WO2021200443A1 - 電子回路ユニットと電池パック - Google Patents

電子回路ユニットと電池パック Download PDF

Info

Publication number
WO2021200443A1
WO2021200443A1 PCT/JP2021/012182 JP2021012182W WO2021200443A1 WO 2021200443 A1 WO2021200443 A1 WO 2021200443A1 JP 2021012182 W JP2021012182 W JP 2021012182W WO 2021200443 A1 WO2021200443 A1 WO 2021200443A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
input
electronic circuit
circuit unit
switching element
Prior art date
Application number
PCT/JP2021/012182
Other languages
English (en)
French (fr)
Inventor
修 大橋
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2022512013A priority Critical patent/JPWO2021200443A1/ja
Priority to CN202180007852.1A priority patent/CN114902157B/zh
Publication of WO2021200443A1 publication Critical patent/WO2021200443A1/ja
Priority to US17/951,165 priority patent/US12132390B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electronic circuit unit that switches between an operation mode and a power saving mode to reduce power consumption in the operation mode.
  • Electronic circuit units that switch between operation mode and power saving mode to reduce power consumption are used for various purposes.
  • a battery pack equipped with this electronic circuit unit has a feature that power consumption in an unused state can be reduced to prolong the battery usage time, and the storage period can be extended as a power saving mode in the storage state.
  • This electronic circuit unit includes a circuit module that switches the operation mode to the power saving mode, and this circuit module detects a start signal and switches the power saving mode to the operation mode. (See Patent Document 1)
  • the electronic circuit unit that switches between the operation mode and the power saving mode switches between the power saving mode and the operation mode by the external trigger signal input to the external input terminal.
  • the device equipped with the electronic circuit unit In the operation mode, the device equipped with the electronic circuit unit is used, and in the power saving mode, the power consumption is reduced.
  • the electronic circuit unit that switches between the operation mode and the power saving mode needs to switch the operation mode to the power saving mode depending on the usage environment.
  • the built-in microcomputer or the like determines this state and switches the operation mode to the power saving mode.
  • the electronic circuit unit is provided with a start terminal inside in order to switch to the operation mode by an external trigger signal input from the outside.
  • the electronic circuit unit switches to the operation mode when a trigger signal is input from the outside and a "High” level switching pulse signal is input to the start terminal.
  • the electronic circuit unit switches the operation mode to the power saving mode to reduce the power consumption under the condition that the electronic circuit unit is switched to the operation mode and is not used for a long time. If the start terminal is at the "High” level while the operation mode is switched to the power saving mode, the power saving mode cannot be switched. Therefore, the conventional electronic circuit unit cannot be switched to the power saving mode.
  • a short circuit is provided to set the "High" level to the "Low” level after a predetermined time.
  • the short circuit changes the switching element to the ON state, short-circuits the start terminal to the ground line, forcibly switches to "Low", and forcibly sets the High level of the start terminal to the Low level. It is said. Since a switching element such as an FET is turned on and the start terminal is held at the Low level, there is a drawback that power is consumed via the FET in the on state.
  • the conventional electronic circuit unit is set in the connected device, and an external trigger signal is input from the connected device to switch to the operation mode.
  • the operation mode is set. It was not possible to switch, and it was necessary to reconnect to the connected device in order to switch to the operation mode.
  • the present invention has been developed for the purpose of eliminating the above drawbacks, and the first object of the present invention is an extremely simple one-shot pulse circuit, which is activated after a predetermined time after switching to an operation mode. It is an object of the present invention to provide an electronic circuit unit capable of switching a terminal to a "Low" level and switching an operation mode to a power saving mode at a required timing. A second object of the present invention is to provide an electronic circuit unit capable of switching to an operation mode in a power saving mode while being disconnected from the connected device.
  • a trigger circuit that outputs a switching pulse signal by an external trigger signal input to an external input terminal and a switching pulse signal of the trigger circuit are input to a start terminal to obtain a switching pulse signal. It is equipped with a circuit module that switches between the operation mode and the power saving mode.
  • the trigger circuit is a one-shot of a semiconductor switching element that is controlled by an external trigger signal and outputs a switching pulse signal to the start terminal, the load resistance of the semiconductor switching element, and the switching pulse signal input to the start terminal with a predetermined pulse width. It is provided with a one-shot pulse circuit that uses a pulse and a forced reset circuit that is connected to the input side of the semiconductor switching element to temporarily switch the semiconductor switching element to the on state.
  • the start terminal is connected to the connection portion between the semiconductor switching element and the load resistor.
  • the one-shot pulse circuit is composed of a coupling capacitor connected between the input side of the semiconductor switching element and the external input terminal and the charging resistance of the coupling capacitor.
  • the pulse width of the one-shot pulse is specified by a constant. Since the semiconductor switching element is turned off according to the time constant, it is possible to reduce the power consumption due to the load resistance.
  • the forced reset circuit temporarily inputs an on-voltage to the semiconductor switching element to force the circuit module into the operating mode.
  • the battery pack according to an aspect of the present invention is a battery pack including the electronic circuit unit described above and a rechargeable battery, and supplies battery voltage to the electronic circuit unit and the semiconductor switching element.
  • the above electronic circuit unit can reduce power consumption in the operation mode by making the one-shot pulse circuit an extremely simple circuit configuration consisting of a coupling capacitor and a charging resistor. Furthermore, the above electronic circuit unit has the feature that it can be switched to the operation mode without reconnecting to the connected device when it is disconnected from the connected device in the power saving mode, such as lighting of the LED that displays the remaining capacity of the battery. You will be able to operate.
  • FIG. 1 It is a block diagram of the battery pack which concerns on one Embodiment of this invention. It is a timing chart which shows the operating state of the electronic circuit unit of the battery pack shown in FIG. It is a block diagram of a conventional battery pack.
  • FIG. 3 shows a block diagram of the conventional electronic circuit unit 80.
  • the electronic circuit unit 80 shown in this figure includes a circuit module 82 including a circuit for switching an operation mode, and a trigger circuit 83 for converting an external trigger signal into a switching pulse signal and inputting the external trigger signal to the start terminal 82a of the circuit module 82. ing.
  • the trigger circuit 83 connects the p-channel FET 85 to the positive side of the power supply line 91, and inputs the voltage of the load resistance 86 of the FET 85 to the start terminal 82a.
  • the trigger circuit 83 switches the FET 85 to the ON state by an external trigger signal input to the gate of the FET 85 of the p channel via the external input terminal 89 and the inverting circuit 88, and is energized by the FET 85 in the ON state to carry the load resistance 86.
  • the "High" signal generated in the above is input to the start terminal 82a of the circuit module 82 as a switching pulse signal.
  • the circuit module 82 switches the power saving mode to the operation mode at the timing when the switching pulse signal input to the start terminal 82a is switched from “Low” to "High".
  • the electronic circuit unit 80 of FIG. 3 has a short FET 95 that forcibly sets the voltage of the start terminal 82a to the “Low” level in order to set the start terminal 82a to the “Low” level after the set time after switching to the operation mode.
  • the short FET 95 is on / off controlled by the short circuit 96.
  • the short FET 95 is provided outside the circuit module 82, and the short circuit 96 is mounted on the circuit module 82.
  • the short circuit 96 When the short circuit 96 is switched to the operation mode and a predetermined time elapses, the short circuit 96 outputs an on voltage to the gate of the short FET 95 and switches to the on state.
  • the short FET 95 in the ON state connects the start terminal 82a to the ground line 92 and forcibly switches the “High” level of the start terminal 82a to “Low”.
  • the switching element such as the short FET 95 is turned on and the start terminal 82a is forcibly held at the Low level. Therefore, the short FET 95 in the on state consumes power to consume power in the operation mode. There is a drawback to increasing it.
  • the "High" of the switching pulse signal of the start terminal 82a can be switched to "Low” by the "short circuit 96", but the start terminal 82a is forcibly set to "Low”. Since the short FET 95 is energized to reach the "level”, the short FET 95 consumes power. Therefore, the electronic circuit unit 80 of FIG. 3 consumes power in an operation mode in which power consumption is required to be reduced as much as possible, and further circuits a short FET 95 and a short circuit 96 for controlling the short FET 95 on and off. Since it is necessary to provide the module 82, the circuit configuration becomes complicated and the manufacturing cost becomes high.
  • the electronic circuit unit 80 of FIG. 3 cannot be switched to the operation mode when it is disconnected from the connected device in the power saving mode, and it is necessary to connect to the connected device in order to switch to the power saving mode, which is troublesome for this operation. There is a drawback that it takes.
  • a trigger circuit that outputs a switching pulse signal by an external trigger signal input to an external input terminal and a switching pulse signal of the trigger circuit are input to a start terminal for switching. It is equipped with a circuit module that switches between operation mode and power saving mode with a pulse signal.
  • the trigger circuit is a one-shot of a semiconductor switching element that is controlled by an external trigger signal and outputs a switching pulse signal to the start terminal, the load resistance of the semiconductor switching element, and the switching pulse signal input to the start terminal with a predetermined pulse width. It is provided with a one-shot pulse circuit that uses a pulse and a forced reset circuit that is connected to the input side of the semiconductor switching element to temporarily switch the semiconductor switching element to the on state.
  • the start terminal is connected to the connection portion between the semiconductor switching element and the load resistor, and the voltage of the load resistor is input.
