removing isocyanate groups from a modified isocyanate formed from at least one selected from the group consisting of aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates and aromatic aliphatic polyisocyanates.
  • the aliphatic polyisocyanate, the alicyclic polyisocyanate, the aromatic polyisocyanate, the aromatic aliphatic polyisocyanate or their modified isocyanates are compounds having an isocyanate group, and the residue A itself is the aliphatic polyisocyanate or the alicyclic polyisocyanate.
  • Residue A is usually an x-valent hydrocarbon group that may have a substituent other than an isocyanate group, and is composed of an x-valent hydrocarbon group that may be substituted with a hetero atom or a halogen atom.
  • the hydrocarbon group preferably has 1 to 100 carbon atoms.
  • the residue does not have an active hydrogen group such as a hydroxyl group or an amino group.
  • the x of the above x valence is the same number as x in the equation (2).
  • Examples of the substituent of the x-valent hydrocarbon group which may have a substituent other than the isocyanate group represented by the residue A include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. , Dialkylamino group, alkoxy group, aryloxy group, nitro group, cyano group, sulfonyl group, (monoalkylamino) carbonylamino group or (dialkylamino) carbonylamino group.
  • the hydrocarbon group of the residue A may be substituted with a hetero atom such as an oxygen atom, a nitrogen atom or a sulfur atom.
  • the hydrocarbon group of residue A is substituted with a heteroatom such as an oxygen atom, a nitrogen atom, a sulfur atom
  • the hydrocarbon group is, for example, -O-, -N ⁇ , -S-, -SO 2- Etc., and the hydrocarbon chain is interrupted by these groups.
  • Substituted or unsubstituted x-valent hydrocarbon groups include ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-octylene group and n-nonylene.
  • Residual A is preferably, for example, the following groups.
  • n is an integer from 0 to 4.
  • X is an integer of 2 or more and 20 or less, preferably 2 to 6, more preferably 2 to 4, and particularly preferably 2 or 3.
  • polyisocyanate compound (2) examples include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates and aromatic aliphatic polyisocyanates, and modified isocyanates thereof.
  • the polyisocyanate compound (2) may be a monomer, a dimer, a trimer or a multimer.
  • aliphatic polyisocyanate examples include aliphatic diisocyanate, lysine triisocyanate, 4-isocyanatomethyl-1,8-octamethylene diisocyanate, and bis (2-isocyanatoethyl) 2-isocyanatoglutarate.
  • the aliphatic diisocyanate preferably has 4 to 30 carbon atoms, and is, for example, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (hereinafter referred to as HDI), and 2,2,4-trimethylhexa.
  • HDI 1,4-tetramethylene diisocyanate
  • 2,2,4-trimethylhexa 1,6-hexamethylene diisocyanate
  • the aliphatic polyisocyanate may be used alone or in combination of two or more.
  • the alicyclic polyisocyanate is preferably, for example, one having 8 to 30 carbon atoms, and specifically, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, isocyanul.
  • Acid 3-isosianatomethyl-3,3,5-trimethylcyclohexane hereinafter referred to as IPDI
  • bis (4-isosianatocyclohexyl) methane, norbornane diisocyanate, diisocyanate dimerate and the like can be mentioned, preferably IPDI. be.
  • the alicyclic polyisocyanate may be used alone or in combination of two or more.
  • aromatic polyisocyanate examples include aromatic diisocyanate and polymethylene polyphenyl polyisocyanate (hereinafter referred to as polypeptide MDI).
  • aromatic diisocyanate examples include 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 3 , 3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate and the like.
  • the aromatic polyisocyanate may be used alone or in combination of two or more. Preferred are 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and polypeptide MDI because of their availability in the industry.
  • aromatic aliphatic polyisocyanate examples include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate and the like.
  • the aromatic aliphatic polyisocyanate may be used alone or in combination of two or more.
  • aromatic polyisocyanate is preferable, and 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and polypeptide MDI are more preferable.
  • the modified isocyanate is, for example, a dimer of a dimer of the polyisocyanate produced by forming a biuret bond, a urea bond, an isocyanurate bond, a uretdione bond, a urethane bond, an allophanate bond, an oxadiazine trione bond, or the like. Examples include oligomers.
  • the polyisocyanate having a biuret bond is a so-called biuret agent such as water, tert-butanol, urea and polyisocyanate, and the molar ratio of the isocyanate group of the biuret agent / polyisocyanate is about 1/2 to about 1/100.
  • the unreacted polyisocyanate can be removed and purified.
  • a polyisocyanate having an isocyanurate bond is subjected to a cyclic triquantification reaction using, for example, a catalyst, and the reaction is stopped when the conversion rate reaches about 5 to about 80% by mass, and unreacted polyisocyanate is removed and purified. can get.
  • the polyisocyanate compound having a urethane bond included in the modified isocyanate is, for example, a 2- to 6-valent alcohol-based compound such as trimethylolpropane and polyisocyanate, and the molar ratio of the hydroxyl group of the alcohol-based compound / the isocyanate group of the polyisocyanate. After reacting with about 1/2 to about 1/100, unreacted polyisocyanate can be removed and purified. Removal and purification of unreacted polyisocyanate is not always necessary.
  • the modified isocyanate compound is formed from one or more selected from the group consisting of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate or polymethylene polyphenyl polyisocyanate.
  • the dimer or trimeric polyisocyanate that has been prepared is preferable.
  • y and z are integers of 1 or more and 19 or less, and the total of y and z is 2 or more and 20 or less.
  • y and z are 1 to 5
  • the total of y and z is 2 to 6
  • more preferably y and z are 1 to 3
  • the total of y and z is 2 to 4
  • particularly preferably y and z are 1.
  • the sum of 2, y, z is 2 or 3.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are as defined above, respectively.
  • the amidate compound (3) has an isomer such as an optical isomer, a steric isomer, or a positional isomer
  • the mixture of any isomer is also an amidate compound (unless it is specified which isomer it is. It is included in 3).
  • the optical isomer is present in the amidate compound (3)
  • the optical isomer separated from the racemic mixture can also be included in the amidate compound (3).
  • Each of these isomers can be obtained as a single compound by a conventionally known separation method (concentration, solvent extraction, column chromatography, recrystallization, etc.).
  • Examples of the amidate compound (3) of the present invention include the following.
  • Et is an ethyl group
  • Bu is an n-butyl group
  • Hept is an n-heptyl group
  • Oct is an n-octyl group
  • 1-EtPent is a 1-ethylpentyl group
  • 2-EtHex is a 2-ethylhexyl group. show.
  • m is an integer of 0 to 4.
  • m is an integer of 0 to 4.
  • m is an integer of 0-4.
  • by-products represented by the formulas (P), (Q) and (R) may be present in the reaction mixture.
  • R 1 to R 5 , x, y, z, A are as defined above.
  • the by-products represented by the formulas (P), (Q) and (R) may be separated, and the amidate compound (3) may be isolated and used as a blocking agent dissociation catalyst for blocked isocyanate.
  • a mixture containing at least one by-product represented by the formula (P), the formula (Q), and the formula (R) together with the amidate compound (3) can be used as the blocking agent dissociation catalyst for the blocked isocyanate of the present invention.
  • thermosetting resin composition of the present invention can be obtained.
  • the by-products represented by the formulas (P), (Q) and (R) have an amidate group as in the amidate compound (3). It is considered that the amidate compound (3) functions as a blocking agent dissociation catalyst for blocked isocyanate.
  • a mixture containing at least one by-product represented by the formula (P), the formula (Q), and the formula (R) together with the amidate compound (3) is included in the amidate compound (3) of the present invention.
  • the amidate compound (3) can be used as a blocking agent dissociation catalyst for blocked isocyanate (hereinafter, referred to as a blocking agent dissociation catalyst).
  • the blocking agent dissociation catalyst is a catalyst capable of sealing the isocyanate group of the blocked isocyanate to dissociate the blocking agent suppressing the reaction and promoting the reaction between the regenerated isocyanate group and the coexisting isocyanate reactive group.
  • R 1 and R 4 in the formula (3) may be the same or different, optionally substituted with a heteroatom good having 1 to 20 carbon atoms
  • a hydrocarbon group having 1 to 12 carbon atoms which indicates a hydrocarbon group and may be substituted with a heteroatom, particularly preferably a hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a heteroatom is mentioned. Be done.
  • the hydrocarbon group an aliphatic hydrocarbon group is preferable, and an alkyl group is more preferable.
  • the hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hetero atom includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group.
  • methyl group, ethyl group, butyl group, octyl group, 2-ethylhexyl group and benzyl group are particularly preferable.
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hydrocarbon group may contain, for example, a group such as -O-, -N ⁇ , -S-, -SO 2-.
  • the hydrocarbon chain is interrupted by these groups.
  • the hydrocarbon group is substituted with a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom, the hydrocarbon group is substituted with an oxygen atom and the hydrocarbon chain is interrupted by an —O— group. Is preferable.
  • the blocking agent dissociation catalyst containing the amidate compound (3) will be described.
  • the blocking agent dissociation catalyst can be used alone or as a mixture of two or more. Further, if necessary, a solvent or the like can be mixed and used.
  • the solvent is not particularly limited, and is, for example, a hydrocarbon solvent such as benzene, toluene, xylene, cyclohexane, mineral spirit, and naphtha, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl acetate, butyl acetate, and acetate.
  • a hydrocarbon solvent such as benzene, toluene, xylene, cyclohexane, mineral spirit, and naphtha
  • a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl acetate, butyl acetate, and acetate.
  • Ester solvents such as cellosolve, alcohol solvents such as methanol, ethanol, 2-propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol, polyols such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol and glycerin. Examples thereof include solvents and water, and these solvents may be used alone or in combination of two or more.
  • the blocking agent dissociation catalyst of the present invention is a catalyst that promotes curing of a mixture of blocked isocyanate and a compound having an isocyanate-reactive group.
  • the blocking agent dissociation catalyst of the present invention can sufficiently achieve the object of the present invention if it contains the amidate compound (3) as an active ingredient, and even if it contains a known blocking agent dissociation catalyst as necessary. good.
  • the blocking agent dissociation catalyst of the present invention can be suitably used, for example, as a catalyst for a method for dissociating a blocking agent for blocked isocyanate.
  • this blocking agent dissociation method the blocked isocyanate is heated in the presence of the blocking agent dissociation catalyst.
  • the amount of the blocking agent dissociation catalyst used is not particularly limited, and the amount of the amidate compound (3) contained in the blocking agent dissociation catalyst is usually the thermosetting resin composition described below.
  • the amount is 0.01 to 15% by weight, preferably 0.05 to 10% by weight, and more preferably 0.1 to 5% by weight with respect to the solid content in the product.
  • the "solid content” means the total mass of the components in the thermosetting resin composition excluding the solvent described later. Therefore, when the resin composition does not contain a solvent, the total mass of the composition is equal to the solid content.
  • the reaction temperature varies depending on the blocked isocyanate used, but can be about 60 to 250 ° C, preferably about 80 to 200 ° C.
  • the reaction time is about 30 seconds to 5 hours, preferably about 30 seconds to 2 hours.
  • thermosetting resin composition of the present invention contains an amidate compound (3), a blocked isocyanate, and a compound having an isocyanate-reactive group.
  • Examples of the block isocyanate include a compound obtained by reacting a known polyisocyanate with a known blocking agent and sealing the isocyanate group in the polyisocyanate with the blocking agent.
  • the block isocyanate may be used alone or in combination of two or more.
  • the polyisocyanate is not particularly limited as long as it is a compound having two or more isocyanate groups
  • known polyisocyanates include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and aromatic fats. Examples thereof include group polyisocyanates and modified isocyanates thereof. These polyisocyanates may be used alone or in combination of two or more.
  • aliphatic polyisocyanate examples include 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate. Can be mentioned.
  • Examples of the alicyclic polyisocyanate include 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and isocyanurate 3-isocyanatomethyl-3,3,5-trimethylcyclohexane.
  • Isophorone diisocyanate bis (4-isocyanatocyclohexyl) methane, norbornane diisocyanate, diisocyanate dimerate and the like can be mentioned.
  • aromatic polyisocyanate examples include 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate.
  • aromatic polyisocyanate examples include isocyanate, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate and the like.
  • aromatic aliphatic polyisocyanate examples include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate and the like.
  • modified isocyanate examples include an isocyanate group-terminated compound and / or a polyisocyanate compound obtained by reacting the polyisocyanate compound with a compound having an active hydrogen group, and / or a reaction product of the isocyanate group-terminated compound (for example, adduct-type polyisocyanate).
  • examples thereof include allophanate-forming reaction, carbodiimidization reaction, uretdione-forming reaction, isocyanurate-forming reaction, ureton-imminating reaction, isocyanate-modified product by biuret-forming reaction and the like).
  • Known blocking agents include, for example, alcohols such as methanol, ethanol, propanol, isopropanol, butanol, sec-butanol, tert-butanol, 2-ethylhexanol, butyl cellosolve, 2,2,2-trifluoroethanol, 1, Fluoroalcohols such as 1,1,3,3,3-hexafluoro-2-propanol, phenols such as phenol, cresol, 2-hydroxypyridine, amines such as diisopropylamine, ⁇ -caprolactam, ⁇ -valero Lactams such as lactam and ⁇ -butyrolactam, oxyms such as formaldehyde oxime, acetaldehyde oxime, acetone oxime, methyl ethyl keto oxime and methyl isobutyl keto oxime, ketoenols such as acetyl acetone, 1,2-pyrazole, 3,5-d
  • Examples thereof include pyrazoles and triazoles such as triazole, preferably lactams, oximes and pyrazoles, and particularly preferably ⁇ -caprolactam, methylethylketooxime and 3,5-dimethylpyrazole.
  • Examples of the compound having an isocyanate-reactive group include a compound having two or more active hydrogen groups such as a polyol, a polyamine, and an alkanolamine.
  • the compounds having these isocyanate-reactive groups may be a mixture of two or more kinds.
  • the polyol is a compound having two or more hydroxyl groups.
  • the polyol include polyether polyols, polyester polyols, acrylic polyols, polyolefin polyols, fluorine polyols, polycarbonate polyols, polyurethane polyols and the like. These polyols may be a mixture of two or more.
  • polyether polyol examples include active hydrogen compounds such as aliphatic amine polyols, aromatic amine polyols, Mannig polyols, polyhydric alcohols, polyhydric phenols and bisphenols, and compounds obtained by adding alkylene oxide to them. These polyether polyols may be a mixture of two or more kinds.
  • Examples of the aliphatic amine polyol include an alkylenediamine-based polyol and an alkanolamine-based polyol. These polyol compounds are polyfunctional polyol compounds having terminal hydroxyl groups to which at least one of cyclic ethers such as ethylene oxide and propylene oxide is ring-opened and added using alkylenediamine or alkanolamine as an initiator.
  • alkylenediamine known compounds can be used without limitation. Specifically, it is preferable to use an alkylenediamine having 2 to 8 carbon atoms, such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, and neopentyldiamine.
  • These aliphatic amine polyols may be a mixture of two or more kinds.
  • the aromatic amine polyol is a polyfunctional polyether polyol compound having a terminal hydroxyl group to which at least one of cyclic ethers such as ethylene oxide and propylene oxide is ring-opened and added using an aromatic diamine as an initiator.
  • aromatic diamines can be used without limitation. Specific examples thereof include 2,4-toluenediamine, 2,6-toluenediamine, diethyltoluenediamine, 4,4'-diaminodiphenylmethane, p-phenylenediamine, o-phenylenediamine, naphthalenediamine and the like. Of these, the use of toluenediamine (2,4-toluenediamine, 2,6-toluenediamine or a mixture thereof) is particularly preferable.
  • These aromatic amine polyols may be a mixture of two or more kinds.
  • the Mannich polyol is obtained by ring-opening addition polymerization of an active hydrogen compound obtained by the Mannich reaction of phenol and / or an alkyl-substituted derivative thereof, formaldehyde and an alkanolamine, or at least one of ethylene oxide and propylene oxide on the compound. It is a polyol compound.
  • These Mannich polyols may be a mixture of two or more.
  • Polyhydric alcohols include dihydric alcohols (eg, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, neopentyl glycol, etc.) and trihydric alcohols.
  • dihydric alcohols eg, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, neopentyl glycol, etc.
  • trihydric alcohols for example, glycerin, trimethylolpropane, pentaerythritol, methylglucoside, sorbitol, sucrose, etc.
  • These polyhydric alcohols may be a mixture of two or more kinds.
  • polyvalent phenol examples include pyrogallol, hydroquinone and the like. These polyvalent phenols may be a mixture of two or more kinds.
  • bisphenols examples include bisphenol A, bisphenol S, bisphenol F, and low condensates of phenol and formaldehyde. These bisphenols may be a mixture of two or more.
  • polyester polyol examples include a single or a mixture of dibasic acids selected from the group of carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, and terephthalic acid.
  • polycaprolactones obtained by ring-opening polymerization of ⁇ -caprolactone.
  • These polyester polyols may be a mixture of two or more kinds.
  • the acrylic polyol is to copolymerize alone or a mixture of an ethylenically unsaturated bond-containing monomer having a hydroxyl group with another copolymerizable ethylenically unsaturated bond-containing monomer alone or a mixture thereof. It is a compound obtained by.
  • the ethylenically unsaturated bond-containing monomer having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and the like. It is preferably hydroxyethyl acrylate or hydroxyethyl methacrylate.
  • These acrylic polyols may be a mixture of two or more kinds.
  • ethylenically unsaturated bond-containing monomers copolymerizable with the ethylenically unsaturated bond-containing monomer having a hydroxyl group include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, and the like.
  • Acrylic acid esters such as butyl acrylate, isobutyl acrylate, hexyl acrylate, cyclohexyl acrylate, -2-ethylhexyl acrylate, lauryl acrylate, benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid.
  • Acrylic acids such as propyl, isopropyl methacrylate, -n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, -2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, phenyl methacrylate and the like.
  • Unsaturated carboxylic acids such as acids, methacrylic acids, maleic acids and itaconic acids
  • unsaturated amides such as acrylamide, methacrylicamide, N, N-methylenebisacrylamide, diacetoneacrylamide, diacetonemethacrylic acid, maleic acid amide and maleimide
  • vinyl monomers such as glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acryliconitrile, dibutyl fumarate, and water such as vinyltrimethoxysilane, vinylmethyldimethoxysilane, and ⁇ - (meth) acrylicoxypropyltrimethoxysilane.
  • vinyl-based monomers having a degradable silyl group examples thereof include vinyl-based monomers having a degradable silyl group.
  • polystyrene resin examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene. These polyolefin polyols may be a mixture of two or more kinds.
  • Fluorine polyol is a polyol containing fluorine in the molecule, and examples thereof include copolymers such as fluoroolefins, cyclovinyl ethers, hydroxyalkyl vinyl ethers, and monocarboxylic acid vinyl esters. These fluorine polyols may be a mixture of two or more kinds.
  • polycarbonate polyol a low molecular weight carbonate compound such as a dialkyl carbonate such as dimethyl carbonate, an alkylene carbonate such as ethylene carbonate, and a diaryl carbonate such as diphenyl carbonate, and a low molecular weight polyol used for the polyester polyol described above are polycondensed. What can be obtained is mentioned.
  • These polycarbonate polyols may be a mixture of two or more kinds.
  • Polyurethane polyol can be obtained by a conventional method, for example, by reacting a polyol with polyisocyanate.
  • the polyol containing no carboxyl group include ethylene glycol, propylene glycol and the like as low molecular weight ones, and acrylic polyol, polyester polyol, polyether polyol and the like as high molecular weight ones.
  • These polyurethane polyols may be a mixture of two or more kinds.
  • a polyamine is a compound having two or more primary amino groups or secondary amino groups.
  • examples of polyamines include low molecular weight polyamines, high molecular weight polyamines, alkanolamines and the like. These polyamines may be a mixture of two or more.
  • low molecular weight polyamine examples include aromatic amines such as 4,4'-diphenylmethanediamine, aromatic aliphatic amines such as 1,3- or 1,4-xylylene diamine or a mixture thereof, 3-aminomethyl-3, Alicyclic amines such as 5,5-trimethylcyclohexylamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-cyclohexanediamine, ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1, Examples thereof include aliphatic amines such as 6-hexamethylenediamine, hydrazine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine. These low molecular weight polyamines may be a mixture of two or more.
  • high molecular weight polyamine examples include polyoxyalkylene diamine (weight average molecular weight 400 to 4000) and polyoxyalkylene triamine (weight average molecular weight 400 to 5000). These high molecular weight polyamines may be a mixture of two or more kinds.
  • alkanolamines include monoethanolamine, diethanolamine, N- (2-aminoethyl) ethanolamine, N- (2-hydroxypropyl) ethylenediamine, monopropanolamine, monoisopropanolamine, dipropanolamine, and diisopropanolamine.
  • alkanolamines include monoethanolamine, diethanolamine, N- (2-aminoethyl) ethanolamine, N- (2-hydroxypropyl) ethylenediamine, monopropanolamine, monoisopropanolamine, dipropanolamine, and diisopropanolamine.
  • alkanolamines include monoethanolamine, diethanolamine, N- (2-aminoethyl) ethanolamine, N- (2-hydroxypropyl) ethylenediamine, monopropanolamine, monoisopropanolamine, dipropanolamine, and diisopropanolamine.
  • examples thereof include ethylene glycol bis (3-a
  • the effective isocyanate group of the blocked isocyanate means an isocyanate group that is regenerated when the blocking agent is dissociated from the blocked isocyanate.
  • the amount of the blocking agent dissociation catalyst used of the present invention is not particularly limited, and usually, the amidate compound (3) contained in the blocking agent dissociation catalyst in the thermosetting resin composition. ) Is an amount of 0.01 to 15% by weight, preferably 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the solid content in the thermosetting resin composition. ..
  • thermosetting resin composition of the present invention known polyurethane production catalysts, additives, pigments, solvents and the like commonly used in the art can be used, if necessary.
  • the known catalyst for producing polyurethane is not particularly limited, and for example, dibutyltin dilaurylate, dibutyltin di-2-ethylhexanate, dioctyltin dilaurylate, dibutyltin diacetate, dibutyltin dioxide, dioctyltin dioxide, etc.
  • Tin compounds such as tin acetylacetonate, tin acetate, tin octylate, tin laurate, bismuth compounds such as bismuth octylate, bismuth naphthenate, bismuth acetylacetonate, tetra-n-butyl titanate, tetraisopropyl titanate.
  • Titanium compounds such as titanium terephthalate, triethylamine, N, N, N', N'-tetramethylethylenediamine, N, N, N', N'-tetramethylpropylenediamine, N, N, N', N ", N "-pentamethyldiethylenetriamine, N, N, N', N", N "-pentamethyldipropylenetriamine, N, N, N', N'-tetramethylguanidine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,8-diazabicyclo [5.4.0] undecene-7, triethylenediamine, N, N, N', N'-tetramethylhexamethylenediamine, N-methyl-N'-(2-dimethylaminoethyl) piperazin
  • the additives are not particularly limited, and are, for example, ultraviolet absorbers such as hindered amines, benzotriazoles and benzophenones, color inhibitors such as perchlorates and hydroxylamines, hindered phenols and phosphorus.
  • ultraviolet absorbers such as hindered amines, benzotriazoles and benzophenones
  • color inhibitors such as perchlorates and hydroxylamines, hindered phenols and phosphorus.
  • antioxidants such as type, sulfur type and hydrazide type, urethanization catalysts such as tin type, zinc type and amine type, leveling agents, leology control agents, pigment dispersants and the like.
  • the pigment is not particularly limited, and for example, organic pigments such as quinacridone, azo, and phthalocyanine, inorganic pigments such as titanium oxide, barium sulfate, calcium carbonate, and silica, other carbon pigments, and metal foils. Pigments such as pigments and rust preventive pigments can be mentioned.
  • the solvent is not particularly limited, and for example, hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit and naphtha, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate, butyl acetate and acetic acid.
  • Esters such as cellosolves, alcohols such as methanol, ethanol, 2-propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, glycerin and the like. Hypoalcohols, water and the like can be mentioned, and these solvents may be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention When storage under high temperature is assumed, the thermosetting resin composition of the present invention is divided into a blocked isocyanate and a compound having an isocyanate-reactive group to form a two-component thermosetting composition, and when used.
  • the two-component thermosetting composition can be mixed with the thermosetting composition and used as the thermosetting resin composition of the present invention.
  • the blocking agent dissociation catalyst can be added and used when mixing the two-component thermosetting composition, and the compound having an isocyanate-reactive group and the blocking agent dissociation catalyst are mixed in advance. You can also leave it.
  • thermosetting resin composition of the present invention is used for automobiles, buildings, metal products such as steel furniture, wood products such as musical instruments, mechanical vehicles such as construction machines, building materials such as sashes, and office machines. Paints for electric appliances such as, coating materials for artificial leather and rubber rolls, inks, adhesives, adhesives, sealing materials for electronic parts, sealing materials for automobiles and buildings, etc. It can be used as a molding material for the above.
  • thermosetting resin composition of the present invention Next, a method for curing the thermosetting resin composition of the present invention will be described.
  • a mixture of blocked isocyanate and a compound having an isocyanate-reactive group is heated in the presence of the above-mentioned blocking agent dissociation catalyst.
  • the reaction temperature varies depending on the blocked isocyanate used, but can be about 60 to 250 ° C, preferably about 80 to 200 ° C.
  • the reaction time can be about 30 seconds to 5 hours, preferably about 1 minute to 60 minutes.
  • the cured product of the present invention can be produced by passing through the above-mentioned curing method of the thermosetting resin composition of the present invention.
  • LC-MS Liquid Chromatography Mass Spectrometry
  • NCO group content (%) here is the amount of isocyanate groups present in polyisocyanate expressed as a mass fraction, and is described below. It is measured and calculated by the method of.
  • NCO group content of Polymeric MDI was calculated to be 32.0%.
  • Effective NCO group content (%) is the amount of blocked isocyanate groups present in the blocked isocyanate after the blocking reaction and which can be involved in the cross-linking reaction. It is to be quantified, expressed as the mass (%) of isocyanate groups, and calculated by the following formula.
  • Effective NCO group content (%) ⁇ (solid content of blocked isocyanate (mass (%))) x (mass of polyisocyanate used in reaction x NCO group content of precursor polyisocyanate (%)) ⁇ / ( Resin mass of blocked isocyanate after blocking reaction). If it is diluted with a solvent or the like, the value in the diluted state is described.
  • R 1 to R 4 are as defined above, respectively.
  • the amidate group concentration was calculated by adding an internal standard substance (P mmol) such as tetralin or dimethyl sulfone to the amidate compound (Qg), dissolving it in an arbitrary deuterium solvent, and 1 1 H-NMR. analyzed.
  • P mmol internal standard substance
  • S the integrated intensity of the peak corresponding to R hydrogen atoms bonded to the carbon atom adjacent to the nitrogen atom of the imidazolium skeleton and the internal reference material.
  • the integrated intensity (U) of the peak corresponding to T hydrogen atoms bonded to any group of was obtained and calculated by the following formula.
  • Amidate group concentration (m mmol / g) P ⁇ S ⁇ T / (R ⁇ U ⁇ Q)
  • wt% represents mass%.
  • reaction mixture was concentrated to obtain 38.1 g of a mixture containing the compound represented by the above formula (D2EHIm_TDI_Me) as a dark brown viscous liquid.
  • the reaction product of [D2EHI] and [OAc] with the modified isocyanate in which some isocyanate groups of the tolylene diisocyanate used as the raw material are oligomerized. was presumed to be a by-product.
  • the blocking agent dissociation catalyst of the present invention may be used by isolating only the target product, but even if a mixture containing the target product and a by-product is used, the blocking agent dissociation catalyst in the thermosetting resin composition may be used. Can fully fulfill the role.
  • At least one of X 1 to X 3 is substituted with the group represented by (a), and the rest is substituted with (b).
  • a compound in which X 1 to X 3 are all substituted with (a) or a compound in which X 1 to X 3 are all substituted with (b) may be contained in the reaction mixture, but the reaction mixture
  • the main component of is a compound substituted with at least one (a) and at least one (b).
  • m is an integer from 0 to 4.
  • At least one of X 1 to X 3 is substituted with the group represented by (a), and the rest is substituted with (b).
  • a compound in which X 1 to X 3 are all substituted with (a) or a compound in which X 1 to X 3 are all substituted with (b) may be contained in the reaction mixture, but the reaction mixture
  • the main component of is a compound substituted with at least one (a) and at least one (b).
  • m is an integer from 0 to 4. 30.0 g of toluene was charged into a 180 mL three-port reactor substituted with nitrogen and refluxed by heating.
  • MEKO methylethylketone oxime
  • block body of biuret type HDI, polyester polyol (P-510, manufactured by Kuraray Co., Ltd.), and D2EHIm_TDI_Me obtained in Example 1 were added, and the total solvent amount was 1.
  • Methylisobutyl ketone was added so as to be 0 times by weight, and the mixture was stirred for 30 minutes to prepare a thermosetting resin composition.
  • thermosetting resin composition Approximately 0.6 mL of the prepared thermosetting resin composition was sampled, added onto a hot plate of an automatic curing time measuring device that had been preheated to a predetermined temperature, and stirred. At that time, the curing time at each temperature was measured with the time when the stirring torque exceeded 20% (0.86 mN ⁇ m) as the curing time. The results are shown in Table 2.
  • thermosetting resin composition was prepared and the curing time was measured in the same manner as in Evaluation Example 1 except that D2EHIm_TDI_Me was changed to the amidate compound shown in Table 2. The results are shown in Table 2.
  • thermosetting resin composition was prepared and the curing time was measured in the same manner as in Evaluation Example 1 except that the value was set to 05. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本発明は、下記式(1)(式中、R~Rは、明細書に定義される通りである。) で表されるイミダゾリウムカルボン酸塩と下記式(2)(式中、A、xは、明細書に定義される通りである) で表されるポリイソシアネート化合物を反応させる工程を含む、下記式(3)(式中、y、z、A、R~Rは、明細書に定義される通りである。) で表されるアミデート化合物の製造方法を提供するものである。

