WO2022027264A1 - 通道开关的驱动电路、充电控制方法及充电器 - Google Patents

通道开关的驱动电路、充电控制方法及充电器 Download PDF

Info

Publication number
WO2022027264A1
WO2022027264A1 PCT/CN2020/106943 CN2020106943W WO2022027264A1 WO 2022027264 A1 WO2022027264 A1 WO 2022027264A1 CN 2020106943 W CN2020106943 W CN 2020106943W WO 2022027264 A1 WO2022027264 A1 WO 2022027264A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
field effect
effect transistor
power supply
switch
Prior art date
Application number
PCT/CN2020/106943
Other languages
English (en)
French (fr)
Inventor
金军骞
林宋荣
李鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/106943 priority Critical patent/WO2022027264A1/zh
Priority to CN202080005978.0A priority patent/CN113169663A/zh
Publication of WO2022027264A1 publication Critical patent/WO2022027264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current

Definitions

  • the present application relates to the technical field of charging, and in particular, to a drive circuit of a channel switch, a charging control method and a charger.
  • the channel switch of the charger of the drone is usually composed of two field effect transistors (MOS tubes) connected back-to-back. Since the MOS tubes are connected back-to-back, they cannot be directly driven by the Microcontroller Unit (MCU), and special special Drive IC or optocoupler for driving. For lithium batteries that require large charge and discharge current, such as lithium batteries of large agricultural drones, if the response time of the MOS tube (the time corresponding to turn on or turn off) is too long, it will As a result, the MOS tube is in the linear region for a long time, which will cause the MOS tube to be heated and damaged, and even the danger of "exploding the tube”.
  • MCU Microcontroller Unit
  • the embodiments of the present application provide a drive circuit for a channel switch, a charging control method and a charger, which can adapt the response time of the MOS tube of the channel switch, thereby improving the safety and reliability of the channel switch during charging .
  • an embodiment of the present application provides a drive circuit for a channel switch, the drive circuit includes:
  • the isolation circuit is used to receive a control signal, and the control signal includes a switch-on signal or a switch-off signal;
  • the push-pull circuit is connected to the isolation circuit through the adjustment circuit, and is also connected to the channel switch;
  • the push-pull circuit is configured to convert a preset power supply voltage into a driving signal according to the control signal received by the isolation circuit, so as to drive the channel switch to be turned on or off according to the response time.
  • an embodiment of the present application provides a charger, the charger includes a main control circuit, at least one channel switch, and a drive circuit for driving the channel switch to be turned on or off; the drive circuit includes:
  • the isolation circuit is configured to receive a control signal sent by the main control circuit, and the control signal includes a switch-on signal or a switch-off signal;
  • the push-pull circuit is connected to the isolation circuit through the adjustment circuit, and is also connected to the channel switch;
  • the push-pull circuit is configured to convert a preset power supply voltage into a driving signal according to the control signal received by the isolation circuit, so as to drive the channel switch to be turned on or off according to the response time.
  • an embodiment of the present application further provides a charging control method, which is applied to the charger provided by the embodiment of the present application, and the charging control method includes:
  • the isolation circuit of the drive circuit receives the control signal
  • the push-pull circuit of the drive circuit converts the preset power supply voltage into a drive according to the control signal received by the isolation circuit signal to drive the channel switch to be turned on or off according to the response time, so as to charge or stop charging the battery.
  • the embodiments of the present application further provide a charger, the charger includes: one or more processors, the processors work individually or together, and are configured to perform the charging provided by the embodiments of the present application Control Method.
  • the drive circuit of the channel switch, the charging control method and the charger disclosed in the embodiments of the present application can adapt to the response time of the MOS tube of the channel switch. Therefore, when charging the battery or supplying power to the battery, it is possible to avoid the long MOS tube length. The time is in the linear region, which in turn improves the safety and reliability of the battery while charging.
  • FIG. 1 is a schematic diagram of a circuit structure of a charger provided by an embodiment of the present application.
  • FIG. 2 a is a schematic diagram of a simulation effect when a channel switch provided by an embodiment of the present application is turned on;
  • 2b is a schematic diagram of a simulation effect when a channel switch is turned off according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a circuit structure of a charger provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a circuit structure of a driving circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a circuit structure of an isolated power supply module provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a circuit structure of a charge pump circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a circuit structure of a charge pump circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a circuit structure of an isolated power supply module provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a circuit structure of a driving circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a circuit structure of another driving circuit provided by an embodiment of the present application.
  • 11a is a schematic diagram of a simulation effect when a channel switch is turned on according to an embodiment of the present application
  • 11b is a schematic diagram of a simulation effect when a channel switch is turned off according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a charger provided by an embodiment of the present application.
  • the channel switch of the charger is usually composed of two field effect transistors (MOS tubes) connected back-to-back. Since the back-to-back MOS tubes cannot be directly driven by a Microcontroller Unit (MCU), a special driver IC or optical Couplers are used for driving, such as chargers for large agricultural drones, industrial multi-power systems or industrial lithium battery charging and discharging cabinets.