  • the one-shot pulse circuit is composed of a coupling capacitor connected between the input side of the semiconductor switching element and the external input terminal and the charging resistance of the coupling capacitor. The pulse width of the one-shot pulse is specified by a constant.
  • the forced reset circuit temporarily inputs an on-voltage to the semiconductor switching element to force the circuit module into the operating mode.
  • the above electronic circuit unit realizes a one-shot pulse circuit with an extremely simple circuit consisting of a coupling capacitor and a charging resistor, the power consumption in a state where the start terminal is at the "Low" level while making the circuit configuration extremely simple. It has the advantage of reducing consumption and achieving extremely low power consumption. Furthermore, since the above electronic circuit unit temporarily switches the semiconductor switching element to the on state by the forced reset circuit, it switches to the operation mode without reconnecting to the connected device when it is disconnected from the connected device in the power saving mode. Can be conveniently used.
  • the above electronic circuit unit is provided with a forced reset circuit which is connected to the input side of the semiconductor switching element to temporarily switch the semiconductor switching element to the on state, and this forced reset circuit temporarily connects to the semiconductor switching element. Since the circuit module is forcibly put into the operation mode by inputting the on-voltage, even in the usage environment where the external trigger signal is not input even when the circuit module is disconnected from the connected device, it is not reset to the connected device. The circuit module can be switched to the operation mode.
  • the forced reset circuit has a series circuit of a coupling capacitor and a charging resistor, and a reset terminal connected to the input side of the coupling capacitor, and the reset terminal has a reset terminal.
  • a forced reset signal is input to temporarily switch the semiconductor switching element to the on state.
  • the electronic circuit unit of the third embodiment of the present invention includes a short-circuit switch in which the forced reset circuit is connected to a series circuit of the coupling capacitor and the charging resistor and the input side of the coupling capacitor. In the ON state, the input side of the coupling capacitor is connected to the ground line to temporarily switch the semiconductor switching element to the ON state.
  • the electronic circuit unit of the fourth embodiment of the present invention has a time constant in which the capacitance of the coupling capacitor and the electrical resistance of the charging resistor set the pulse width of the one-shot pulse to 1 msec or more.
  • the electronic circuit unit of the fifth embodiment of the present invention uses a semiconductor switching element as an FET.
  • the electronic circuit unit of the sixth embodiment of the present invention includes a charging resistor connected between the input side of the semiconductor switching element and the coupling capacitor, and the coupling capacitor is a series resistance of the charging resistor and the charging resistor. I am trying to charge it with.
  • a charging resistor is connected to an external input terminal and a power supply line.
  • the circuit module switches the power saving mode to the operation mode by the high level switching pulse signal, and switches the high level to the start terminal when the semiconductor switching element is on.
  • a pulse signal is input, and the one-shot pulse circuit charges the coupling capacitor with a charging resistor to change the starting terminal from High level to Low level.
  • FIG. 1 shows a battery pack 100 including an electronic circuit unit 10.
  • the electronic circuit unit 10 of the battery pack 100 is switched to an operation mode in a state where the battery pack 100 is connected to a connected device and charged / discharged, and a power saving mode in a state where charging / discharging does not continue, thereby reducing power consumption.
  • the electronic circuit unit 10 in the power saving mode is switched to the operation mode by an external trigger signal input from the connected device.
  • the electronic circuit unit 10 mounted on the battery pack 100 includes a circuit module 2 such as an analog front end (AFE) that mounts a protection circuit of the battery 1 and the like, and a trigger circuit 3 that switches the circuit module 2 to an operation mode.
  • the trigger circuit 3 sets the circuit module 2 as an operation mode by an external trigger signal input from a device to which the battery pack 100 is connected.
  • the trigger circuit 3 inputs a switching pulse signal for switching between “High” and “Low” with an external trigger signal to the start terminal 2a of the circuit module 2, and sets the circuit module 2 as the operation mode.
  • the circuit module 2 switched to the operation mode by the external trigger signal switches the circuit module 2 to the power saving mode to reduce the power consumption when a specific condition is satisfied, for example, when the unused state continues for a predetermined time.
  • the circuit module 2 can switch the signal from the microcomputer 4 or the like that determines that a specific condition is satisfied to the power saving mode. If the start terminal 2a is at the "High" level at the timing of switching to the power saving mode in the microcomputer 4, the circuit module 2 holds the operation mode and cannot switch to the power saving mode. Therefore, the trigger circuit 3 inputs a "High" level switching pulse signal to the start terminal 2a, switches the circuit module 2 to the operation mode, and then controls the switching pulse signal to the "Low" level.
  • the trigger circuit 3 presets the semiconductor switching element 5 to which the external trigger signal is input, the load resistance 6 of the semiconductor switching element 5, and the “High” level of the switching pulse signal input to the start terminal 2a. It includes a one-shot pulse circuit 7 that switches to the "Low” level after a period of time, and a forced reset circuit 9 that temporarily switches the semiconductor switching element 5 to the ON state.
  • the one-shot pulse circuit 7 includes a coupling capacitor 13 connected to the input side of the semiconductor switching element 5, and a charging resistor 14 connected between the coupling capacitor 13 and the power supply line 11.
  • the forced reset circuit 9 temporarily inputs an on-voltage to the semiconductor switching element 5 to forcibly put the circuit module 2 into the operation mode.
  • the semiconductor switching element 5 is a p-channel FET 5A.
  • the p-channel FET 5A is turned off when the on-voltage is not input from the coupling capacitor 13, and is turned on when the on-voltage is input from the coupling capacitor 13.
  • the p-channel FET 5A energizes the load resistor 6 only in the on state, and the load resistor 6 generates a voltage in the energized state and inputs a “High” level switching pulse signal to the start terminal 2a.
  • the "High" level switching pulse signal input to the start terminal 2a sets the circuit module 2 as the operation mode.
  • the p-channel FET 5A is turned on at the timing when a negative on voltage is input to the gate, and the circuit module 2 is set to the operation mode. Since the circuit module 2 is set to the operation mode at the "High" level of the external trigger signal, the trigger circuit 3 in FIG. 1 is placed on the input side of the p-channel FET 5A in order to turn on the p-channel FET 5A at this timing.
  • An inverting circuit 8 is connected to invert the external trigger signals "High” and “Low", and the signals are input to the gate of the p-channel FET 5A.
  • the inverting circuit 8 of FIG. 1 is a photocoupler 15 composed of a light emitting diode 16 and a phototransistor 17, in which a collector of the phototransistor 17 is connected to a power supply line 11 on the positive side via a pull-up resistor 18, and an emitter is a ground line. It is connected to 12.
  • the photocoupler 15 of the inversion circuit 8 the light emitting diode 16 is turned on by the external trigger signal "High", and the phototransistor 17 is turned on.
  • the phototransistor 17 in the ON state connects the pull-up resistor 18 to the ground line 12 to set the output to “Low”.
  • the photocoupler 15 When the light emitting diode 16 is not lit by the "Low” signal of the external trigger signal, the photocoupler 15 turns off the phototransistor 17 and outputs a "High” signal via the pull-up resistor 18.
  • the inverting circuit in the figure is a photocoupler, the inverting circuit is not limited to the photocoupler and may be composed of a switching element such as an FET.
  • the trigger circuit 3 that connects the inverting circuit 8 to the input side
  • the external trigger signal "High” is input to the external input terminal 19 in the inverting circuit 8
  • the power line 11 on the positive side is connected to the gate of the FET 5A of the p channel.
  • a negative on voltage is input and the FET 5A is turned on.
  • the p-channel FET 5A in the ON state inputs the "High" signal generated in the load resistor 6 to the start terminal 2a as a switching pulse signal, and sets the circuit module 2 as the operation mode.
  • the circuit module 2 may be switched from the operation mode to the power saving mode. This state occurs when the battery pack 100 does not supply power to the connected device for a long time.
  • the start terminal 2a is at the "High” level, the circuit module 2 cannot switch the operation mode to the power saving mode. Therefore, after switching to the operation mode so that the operation mode can be switched to the power saving mode, the start terminal 2a Must be at the "Low” level.
  • the trigger circuit 3 includes a one-shot pulse circuit 7 in order to forcibly switch the start terminal 2a from “High” to “Low” after the operation mode is switched.
  • the one-shot pulse circuit 7 switches the "High” level switching pulse signal to the "Low” level after a predetermined time, and sets the switching pulse signal as a one-shot pulse having a predetermined pulse width.
  • the one-shot pulse circuit 7 specifies the on-time of the p-channel FET 5A, and sets the switching pulse signal input to the start terminal 2a as a one-shot pulse.
  • the one-shot pulse circuit 7 is composed of a coupling capacitor 13 connected to the input side of the FET 5A and a charging resistor 14 of the coupling capacitor 13.
  • the charging resistor 14 is connected to the first charging resistor 14A which is connected between the coupling capacitor 13 and the gate of the FET 5A, and the gate of the FET 5A and the power supply line 11 are connected to each other. It is composed of a series resistance with the second charging resistance 14B.
  • the second charging resistor 14B connects the gate of the FET 5A to the power supply line 11 on the positive side and holds the FET 5A in the off state in the normal state.
  • the time constant of the coupling capacitor 13 and the charging resistor 14 is specified by the electrical resistance obtained by adding the electrical resistances of the first charging resistor 14A and the second charging resistor 14B.
  • the second charging resistor 14B can be used in combination with the input resistor that holds the gate voltage (VGS) of the FET 5A in the off state in the normal state.