Description

アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物
 本発明は、アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物に関する。
 従来のアミデート化合物の製造方法としては、N-ヘテロサイクリックカルベン(以下、NHCカルベンという。)とイソシアネートを反応させる方法が知られている(非特許文献1)。
 特許文献1は、ブロック剤解離触媒として使用できるアミデート化合物を開示している。
WO2019065953A1
Struct.Chem.2013年 24巻 2059-2068頁
 非特許文献1に記載のNHCカルベンとイソシアネートを反応させる方法では、一般に酸素や水に対して不安定なNHCカルベンを用いる必要があり、グローブボックス等の特殊な設備を用いて、禁水、禁酸素条件下での製造が必要となる。
 本発明は、グローブボックス等の特殊な設備を必要としない、アミデート化合物の製造方法を提供することを目的とする。
 本発明は、以下のアミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物を提供するものである。
〔1〕
下記式(1)
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、同一または異なって、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。R及びRは、同一または異なって、水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示すか、或いはR及びRはそれらが結合している炭素原子と一緒になって環構造を形成しても良い。Rは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。)
で表されるイミダゾリウムカルボン酸塩と下記式(2)
Figure JPOXMLDOC01-appb-C000006
(式中、Aは脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群から選ばれる少なくとも1種のポリイソシアネートからイソシアネート基を除いた残基、或いは、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群から選ばれる少なくとも1種から形成された変性イソシアネートからイソシアネート基を除いた残基を示す。xは2以上20以下の整数である。)
で表されるポリイソシアネート化合物を反応させる工程を含む、下記式(3)
Figure JPOXMLDOC01-appb-C000007
(式中、y及びzは1以上19以下の整数であり、y、zの合計は2以上20以下である。A、R、R、R、R、Rは、各々前記に定義される通りである。)
で表されるアミデート化合物の製造方法。
〔2〕
式(2)で表されるポリイソシアネート化合物が芳香族ポリイソシアネートである〔1〕に記載のアミデート化合物の製造方法。
〔3〕
式(2)で表されるポリイソシアネート化合物が2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートまたはポリメチレンポリフェニルポリイソシアネートからなる群から選ばれる1種又は2種以上から形成された2量体または3量体のポリイソシアネートである、〔1〕に記載のアミデート化合物の製造方法。
〔4〕
式(2)で表されるポリイソシアネート化合物が2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートまたはポリメチレンポリフェニルポリイソシアネートからなる群より選ばれる少なくとも1種のポリイソシアネートである〔1〕に記載のアミデート化合物の製造方法。
〔5〕
及びRが水素原子である〔1〕~〔4〕のいずれか1項に記載のアミデート化合物の製造方法。
〔6〕
式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、y及びzは1以上19以下の整数であり、y、zの合計は2以上20以下である。R及びRは、同一または異なって、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。R及びRは、同一または異なって、水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示すか、或いはR及びRはそれらが結合している炭素原子と一緒になって環構造を形成しても良い。Rは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。)
で表されるアミデート化合物。
〔7〕
及びRが水素原子である〔6〕に記載のアミデート化合物。
〔8〕
及びRがヘテロ原子で置換されていても良い炭素数1~20のアルキル基である〔6〕に記載のアミデート化合物。
〔9〕
〔6〕~〔8〕のいずれか1項に記載のアミデート化合物を含むブロックイソシアネート用ブロック剤解離触媒。
〔10〕
〔6〕~〔8〕のいずれか1項に記載のアミデート化合物、ブロックイソシアネート、イソシアネート反応性基を有する化合物を含有する熱硬化性樹脂組成物。
〔11〕
〔10〕に記載の熱硬化性樹脂組成物を硬化してなる硬化物。
〔12〕
〔10〕に記載の熱硬化性樹脂組成物を加熱して硬化させる工程を含む硬化物の製造方法。
 グローブボックス等の特殊な設備を必要としない、新規なアミデート化合物の製造方法を提供できる。
 また、本発明により製造できる式(3)で表されるアミデート化合物は新規化合物であり、ブロック剤解離触媒として有用である。
<式(3)で表されるアミデート化合物及びその製造方法>
 本発明において、式(3)で表されるアミデート化合物(以下、アミデート化合物(3)という。)は、式(1)で表されるイミダゾリウムカルボン酸塩(以下、イミダゾリウムカルボン酸塩(1)という。)と式(2)で表されるポリイソシアネート化合物(以下、ポリイソシアネート化合物(2)という。)を必要に応じて溶媒の存在下に反応させることにより製造される。反応は、通常、イミダゾリウムカルボン酸塩(1)のモル数をa、ポリイソシアネート化合物(2)中のイソシアネート基のモル数をcとすると、c/2a=0.5~2.0になるように、イミダゾリウムカルボン酸塩(1)とポリイソシアネート化合物(2)を使用すればよい。後述のイミダゾリウムカルボン酸塩(1)の製造方法によりイミダゾリウムカルボン酸塩(1)を製造した場合、イミダゾリウムカルボン酸塩(1)にカルボン酸(6)が残存している場合がある。このような場合、イミダゾリウムカルボン酸塩(1)のモル数をa、イミダゾリウムカルボン酸塩(1)中に残存するカルボン酸(6)のモル数をb、ポリイソシアネート化合物(2)中のイソシアネート基のモル数をcとすると、c/(2a+b)=0.5~2.0になるように、イミダゾリウムカルボン酸塩(1)とポリイソシアネート化合物(2)を使用する。
 通常、-10℃以上、好ましくは0℃~150℃の反応温度、0.5~12時間の反応時間で、反応は有利に進行する。
 溶媒は使用してもしなくてもよい。溶媒を使用する場合、その具体例としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素、メチルシクロヘキサン、シクロヘキサン、ヘキサン、ヘプタン、オクタン等の脂肪族又は脂環式炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素、クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類等が挙げられ、好ましくは芳香族炭化水素、ハロゲン化芳香族炭化水素であり、特に好ましくはトルエンである。溶媒は必要に応じて2種以上を混合して使用することもできる。
 溶媒の使用量は、イミダゾリウムカルボン酸塩(1)1質量部に対して、通常50質量部以下、好ましくは0.1~10質量部である。
 必要に応じて、窒素、アルゴン、ヘリウム等の反応に影響を与えない不活性ガス雰囲気下で反応させてもよい。
 反応終了後は、反応液を濃縮又はろ過により溶媒を除去することにより、アミデート化合物(3)を得ることができ、必要に応じ、再結晶やカラム分取等の精製をしても良い。   
 式(1)中、R及びRはヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示し、好ましくはヘテロ原子で置換されていても良い炭素数1~12の炭化水素基、特に好ましくはヘテロ原子で置換されていても良い炭素数1~8の炭化水素基が挙げられる。前記炭化水素基としては、脂肪族炭化水素基が好ましく、アルキル基であることがより好ましい。ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、1,1,3,3-テトラメチルブチル基、1-エチルペンチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、アリル基、ベンジル基、シクロヘキシル基、アダマンチル基、フェニル基、2,6-ジイソプロピルフェニル基、2,4,6-トリメチルフェニル基、2-メトキシエチル基、2-エトキシエチル基、2-(ジメチルアミノ)エチル基等が挙げられる。好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、オクチル基、ドデシル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基、ベンジル基、フェニル基、2,4,6-トリメチルフェニル基であり、特に好ましくはメチル基、エチル基、ブチル基、オクチル基、2-エチルヘキシル基、ベンジル基が挙げられる。
 R及びRにおいて、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられる。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基は例えば、-O-、-N<、-S-、-SO-等の基を有し、炭化水素鎖がこれらの基により中断されている。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基が酸素原子で置換されており、炭化水素鎖が-O-の基により中断されていることが好ましい。
 R及びRは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示し、好ましくは水素原子である。また、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基として好ましくはヘテロ原子で置換されていても良い炭素数1~6の炭化水素基、特に好ましくはヘテロ原子で置換されていても良い炭素数1~4の炭化水素基である。ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、アリル基、ベンジル基、シクロヘキシル基、アダマンチル基、フェニル基、2,6-ジイソプロピルフェニル基、2,4,6-トリメチルフェニル基、2-メトキシエチル基、2-エトキシエチル基、2-(ジメチルアミノ)エチル基等が挙げられる。好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、2-メトキシエチル基、2-エトキシエチル基、2-(ジメチルアミノ)エチル基であり、特に好ましくはメチル基、エチル基、ブチル基、2-メトキシエチル基、2-エトキシエチル基、2-(ジメチルアミノ)エチル基が挙げられる。
 R及びRにおいて、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられる。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基は例えば、-O-、-N<、-S-、-SO-等の基を有し、炭化水素鎖がこれらの基により中断されている。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基が酸素原子で置換されており、炭化水素鎖が-O-の基により中断されていることが好ましい。
 R及びRはそれらが結合している炭素原子と一緒になって環構造を形成しても良い。R及びRはそれらが結合している炭素原子と一緒になって環構造を形成する場合、例えば、以下に示すようなベンゾイミダゾリウム環構造をとることが出来る。
Figure JPOXMLDOC01-appb-C000009
(式中、R、R及びRは前記に定義される通りである。R、R、R及びRはそれぞれ水素原子又は炭素数1~20の炭化水素基を示す。)
 R、R、R及びRで表される炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、アリル基、ベンジル基、シクロヘキシル基、アダマンチル基、フェニル基、2,6-ジイソプロピルフェニル基、2,4,6-トリメチルフェニル基が挙げられる。
 Rは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示し、好ましくはヘテロ原子で置換されていても良い炭素数1~20の炭化水素基である。ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基として好ましくは、ヘテロ原子で置換されていても良い炭素数1~8の炭化水素基であり、特に好ましくはヘテロ原子で置換されていても良い炭素数1又は2の炭化水素基である。前記炭化水素基としては、脂肪族炭化水素基が好ましく、アルキル基であることがより好ましい。ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、1-エチルペンチル基、ノニル基、2-エチルヘキシル基、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基、ビニル基、アリル基、ベンジル基、シクロヘキシル基、アダマンチル基、フェニル基、2-メトキシメチル基、2-エトキシメチル基、2-(ジメチルアミノ)メチル基等が挙げられ、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘプチル基、シクロヘキシル基、1-エチルペンチル基、フェニル基、特に好ましくはメチル基、エチル基、ヘプチル基、1-エチルペンチル基が挙げられる。
 Rにおいてヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられる。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基は例えば、-O-、-N<、-NH-、-S-、-SO-等の基を有し、炭化水素鎖がこれらの基により中断されている。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基が酸素原子で置換されており、炭化水素鎖が-O-の基により中断されていることが好ましい。また、別の態様として、炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、-OH、-NH等の基を有する炭化水素基を形成していても良い。
 イミダゾリウムカルボン酸塩(1)としては、例えば、1,3-ジメチルイミダゾリウムギ酸塩、1-エチル-3-メチルイミダゾリウムギ酸塩、1-ブチル-3-メチルイミダゾリウムギ酸塩、1-メチル-3-オクチルイミダゾリウムギ酸塩、1-メチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1-メチル-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1-ドデシル-3-メチルイミダゾリウムギ酸塩、1-メチル-3-オクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-メチルイミダゾリウムギ酸塩、1,3-ジブチルイミダゾリウムギ酸塩、1-ブチル-3-エチルイミダゾリウムギ酸塩、1-ブチル-3-オクチルイミダゾリウムギ酸塩、1-ブチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1-ブチル-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1-ブチル-3-ドデシルイミダゾリウムギ酸塩、1-ブチル-3-オクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-ブチルイミダゾリウムギ酸塩、1,3-ジオクチルイミダゾリウムギ酸塩、1,3-ビス(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1-エチル-3-オクチルイミダゾリウムギ酸塩、1-エチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1-オクチル-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1-(1,1,3,3-テトラメチルブチル)-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1-ドデシル-3-オクチルイミダゾリウムギ酸塩、1-ドデシル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1-オクチル-3-オクタデシルイミダゾリウムギ酸塩、1-(1,1,3,3-テトラメチルブチル)-3-オクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-オクチルイミダゾリウムギ酸塩、1-ベンジル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウムギ酸塩、1,3-ビス(2-エチルヘキシル)イミダゾリウムギ酸塩、1-エチル-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1-(2-エチルヘキシル)-3-ドデシルイミダゾリウムギ酸塩、1-(2-エチルヘキシル)-3-オクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-(2-エチルヘキシル)イミダゾリウムギ酸塩、1,3-ジドデシルイミダゾリウムギ酸塩、1-ドデシル-3-オクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-ドデシルイミダゾリウムギ酸塩、1,3-ジオクタデシルイミダゾリウムギ酸塩、1-ベンジル-3-オクタデシルイミダゾリウムギ酸塩、1,3-ジベンジルイミダゾリウムギ酸塩;