  • the FET 5A has an input resistor between the gate and the source, and this input resistor is connected in parallel with the second charging resistor 14B to substantially reduce the electrical resistance of the second charging resistor 14B. Since the input resistance of the FET 5A is considerably large, this can be ignored and the time constant can be specified from the electrical resistances of the first charging resistance 14A and the second charging resistance 14B. However, when the input resistance of the FET 5A is large, the electric resistance of the second charging resistance 14B is specified in consideration of the input resistance.
  • the coupling capacitor 13 is in the "Low” state of the external trigger signal, that is, in the power saving mode, the voltage at both ends becomes the voltage of the power supply line 11 on the positive side, and the voltage becomes 0V, that is, the state of being discharged.
  • a "Low” signal is input from the inverting circuit 8 to one side of the coupling capacitor 13, the coupling capacitor 13 starts charging via the charging resistor 14, and the input voltage input to the gate of the p-channel FET 5A becomes. It drops momentarily and becomes "Low".
  • the voltage change of the coupling capacitor 13 specifies the on-time of the FET 5A, that is, the pulse width of the one-shot pulse.
  • the voltage change of the coupling capacitor 13 is specified by a time constant specified by the product of the capacitance of the coupling capacitor 13 and the electric resistance of the charging resistor 14. When the time constant becomes large, the voltage change of the coupling capacitor 13 becomes slow, so that the pulse width of the one-shot pulse becomes large, that is, the on-time of the p-channel FET 5A becomes long.
  • the time constants of the coupling capacitor 13 and the charging resistor 14 are set so that the pulse width of the one-shot pulse is, for example, 1 msec or more.
  • the on-time of the p-channel FET 5A is set to 1 msec or more, and the timing for holding the start terminal 2a at the “High” level is set to 1 msec or more.
  • the pulse width of the one-shot pulse can be increased by increasing the time constants of the coupling capacitor 13 and the charging resistor 14, that is, increasing the capacitance of the coupling capacitor 13 and the electrical resistance of the charging resistor 14.
  • FIG. 2 shows [A] external trigger signal, [B] inverting circuit output signal, [C] FET gate input voltage, [D] switching pulse signal, and [E] in the electronic circuit unit 10 shown in FIG. It is a timing chart which shows the change of the forced reset signal.
  • [C] of FIG. 2 shows the characteristic that the input voltage input from the coupling capacitor 13 to the gate of the p-channel FET 5A changes.
  • the input voltage input to the gate of the FET 5A is the timing at which the external trigger signal rises from “Low” to "High”, in other words, the output signal of the inverting circuit 8 changes from “High” to “Low”.
  • the voltage drops momentarily to "Low”, and then gradually rises to the voltage of the power supply line 11 on the positive side.
  • the p-channel FET 5A is held in the ON state when the difference between the input voltage of the gate and the voltage of the power supply line 11 on the positive side, that is, the gate voltage (VGS), which is the potential difference between the gate and the source, is larger than the cutoff voltage. Will be done. Therefore, when the gate voltage (VGS) of the p-channel FET 5A becomes smaller than the cutoff voltage, the gate input voltage becomes "High” and the p-channel FET 5A is switched to the off state.
  • VGS gate voltage
  • the on-time of the p-channel FET 5A is specified by the state in which the gate voltage (VGS) changes, that is, the time constant of the coupling capacitor 13 and the charging resistor 14.
  • VGS gate voltage
  • the time constant of the coupling capacitor 13 and the charging resistor 14 is such that the pulse width of the one-shot pulse is, for example, 1 msec or more and 100 msec or less, preferably 1 msec or more and 10 msec or less.
  • the pulse width of the one-shot pulse is lengthened, the capacitance of the coupling capacitor 13 and the electrical resistance of the charging resistor 14 become large, resulting in large parts and high cost. On the contrary, if the pulse width is too short, reliable switching is performed. Therefore, it is possible to switch to the operation mode without fail, and set the above range in consideration of the component cost.
  • the trigger circuit 3 of FIG. 1 includes a forced reset circuit 9 that temporarily switches the FET 5A of the semiconductor switching element 5 to the ON state.
  • the forced reset circuit 9 temporarily inputs an on-voltage to the gate of the FET 5A, which is a semiconductor switching element 5, switches the FET 5A to an on state, and inputs a one-shot pulse to the start terminal 2a. At the "High" level of the one-shot pulse, the circuit module 2 is forcibly switched to the operation mode.
  • the forced reset circuit 9 in FIG. 1 has the same circuit configuration as the one-shot pulse circuit 7, and temporarily turns on the FET 5A and inputs a one-shot pulse to the start terminal 2a of the circuit module 2.
  • the forced reset circuit 9 is composed of a series circuit of the coupling capacitor 23 and the charging resistor 24, and is provided with a reset terminal 21 on the input side of the coupling capacitor 23.
  • the "Low" signal which is the forced reset signal shown in [E] of FIG. 1, is input to the reset terminal 21, the p-channel FET 5A of the semiconductor switching element 5 is switched to the ON state.
  • the gate voltage (VGS) of the p-channel FET 5A that has been turned on gradually becomes smaller with the passage of time, becomes lower than the cutoff voltage, and is turned off. Therefore, the p-channel FET 5A is kept on until the coupling capacitor 23 is charged by the charging resistor 24 and the gate voltage (VGS) drops to the cutoff voltage.
  • the p-channel FET 5A in the ON state generates a "High" signal at the start terminal 2a connected to the load resistor 6. Therefore, a one-shot pulse having a pulse width at the timing at which the p-channel FET 5A is held in the ON state is input to the start terminal 2a.
  • the one-shot pulse input to the start terminal 2a switches the circuit module 2 which was in the power saving mode to the operation mode at the rising timing.
  • the time constants of the coupling capacitor 23 and the charging resistor 24 are preferably substantially the same as the time constants of the coupling capacitor 13 and the charging resistor 14 of the one-shot pulse circuit 7 described above.
  • the forced reset circuit 9 of FIG. 1 includes a short-circuit switch 22 connected to the input side of the coupling capacitor 13.
  • the short-circuit switch 22 connects the input side of the coupling capacitor 23 to the ground line 12 in the on state, and inputs the on voltage to the gate of the FET 5A of the p channel of the semiconductor switching element 5.
  • charging of the coupling capacitor 23 is started via the charging resistor 24, and the input voltage input to the gate of the p-channel FET 5A momentarily drops. Then, it becomes "Low” and the FET 5A is turned on.
  • the p-channel FET 5A is kept on until the coupling capacitor 23 is charged by the charging resistor 24 and the gate voltage (VGS) drops to the cutoff voltage, and a one-shot pulse is input to the start terminal 2a.
  • VGS gate voltage
  • the circuit module 2 that was in the power saving mode is switched to the operation mode.
  • the short-circuit switch 22 is, for example, a push button switch, and the user can press the push button switch in a state of being disconnected from the connected device to switch the power saving mode to the operation mode.
  • the electronic circuit unit 10 of FIG. 1 switches between a power saving mode and an operation mode by the following operation, and switches the operation mode to the power saving mode.
  • An external trigger signal is input to the electronic circuit unit 10 from the connected device. As shown in [A] of FIG. 2, the external trigger signal changes from “Low” to “High” at the timing of switching from the power saving mode to the operation mode.
  • the external trigger signal is input to the coupling capacitor 13 of the trigger circuit 3 by inverting "High” and "Low” in the inverting circuit 8. As shown in [A] of FIG. 2, the external trigger signal rises from the “Low” level to the “High” level at the timing of switching the power saving mode to the operation mode, and is therefore input from the inverting circuit 8 to the coupling capacitor 13.
  • the signal changes from "High” to "Low” at the timing of switching to the operation mode, as shown in [B] of FIG.
  • the input voltage input to the gate of the FET 5A of the p channel is the voltage of the power supply line 11 on the positive side as shown in [C] of FIG. The voltage drops significantly to the minus side.
  • the p-channel FET 5A is switched to the on state by inputting a “Low” on voltage to the gate.
  • the p-channel FET 5A in the ON state energizes the load resistor 6 and inputs "High” signals generated at both ends of the load resistor 6 to the start terminal 2a of the circuit module 2 as a switching pulse signal.
  • the "High" switching pulse signal input to the operation mode switches the circuit module 2 to the operation mode.
  • the switching pulse signal input to the start terminal 2a is a one-shot pulse having a pulse width of the time from the timing when the p-channel FET 5A is turned on to the timing when it is switched off. Therefore, in the above electronic circuit unit 10, when a predetermined time elapses after the "High" signal of the external trigger signal is input to the external input terminal 19 and the power saving mode is switched to the operation mode, the activation terminal 2a Is set to "Low” so that the mode can be switched to the power saving mode.
  • the circuit module 2 in which the start terminal 2a is held at the "Low” level can switch the circuit module 2 to the power saving mode by the signal from the microcomputer 4 to reduce the power consumption.
  • the p-channel FET 5A is switched to the off state.
  • the p-channel FET 5A that has been turned off cuts off the current of the load resistor 6 and switches the switching pulse signal input to the start terminal 2a of the circuit module 2 to "Low".
  • the switching pulse signal input to the start terminal 2a is a one-shot pulse having a pulse width of the time from the timing when the p-channel FET 5A is turned on to the timing when it is switched off.
  • the above electronic circuit unit 10 is activated by inputting a forced reset signal to the reset terminal 21 or operating a push button switch which is a short-circuit switch 22 with the battery pack 100 removed from the connected device.
  • a "High" signal is input to the terminal 2a as a switching pulse signal to forcibly switch the circuit module 2 to the operation mode.
  • the battery pack 100 shown in FIG. 1 includes an electronic circuit unit 10 having the above structure and a rechargeable battery 1.
  • the battery pack 100 supplies operating power from the built-in battery 1 to the circuit module 2, the semiconductor switching element 5, and the microcomputer 4 constituting the electronic circuit unit 10.
  • the present invention can be suitably used as an electronic circuit unit built in a battery pack that can switch between an operation mode and a power saving mode to reduce power consumption in the power saving mode.
  • Electronic circuit unit 82 ... Circuit module 82a ... Start terminal 83 ... Trigger circuit 85 ... FET 86 ... Load resistance 88 ... Inverting circuit 89 ... External input terminal 91 ... Power supply line 92 ... Ground line 95 ... Short FET 96 ... Short circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electronic Switches (AREA)

Abstract

省電力モードで接続機器から外した状態で、動作モードに切り換える。 電子回路ユニットは、トリガー回路(3)と回路モジュール(2)とを備える。トリガー回路(3)は、外部トリガー信号で制御されて切換パルス信号を出力する半導体スイッチング素子(5)と、半導体スイッチング素子(5)の負荷抵抗(6)と、切換パルス信号を所定のパルス幅のワンショットパルスとするワンショットパルス回路(7)と、半導体スイッチング素子の入力側に接続された強制リセット回路とを備える。ワンショットパルス回路(7)は、半導体スイッチング素子(5)の入力側に接続されたカップリングコンデンサ(13)と充電抵抗(14)とで構成され、カップリングコンデンサ(13)と充電抵抗(14)の時定数で、ワンショットパルスのパルス幅を特定している。強制リセット回路は、半導体スイッチング素子に一時的にオン電圧を入力して、回路モジュールを強制的に動作モードとする。

Description

電子回路ユニットと電池パック
 本発明は、動作モードと省電力モードを切り換えて、動作モードで電力消費を削減する電子回路ユニットに関する。
 動作モードと省電力モードを切り換えて、電力消費を削減する電子回路ユニットは種々の用途に使用されている。たとえば、この電子回路ユニットを装備する電池パックは、使用されない状態での電力消費を削減して電池の使用時間を長くし、また保存状態で省電力モードとして保存期間を長くできる特長がある。この電子回路ユニットは、動作モードを省電力モードに切り換える回路モジュールを備えており、この回路モジュールが起動信号を検出して省電力モードを動作モードに切り換えている。(特許文献1参照)
特開2017-083801号公報
 動作モードと省電力モードを切り換える電子回路ユニットは、外部入力端子に入力される外部トリガー信号で省電力モードと動作モードを切り換えている。動作モードは、電子回路ユニットを装備する機器を使用状態とし、省電力モードは使用しない状態で電力消費を削減する。動作モードと省電力モードを切り換えする電子回路ユニットは、使用環境によって、動作モードを省電力モードに切り換える必要がある。使用しない時間が長くなるなど、あらかじめ設定している条件を満足すると、内蔵するマイコン等でこの状態を判別して、動作モードを省電力モードに切り換えている。電子回路ユニットは、外部から入力される外部トリガー信号で動作モードに切り換えるために、内部に起動端子を設けている。電子回路ユニットは、外部からトリガー信号が入力されて、起動端子に”High”レベルの切換パルス信号が入力されると動作モードに切り換えている。電子回路ユニットは、動作モードに切り換えられた状態で、使用しない時間が長くなる等の条件では、動作モードを省電力モードに切り換えて電力消費を削減している。動作モードを省電力モードに切り換える状態で、起動端子が”High”レベルにあると、省電力モードに切り換えできないので、従来の電子回路ユニットは、動作モードに切り換えた後、一定の時間経過すると、起動端子を強制的に”Low”に切り換えるために、”High”レベルを所定の時間後に”Low”レベルとするショート回路を設けている。
 ショート回路は、所定の時間経過すると、スイッチング素子をオン状態に換えて、起動端子をグランドラインに短絡して、強制的に”Low”に切り換えて、起動端子のHighレベルを強制的にLowレベルとしている。FETなどのスイッチング素子をオン状態として、起動端子をLowレベルに保持するので、オン状態のFETを経由して電力を消費する欠点がある。
 さらに、従来の電子回路ユニットは、接続機器にセットされて、接続機器から外部トリガー信号が入力されて動作モードに切り換えられるが、省電力モードの状態で接続機器から外した状態では、動作モードに切り換えできず、動作モードとするために接続機器に再接続する必要があった。
 本発明は、以上の欠点を解消することを目的に開発されたもので、本発明の第1の目的は、極めて簡単なワンショットパルス回路で、動作モードに切り換えた後、所定の時間後に起動端子を”Low”レベルに切り換えして、必要なタイミングにおいて、動作モードを省電力モードに切り換えできる電子回路ユニットを提供することにある。
 さらに、本発明の第2の目的は、省電力モードで接続機器から外した状態で、動作モードに切り換えできる電子回路ユニットを提供することにある。
 本発明のある態様に係る電子回路ユニットは、外部入力端子に入力される外部トリガー信号で切換パルス信号を出力するトリガー回路と、トリガー回路の切換パルス信号が起動端子に入力されて、切換パルス信号で動作モードと省電力モードとを切り換える回路モジュールとを備えている。トリガー回路は、外部トリガー信号で制御されて起動端子に切換パルス信号を出力する半導体スイッチング素子と、半導体スイッチング素子の負荷抵抗と、起動端子に入力される切換パルス信号を所定のパルス幅のワンショットパルスとするワンショットパルス回路と、半導体スイッチング素子の入力側に接続されて、半導体スイッチング素子を一時的にオン状態に切り換える強制リセット回路とを備えている。起動端子は、半導体スイッチング素子と負荷抵抗との接続部に接続されている。ワンショットパルス回路は、半導体スイッチング素子の入力側と外部入力端子との間に接続してなるカップリングコンデンサと、カップリングコンデンサの充電抵抗とで構成されており、カップリングコンデンサと充電抵抗の時定数で、ワンショットパルスのパルス幅を特定している。時定数に応じて半導体スイッチング素子がオフ状態となるため、負荷抵抗による電力消費を削減することが可能となる。強制リセット回路は、半導体スイッチング素子に一時的にオン電圧を入力して、回路モジュールを強制的に動作モードとする。
 本発明のある態様に係る電池パックは、以上に記載される電子回路ユニットと、充電できる電池を備える電池パックであって、電子回路ユニットと半導体スイッチング素子に電池電圧を供給している。
 以上の電子回路ユニットは、ワンショットパルス回路を、カップリングコンデンサと充電抵抗とからなる極めて簡単な回路構成として、動作モードにおける電力消費を削減できる。さらに、以上の電子回路ユニットは、省電力モードで接続機器から外した状態では、接続機器に再接続することなく動作モードに切り換えできる特長があり、電池の残容量を表示するLEDの点灯等の動作をすることができるようになる。
本発明の一実施形態に係る電池パックのブロック図である。 図1に示す電池パックの電子回路ユニットの動作状態を示すタイミングチャートである。 従来の電池パックのブロック図である。
 図3は、従来の電子回路ユニット80のブロック図を示している。この図に示す電子回路ユニット80は、動作モードを切り換える回路を備える回路モジュール82と、外部トリガー信号を切換パルス信号に変換して、回路モジュール82の起動端子82aに入力するトリガー回路83とを備えている。トリガー回路83は、電源ライン91のプラス側にpチャンネルのFET85を接続して、FET85の負荷抵抗86の電圧を起動端子82aに入力している。このトリガー回路83は、外部入力端子89と反転回路88を介して、pチャンネルのFET85のゲートに入力される外部トリガー信号でFET85をオン状態に切り換え、オン状態のFET85に通電されて負荷抵抗86に発生する”High”信号を切換パルス信号として回路モジュール82の起動端子82aに入力している。回路モジュール82は、起動端子82aに入力される切換パルス信号が、”Low”から”High”に切り換えられるタイミングで、省電力モードを動作モードに切り換える。
 図3の電子回路ユニット80は、動作モードに切り換えた後、設定時間後に起動端子82aを”Low”レベルとするために、起動端子82aの電圧を強制的に”Low”レベルとするショートFET95を備えている。このショートFET95は、ショート回路96によりオンオフ制御されている。ショートFET95は回路モジュール82の外部に設けられて、ショート回路96は回路モジュール82に実装される。ショート回路96は、動作モードに切り換えられて所定の時間経過すると、ショートFET95のゲートにオン電圧を出力してオン状態に切り換える。オン状態のショートFET95は、起動端子82aをグランドライン92に接続して、起動端子82aの”High”レベルを強制的に”Low”に切り換える。このショート回路96は、ショートFET95などのスイッチング素子をオン状態として、起動端子82aを強制的にLowレベルに保持するので、オン状態のショートFET95が電力を消費して、動作モードでの消費電力を増加させる欠点がある。