 1,3-ジメチルイミダゾリウム酢酸塩、1-エチル-3-メチルイミダゾリウム酢酸塩、1-ブチル-3-メチルイミダゾリウム酢酸塩、1-メチル-3-オクチルイミダゾリウム酢酸塩、1-メチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-メチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ドデシル-3-メチルイミダゾリウム酢酸塩、1-メチル-3-オクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-メチルイミダゾリウム酢酸塩、1,3-ジブチルイミダゾリウム酢酸塩、1-ブチル-3-エチルイミダゾリウム酢酸塩、1-ブチル-3-オクチルイミダゾリウム酢酸塩、1-ブチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-ブチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ブチル-3-ドデシルイミダゾリウム酢酸塩、1-ブチル-3-オクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-ブチルイミダゾリウム酢酸塩、1,3-ジオクチルイミダゾリウム酢酸塩、1,3-ビス(1,1,3,3-テトラメチルブチル)イミダゾリウムイミダゾリウム酢酸塩、1-エチル-3-オクチルイミダゾリウム酢酸塩、1-エチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-オクチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-(1,1,3,3-テトラメチルブチル)-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ドデシル-3-オクチルイミダゾリウム酢酸塩、1-ドデシル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-オクチル-3-オクタデシルイミダゾリウム酢酸塩、1-(1,1,3,3-テトラメチルブチル)-3-オクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-オクチルイミダゾリウム酢酸塩、1-ベンジル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1,3-ビス(2-エチルヘキシル)イミダゾリウム酢酸塩、1-エチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-(2-エチルヘキシル)-3-ドデシルイミダゾリウム酢酸塩、1-(2-エチルヘキシル)-3-オクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1,3-ジドデシルイミダゾリウム酢酸塩、1-ドデシル-3-オクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-ドデシルイミダゾリウム酢酸塩、1,3-ジオクタデシルイミダゾリウム酢酸塩、1-ベンジル-3-オクタデシルイミダゾリウム酢酸塩、1,3-ジベンジルイミダゾリウム酢酸塩;
 1,3-ジメチルイミダゾリウム2-エチルヘキサン酸塩、1-エチル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジブチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-エチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-ドデシルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-ブチルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジオクチルイミダゾリウム2-エチルヘキサン酸塩、1,3-ビス(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-エチル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-エチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-オクチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-(1,1,3,3-テトラメチルブチル)-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-オクチル-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-(1,1,3,3-テトラメチルブチル)-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1,3-ビス(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-エチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-(2-エチルヘキシル)-3-ドデシルイミダゾリウム2-エチルヘキサン酸塩、1-(2-エチルヘキシル)-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1,3-ジドデシルイミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-ドデシルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジオクタデシルイミダゾリウム2-エチルヘキサン酸塩、1-ベンジル-3-オクタデシルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジベンジルイミダゾリウム2-エチルヘキサン酸塩;
 1,3-ジメチルベンゾイミダゾリウムギ酸塩、1,3-ジメチルベンゾイミダゾリウム酢酸塩、3-ジメチルベンゾイミダゾリウム2-エチルヘキサン酸塩;が挙げられる。
 好ましいイミダゾリウムカルボン酸塩(1)は、1,3-ジメチルイミダゾリウム酢酸塩、1-ブチル-3-メチルイミダゾリウム酢酸塩、1-メチル-3-オクチルイミダゾリウム酢酸塩、1-メチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-メチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ドデシル-3-メチルイミダゾリウム酢酸塩、1,3-ジブチルイミダゾリウム酢酸塩、1-ブチル-3-オクチルイミダゾリウム酢酸塩、1-ブチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-ブチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ブチル-3-ドデシルイミダゾリウム酢酸塩、1,3-ジオクチルイミダゾリウム酢酸塩、1-オクチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、1-オクチル-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ドデシル-3-オクチルイミダゾリウム酢酸塩、1-(1,1,3,3-テトラメチルブチル)-3-(2-エチルヘキシル)イミダゾリウム酢酸塩、1-ドデシル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム酢酸塩、ビス(2-エチルヘキシル)イミダゾリウム酢酸塩、1-(2-エチルヘキシル)-3-ドデシルイミダゾリウム酢酸塩、1,3-ジドデシルイミダゾリウム酢酸塩、1,3-ジメチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-メチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-メチルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジブチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ブチル-3-ドデシルイミダゾリウム2‐エチルヘキサン酸塩、1,3-ジオクチルイミダゾリウム2-エチルヘキサン酸塩、1-オクチル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、1-オクチル-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-オクチルイミダゾリウム2-エチルヘキサン酸塩、1-(1,1,3,3-テトラメチルブチル)-3-(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-ドデシル-3-(1,1,3,3-テトラメチルブチル)イミダゾリウム2-エチルヘキサン酸塩、ビス(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩、1-(2-エチルヘキシル)-3-ドデシルイミダゾリウム2-エチルヘキサン酸塩、1,3-ジドデシルイミダゾリウム2-エチルヘキサン酸塩であり、より好ましくは、ビス(2-エチルヘキシル)イミダゾリウム酢酸塩、ビス(2-エチルヘキシル)イミダゾリウム2-エチルヘキサン酸塩である。
 イミダゾリウムカルボン酸塩(1)は市販のものを使用してもよい。イミダゾリウムカルボン酸塩(1)は、公知の方法により得られたものを使用してもよく、また、次に説明する方法により製造したものを使用することもできる。
 下記式(4)で表されるジカルボニル化合物、下記式(5a)及び下記式(5b)で表される1級アミン化合物、ホルムアルデヒド、下記式(6)で表されるカルボン酸を反応させて式(1)のイミダゾリウムカルボン酸塩を得る。
式(4):
Figure JPOXMLDOC01-appb-C000010
(式中、R及びRは前記に定義される通りである。)
式(5a):
-NH  (5a)
(式中、Rは前記に定義される通りである。)
式(5b):
-NH  (5b)
(式中、Rは前記に定義される通りである。)
式(6):
Figure JPOXMLDOC01-appb-C000011
(式中、Rは前記に定義される通りである。)
 式(4)で表されるジカルボニル化合物(以下、ジカルボニル化合物(4)という。)としては、好ましくはグリオキサール、ジアセチル、3,4-ヘキサンジオン、2,3-ペンタンジオン、2,3-ヘプタンジオン、5-メチル-2,3-ヘキサンジオン、3-メチル-2,3-シクロペンタンジオン、1,2-シクロヘキサンジオン、1-フェニル-1,2-プロパンジオン、ジベンゾイルが挙げられ、より好ましくはグリオキサール、ジアセチルが挙げられ、より好ましくはグリオキサールである。
 式(5a)で表される1級アミン化合物(以下、1級アミン化合物(5a)という。)及び式(5b)で表される1級アミン化合物(以下、1級アミン化合物(5b)という。)としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、tert-ブチルアミン、ヘキシルアミン、オクチルアミン、1,1,3,3-テトラメチルブチルアミン、2-エチルヘキシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、2-メトキシエチルアミン、2-エトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-(2-エチルヘキシルオキシ)プロピルアミン、アリルアミン、ベンジルアミン、アニリン、2,6-ジイソプロピルアニリン、2,4,6-トリメチルアニリンからなる群から選ばれる少なくとも1種の1級アミン化合物であり、好ましくは、メチルアミン、エチルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、1,1,3,3-テトラメチルブチルアミン、2-エチルヘキシルアミン、ドデシルアミン、オクタデシルアミン、ベンジルアミンであり、より好ましくは、メチルアミン、ブチルアミン、オクチルアミン、2-エチルヘキシルアミンである。
 式(6)で表されるカルボン酸(以下、カルボン酸(6)という。)としては、好ましくはギ酸、酢酸、プロピオン酸、酪酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、カプリン酸、ラウリン酸、テトラデシル酸、パルミチン酸、オクタデシル酸、シクロヘキサン酸、エトキシ酢酸、プロポキシ酢酸、2-(2-メトキシエトキシ)酢酸、2-(2-エトキシエトキシ)酢酸、2-(2-プロポキシエトキシ)酢酸、3-メトキシプロパン酸、3-エトキシプロパン酸、3-(2-メトキシエトキシ)プロパン酸、3-(2-エトキシエトキシ)プロパン酸、3-(2-プロポキシエトキシ)プロパン酸、3-(3-メトキシプロポキシ)プロパン酸、3-(3-エトキシプロポキシ)プロパン酸、3-(3-プロポキシプロポキシ)プロパン酸、オレイン酸、リノール酸、ソルビン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、乳酸、サリチル酸、トリフルオロ酢酸等のカルボン酸が挙げられ、より好ましくはギ酸、酢酸、プロピオン酸、酪酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸が挙げられ、特に好ましくは酢酸、2-エチルヘキサン酸である。
 ジカルボニル化合物(4)は水溶液やメタノール、ブタノール等のアルコール溶液をそのまま使用しても良い。
 1級アミン化合物(5a)及び1級アミン化合物(5b)(以下、1級アミン化合物(5a)及び1級アミン化合物(5b)を合わせてアミン化合物(5)という。)の使用量としては、通常、ジカルボニル化合物(4)1モルに対して、アミン化合物(5)が0.1~10モルであり、好ましくは0.5~3モルである。ジカルボニル化合物(4)1モルに対しアミン化合物(5)が2モル反応して1モルのイミダゾリウムカルボン酸塩(1)になるが、例えばアミン化合物(5)が2モル未満の場合、目的のイミダゾリウムカルボン酸塩(1)の他にジカルボニル化合物(4)(原料)と、ジカルボニル化合物(4)の重合物が存在することになる。また、ジカルボニル化合物(4)1モルに対しアミン化合物(5)を2モル超使用した場合、目的のイミダゾリウムカルボン酸塩(1)の他に過剰量のアミン化合物(5)が存在することになる。これらのイミダゾリウムカルボン酸塩(1)以外の化合物が共存するイミダゾリウムカルボン酸塩(1)を用いても、アミデート化合物(3)を得ることができる。
 1級アミン化合物(5a)と1級アミン化合物(5b)の割合は、特に限定するものではなく、1級アミン化合物(5a):1級アミン化合物(5b)=0:100~100:0(モル比)の範囲である。なお、1級アミン化合物(5a):1級アミン化合物(5b)=0:100あるいは1級アミン化合物(5a):1級アミン化合物(5b)=100:0の場合、R=Rになる。また、R=R以外の場合、すなわち、1級アミン化合物(5a):1級アミン化合物(5b)が0:100もしくは100:0ではない場合、式(1)の化合物は、下記式(1-1)、式(1-2)、式(1-3)で表される化合物の混合物となりうる。
Figure JPOXMLDOC01-appb-C000012
(式(1-1)、式(1-2)、及び式(1-3)中、R、R、R、R、Rは各々前記に定義される通りである。)
この混合物中の式(1-1)で表される化合物、式(1-2)で表される化合物、式(1-3)で表される化合物の割合は、反応に使用する1級アミン化合物(5a)と1級アミン化合物(5b)の割合によって異なる。式(1-1)で表される化合物、式(1-2)で表される化合物、式(1-3)で表される化合物はいずれもイミダゾリウムカルボン酸塩(1)に包含される。
 ホルムアルデヒドは水溶液やメタノール、ブタノール等のアルコール溶液をそのまま使用してもよい。ホルムアルデヒドの使用量としては、通常、ジカルボニル化合物(6)1モルに対して、ホルムアルデヒドが0.1~10モルであり、好ましくは0.5~5.0モルである。
 カルボン酸(6)の使用量としては、通常、ジカルボニル化合物(4)1モルに対して、0.1~10モルであり、好ましくは0.5~2モル、さらに好ましくは1~1.5モルである。
 反応温度は、使用する原料、溶媒等によって最適な温度が異なるが、通常、-10℃以上であり、好ましくは0℃~100℃である。反応時間は、特に限定されないが、好ましくは0.5~48時間である。
 溶媒は使用してもしなくてもよい。溶媒を使用する場合、使用する溶媒は反応に影響を与えないものであれば特に制限されない。溶媒の具体例としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素、メチルシクロヘキサン、シクロヘキサン、ヘキサン、ヘプタン、オクタン等の脂肪族又は脂環式炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、メタノール、エタノール等の低級アルコール類、N,N-ジメチルホルムアミド、アセトニトリル、水等が挙げられ、好ましくは芳香族炭化水素、低級アルコール類、水であり、特に好ましくはトルエン、水である。溶媒は必要に応じて2種以上を混合して使用することもできる。
 溶媒の使用量は、ジカルボニル化合物(4)1質量部に対して、通常50質量部以下、好ましくは0.1~10質量部である。
 必要に応じて、窒素、アルゴン、ヘリウム等の反応に影響を与えない不活性ガス雰囲気下で反応させてもよい。
 反応終了後は、有機溶媒を用いた洗浄による不純物(例えば、未反応の原料)の除去や、反応液の濃縮等により、イミダゾリウムカルボン酸塩(1)を単離することができ、必要に応じ、再結晶等の精製をしても良い。
 イミダゾリウムカルボン酸塩(1)の製造時に、化学量論量に対して過剰量に用いたカルボン酸(6)が、イミダゾリウムカルボン酸塩(1)に残存する場合がある。この場合、炭酸エステルと反応させることで残存するカルボン酸(6)を対応するエステル化合物に変換することができる。
 炭酸エステルの具体例としては、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチル、炭酸ジペンチル、炭酸ジヘキシル等の炭酸ジアルキル、炭酸エチレン、炭酸プロピレン、炭酸ブチレン等の環状の炭酸アルキレンが挙げられ、好ましくは炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチルであり、特に好ましくは炭酸ジメチルである。
 炭酸エステルの使用量は、残存するカルボン酸(6)1モルに対して通常1モル以上、好ましくは1~6モルである。また、イミダゾリウムカルボン酸塩(1)中にカルボン酸(6)とともに水が含まれる場合には、水が炭酸エステルと反応するため、イミダゾリウムカルボン酸塩(1)中に含まれるカルボン酸(6)及び水の合計1モルに対して、炭酸エステルを通常1モル以上、好ましくは1~6モル過剰に使用することが好ましい。反応温度は30~100℃、反応時間は1~8時間でカルボン酸(6)を対応するエステル化合物へ変換することができる。変換したエステル化合物を有機溶媒を用いた洗浄や、反応液の濃縮等により除去することで、結果としてイミダゾリウムカルボン酸塩(1)に含まれるカルボン酸(6)を除去することができる。また、炭酸エステルにより変換させたエステル化合物が含まれるイミダゾリウムカルボン酸塩(1)を用いた場合でも、本発明の製造方法によれば目的物であるアミデート化合物(3)を得ることができる。
 次に、ポリイソシアネート化合物(2)について説明する。