 図3の電子回路ユニット80は、動作モードに切り換えられた後、起動端子82aの切換パルス信号の”High”を”ショート回路96でLow”に切り換えできるが、起動端子82aを強制的に”Low”レベルとするためにショートFET95に通電するので、ショートFET95が電力を消費する。したがって、図3の電子回路ユニット80は、電力消費を極力削減することが要求される動作モードにおいて電力を消費し、さらにショートFET95や、このショートFET95をオンオフに制御するためのショート回路96を回路モジュール82に設ける必要があって、回路構成が複雑となって製造コストが高くなる。
 さらに、図3の電子回路ユニット80は、省電力モードで接続機器から外した状態では動作モードに切り換えできず、省電力モードに切り換えるために接続機器に接続する必要があって、この操作に手間がかかる欠点がある。
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 本発明の第1の実施態様の電子回路ユニットは、外部入力端子に入力される外部トリガー信号で切換パルス信号を出力するトリガー回路と、トリガー回路の切換パルス信号が起動端子に入力されて、切換パルス信号で動作モードと省電力モードとを切り換える回路モジュールとを備えている。トリガー回路は、外部トリガー信号で制御されて起動端子に切換パルス信号を出力する半導体スイッチング素子と、半導体スイッチング素子の負荷抵抗と、起動端子に入力される切換パルス信号を所定のパルス幅のワンショットパルスとするワンショットパルス回路と、半導体スイッチング素子の入力側に接続されて、半導体スイッチング素子を一時的にオン状態に切り換える強制リセット回路とを備えている。起動端子は、半導体スイッチング素子と負荷抵抗との接続部に接続されて、負荷抵抗の電圧が入力される。ワンショットパルス回路は、半導体スイッチング素子の入力側と外部入力端子との間に接続してなるカップリングコンデンサと、カップリングコンデンサの充電抵抗とで構成されており、カップリングコンデンサと充電抵抗の時定数で、ワンショットパルスのパルス幅を特定している。強制リセット回路は、半導体スイッチング素子に一時的にオン電圧を入力して、回路モジュールを強制的に動作モードとする。
 以上の電子回路ユニットは、ワンショットパルス回路を、カップリングコンデンサと充電抵抗からなる極めて簡単な回路で実現するので、回路構成を極めて簡単にしながら、起動端子を”Low”レベルとする状態における電力消費を削減して、極めて低電力消費にできる特長がある。さらに、以上の電子回路ユニットは、強制リセット回路で一時的に半導体スイッチング素子をオン状態に切り換えるので、省電力モードで接続機器から外した状態では、接続機器に再接続することなく動作モードに切り換えして便利に使用できる。
 さらに、以上の電子回路ユニットは、半導体スイッチング素子の入力側に接続して、半導体スイッチング素子を一時的にオン状態に切り換える強制リセット回路を設けており、この強制リセット回路が、半導体スイッチング素子に一時的にオン電圧を入力して、回路モジュールを強制的に動作モードとするので、接続機器から外した状態であって、外部トリガー信号の入力されない使用環境においても、接続機器に再セットすることなく回路モジュールを動作モードに切り換えできる。
 本発明の第2の実施態様の電子回路ユニットは、強制リセット回路が、カップリングコンデンサと充電抵抗の直列回路と、カップリングコンデンサの入力側に接続しているリセット端子を有し、リセット端子に強制リセット信号が入力されて、半導体スイッチング素子を一時的にオン状態に切り換えている。
 本発明の第3の実施態様の電子回路ユニットは、強制リセット回路が、カップリングコンデンサと充電抵抗の直列回路と、カップリングコンデンサの入力側に接続してなる短絡スイッチを備え、短絡スイッチが、オン状態でカップリングコンデンサの入力側をグランドラインに接続して、半導体スイッチング素子を一時的にオン状態に切り換えている。
 本発明の第4の実施態様の電子回路ユニットは、カップリングコンデンサの静電容量と、充電抵抗の電気抵抗が、ワンショットパルスのパルス幅を1msec以上とする時定数としている。
 本発明の第5の実施態様の電子回路ユニットは、半導体スイッチング素子をFETとしている。
 本発明の第6の実施態様の電子回路ユニットは、半導体スイッチング素子の入力側とカップリングコンデンサとの間に接続してなる充電抵抗を備え、カップリングコンデンサが、充電抵抗と充電抵抗の直列抵抗で充電されるようにしている。
 本発明の第7の実施態様の電子回路ユニットは、充電抵抗を、外部入力端子と電源ラインとに接続している。
 本発明の第8の実施態様の電子回路ユニットは、回路モジュールが、Highレベルの切換パルス信号で省電力モードを動作モードに切り換えると共に、半導体スイッチング素子のオン状態で、起動端子にHighレベルの切換パルス信号が入力され、ワンショットパルス回路が、充電抵抗でカップリングコンデンサを充電して、起動端子をHighレベルからLowレベルとしている。
(実施の形態1)
 図1は電子回路ユニット10を備える電池パック100を示している。電池パック100の電子回路ユニット10は、電池パック100が接続機器に接続されて充放電される状態で動作モード、充放電が継続しない状態で省電力モードに切り換えられて、消費電力を削減している。省電力モードにある電子回路ユニット10は、接続機器から入力される外部トリガー信号で動作モードに切り換えられる。
(電池回路ユニット10)
 電池パック100に実装される電子回路ユニット10は、電池1の保護回路などを実装するアナログフロントエンド(AFE)などの回路モジュール2と、この回路モジュール2を動作モードに切り換えるトリガー回路3を備える。トリガー回路3は、電池パック100を接続する機器から入力される外部トリガー信号で回路モジュール2を動作モードとする。トリガー回路3は、外部トリガー信号で”High”と”Low”に切り換える切換パルス信号を回路モジュール2の起動端子2aに入力して、回路モジュール2を動作モードとする。外部トリガー信号で動作モードに切り換えられた回路モジュール2は、特定の条件を満たすと、例えば使用しない状態が所定の時間継続すると、回路モジュール2を省電力モードに切り換えて電力消費を削減する。回路モジュール2は、特定の条件を満足することを判定するマイコン4などからの信号を省電力モードに切り換えられる。マイコン4で省電力モードに切り換えるタイミングで、起動端子2aが”High”レベルにあると、回路モジュール2は動作モードを保持して、省電力モードに切り換えできない。このため、トリガー回路3は、起動端子2aに”High”レベルの切換パルス信号を入力して、回路モジュール2を動作モードに切り換えた後、切換パルス信号を”Low”レベルに制御する。
 トリガー回路3は、外部トリガー信号が入力される半導体スイッチング素子5と、この半導体スイッチング素子5の負荷抵抗6と、起動端子2aに入力する切換パルス信号の”High”レベルを、あらかじめ設定している時間後に”Low”レベルに切り換えるワンショットパルス回路7と、半導体スイッチング素子5を一時的にオン状態に切り換える強制リセット回路9とを備える。ワンショットパルス回路7は、半導体スイッチング素子5の入力側に接続しているカップリングコンデンサ13と、カップリングコンデンサ13と電源ライン11との間に接続している充電抵抗14からなる。強制リセット回路9は、半導体スイッチング素子5に一時的にオン電圧を入力して、回路モジュール2を強制的に動作モードとする。
 図1のトリガー回路3は、半導体スイッチング素子5をpチャンネルのFET5Aとする。pチャンネルのFET5Aは、カップリングコンデンサ13からオン電圧が入力されない状態でオフ、カップリングコンデンサ13からオン電圧が入力されてオン状態となる。pチャンネルのFET5Aは、オン状態に限って負荷抵抗6に通電し、負荷抵抗6は、通電される状態で電圧が発生して”High”レベルの切換パルス信号を起動端子2aに入力する。起動端子2aに入力された”High”レベルの切換パルス信号は、回路モジュール2を動作モードとする。
 pチャンネルのFET5Aは、ゲートにマイナスのオン電圧が入力されるタイミングでオン状態となって、回路モジュール2を動作モードとする。外部トリガー信号の”High”レベルで回路モジュール2を動作モードとするので、このタイミングでpチャンネルのFET5Aをオン状態とするために、図1のトリガー回路3は、pチャンネルのFET5Aの入力側に反転回路8を接続して、外部トリガー信号の”High”と”Low”を反転して、pチャンネルのFET5Aのゲートに入力している。