 式(2)中、Aは、下記の(i)~(v)のいずれかの残基(以下、単に「残基」ということがある)を示す。
(i)脂肪族ポリイソシアネートからイソシアネート基を除いた残基、
(ii)脂環式ポリイソシアネートからイソシアネート基を除いた残基、
(iii)芳香族ポリイソシアネートからイソシアネート基を除いた残基、
(iv)芳香脂肪族ポリイソシアネートからイソシアネート基を除いた残基、
(v)脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群から選ばれる少なくとも1種から形成された変性イソシアネートからイソシアネート基を除いた残基。
 脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートもしくはこれらの変性イソシアネートはイソシアネート基を有する化合物であり、残基A自体は脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートもしくはこれらの変性イソシアネートのイソシアネート基以外の部分を示す。残基Aは、通常、イソシアネート基以外の置換基を有していても良いx価の炭化水素基であり、ヘテロ原子またはハロゲン原子で置換されていても良いx価の炭化水素基からなることが好ましく、この場合、炭化水素基の炭素数は1~100であることがより好ましい。また、別の態様では、残基には水酸基、アミノ基といった活性水素基を有さないことが好ましい。なお、上記x価のxは、式(2)中のxと同じ数となる。
 残基Aで表されるイソシアネート基以外の置換基を有していても良いx価の炭化水素基の置換基の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子や、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、ニトロ基、シアノ基、スルホニル基、(モノアルキルアミノ)カルボニルアミノ基又は(ジアルキルアミノ)カルボニルアミノ基が挙げられる。
また、残基Aの炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されていても良い。残基Aの炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基は例えば、-O-、-N<、-S-、-SO-等の基を有し、炭化水素鎖がこれらの基により中断されている。
 置換または無置換のx価の炭化水素基としては、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基、n-ドデシレン基、n-オクタデシレン基、シクロヘキシレン、シクロヘキサン-1,2-ジイルビスメチレン、シクロヘキサン-1,4-ジイルビスメチレン基等のアルキレン基、p-フェニレン基、m-フェニレン基、2-メチル-m-フェニレン基、4-メチル-m-フェニレン基、5-メチル-m-フェニレン基、ナフチレン基等のアリーレン基、フェニルエチレン基、1-フェニルプロピレン基、2-フェニルプロピレン基、1-フェニルブチレン基、2-フェニルブチレン基、ナフチルエチレン基等のアリールアルキレン基、前述のアルキレン基とアリーレン基が適宜組み合わされて成るメチレンジフェニレン基、ポリメチレンポリフェニレン基等のアルキレンアリーレン基等が挙げられる。
 残基Aとして好ましくは、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、mは0~4の整数である。)
 xは2以上20以下の整数であり、好ましくは2~6、より好ましくは2~4、特に好ましくは2又は3である。
 ポリイソシアネート化合物(2)は、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネート或いは、これらの変性イソシアネートが挙げられる。ポリイソシアネート化合物(2)は、単量体、二量体、三量体又は多量体であってもよい。
 脂肪族ポリイソシアネートとしては、例えば、脂肪族ジイソシアネート、リジントリイソシアネート、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート、ビス(2-イソシアナトエチル)2-イソシアナトグルタレートが挙げられる。
 上記脂肪族ジイソシアネートとしては、炭素数4~30のものが好ましく、例えば、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(以下HDIと示す。)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネートなどが挙げられ、好ましくは、HDIである。脂肪族ポリイソシアネートは、単独で使用してもよく2種以上を併用してもよい。
 脂環式ポリイソシアネートとしては、例えば、炭素数8~30のものが好ましく、具体的には、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソシアヌル酸3-イソシアナトメチル-3,3,5-トリメチルシクロヘキサン(以下、IPDIと示す。)、ビス(4-イソシアナトシクロヘキシル)メタン、ノルボルナンジイソシアネート、ダイマー酸ジイソシアネート等が挙げられ、好ましくは、IPDIである。脂環式ポリイソシアネートは単独で使用してもよく、2種以上を併用してもよい。
 芳香族ポリイソシアネートとしては、例えば、芳香族ジイソシアネートやポリメチレンポリフェニルポリイソシアネート(以下ポリメリックMDIと示す)が挙げられる。芳香族ジイソシアネートとしては、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、粗製ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート等が挙げられる。芳香族ポリイソシアネートは、単独で使用してもよく、2種以上を併用してもよい。好ましくは、工業的入手の容易さから、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ポリメリックMDIである。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられる。芳香脂肪族ポリイソシアネートは、単独で使用してもよく、2種以上を併用してもよい。
 これらのポリイソシアネート化合物の中、好ましくは芳香族ポリイソシアネートであり、より好ましくは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ポリメリックMDIである。
 変性イソシアネートとしては、例えば、ビウレット結合、尿素結合、イソシアヌレート結合、ウレトジオン結合、ウレタン結合、アロファネート結合、オキサジアジントリオン結合等を形成することにより製造された上記ポリイソシアネートの2~20量体のオリゴマーが挙げられる。ビウレット結合を有するポリイソシアネートは、水、tert-ブタノール、尿素などのいわゆるビウレット化剤とポリイソシアネートとを、ビウレット化剤/ポリイソシアネートのイソシアネート基のモル比が約1/2~約1/100で反応させた後、未反応ポリイソシアネートを除去精製し得られる。イソシアヌレート結合を有するポリイソシアネートは、例えば、触媒などにより環状3量化反応を行い、転化率が約5~約80質量%になったときに反応を停止し、未反応ポリイソシアネートを除去精製して得られる。
 変性イソシアネートに包含されるウレタン結合を有するポリイソシアネート化合物は、例えば、トリメチロールプロパンなどの2~6価のアルコール系化合物とポリイソシアネートとを、アルコール系化合物の水酸基/ポリイソシアネートのイソシアネート基のモル比が約1/2~約1/100で反応させた後、未反応ポリイソシアネートを除去精製し得られる。未反応ポリイソシアネートの除去精製は必ずしも必要ではない。変性イソシアネート化合物としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートまたはポリメチレンポリフェニルポリイソシアネートからなる群から選ばれる1種又は2種以上から形成された2量体または3量体のポリイソシアネートが好ましい。
式(3)
Figure JPOXMLDOC01-appb-C000014
 式(3)中、y及びzは1以上19以下の整数であり、y、zの合計は2以上20以下である。好ましくは、y及びzは1~5、y、zの合計が2~6、より好ましくはy及びzは1~3、y、zの合計は2~4、特に好ましくはy及びzは1又は2、y、zの合計は2又は3である。
 A、R、R、R、R、Rは、各々前記に定義される通りである。
 アミデート化合物(3)が、光学異性体、立体異性体、位置異性体等の異性体を有する場合には、いずれの異性体であるか明記がない限り、いずれの異性体の混合物もアミデート化合物(3)に包含される。例えば、アミデート化合物(3)に光学異性体が存在する場合、ラセミ体から分割されたその光学異性体もアミデート化合物(3)に包含され得る。これらの異性体は、従来から知られている分離手法(濃縮、溶媒抽出、カラムクロマトグラフィー、再結晶等)によりそれぞれを単一化合物として得ることができる。
 本発明のアミデート化合物(3)として、以下のものが挙げられる。下記具体例中、Etはエチル基、Buはn-ブチル基、Heptはn-ヘプチル基、Octはn-オクチル基、1-EtPentは1-エチルペンチル基、2-EtHexは2-エチルヘキシル基を示す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 式(3-5-1)~(3-5-18)中、mは0~4の整数である。
Figure JPOXMLDOC01-appb-C000018
 式(3-6-1)~(3-6-18)及び式(3-7-1)~(3-7-18)中、mは0~4の整数である。
Figure JPOXMLDOC01-appb-C000019
 式(3-8-1)~(3-8-18)中、mは0~4の整数である。
 アミデート化合物(3)として好ましくは式(3-1-4)、(3-1-6)、(3-1-10)、(3-1-12)、(3-1-16)、(3-1-18)、(3-2-4)、(3-2-6)、(3-2-10)、(3-2-12)、(3-2-16)、(3-2-18)、(3-3-4)、(3-3-6)、(3-3-10)、(3-3-12)、(3-3-16)、(3-3-18)、(3-4-4)、(3-4-6)、(3-4-10)、(3-4-12)、(3-4-16)、(3-4-18)、(3-5-4)、(3-5-6)、(3-5-10)、(3-5-12)、(3-5-16)、(3-5-18)、(3-6-4)、(3-6-6)、(3-6-10)、(3-6-12)、(3-6-16)、(3-6-18)、(3-7-4)、(3-7-6)、(3-7-10)、(3-7-12)、(3-7-16)、(3-7-18)、(3-8-4)、(3-8-6)、(3-8-10)、(3-8-12)、(3-8-16)、(3-8-18)で表される化合物であり、より好ましくは式(3-1-6)、(3-1-18)、(3-2-6)、(3-2-18)、(3-3-6)、(3-3-18)、(3-4-6)、(3-4-18)、(3-5-6)、(3-5-18)、(3-6-6)、(3-6-18)、(3-7-6)、(3-7-18)、(3-8-6)、(3-8-18)で表される化合物である。
 本発明の製造方法により、目的のアミデート化合物(3)の他に、式(P)、式(Q)、式(R)で表される副生成物が反応混合物中に存在し得る。
Figure JPOXMLDOC01-appb-C000020
(式中、R~R、x、y、z、Aは、前記に定義される通りである。)
 式(P)、式(Q)、式(R)で表される副生成物を分離し、アミデート化合物(3)を単離してブロックイソシアネート用ブロック剤解離触媒として使用してもよいが、式(P)、式(Q)、式(R)で表される少なくとも1種の副生成物をアミデート化合物(3)とともに含む混合物を本発明のブロックイソシアネート用ブロック剤解離触媒として用いることができる。また、式(P)、式(Q)、式(R)で表される少なくとも1種の副生成物をアミデート化合物(3)とともに含む混合物を、ブロックイソシアネート、イソシアネート反応性基を有する化合物と混合して、本発明の熱硬化性樹脂組成物とすることができる。式(P)、式(Q)、式(R)で表される副生成物のうち、式(R)で表される副生成物はアミデート化合物(3)と同様にアミデート基を有するため、アミデート化合物(3)のようにブロックイソシアネート用ブロック剤解離触媒として機能するものと考えられる。
 アミデート化合物(3)とともに、式(P)、式(Q)、式(R)で表される少なくとも1種の副生成物を含む混合物は、本発明のアミデート化合物(3)に包含される。
<ブロックイソシアネート用ブロック剤解離触媒>
 アミデート化合物(3)は、ブロックイソシアネート用ブロック剤解離触媒(以下、ブロック剤解離触媒という。)として使用できる。ブロック剤解離触媒とは、ブロックイソシアネートのイソシアネート基を封止し反応を抑制しているブロック剤を解離させ、再生するイソシアネート基と共存するイソシアネート反応性基との反応を促進できる触媒である。
 アミデート化合物(3)をブロックイソシアネート用ブロック剤解離触媒として使用する場合、式(3)においてR及びRは、同一又は異なって、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示し、好ましくはヘテロ原子で置換されていても良い炭素数1~12の炭化水素基、特に好ましくはヘテロ原子で置換されていても良い炭素数1~8の炭化水素基が挙げられる。前記炭化水素基としては、脂肪族炭化水素基が好ましく、アルキル基であることがより好ましい。ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、1,1,3,3-テトラメチルブチル基、1-エチルペンチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、アリル基、ベンジル基、シクロヘキシル基、アダマンチル基、フェニル基、2,6-ジイソプロピルフェニル基、2,4,6-トリメチルフェニル基、2-メトキシエチル基、2-エトキシエチル基、2-(ジメチルアミノ)エチル基等が挙げられる。好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、オクチル基、ドデシル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基、ベンジル基、フェニル基、2,4,6-トリメチルフェニル基であり、特に好ましくはメチル基、エチル基、ブチル基、オクチル基、2-エチルヘキシル基、ベンジル基が挙げられる。
 R及びRにおいて、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられる。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基は例えば、-O-、-N<、-S-、-SO-等の基を有し、炭化水素鎖がこれらの基により中断されている。炭化水素基が、酸素原子、窒素原子、硫黄原子等のヘテロ原子で置換されている場合、炭化水素基が酸素原子で置換されており、炭化水素鎖が-O-の基により中断されていることが好ましい。
 アミデート化合物(3)を含有するブロック剤解離触媒について説明する。
 ブロック剤解離触媒は1種単独であっても、2種以上の混合物としても使用することもできる。また、必要に応じて溶媒等を混合して使用することもできる。
 溶媒としては、特に限定するものではなく、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル溶媒、メタノール、エタノール、2-プロパノール、ブタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のアルコール溶媒、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール溶媒、水等が挙げられ、これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。
 本発明のブロック剤解離触媒は、ブロックイソシアネート及びイソシアネート反応性基を有する化合物の混合物の硬化を促進する触媒である。
 本発明のブロック剤解離触媒は、アミデート化合物(3)を有効成分として含有していれば本発明の目的を十分に達成することができ、必要に応じ公知のブロック剤解離触媒を含んでいてもよい。
 本発明のブロック剤解離触媒は、例えばブロックイソシアネートのブロック剤の解離方法の触媒として好適に使用することができる。このブロック剤解離方法においては、上記ブロック剤解離触媒存在下、ブロックイソシアネートを加熱する。
 本発明のブロック剤解離方法において、ブロック剤解離触媒の使用量としては、特に限定されず、通常、ブロック剤解離触媒に含まれるアミデート化合物(3)の量が以下に説明する熱硬化性樹脂組成物中の固形分に対して0.01~15重量%、好ましくは0.05~10重量%、より好ましくは0.1~5重量%となる量である。
 なお、本明細書において、「固形分」とは、熱硬化性樹脂組成物中において、後述する溶媒を除いた成分の総質量を意味する。したがって、樹脂組成物が溶媒を含まない場合には、当該組成物の全質量は固形分と一致する。
 反応温度は、使用するブロックイソシアネートによっても異なるが、60~250℃程度、好ましくは80~200℃程度とすることができる。反応時間は、30秒~5時間程度、好ましくは、30秒~2時間程度である。
<熱硬化性樹脂組成物>
 本発明の熱硬化性樹脂組成物は、アミデート化合物(3)、ブロックイソシアネート、及びイソシアネート反応性基を有する化合物を含有する。
 ブロックイソシアネ-トとしては、例えば公知のポリイソシアネートと公知のブロック剤とを反応させ、ポリイソシアネート中のイソシアネート基をブロック剤で封止した化合物を挙げることができる。ブロックイソシアネ-トは単独であっても、2種以上が混合されたものであっても良い。
 本発明において、ポリイソシアネートは、2つ以上のイソシアネート基を有する化合物であれば特に限定されず、公知のポリイソシアネートとしては、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートやこれらの変性イソシアネート等が挙げられる。これらのポリイソシアネートは単独であっても、2種以上が混合されたものであっても良い。
 脂肪族ポリイソシアネートとしては、例えば、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。
 脂環式ポリイソシアネートとしては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソシアヌル酸3-イソシアナトメチル-3,3,5-トリメチルシクロヘキサン(イソホロンジイソシアネート)、ビス(4-イソシアナトシクロヘキシル)メタン、ノルボルナンジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。