 図1の反転回路8は、発光ダイオード16とフォトトランジスタ17からなるフォトカップラ15で、フォトトランジスタ17のコレクタをプルアップ抵抗18を介してプラス側の電源ライン11に接続して、エミッタをグランドライン12に接続している。この反転回路8のフォトカップラ15は、発光ダイオード16が外部トリガー信号の”High”で点灯して、フォトトランジスタ17がオン状態となる。オン状態のフォトトランジスタ17は、プルアップ抵抗18をグランドライン12に接続して出力を”Low”とする。フォトカップラ15は、発光ダイオード16が外部トリガー信号の”Low”信号で点灯しない状態では、フォトトランジスタ17がオフ状態となって、プルアップ抵抗18を介して”High”信号を出力する。図の反転回路はフォトカップラとしているが、反転回路はフォトカップラに限定せず、FET等のスイッチング素子で構成することもできる。
 入力側に反転回路8を接続するトリガー回路3は、外部トリガー信号の”High”が反転回路8に外部入力端子19に入力されると、pチャンネルのFET5Aのゲートにプラス側の電源ライン11に対してマイナスのオン電圧が入力されてFET5Aがオン状態となる。オン状態のpチャンネルのFET5Aは、負荷抵抗6に発生する”High”信号を起動端子2aに切換パルス信号として入力して、回路モジュール2を動作モードとする。
 回路モジュール2は、動作モードから省電力モードに切り換えられることがある。この状態は、電池パック100が接続機器に電力を供給しない状態が長く続く状態などで発生する。回路モジュール2は、起動端子2aが”High”レベルにあると、動作モードを省電力モードに切り換えできないので、動作モードを省電力モードに切り換えできるように、動作モードに切り換えた後、起動端子2aを”Low”レベルとする必要がある。
 動作モードに切り換えられた後、起動端子2aを強制的に”High”から”Low”に切り換えるために、トリガー回路3は、ワンショットパルス回路7を備える。ワンショットパルス回路7は、”High”レベルの切換パルス信号を所定の時間後に”Low”レベルに切り換えて、切換パルス信号を所定のパルス幅のワンショットパルスとする。ワンショットパルス回路7は、pチャンネルのFET5Aをオン時間を特定して、起動端子2aに入力する切換パルス信号をワンショットパルスとする。
 ワンショットパルス回路7は、FET5Aの入力側に接続しているカップリングコンデンサ13と、カップリングコンデンサ13の充電抵抗14とで構成している。図1の電子回路ユニット10は、充電抵抗14を、カップリングコンデンサ13とFET5Aのゲートとの間に接続している第1の充電抵抗14Aと、FET5Aのゲートと電源ライン11とを接続している第2の充電抵抗14Bとの直列抵抗で構成している。第2の充電抵抗14Bは、FET5Aのゲートをプラス側の電源ライン11に接続してノーマル状態でFET5Aをオフ状態に保持する。カップリングコンデンサ13と充電抵抗14の時定数は、第1の充電抵抗14Aと第2の充電抵抗14Bの電気抵抗を加算した電気抵抗で特定される。この回路構成は、第2の充電抵抗14Bを、FET5Aのゲート電圧(VGS)をノーマル状態でオフ状態に保持する入力抵抗に併用できる。FET5Aは、ゲートとソースとの間に入力抵抗があって、この入力抵抗が第2の充電抵抗14Bと並列に接続されて、第2の充電抵抗14Bの電気抵抗を実質的に小さくするが、FET5Aの入力抵抗は相当に大きいので、これを無視して、第1の充電抵抗14Aと第2の充電抵抗14Bの電気抵抗から時定数を特定することができる。ただ、FET5Aの入力抵抗が大きい状態では、入力抵抗を考慮して第2の充電抵抗14Bの電気抵抗を特定する。
 カップリングコンデンサ13は、外部トリガー信号の”Low”状態、すなわち省電力モードにおいて両端の電圧がプラス側の電源ライン11の電圧となって電圧が0V、すなわち放電された状態となる。反転回路8からカップリングコンデンサ13の片側に”Low”信号が入力されると、カップリングコンデンサ13は充電抵抗14を介して充電が開始され、pチャンネルのFET5Aのゲートに入力される入力電圧が瞬間的に低下して”Low”となる。この状態で、pチャンネルのFET5Aのゲートにプラス側の電源ライン11に対してマイナスのオン電圧が入力され、ゲート・ソース間の電位差であるゲート電圧(VGS)がカットオフ電圧よりも高くなって、FET5Aがオン状態となる。充電されるカップリングコンデンサ13は、両端の電圧が次第に高くなる。カップリングコンデンサ13の両端の電圧が高くなるにしたがって、pチャンネルのFET5Aのゲートに入力される入力電圧が次第に高くなって、やがてプラス側の電源ライン11の電圧まで復帰する。すなわち、オン状態となったpチャンネルのFET5Aは、時間の経過と共にゲート電圧(VGS)が次第に小さくなり、カットオフ電圧よりも低くなってオフ状態となる。したがって、カップリングコンデンサ13の電圧変化は、FET5Aのオン時間、すなわちワンショットパルスのパルス幅を特定する。カップリングコンデンサ13の電圧変化は、カップリングコンデンサ13の静電容量と、充電抵抗14の電気抵抗の積で特定される時定数で特定される。時定数が大きくなるとカップリングコンデンサ13の電圧変化は緩慢になるので、ワンショットパルスのパルス幅は大きく、すなわちpチャンネルのFET5Aのオン時間は長くなる。
 カップリングコンデンサ13と充電抵抗14の時定数は、ワンショットパルスのパルス幅が、例えば1msec以上となるように設定される。このワンショットパルス回路7は、pチャンネルのFET5Aのオンタイムを1msec以上として、起動端子2aを”High”レベルに保持するタイミングを1msec以上とする。ワンショットパルスのパルス幅は、カップリングコンデンサ13と充電抵抗14の時定数を大きくして、すなわちカップリングコンデンサ13の静電容量と充電抵抗14の電気抵抗を大きくして大きくできる。
 図2は、図1に示す電子回路ユニット10における、[A]外部トリガー信号、[B]反転回路出力信号、[C]FETのゲートの入力電圧、[D]切換パルス信号、及び[E]強制リセット信号の変化を示すタイミングチャートである。図2の[C]は、カップリングコンデンサ13からpチャンネルのFET5Aのゲートに入力される入力電圧が変化する特性を示している。この図に示すように、FET5Aのゲートに入力される入力電圧は、外部トリガー信号が”Low”から”High”に立ち上がるタイミングで、言い換えると、反転回路8の出力信号が”High”から”Low”になって、カップリングコンデンサ13の充電が開始されるタイミングで瞬間的に低下して”Low”になり、その後、次第に高くなってプラス側の電源ライン11の電圧まで復帰する。pチャンネルのFET5Aは、ゲートの入力電圧とプラス側の電源ライン11の電圧との差、すなわちゲート・ソース間の電位差であるゲート電圧(VGS)がカットオフ電圧よりも大きい状態でオン状態に保持される。このため、pチャンネルのFET5Aは、ゲート電圧(VGS)がカットオフ電圧よりも小さくなると、ゲートの入力電圧が”High”となって、オフ状態に切り換えられる。pチャンネルのFET5Aのオン時間は、ゲート電圧(VGS)が変化する状態、すなわちカップリングコンデンサ13と充電抵抗14の時定数で特定される。時定数を大きくして、ゲート電圧(VGS)が小さくなるのを緩慢にして、pチャンネルのFET5Aのオン状態は長くなる。したがって、時定数を大きくしてワンショットパルスのパルス幅を長くできる。カップリングコンデンサ13と充電抵抗14の時定数は、ワンショットパルスのパルス幅が、たとえば1msec以上であって100msec以下、好ましくは1msec以上であって10msec以下する。ワンショットパルスのパルス幅を長くすると、カップリングコンデンサ13の静電容量と充電抵抗14の電気抵抗が大きくなって部品が大きくてコスト高になり、反対にパルス幅が短すぎると、確実な切り換えが難しくなるので、確実に動作モードに切り換えでき、かつ部品コストを考慮して、以上の範囲に設定する。
 図1のトリガー回路3は、半導体スイッチング素子5のFET5Aを一時的にオン状態に切り換える強制リセット回路9を備える。強制リセット回路9は、半導体スイッチング素子5であるFET5Aのゲートに一時的にオン電圧を入力して、FET5Aをオン状態に切り換えて起動端子2aにワンショットパルスを入力する。ワンショットパルスの”High”レベルで、回路モジュール2を強制的に動作モードに切り換える。