 芳香族ポリイソシアネートとしては、例えば、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、粗製ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート等が挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられる。
 変性イソシアネートとしては、例えば、上記ポリイソシアネート化合物と活性水素基を有する化合物との反応によるイソシアネート基末端化合物やポリイソシアネート化合物又は/及び該イソシアネート基末端化合物の反応物(例えば、アダクト型ポリイソシアネートや、アロファネート化反応、カルボジイミド化反応、ウレトジオン化反応、イソシアヌレート化反応、ウレトンイミン化反応、ビウレット化反応等によるイソシアネート変性体等)が挙げられる。
 公知のブロック剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、sec-ブタノール、tert-ブタノール、2-エチルヘキサノール、ブチルセロソルブ等のアルコール類、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等のフッ化アルコール類、フェノール、クレゾール、2-ヒドロキシピリジン等のフェノール類、ジイソプロピルアミン等のアミン類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム類、ホルムアルデヒドオキシム、アセトアルデヒドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム等のオキシム類、アセチルアセトン等のケトエノール類、1,2-ピラゾール、3,5-ジメチルピラゾール等のピラゾール類、トリアゾール等のトリアゾール類等が挙げられ、好ましくは、ラクタム類、オキシム類、ピラゾール類であり、特に好ましくはε-カプロラクタム、メチルエチルケトオキシム、3,5-ジメチルピラゾールである。
 イソシアネート反応性基を有する化合物としては、ポリオール、ポリアミン、アルカノールアミン等の活性水素基を2つ以上有する化合物が挙げられる。これらのイソシアネート反応性基を有する化合物は、2種以上の混合物であってもよい。
 本発明においてポリオールはヒドロキシル基を2つ以上有する化合物である。ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、アクリルポリオール、ポリオレフィンポリオール、フッ素ポリオール、ポリカーボネートポリオール、ポリウレタンポリオールなどが挙げられる。これらのポリオールは、2種以上の混合物であってもよい。
 ポリエーテルポリオールとしては、脂肪族アミンポリオール、芳香族アミンポリオール、マンニッヒポリオール、多価アルコール、多価フェノール、ビスフェノール類等の活性水素化合物及び、それらにアルキレンオキサイドを付加した化合物等が挙げられる。これらのポリエーテルポリオールは、2種以上の混合物であってもよい。
 脂肪族アミンポリオールとしては、アルキレンジアミン系ポリオールや、アルカノールアミン系ポリオール等が挙げられる。これらのポリオール化合物は、アルキレンジアミンやアルカノールアミンを開始剤としてエチレンオキサイド、プロピレンオキサイド等の環状エーテルの少なくとも1種を開環付加させた末端水酸基の多官能ポリオール化合物である。アルキレンジアミンとしては、公知の化合物が限定なく使用できる。具体的にはエチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ネオペンチルジアミン等の炭素数が2~8のアルキレンジアミンの使用が好適である。これらの脂肪族アミンポリオールは、2種以上の混合物であってもよい。
 芳香族アミンポリオールは、芳香族ジアミンを開始剤としてエチレンオキサイド、プロピレンオキサイド等の環状エーテルの少なくとも1種を開環付加させた末端水酸基の多官能ポリエーテルポリオール化合物である。開始剤としては、公知の芳香族ジアミンを限定なく使用することができる。具体的には2,4-トルエンジアミン、2,6-トルエンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルメタン、p-フェニレンジアミン、o-フェニレンジアミン、ナフタレンジアミン等が挙げられる。これらの中ではトルエンジアミン(2,4-トルエンジアミン、2,6-トルエンジアミン又はこれらの混合物)の使用が特に好ましい。これらの芳香族アミンポリオールは、2種以上の混合物であってもよい。
 マンニッヒポリオールは、フェノール及び/又はそのアルキル置換誘導体、ホルムアルデヒド及びアルカノールアミンのマンニッヒ反応により得られた活性水素化合物又はこの化合物にエチレンオキサイド、プロピレンオキサイドの少なくとも1種を開環付加重合させることによって得られるポリオール化合物である。これらのマンニッヒポリオールは、2種以上の混合物であってもよい。
 多価アルコールとしては、2価アルコール(例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール等)や3価以上のアルコール(例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、メチルグルコシド、ソルビトール、シュクロース等)等が挙げられる。これらの多価アルコールは、2種以上の混合物であってもよい。
 多価フェノールとしては、ピロガロール、ハイドロキノン等が挙げられる。これらの多価フェノールは、2種以上の混合物であってもよい。
 ビスフェノール類としては、ビスフェノールA、ビスフェノールS、ビスフェノールF、フェノールとホルムアルデヒドとの低縮合物等が挙げられる。これらのビスフェノール類は、2種以上の混合物であってもよい。
 ポリエステルポリオールとしては、例えばコハク酸、アジピン酸、セバシン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸等のカルボン酸の群から選ばれた二塩基酸の単独又は混合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、グリセリンなどの群から選ばれた多価アルコールの単独又は混合物との縮合反応によって得られるポリエステルポリオール、及び、例えば多価アルコールを用いたε-カプロラクトンの開環重合により得られるポリカプロラクトン類等が挙げられる。これらのポリエステルポリオールは、2種以上の混合物であってもよい。
 アクリルポリオールは、ヒドロキシル基を有するエチレン性不飽和結合含有単量体の単独又は混合物と、これと共重合可能な他のエチレン性不飽和結合含有単量体の単独又は混合物とを共重合させることにより得られる化合物である。ヒドロキシル基を有するエチレン性不飽和結合含有単量体としては、例えば、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル等が挙げられ、好ましくは、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルである。これらのアクリルポリオールは、2種以上の混合物であってもよい。
 ヒドロキシル基を有するエチレン性不飽和結合含有単量体と共重合可能な他のエチレン性不飽和結合含有単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ベンジル、アクリル酸フェニルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸フェニル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、メタクリルアミド、N,N-メチレンビスアクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、マレイン酸アミド、マレイミド等の不飽和アミド、及びメタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル等のビニル系単量体、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等の加水分解性シリル基を有するビニル系単量体等が挙げられる。
 ポリオレフィンポリオールとしては、例えば、水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレンなどが挙げられる。これらのポリオレフィンポリオールは、2種以上の混合物であってもよい。
 フッ素ポリオールは分子内にフッ素を含むポリオールであり、例えば、フルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体が挙げられる。これらのフッ素ポリオールは、2種以上の混合物であってもよい。
 ポリカーボネートポリオールとしては、ジメチルカーボネート等のジアルキルカーボネート、エチレンカーボネート等のアルキレンカーボネート、ジフェニルカーボネート等のジアリールカーボネート等の低分子カーボネート化合物と、前述のポリエステルポリオールに用いられる低分子ポリオールとを、縮重合して得られるものが挙げられる。これらのポリカーボネートポリオールは、2種以上の混合物であってもよい。
 ポリウレタンポリオールは、常法により、例えば、ポリオールとポリイソシアネートとを反応させることにより得ることができる。カルボキシル基を含有しないポリオールとしては、低分子量のものとして、エチレングリコール、プロピレングリコール等が挙げられ、高分子量のものとして、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等が挙げられる。これらのポリウレタンポリオールは、2種以上の混合物であってもよい。
 本発明においてポリアミンは1級アミノ基又は2級アミノ基を2つ以上有する化合物である。ポリアミンとしては、例えば、低分子量ポリアミン、高分子量ポリアミン、アルカノールアミン等が挙げられる。これらのポリアミンは、2種以上の混合物であってもよい。
 低分子量ポリアミンとしては、例えば、4,4’-ジフェニルメタンジアミンなどの芳香族アミン、1,3-又は1,4-キシリレンジアミンもしくはその混合物などの芳香脂肪族アミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-シクロヘキサンジアミンなどの脂環式アミン、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、ヒドラジン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンなどの脂肪族アミンなどが挙げられる。これらの低分子量ポリアミンは、2種以上の混合物であってもよい。
 高分子量ポリアミンとしては、例えば、ポリオキシアルキレンジアミン(重量平均分子量400~4000)、ポリオキシアルキレントリアミン(重量平均分子量400~5000)などが挙げられる。これらの高分子量ポリアミンは、2種以上の混合物であってもよい。
 アルカノールアミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、N-(2-アミノエチル)エタノールアミン、N-(2-ヒドロキシプロピル)エチレンジアミン、モノプロパノールアミン、モノイソプロパノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、エチレングリコールビス(3-アミノプロピル)エーテル、ネオペンタノールアミン、メチルエタノールアミンなどが挙げられる。
 本発明の熱硬化性樹脂組成物において、ブロックイソシアネートとイソシアネート反応性基を有する化合物との配合比率は、必要とする物性により決定され、特に限定するものではなく、通常[ブロックイソシアネートの有効イソシアネート基(mol)]/[イソシアネート反応性基を有する化合物の活性水素基(mol)]=0.2~3の範囲である。なお、ブロックイソシアネートの有効イソシアネート基とは、ブロックイソシアネートからブロック剤が解離した際に再生されるイソシアネート基を意味する。
 本発明の熱硬化性樹脂組成物において、本発明のブロック剤解離触媒の使用量としては、特に限定されず、通常、熱硬化性樹脂組成物中、ブロック剤解離触媒に含まれるアミデート化合物(3)の量が熱硬化性樹脂組成物中の固形分に対して0.01~15重量%、好ましくは0.05~10重量%、より好ましくは0.1~5重量%となる量である。
 本発明の熱硬化性樹脂組成物においては、必要に応じて、当該技術分野で常用される公知のポリウレタン製造用触媒、添加剤、顔料、溶剤等を使用することができる。
 公知のポリウレタン製造用触媒としては特に限定するものではなく、例えば、ジブチル錫ジラウリレート、ジブチル錫ジ-2-エチルヘキサネート、ジオクチル錫ジラウリレート、ジブチル錫ジアセテート、ジブチル錫ジオキサイド、ジオクチル錫ジオキサイド、錫アセチルアセトナート、酢酸錫、オクチル酸錫、ラウリン酸錫等の錫化合物や、オクチル酸ビスマス、ナフテン酸ビスマス、ビスマスアセチルアセトナート等のビスマス化合物、チタン酸テトラ-n-ブチル、チタン酸テトライソプロピル、テレフタル酸チタン等のチタン化合物、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-メチル-N’-(2-ジメチルアミノエチル)ピペラジン、N,N’-ジメチルピペラジン、ジメチルシクロヘキシルアミン、N-メチルモルホリン、N-エチルモルホリン、ビス(2-ジメチルアミノエチル)エ-テル、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール等の3級アミン化合物、テトラメチルアンモニウムクロライド等のテトラアルキルアンモニウムハロゲン化物、水酸化テトラメチルアンモニウム塩等のテトラアルキルアンモニウム水酸化物、テトラメチルアンモニウム-2-エチルヘキサン酸塩、2-ヒドロキシプロピルトリメチルアンモニウムギ酸塩、2-ヒドロキシプロピルトリメチルアンモニウム-2-エチルヘキサン酸塩等のテトラアルキルアンモニウム有機酸塩類等の4級アンモニウム塩化合物が挙げられる。
 添加剤としては、特に限定するものではなく、例えば、ヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤、過塩素酸塩系、ヒドロキシルアミン系等の着色防止剤、ヒンダードフェノール系、リン系、イオウ系、ヒドラジド系等の酸化防止剤、錫系、亜鉛系、アミン系等のウレタン化触媒、その他、レベリング剤、レオロジーコントロール剤、顔料分散剤等が挙げられる。
 顔料としては、特に限定するものではなく、例えば、キナクリドン系、アゾ系、フタロシアニン系等の有機顔料、酸化チタン、硫酸バリウム、炭酸カルシウム、シリカ等の無機顔料、その他、炭素系顔料、金属箔状顔料、防錆顔料等の顔料が挙げられる。
 溶剤としては、特に限定するものではなく、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類、メタノール、エタノール、2-プロパノール、ブタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等の多価アルコール類、水等が挙げられ、これらの溶剤は単独で用いてもよく、2種以上を併用してもよい。
 高温下での保管等が想定される場合、本発明の熱硬化性樹脂組成物を、ブロックイソシアネートとイソシアネート反応性基を有する化合物とに分けて二液型熱硬化性組成物とし、使用する際に前記二液型熱硬化性組成物を混合して本発明の熱硬化性樹脂組成物として使用することもできる。このような場合、ブロック剤解離触媒は前記二液型熱硬化性組成物を混合する際に添加して使用することもでき、イソシアネート反応性基を有する化合物とブロック剤解離触媒をあらかじめ混合しておくこともできる。
 本発明の熱硬化性樹脂組成物は、自動車用、建物用、鋼製家具などの金属製品用、楽器などの木工製品用、建設機械などの機械車両用、サッシなどの建築資材用、事務機などの電機家電用などの塗料、人工皮革用やゴムロール用などのコーティング材、インク、接着剤、粘着剤、電子部品用の封止材、自動車用や建物用などのシーリング材、3Dプリンター用などの成形材料等に使用することができる。
 次いで、本発明の熱硬化性樹脂組成物の硬化方法について説明する。
 本発明の方法において、上記ブロック剤解離触媒存在下、ブロックイソシアネートとイソシアネート反応性基を有する化合物の混合物を加熱する。
 反応温度は、使用するブロックイソシアネートによっても異なるが、60~250℃程度、好ましくは80~200℃程度とすることができる。反応時間は、30秒~5時間程度、好ましくは1分~60分程度とすることができる。
 本発明の硬化物は、上記の本発明の熱硬化性樹脂組成物の硬化方法を経ることにより製造できる。
 本発明を製造例及び実施例を用いてより詳細に説明するが、本発明はこれらの実施例には限定されない。
(I)H-NMR分析条件
装置:ブルカー株式会社製AV400
周波数:400MHz
(II)液体クロマトグラフィー質量分析(以下LC-MSという )条件
LC装置:サーモフィッシャーサイエンティフィック株式会社製UltiMate3000
カラム:株式会社住化分析センター製SUMIPAX ODS Z-CLUE(長さ50mm、内径3.0mm、粒子径2μm)
カラム温度:35℃
検出方法:フォトダイオードアレイ(PDA)検出器、240nm
流速:0.5mL/分
移動相:A=10mMギ酸アンモニウム水溶液、B=メタノール
グラジェント:下記表1参照
試料:サンプル10mg/メタノール20mL
試料注入量:1μL
MS装置:EXACTIVE
イオン化:ESI+
スキャンレンジ:m/z 50~1000
Figure JPOXMLDOC01-appb-T000021
(III)硬化温度測定条件
装置:株式会社サイバー製 自動硬化時間測定装置まどか
 撹拌棒:型番3JC-5060W
 撹拌速度:自転100rpm、公転25rpm
(IV)ポリメリックMDIのNCO基含有率(%)の測定方法
 ここでのNCO基含有率(%)とは、ポリイソシアネート中に存在するイソシアネート基量を質量分率で表したものであり、以下の方法により測定、算出される。
 ポリメリックMDI(スミジュール44V20、住化コベストロウレタン株式会社製)1.6341gを200mL三角フラスコに採取し、0.2mol/Lジブチルアミンのトルエン溶液50mLを加えて、ポリメリックMDIを溶解させた。次いで、ポリメリックMDI溶液にブロモクレゾールグリーンを少量添加し、0.5mol/L塩酸エタノール溶液をビュレットで滴下した。また、ポリメリックMDIを使用しない以外は同様の操作でから試験を実施した。フラスコ中の溶液が青色から黄色に変色するまでに要した塩酸エタノール溶液の量は、から試験では50.17mL、ポリメリックMDIを使用した系では25.24mLであった。
 下記式より、ポリメリックMDIのNCO基含有率は32.0%と算出された。
NCO基含有率(%)=[{(から試験の塩酸エタノール溶液滴定量(mL)-試料の塩酸エタノール溶液滴定量(mL)}×塩酸エタノール溶液濃度(mol/mL)]/ポリメリックMDIの重量(g)×4.202=[{(50.17(mL)-25.24(mL)}×0.5(mol/mL)]/1.6341(g)×4.202
(V)有効NCO基含有率(%)の算出方法