 図1の強制リセット回路9は、ワンショットパルス回路7と同じ回路構成で、FET5Aを一時的にオン状態として、回路モジュール2の起動端子2aにワンショットパルスを入力する。強制リセット回路9は、カップリングコンデンサ23と充電抵抗24の直列回路からなり、カップリングコンデンサ23の入力側にリセット端子21を設けている。リセット端子21に図1の[E]に示す強制リセット信号である”Low”信号が入力されると、半導体スイッチング素子5のpチャンネルのFET5Aがオン状態に切り換えられる。リセット端子21に”Low”信号が入力されると、カップリングコンデンサ23は充電抵抗24を介して充電が開始され、pチャンネルのFET5Aのゲートに入力される入力電圧が瞬間的に低下して”Low”となる。この状態で、pチャンネルのFET5Aのゲートにプラス側の電源ライン11に対してマイナスのオン電圧が入力され、ゲート・ソース間の電位差であるゲート電圧(VGS)がカットオフ電圧よりも高くなって、FET5Aがオン状態となる。充電されるカップリングコンデンサ23は、両端の電圧が次第に高くなる。カップリングコンデンサ23の両端の電圧が高くなるにしたがって、pチャンネルのFET5Aのゲートに入力される入力電圧が次第に高くなって、やがてプラス側の電源ライン11の電圧まで復帰する。すなわち、オン状態となったpチャンネルのFET5Aは、時間の経過と共にゲート電圧(VGS)が次第に小さくなり、カットオフ電圧よりも低くなってオフ状態となる。したがって、pチャンネルのFET5Aは、カップリングコンデンサ23が充電抵抗24で充電されて、ゲート電圧(VGS)がカットオフ電圧に低下するまで、オン状態が保持される。
 オン状態のpチャンネルのFET5Aは、負荷抵抗6に接続された起動端子2aに”High”信号を発生する。したがって、pチャンネルのFET5Aがオン状態を保持するタイミングをパルス幅とするワンショットパルスが起動端子2aに入力される。起動端子2aに入力されるワンショットパルスは、立ち上がりタイミングにおいて、省電力モードであった回路モジュール2を動作モードに切り換える。
 以上の強制リセット回路9は、カップリングコンデンサ23と充電抵抗24の時定数を、好ましくは、前述のワンショットパルス回路7のカップリングコンデンサ13と充電抵抗14の時定数とほぼ同じとする。
 さらに、図1の強制リセット回路9は、カップリングコンデンサ13の入力側に接続している短絡スイッチ22を備える。短絡スイッチ22は、オン状態でカップリングコンデンサ23の入力側をグランドライン12に接続して、半導体スイッチング素子5のpチャンネルのFET5Aのゲートにオン電圧を入力する。カップリングコンデンサ23の入力側がグランドライン12に接続されると、カップリングコンデンサ23は充電抵抗24を介して充電が開始され、pチャンネルのFET5Aのゲートに入力される入力電圧が瞬間的に低下して”Low”となり、FET5Aがオン状態となる。pチャンネルのFET5Aは、カップリングコンデンサ23が充電抵抗24で充電されて、ゲート電圧(VGS)がカットオフ電圧に低下するまでオン状態を保持して、ワンショットパルスを起動端子2aに入力して、立ち上がりタイミングにおいて、省電力モードであった回路モジュール2を動作モードに切り換える。短絡スイッチ22は、たとえば押しボタンスイッチで、接続機器から外した状態で、ユーザーが押しボタンスイッチを押して、省電力モードを動作モードに切り換えできる。
 図1の電子回路ユニット10は、以下の動作で省電力モードと動作モードを切り換えて、動作モードを省電力モードに切り換える。
1.接続機器から外部トリガー信号が電子回路ユニット10に入力される。外部トリガー信号は、図2の[A]で示すように、省電力モードから動作モードに切り換えるタイミングで、”Low”から”High”になる。
 外部トリガー信号は、反転回路8で”High”と”Low”を反転してトリガー回路3のカップリングコンデンサ13に入力される。
 外部トリガー信号は、図2の[A]に示すように、省電力モードを動作モードに切り換えるタイミングで”Low”レベルから”High”レベルに立ち上がるので、反転回路8からカップリングコンデンサ13に入力される信号は、図2の[B]に示すように、動作モードに切り換えられるタイミングで”High”から”Low”になる。
2.カップリングコンデンサ13に”Low”信号が入力されると、pチャンネルのFET5Aのゲートの入力される入力電圧は、図2の[C]に示すように、プラス側の電源ライン11の電圧に対してマイナス側に大きく低下した電圧となる。この状態で、pチャンネルのFET5Aは、ゲートに”Low”のオン電圧が入力されてオン状態に切り換えられる。
 オン状態のpチャンネルのFET5Aは、負荷抵抗6に通電して、負荷抵抗6の両端に発生する”High”信号を切換パルス信号として回路モジュール2の起動端子2aに入力する。動作モードに入力される”High”の切換パルス信号は、回路モジュール2を動作モードに切り換える。
3.その後、カップリングコンデンサ13が充電抵抗14で充電されて両端の電圧が大きくなるにしたがって、図2の[C]に示すようにゲートの入力電圧が次第に高くなり、ゲート・ソース間の電位差であるゲート電圧(VGS)が次第に小さくなって、カットオフ電圧以下になると、pチャンネルのFET5Aはオフ状態に切り換えられる。
 オフ状態となったpチャンネルのFET5Aは、負荷抵抗6の電流を遮断して、回路モジュール2の起動端子2aに入力する切換パルス信号を”Low”に切り換える。
 起動端子2aに入力される切換パルス信号は、pチャンネルのFET5Aがオンになるタイミングからオフに切り換えられるタイミングまでの時間をパルス幅とするワンショットパルスとなる。
 したがって、以上の電子回路ユニット10は、外部トリガー信号の”High”信号が外部入力端子19に入力されて、省電力モードから動作モードに切り換えられた後、所定の時間が経過すると、起動端子2aを”Low”として、省電力モードに切り換えできる状態とする。
4.起動端子2aが”Low”レベルに保持される回路モジュール2は、マイコン4からの信号で、回路モジュール2を省電力モードに切り換えて電力消費を削減できる。
5.回路モジュール2を省電力モードとする状態で、接続機器から外された状態で、動作モードとするには、リセット端子21に強制リセット信号を入力し、あるいは短絡スイッチ22である押しボタンスイッチを押して、pチャンネルのFET5Aのゲートにオン電圧を入力する。
 オン状態のpチャンネルのFET5Aは、ワンショットパルス回路7と同じように、負荷抵抗6に通電して、負荷抵抗6の両端に発生する”High”信号を切換パルス信号として回路モジュール2の起動端子2aに入力する。動作モードに入力される”High”の切換パルス信号は、回路モジュール2を動作モードに切り換える。
6.その後、カップリングコンデンサ23が充電されて両端の電圧が大きくなるにしたがって、図2の[C]に示すようにゲートの入力電圧が次第に高くなり、ゲート・ソース間の電位差であるゲート電圧(VGS)が次第に小さくなって、カットオフ電圧以下になると、pチャンネルのFET5Aはオフ状態に切り換えられる。
 オフ状態となったpチャンネルのFET5Aは、負荷抵抗6の電流を遮断して、回路モジュール2の起動端子2aに入力する切換パルス信号を”Low”に切り換える。
 起動端子2aに入力される切換パルス信号は、pチャンネルのFET5Aがオンになるタイミングからオフに切り換えられるタイミングまでの時間をパルス幅とするワンショットパルスとなる。
 したがって、以上の電子回路ユニット10は、電池パック100が接続機器から外された状態で、リセット端子21に強制リセット信号を入力し、あるいは短絡スイッチ22である押しボタンスイッチを操作することで、起動端子2aに”High”信号を切換パルス信号として入力して、回路モジュール2を強制的に動作モードに切り換える。
(電池パック100) 
 図1に示す電池パック100は、以上の構造の電子回路ユニット10と、充電できる電池1とを備えている。この電池パック100は、電子回路ユニット10を構成する、回路モジュール2、半導体スイッチング素子5、及びマイコン4に対して、内蔵する電池1から動作電力を供給するようにしている。
 本発明は、動作モードと省電力モードを切り換えて、省電力モードで電力消費を削減できる電池パックに内蔵される電子回路ユニットとして好適に使用できる。
100…電池パック
1…電池
2…回路モジュール
2a…起動端子
3…トリガー回路
4…マイコン
5…半導体スイッチング素子
5A…FET
6…負荷抵抗
7…ワンショットパルス回路
8…反転回路
9…強制リセット回路
10…電子回路ユニット
11…電源ライン
12…グランドライン
13…・BR>Jップリングコンデンサ
14…充電抵抗
14A…第1の充電抵抗
14B…第2の充電抵抗
15…フォトカップラ
16…発光ダイオード
17…フォトトランジスタ
18…プルアップ抵抗
19…外部入力端子
21…リセット端子
22…短絡スイッチ
23…カップリングコンデンサ
24…充電抵抗
80…電子回路ユニット
82…回路モジュール
82a…起動端子
83…トリガー回路
85…FET
86…負荷抵抗
88…反転回路
89…外部入力端子
91…電源ライン
92…グランドライン
95…ショートFET
96…ショート回路