ここでの有効NCO基含有率(%)とは、ブロック化反応後のブロックイソシアネート中に存在する架橋反応に関与しうるブロックイソシアネート基量を定量化するものであって、イソシアネート基の質量(%)として表し、以下の式により算出される。
有効NCO基含有率(%)={(ブロックイソシアネートの固形分(質量(%)))×(反応に使用したポリイソシアネート質量×前駆体のポリイソシアネートのNCO基含有量(%))}/(ブロック化反応後のブロックイソシアネートの樹脂質量)。なお、溶剤等で希釈されている場合は、希釈された状態での値を記載する。
(VI)固形分の算出方法
 試料約1.5gを110℃で3時間加熱し、加熱前後の質量から試料中の固形分(%)を算出した。 
(VII)熱硬化性樹脂組成物の組成
有効NCO基(mol):水酸基(mol):アミデート基(mol)=1.00:0.95:0.05になるように、ブロックイソシアネート、ポリオール、アミデート化合物を加え、ブロックイソシアネートの固形分に対して総溶媒量が1.0重量倍になるようにメチルイソブチルケトンを加えた。有効NCO基(mol)と水酸基(mol)は下記式より算出した。
有効NCO基(mol)=ブロックイソシアネート仕込量(g)÷ブロックイソシアネートの有効NCO基含有率(%)÷4.202
水酸基(mol)=ポリオール仕込量(g)×ポリオールの水酸基価(mgKOH/g)÷56.1
アミデート基
 本明細書において、下記式(A)で表される骨格をアミデート基とする。
Figure JPOXMLDOC01-appb-C000022
(式中、R~Rはそれぞれ前記に定義される通りである。)
実施例中、アミデート基濃度は、以下の方法により算出した
 テトラリンやジメチルスルホンなどの内部標準物質(Pmmol)をアミデート化合物(Qg)に添加し、任意の重水素溶媒に溶解させ、H-NMR分析した。アミデート基(A)のRおよびRの水素原子のうち、イミダゾリウム骨格の窒素原子に隣接する炭素原子上に結合した水素原子R個に対応するピークの積分強度(S)と内部標準物質の任意の基に結合した水素原子T個に対応するピークの積分強度(U)を求め、以下の式により算出した。アミデート基濃度(mmmol/g)=P×S×T/(R×U×Q)
実施例中、wt%は質量%を示す。
製造例1 [D2EHI][OAc]の合成
Figure JPOXMLDOC01-appb-C000023
 窒素置換した500mLの4つ口反応器に、酢酸52.3g(0.87mol)と41wt%ホルマリン水溶液42.1g(0.56mol)、41wt%グリオキサール水溶液82.8g(0.58mol)を仕込み、50℃に加熱した。次いで、2-エチルヘキシルアミン150.1g(1.16mol)を2時間かけて反応器内へ滴下し、更に2時間30分間攪拌した。続けて、反応溶液に41wt%ホルマリン水溶液3.4g(0.05mol)、41wt%グリオキサール水溶液6.7g(0.05mol)を追加し、更に30分攪拌した。得られた反応溶液を減圧濃縮し、暗褐色粘性液体を225.8g得た。得られた暗褐色粘性液体に内部標準物質としてテトラリンを加えH-NMR分析した結果、得られた暗褐色粘性液体中には、上記式で表される[D2EHI][OAc]が198.4g(0.56mol、収率96.9%)、酢酸が25.2g(0.42mol)含まれていることが分かった。[D2EHI][OAc]のH-NMR分析結果を以下に示す。
H-NMR(DMSO-d)δ(ppm)=9.35(s,1H)、7.82(s,2H)、4.15(d,J=7.2Hz,4H)、1.84(m,2H)、1.71(s,3H)、1.25(m,16H)、0.87(t,J=7.2Hz,12H)
製造例2 [D2EHI][2EHA]の合成
Figure JPOXMLDOC01-appb-C000024
 窒素置換した200mLの3つ口反応器に、2‐エチルヘキサン酸25.1g(0.17mol)と41wt%ホルマリン水溶液8.6g(0.12mol)、41wt%グリオキサール水溶液16.8g(0.12mol)を仕込み、80℃に加熱した。次いで、2-エチルヘキシルアミン30.0g(0.23mol)を80℃で2時間かけて反応器内へ滴下し、2時間攪拌した。続けて、41wt%ホルマリン水溶液0.9g(0.01mol)、41wt%グリオキサール水溶液1.7g(0.01mol)を反応溶液に追加し、更に1時間30分攪拌した。得られた反応溶液を減圧濃縮し、暗褐色粘性液体を59.6g得た。得られた暗褐色粘性液体に内部標準物質としてテトラリンを加えH-NMR分析した結果、得られた暗褐色粘性液体中には、上記式で表される[D2EHI][2EHA]が35.4g(0.08mol、収率72.0%)、2-エチルヘキサン酸が12.1g(0.08mol)含まれていることが分かった。[D2EHI][2EHA]のH-NMR分析結果を以下に示す。
H-NMR(CDCl)δ(ppm)=10.91-10.84(m,1H)、7.07(s,2H)、4.33-4.21(m,4H)、2.23-2.15(m,2H)、1.83-1.77(m,2H)、1.64-1.54(m,4H)、1.48-1.28(m,20H)、0.87(t,J=7.2Hz,12H)
製造例3 [D2EHI][OAc]の合成
Figure JPOXMLDOC01-appb-C000025
 窒素置換した2Lの4つ口反応器に、製造例1で得られた[D2EHI][OAc]40.0g(純分99.5mmol)と炭酸ジメチル39.9g(443mmol)を加え5時間還流攪拌した。得られた反応溶液を減圧濃縮し、暗褐色粘性液体を34.1g得た。得られた暗褐色粘性液体に内部標準物質としてジメチルスルホンを加えH-NMR分析した結果、得られた暗褐色粘性液体中には、上記式で表される[D2EHI][OAc]が31.7g(83.8mmol、収率84.2%)含まれており、過剰の酢酸は消失されていることが分かった。
製造例4 [D2EHI][2EHA]の合成
Figure JPOXMLDOC01-appb-C000026
 窒素置換した100mLの3つ口反応器に、製造例2で得られた[D2EHI][2EHA]16.2g(純分22.7mmol)と炭酸ジメチル16.2g(180mmol)を加え90℃で4時間攪拌した。得られた反応溶液を減圧濃縮し、暗褐色粘性液体を12.4g得た。得られた暗褐色粘性液体に内部標準物質としてテトラリンを加えH-NMR分析した結果、得られた暗褐色粘性液体中には、上記式で表される[D2EHI][2EHA]が9.7g(22.1mmol、収率97.3%)含まれており、過剰の2-エチルヘキサン酸は消失されていることが分かった。
製造例5 ビウレット型HDIのMEKOブロック体の合成
 窒素置換した200mL3つ口反応器に、ビウレット型HDI(デスモジュールN3200A、NCO基含有率:22.8(%)、住化コベストロウレタン株式会社製)60.0g(NCO基:326mmol)、メチルイソブチルケトン36.9gを仕込み、65℃に昇温した。昇温後、反応器内にトリエチルアミン0.6gを加えた。その後、メチルエチルケトオキシム27.0g(333mmol)とメチルイソブチルケトン22.9gを反応器内に滴下し、2時間攪拌した。得られた反応溶液を減圧濃縮し、メチルイソブチルケトン17.4gを加えてビウレット型HDIのMEKOブロック体を119.0g得た。得られたビウレット型HDIのMEKOブロック体の固形分は74.7%、有効NCO基含有率は11.6%であった。
実施例1 D2EHIm_TDI_Meの合成 
Figure JPOXMLDOC01-appb-C000027
 窒素置換した200mLの3つ口反応器に、トルエン30.0gを仕込み加熱還流させた。その後、製造例3で得られた[D2EHI][OAc]30.0g(純分79.3mmol)とトルエン30.0gの混合溶液、トリレンジイソシアネート(2,4-トリレンジイソシアネート約80%と2,6-トリレンジイソシアネート約20%の混合物、東京化成工業株式会社製)15.7g(89.9mmol)とトルエン30.0gの混合溶液を2時間かけて反応器内に滴下し、2時間攪拌した。攪拌後、得られた反応混合物を濃縮することで、暗褐色粘性液体として、上記式で表される化合物(D2EHIm_TDI_Me)を含む混合物38.1g得た。また、H-NMRのピークがブロード化やマルチプレット化していることから、原料に用いたトリレンジイソシアネートの一部のイソシアネート基がオリゴマー化した変性イソシアネートと[D2EHI][OAc]との反応物も副生していると推測された。得られた暗褐色粘性液体に内部標準物質としてジメチルスルホンを加えH-NMR分析した結果、イミダゾリウム基の窒素原子に隣接するメチレン基の水素4H分のピーク(4.53-4.36ppm)が、全て上記式で表されるD2EHIm_TDI_Meに由来するものであると仮定すると、上記式で表されるD2EHIm_TDI_Meが30.3g(62.5mmol、収率78.7%)含まれていることになることが分かり、暗褐色粘性液体中のアミデート基濃度は1.640mmol/gであることが分かった。イオンクロマトグラフィーで得られた目的物(主生成物)のH-NMRと質量分析(LC-MS)結果、2つの副生成物の質量分析(LC-MS)結果を以下に示す。
(目的物、主生成物)
Figure JPOXMLDOC01-appb-C000028
H-NMR(CDCl)δ(ppm)=7.43-6.90(m,5H)、4.53-4.36(m,4H)、2.22-1.91(m,8H)、1.37-1.26(m,16H)、0.88-0.79(m,12H)
LC-MS:C2947 の計算値=483.3694、実測値(M+H)=483.3668
(副生成物)
Figure JPOXMLDOC01-appb-C000029
LC-MS:C1115 の計算値=207.1128、実測値(M+H)=207.1119
Figure JPOXMLDOC01-appb-C000030
LC-MS:C3755 の計算値=631.4330、実測値(M+H)=631.4300
 本発明のブロック剤解離触媒は、目的物のみを単離して使用してもよいが、目的物と副生成物を含む混合物を使用しても、熱硬化性樹脂組成物においてブロック剤解離触媒の役割を十分に果たすことができる。
実施例2 D2EHIm_TDI_2EHの合成
Figure JPOXMLDOC01-appb-C000031
窒素置換した100mLの3つ口反応器に、トルエン10.5gを仕込み加熱還流させた。その後、製造例4で得られた[D2EHI][2EHA]10.0g(純分17.8mmol)とトルエン10.0gの混合溶液、トリレンジイソシアネート(2,4-トリレンジイソシアネート約80%と2,6-トリレンジイソシアネート約20%の混合物、東京化成工業株式会社製)3.1g(17.9mmol)とトルエン10.1gの混合溶液を2時間かけて反応器内に滴下し、1時間攪拌した。攪拌後、得られた反応混合物を濃縮することで、暗褐色粘性液体として、上記式で表される化合物(D2EHIm_TDI_2EH)を含む混合物を9.1g得た。得られた暗褐色粘性液体に内部標準物質としてテトラリンを加えH-NMR分析した結果、イミダゾリウム基の窒素原子に隣接するメチレン基の水素4H分が、全て上記式で表されるD2EHIm_TDI_2EHに由来するものであると仮定すると、上記式で表されるD2EHIm_TDI_2EHが5.1g(9.1mmol、収率51.2%)含まれていることになることが分かり、暗褐色粘性液体中のアミデート基濃度は1.000mmol/gであることが分かった。イオンクロマトグラフィーで得られた目的物(主生成物)のH-NMRと質量分析(LC-MS)結果、2つの副生成物の質量分析(LC-MS)結果を以下に示す。
(目的物、主生成物)
Figure JPOXMLDOC01-appb-C000032
H-NMR(CDCl)δ(ppm)=7.27-6.86(m、5H)、4.54-4.47(m,4H)、2.24-2.15(m,3H)、1.94-1.86(m,1H)、1.78-1.62(m,2H)、1.39-1.19(m,24H)、1.01-0.81(m,18H)
LC-MS:C3559 の計算値=567.4633、実測値(M+H)=567.4598
(副生成物)
Figure JPOXMLDOC01-appb-C000033
LC-MS:C2339 の計算値=375.3006、実測値(M+H)=375.2982
Figure JPOXMLDOC01-appb-C000034
LC-MS:C1525の計算値=249.1961、実測値(M+H)=249.1947
実施例3 D2EHIm_mMDI_Meの合成
Figure JPOXMLDOC01-appb-C000035
 窒素置換した30mLの3つ口反応器に、トルエン3.0gを仕込み加熱還流させた。その後、製造例3で得られた[D2EHI][OAc]5.0g(純分13.2mmol)とトルエン5.9gの混合溶液、4,4’-ジフェニルメタンジイソシアネート(東京化成工業株式会社製)3.7g(14.8mmol)とトルエン5.0gの混合溶液を2時間かけて反応器内に滴下し、1時間攪拌した。攪拌後、得られた反応混合物を濃縮することで、褐色粘性液体として、上記式で表される化合物(D2EHIm_mMDI_Me)を含む混合物を8.3g得た。イオンクロマトグラフィーで得られた目的物(主生成物)のH-NMRと質量分析(LC-MS)結果、3つの副生成物の質量分析(LC-MS)結果を以下に示す。
(目的物、主生成物)
Figure JPOXMLDOC01-appb-C000036
H-NMR(CDCl)δ(ppm)=7.43-7.06 (m, 8H)、6.86 (s, 2H)、4.47 (m,4H)、2.36 (s, 3H)、2.12 (s, 2H)、1.86 (m, 2H)、1.31 (m, 16H) 、0.91 (m, 12H)
LC-MS:C3551 の計算値=559.4007、実測値(M+H)=559.3976
(副生成物)
Figure JPOXMLDOC01-appb-C000037
LC-MS:C1719 の計算値=283.1441、実測値(M+H)=283.1426
Figure JPOXMLDOC01-appb-C000038
LC-MS:C1517の計算値=241.1335、実測値(M+H)=241.1325
Figure JPOXMLDOC01-appb-C000039
LC-MS:C4963 の計算値=783.4956、実測値(M+H)=783.4919
実施例4 D2EHIm_crMDI_Meの合成
Figure JPOXMLDOC01-appb-C000040
式中、X~Xのうち、少なくともいずれかは(a)で表される基で置換されており、残りは(b)で置換されている。X~Xが全て(a)で置換されている化合物、或いは、X~Xが全て(b)で置換されている化合物が反応混合物中に含まれていてもよいが、反応混合物の主成分は、少なくとも1つの(a)と少なくとも1つの(b)で置換された化合物である。mは0~4の整数である。
 窒素置換した180mLの3つ口反応器に、トルエン30.0gを仕込み加熱還流させた。その後、製造例1で得られた[D2EHI][OAc]30.0g(純分:0.075mol)とトルエン30.0gの混合溶液、ポリメリックMDI(スミジュール44V20:NCO基含有率:32.0%、住化コベストロウレタン株式会社製)26.1g(NCO基:198.9mmol)とトルエン24.0gの混合溶液を2時間かけて反応器内に滴下し、1時間攪拌した。攪拌後、得られた反応混合物を濃縮乾固することで、褐色固体として、上記式で表される化合物(D2EHIm_crMDI_Me)を含む混合物48.6g得た。得られた褐色固体に内部標準物質としてテトラリンを加えH-NMR分析した結果、イミダゾリウム基の窒素原子に隣接するメチレン基の水素4H分より、褐色固体中のアミデート基濃度は0.765mmol/gであることが分かった。得られた混合物のH-NMR分析結果を以下に示す。
H-NMR(CDCl)δ(ppm)=7.41-6.88(m)、4.46-4.36(m)3.94-3.87(m)、2.12(s)、2.03-1.88(m)、1.38-1.10(m)、0.90-0.73(m)
実施例5 D2EHIm_crMDI_2EHの合成
Figure JPOXMLDOC01-appb-C000041
式中、X~Xのうち、少なくともいずれかは(a)で表される基で置換されており、残りは(b)で置換されている。X~Xが全て(a)で置換されている化合物、或いは、X~Xが全て(b)で置換されている化合物が反応混合物中に含まれていてもよいが、反応混合物の主成分は、少なくとも1つの(a)と少なくとも1つの(b)で置換された化合物である。mは0~4の整数である。窒素置換した180mLの3つ口反応器に、トルエン30.0gを仕込み加熱還流させた。その後、製造例2で得られた[D2EHI][2EHA]30.0g(純分:42.1mmol)とトルエン30.0gの混合溶液、ポリメリックMDI(スミジュール44V20:NCO基含有率:32.0%、住化コベストロウレタン株式会社製)17.6g(NCO基:134.1mol)とトルエン24.0gの混合溶液を2時間かけて反応器内に滴下し、1時間攪拌した。攪拌後、得られた反応混合物を濃縮乾固することで、褐色固体として、上記式で表される化合物(D2EHIm_crMDI_2EH)を含む混合物50.1g得た。得られた褐色固体に内部標準物質としてテトラリンを加えH-NMR分析した結果、イミダゾリウム基の窒素原子に隣接するメチレン基の水素4H分より、褐色固体中のアミデート基濃度は0.622mmol/gであることが分かった。得られた混合物のH-NMR分析結果を以下に示す。
H-NMR(CDCl)δ(ppm)=7.50-6.89(m)、4.53-4.37(m)4.01-3.81(m)、2.13-2.05(m)、1.93-1.84(m)、1.76-1.65(m)、1.60-1.47(m)、1.40-1.28(m)、0.99-0.80(m)
評価例1
熱硬化性樹脂組成物の組成が有効NCO基(mol):水酸基(mol):アミデート基(mol)=1.00:0.95:0.05になるように、製造例5で得られたビウレット型HDIのMEKO(メチルエチルケトンオキシム)ブロック体、ポリエステルポリオール(P-510、株式会社クラレ製)、実施例1で得られたD2EHIm_TDI_Meを加え、ブロックイソシアネートの固形分に対して総溶媒量が1.0重量倍になるようにメチルイソブチルケトンを加え30分間攪拌させ、熱硬化性樹脂組成物を調製した。
 調製した熱硬化性樹脂組成物を約0.6mL採取し、あらかじめ所定の温度に加熱しておいた自動硬化時間測定装置のホットプレート上に添加し、撹拌した。その際に、撹拌トルクが20%(0.86mN・m)を超えた時間を硬化時間として、各温度における硬化時間の測定を行った。結果を表2に示す。
評価例2~5
 D2EHIm_TDI_Meを表2に示すアミデート化合物に変更した点以外は、評価例1と同様に熱硬化性樹脂組成物を調製し、硬化時間を測定した。結果を表2に示す。
比較例1
 D2EHIm_TDI_Meをジブチル錫ジラウリレート(以下、DBTDL)に変更し、熱硬化性樹脂組成物の組成が有効NCO基(mol):水酸基(mol):DBTDL(mol)=1.00:0.95:0.05になるようにした点以外は、評価例1と同様に熱硬化性樹脂組成物を調製し、硬化時間を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000042

Claims (12)

  1. 下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、同一または異なって、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。R及びRは、同一または異なって、水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示すか、或いはR及びRはそれらが結合している炭素原子と一緒になって環構造を形成しても良い。Rは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。)
    で表されるイミダゾリウムカルボン酸塩と下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群から選ばれる少なくとも1種のポリイソシアネートからイソシアネート基を除いた残基、或いは、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群から選ばれる少なくとも1種から形成された変性イソシアネートからイソシアネート基を除いた残基を示す。xは2以上20以下の整数である。)
    で表されるポリイソシアネート化合物を反応させる工程を含む、下記式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、y及びzは1以上19以下の整数であり、y、zの合計は2以上20以下である。A、R、R、R、R、Rは、各々前記に定義される通りである。)
    で表されるアミデート化合物の製造方法。
  2. 式(2)で表されるポリイソシアネート化合物が芳香族ポリイソシアネートである請求項1に記載のアミデート化合物の製造方法。
  3. 式(2)で表されるポリイソシアネート化合物が2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートまたはポリメチレンポリフェニルポリイソシアネートからなる群から選ばれる1種又は2種以上から形成された2量体または3量体のポリイソシアネートである、請求項1に記載のアミデート化合物の製造方法。
  4. 式(2)で表されるポリイソシアネート化合物が2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートまたはポリメチレンポリフェニルポリイソシアネートからなる群より選ばれる少なくとも1種のポリイソシアネートである請求項1に記載のアミデート化合物の製造方法。
  5. 及びRが水素原子である請求項1~4のいずれか1項に記載のアミデート化合物の製造方法。
  6. 式(3)
    Figure JPOXMLDOC01-appb-C000004
    (式中、y及びzは1以上19以下の整数であり、y、zの合計は2以上20以下である。R及びRは、同一または異なって、ヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。R及びRは、同一または異なって、水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示すか、或いはR及びRはそれらが結合している炭素原子と一緒になって環構造を形成しても良い。Rは水素原子又はヘテロ原子で置換されていても良い炭素数1~20の炭化水素基を示す。)
    で表されるアミデート化合物。
  7. 及びRが水素原子である請求項6に記載のアミデート化合物。
  8. 及びRがヘテロ原子で置換されていても良い炭素数1~20のアルキル基である請求項6に記載のアミデート化合物。
  9. 請求項6~8のいずれか1項に記載のアミデート化合物を含むブロックイソシアネート用ブロック剤解離触媒。
  10.  請求項6~8のいずれか1項に記載のアミデート化合物、ブロックイソシアネート、イソシアネート反応性基を有する化合物を含有する熱硬化性樹脂組成物。
  11.  請求項10に記載の熱硬化性樹脂組成物を硬化してなる硬化物。
  12.  請求項10に記載の熱硬化性樹脂組成物を加熱して硬化させる工程を含む硬化物の製造方法。
PCT/JP2021/013184 2020-03-30 2021-03-29 アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物 WO2021200783A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022512184A JPWO2021200783A1 (ja) 2020-03-30 2021-03-29
EP21780685.0A EP4129984A4 (en) 2020-03-30 2021-03-29 AMIDATE COMPOUND, PRODUCTION METHOD THEREFOR, BLOCKING AGENT DISSOCIATION CATALYST, AND THERMOSETTING RESIN COMPOSITION
CN202180025102.7A CN115397814A (zh) 2020-03-30 2021-03-29 酰胺化物化合物及其制造方法、封端剂解离催化剂以及热固性树脂组合物
US17/914,995 US20230202988A1 (en) 2020-03-30 2021-03-29 Amidate compound, production method therefor, blocking-agent dissociation catalyst, and thermally curable resin composition
KR1020227034722A KR20220161344A (ko) 2020-03-30 2021-03-29 아미데이트 화합물 및 그 제조 방법, 블록제 해리 촉매 그리고 열경화성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-061166 2020-03-30
JP2020061166 2020-03-30