Claims (9)

  1.  外部入力端子に入力される外部トリガー信号で切換パルス信号を出力するトリガー回路と、
     前記トリガー回路の切換パルス信号が起動端子に入力されて、
      前記切換パルス信号で動作モードと省電力モードとを切り換える回路モジュールとを
    備え、
     前記トリガー回路は、
      外部トリガー信号で制御されて前記起動端子に切換パルス信号を出力する半導体スイッチング素子と、
      前記半導体スイッチング素子の負荷抵抗と、
     前記起動端子に入力される前記切換パルス信号を、
      所定のパルス幅のワンショットパルスとするワンショットパルス回路と、
     前記半導体スイッチング素子の入力側に接続されて、
      前記半導体スイッチング素子を一時的にオン状態に切り換える強制リセット回路と、
    を備え、
     前記起動端子は、
      前記半導体スイッチング素子と前記負荷抵抗との接続部に接続され、
     前記ワンショットパルス回路は、
      前記半導体スイッチング素子の入力側と前記外部入力端子との間に接続してなるカップリングコンデンサと、
      前記カップリングコンデンサの充電抵抗とで構成され、
      前記カップリングコンデンサと前記充電抵抗の時定数で、
       前記ワンショットパルスのパルス幅を特定してなり、
     前記強制リセット回路が、
      前記半導体スイッチング素子に一時的にオン電圧を入力して、
      前記回路モジュールを強制的に動作モードとすることを特徴とする電子回路ユニット。
  2.  請求項1に記載する電子回路ユニットであって、
     前記強制リセット回路が
      カップリングコンデンサと充電抵抗の直列回路と、
      前記カップリングコンデンサの入力側に接続しているリセット端子を有し、
     前記リセット端子に強制リセット信号が入力されて、
      前記半導体スイッチング素子が一時的にオン状態に切り換えられることを特徴とする電子回路ユニット。
  3.  請求項1に記載する電子回路ユニットであって、
     前記強制リセット回路が
      カップリングコンデンサと充電抵抗の直列回路と、
      前記カップリングコンデンサの入力側に接続してなる短絡スイッチを備え、
     前記短絡スイッチは、
      オン状態で前記カップリングコンデンサの入力側をグランドラインに接続して、
      前記半導体スイッチング素子が一時的にオン状態に切り換えられることを特徴とする電子回路ユニット。
  4.  請求項1ないし3のいずれかに記載する電子回路ユニットであって、
     前記カップリングコンデンサの静電容量と、
     前記充電抵抗の電気抵抗が、
     前記ワンショットパルスのパルス幅を1msec以上とする時定数であることを特徴とする電子回路ユニット。
  5.  請求項1ないし4のいずれかに記載する電子回路ユニットであって、
     前記半導体スイッチング素子がFETであることを特徴とする電子回路ユニット。
  6.  請求項1ないし5のいずれかに記載する電子回路ユニットであって、
     前記半導体スイッチング素子の入力側と前記カップリングコンデンサとの間に接続してなる充電抵抗を備え、
     前記カップリングコンデンサが、
      前記充電抵抗と前記充電抵抗の直列抵抗で充電されるようにしてなることを特徴とする電子回路ユニット。
  7.  請求項1ないし6のいずれかに記載する電子回路ユニットであって、
     前記充電抵抗が、前記外部入力端子と電源ラインとに接続されてなることを特徴とする電子回路ユニット。
  8.  請求項1ないし7のいずれかに記載する電子回路ユニットであって、
     前記回路モジュールが、
      Highレベルの切換パルス信号で省電力モードを動作モードに切り換えると共に、
     前記半導体スイッチング素子のオン状態で、
      前記起動端子にHighレベルの切換パルス信号が入力され、
     前記ワンショットパルス回路が、
      前記充電抵抗で前記カップリングコンデンサを充電して、
      前記起動端子をHighレベルからLowレベルとすることを特徴とする電子回路ユニット。
  9.  請求項1ないし8のいずれかに記載する電子回路ユニットと、
      充電できる電池を備える電池パックであって、
     前記電子回路ユニットと前記半導体スイッチング素子に電池電圧が供給されてなることを特徴とする電池パック。
PCT/JP2021/012182 2020-03-30 2021-03-24 電子回路ユニットと電池パック WO2021200443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512013A JPWO2021200443A1 (ja) 2020-03-30 2021-03-24
CN202180007852.1A CN114902157B (zh) 2020-03-30 2021-03-24 电子电路单元和电池组
US17/951,165 US12132390B2 (en) 2020-03-30 2022-09-23 Electronic circuit unit and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061460 2020-03-30
JP2020-061460 2020-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,165 Continuation US12132390B2 (en) 2020-03-30 2022-09-23 Electronic circuit unit and battery pack

Publications (1)

Publication Number Publication Date
WO2021200443A1 true WO2021200443A1 (ja) 2021-10-07

Family

ID=77929165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012182 WO2021200443A1 (ja) 2020-03-30 2021-03-24 電子回路ユニットと電池パック

Country Status (4)

Country Link
US (1) US12132390B2 (ja)
JP (1) JPWO2021200443A1 (ja)
CN (1) CN114902157B (ja)
WO (1) WO2021200443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184793A3 (en) * 2021-11-19 2023-08-02 Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd. Power on/off circuit and electronic vaporization device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764678A (ja) * 1993-08-23 1995-03-10 Nippondenso Co Ltd 光学的読取装置
JP2009122934A (ja) * 2007-11-14 2009-06-04 Sanyo Electric Co Ltd コネクタを備える電源
JP2017083801A (ja) * 2015-10-30 2017-05-18 京セラドキュメントソリューションズ株式会社 画像形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285138B1 (en) * 1998-12-09 2001-09-04 Matsushita Electric Industrial Co., Ltd. Apparatus for lighting fluorescent lamp
JP3335587B2 (ja) * 1998-12-25 2002-10-21 富士通株式会社 Dc−dcコンバータ回路
TW573399B (en) * 2002-11-20 2004-01-21 Pixart Imaging Inc Reset pulse generation device
JP4255488B2 (ja) * 2006-11-02 2009-04-15 エコパワー・デザイン株式会社 省電力回路、スイッチング電源装置
JP5558729B2 (ja) * 2009-03-23 2014-07-23 キヤノン株式会社 コンバータ、スイッチング電源及び画像形成装置
KR101671956B1 (ko) * 2010-06-04 2016-11-04 삼성전자주식회사 시스템 리세트 회로 및 방법
JP2013012000A (ja) * 2011-06-29 2013-01-17 Mitsumi Electric Co Ltd レギュレータ用半導体集積回路
JP5752513B2 (ja) * 2011-07-29 2015-07-22 ブラザー工業株式会社 電源システム、それを備えた画像形成装置
US8872554B2 (en) * 2012-01-06 2014-10-28 Silicon Laboratories Inc. Externally configurable power-on-reset systems and methods for integrated circuits
JP6206001B2 (ja) * 2013-08-30 2017-10-04 サンケン電気株式会社 Led駆動回路
JP6272509B2 (ja) * 2015-01-20 2018-01-31 三菱電機株式会社 信号伝達装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764678A (ja) * 1993-08-23 1995-03-10 Nippondenso Co Ltd 光学的読取装置
JP2009122934A (ja) * 2007-11-14 2009-06-04 Sanyo Electric Co Ltd コネクタを備える電源
JP2017083801A (ja) * 2015-10-30 2017-05-18 京セラドキュメントソリューションズ株式会社 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184793A3 (en) * 2021-11-19 2023-08-02 Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd. Power on/off circuit and electronic vaporization device

Also Published As

Publication number Publication date
JPWO2021200443A1 (ja) 2021-10-07
US12132390B2 (en) 2024-10-29
CN114902157B (zh) 2024-06-11
US20230018700A1 (en) 2023-01-19
CN114902157A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US9118256B2 (en) Power starting circuit
TW439342B (en) An external charging/discharging device
WO2022027264A1 (zh) 通道开关的驱动电路、充电控制方法及充电器
CN112327696B (zh) 一种按键控制电路
CN109256826B (zh) 低功耗唤醒电路、供电控制器、供电装置和电动工具
CN215733584U (zh) 启动连接装置及启动电源
WO2021200443A1 (ja) 電子回路ユニットと電池パック
CN107817734B (zh) 一种超低功耗按键控制电路
WO2005010943A3 (en) High side power switch with charge pump and bootstrap capacitor
WO2021258366A1 (zh) 控制电路、电池管理系统及电化学装置
WO2021200442A1 (ja) 電子回路ユニットと電池パック
WO2002080178A3 (en) System and method for achieving fast switching of analog voltages on a large capacitive load
CN207490595U (zh) 供电控制电路及电器设备
CN215185914U (zh) 一种应用在电池供电设备中的待机零功耗电路
JPH05300562A (ja) 電池用電源回路
CN113708427B (zh) 用于随身携带式电子装置的充电供电电路及随身携带式电子装置
US7135838B2 (en) Power-on device and method for controllably powering a circuit system with an adaptor or with a battery
CN211880123U (zh) 一种充电器的输出保护装置
CN113644717A (zh) 启动连接装置、启动电源及启动方法
MX2022008027A (es) Circuito de encendido de la bateria.
US20240079891A1 (en) Power supply device
CN215897328U (zh) 供电电路及供电设备
CN111342526B (zh) 一种充电器的输出保护装置
CN220985528U (zh) 放电电路及电子设备
CN216252223U (zh) 一种电池模组的控制电路、电池模组及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780933

Country of ref document: EP

Kind code of ref document: A1