Publications (2)

Publication Number Publication Date
WO2021200783A1 true WO2021200783A1 (ja) 2021-10-07
WO2021200783A9 WO2021200783A9 (ja) 2021-11-11

Family

ID=77929031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013184 WO2021200783A1 (ja) 2020-03-30 2021-03-29 アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物

Country Status (7)

Country Link
US (1) US20230202988A1 (ja)
EP (1) EP4129984A4 (ja)
JP (1) JPWO2021200783A1 (ja)
KR (1) KR20220161344A (ja)
CN (1) CN115397814A (ja)
TW (1) TW202200549A (ja)
WO (1) WO2021200783A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230004717A (ko) * 2020-04-30 2023-01-06 고에이 가가쿠 가부시키가이샤 블록 이소시아네이트 조성물, 열경화성 수지 조성물, 경화물 및 그 제조 방법, 아미데이트 화합물 및 블록 이소시아네이트용 블록제 해리 촉매

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181753A1 (ja) * 2017-03-31 2018-10-04 広栄化学工業株式会社 アミデート化合物の製造方法
WO2019065953A1 (ja) * 2017-09-29 2019-04-04 広栄化学工業株式会社 ブロックイソシアネート用ブロック剤解離触媒及び該ブロック剤解離触媒を含有する熱硬化性組成物
WO2019066029A1 (ja) * 2017-09-29 2019-04-04 関西ペイント株式会社 カチオン電着塗料組成物
WO2020067431A1 (ja) * 2018-09-28 2020-04-02 広栄化学工業株式会社 アミデート化合物の製造方法及びアミデート化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563050B (zh) * 2016-08-04 2023-06-02 广荣化学株式会社 酰胺盐化合物、用于聚氨酯生产的催化剂及聚氨酯树脂的生产方法
KR20220137016A (ko) * 2020-02-03 2022-10-11 고에이 가가쿠 가부시키가이샤 카르복실레이트 화합물의 제조 방법 및 아미데이트 화합물의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181753A1 (ja) * 2017-03-31 2018-10-04 広栄化学工業株式会社 アミデート化合物の製造方法
WO2019065953A1 (ja) * 2017-09-29 2019-04-04 広栄化学工業株式会社 ブロックイソシアネート用ブロック剤解離触媒及び該ブロック剤解離触媒を含有する熱硬化性組成物
WO2019066029A1 (ja) * 2017-09-29 2019-04-04 関西ペイント株式会社 カチオン電着塗料組成物
WO2020067431A1 (ja) * 2018-09-28 2020-04-02 広栄化学工業株式会社 アミデート化合物の製造方法及びアミデート化合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COUTELIER, O. ET AL.: "N-Heterocyclic Carbene-catalyzed synthesis of Polyurethanes", POLYMER PREPRINTS, vol. 52, no. 2, 2011, pages 290 - 291, XP009519621 *
See also references of EP4129984A4
STRUCT. CHEM., vol. 24, 2013, pages 2059 - 2068

Also Published As

Publication number Publication date
EP4129984A1 (en) 2023-02-08
JPWO2021200783A1 (ja) 2021-10-07
CN115397814A (zh) 2022-11-25
TW202200549A (zh) 2022-01-01
EP4129984A4 (en) 2024-04-03
US20230202988A1 (en) 2023-06-29
KR20220161344A (ko) 2022-12-06
WO2021200783A9 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
CN111094375B (zh) 用于封闭型异氰酸酯的封端剂解离催化剂和含有该封端剂解离催化剂的热固性组合物
JP7436374B2 (ja) アミデート化合物の製造方法及びアミデート化合物
CN109563050B (zh) 酰胺盐化合物、用于聚氨酯生产的催化剂及聚氨酯树脂的生产方法
WO2021200783A1 (ja) アミデート化合物及びその製造方法、ブロック剤解離触媒並びに熱硬化性樹脂組成物
KR940000063B1 (ko) 지환식 디이소시아네이트 및 그의 제조방법
KR102722488B1 (ko) 블록 이소시아네이트용 블록제 해리 촉매 및 그 블록제 해리 촉매를 함유하는 열 경화성 조성물
KR20230004717A (ko) 블록 이소시아네이트 조성물, 열경화성 수지 조성물, 경화물 및 그 제조 방법, 아미데이트 화합물 및 블록 이소시아네이트용 블록제 해리 촉매
WO2014129265A1 (ja) 重合性基を有する3級窒素原子含有ラクトン重合体とその製造方法
WO2021221090A1 (ja) ブロックポリイソシアネート組成物、熱硬化性樹脂組成物、硬化物及びその製造方法
JP2006028037A (ja) ブロック化脂環式ポリイソシアネート化合物及び脂環式ポリイソシアネート化合物並びにこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512184

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217060775

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780685

Country of ref document: EP

Effective date: 20221031