  • MCU Microcontroller Unit
  • a special driver IC or optical Couplers are used for driving, such as chargers for large agricultural drones, industrial multi-power systems or industrial lithium battery charging and discharging cabinets.
  • the lithium battery of large-scale agricultural drones since the lithium battery of large-scale agricultural drones has a large charge and discharge current, if the response time of the MOS tube (the time corresponding to turn-on or turn-off) is too long, the MOS tube will be long-term. In the linear region, it will cause heat damage to the MOS tube, and even the danger of "exploding the tube".
  • the multi-power supply system usually consists of multiple power supplies, and different power supplies are connected in parallel through channel switches (MOS transistors connected back-to-back) for power supply.
  • MOS transistors connected back-to-back
  • the backup power supply needs to be turned on immediately, which has a greater effect on the turn-on rate (response time) of the channel switch. High requirements, the faster the turn-on speed of the MOS tube, the more stable the system can be maintained. Otherwise, the MOS tube will be heated and damaged, and there will even be the danger of "exploding the tube”.
  • MOS tube Since the industrial lithium battery charging and discharging cabinet needs to charge and discharge different lithium batteries, its drive must be isolated. Secondly, if the battery with larger capacity is charged and discharged, a faster switching speed is also required, otherwise the MOS tube will also be Long-term in the linear zone heat and damage.
  • the MOS tube of the channel switch is generally driven by a dedicated integrated IC, or driven by an optocoupler.
  • the application of dedicated integrated ICs is limited. Different dedicated integrated ICs need to be driven for different MOS tubes.
  • Dedicated integrated ICs are generally expensive and expensive, and there are few alternatives. The problem of tight supply is often encountered. Due to the high level of integration of ICs, when some integrated ICs fail, it is more difficult to debug and maintain them.
  • Using the driving method of optocoupler due to the weak driving ability of optocoupler, the purpose of fast switching of MOS tube cannot be achieved, and the MOS tube often encounters the problem of "exploding tube" because it is in the linear region during the switching process.
  • FIG. 1 is a schematic diagram of a circuit structure of a charger provided by an embodiment of the present application.
  • the charger 100 includes a channel switch 10 , a main control circuit 11 , a power interface 12 , and a battery interface 13 .
  • the power interface 12 is used to connect the charging power source
  • the battery interface 13 is used to connect the battery.
  • the channel switch 10 includes two MOS tubes coupled back-to-back, the channel switch 10 is connected between the power interface 12 and the battery interface 13, and the optical coupler 14 is connected between the main control circuit 11 and the channel switch 10, that is, the optical coupling is used.
  • drive mode Specifically, the corresponding driving principle is as follows:
  • the main control circuit 11 outputs a control signal to the optocoupler 14, such as outputting a high level V1.
  • the optocoupler 14 receives the high level V1 and turns on and outputs a drive signal to the gate of the MOS transistor of the channel switch 10.
  • the drive signal For example, if it is a high level V2, the gate of the MOS transistor is turned on after receiving the high level V2, and then charges the battery; the main control circuit 11 outputs a control signal to the optocoupler 14, such as outputting a low level V3, the optocoupler 14 is turned off, and a low-level drive signal is output to the gate of the MOS tube of the channel switch 10, for example, a low-level V4 is output, and the MOS tube of the channel switch is turned off to stop charging the battery.
  • the inventor selected two MOS transistors for simulation.
  • the voltage of the high-level driving signal selected by the simulation simulation was 12V
  • the voltage of the low-level driving signal was 0V
  • the voltage of the charging power supply was 12V. is 60V
  • Figure 2a is the simulation result when the channel switch is turned on. From the simulation results, it is found that the response time (ie, the turn-on time) corresponding to the turn-on of the channel switch is about 7.2419 ⁇ s
  • Figure 2 2b is the simulation result when the channel switch is turned off.
  • the response time (ie, the turn-off time) corresponding to the turn-off of the channel switch is about 833.71 ⁇ s. It can be seen from this that the existing driving mode of the optocoupler causes the response time of the MOS tube of the channel switch to be relatively large, which in turn causes the MOS tube to heat up, and in severe cases, the problem of "exploding the tube” may occur.
  • V_R6 represents the time change of the battery when the channel switch is turned on or off
  • V1 represents the level change of the driving signal, corresponding to 12V and 0V
  • M1_Vgs represents the channel switch when it is turned on or off. the voltage change.
  • embodiments of the present application provide a drive circuit for a channel switch, a charging control method, and a charger to solve the above problems.
  • the drive circuit of the channel switch can be applied to the charger, and the charging control method is also applied to the charger to adjust the response time of the channel switch, thereby ensuring the safety of the battery during charging.
  • high-current charging scenarios such as agricultural drones
  • high-current can be used to charge the battery, and the use of this drive circuit can improve the charging efficiency while improving the safety and reliability of charging.
  • FIG. 3 is a schematic block diagram of a circuit structure of a charger provided by an embodiment of the present application.
  • the charger 100 includes a channel switch 10 , a main control circuit 11 , a power interface 12 , a battery interface 13 and a drive circuit 20 .
  • the power interface 12 is used to connect the charging power source
  • the battery interface 13 is used to connect the battery.
  • the channel switch 10 includes two MOS transistors coupled back-to-back, the channel switch 10 is connected between the power interface 12 and the battery interface 13, and the drive circuit 20 is connected between the main control circuit 11 and the channel switch 10 for receiving the main control
  • the control signal of the circuit 11 drives the channel switch 10 to be turned on or off according to the control signal, so as to charge or stop charging the battery.
  • FIG. 4 is a schematic diagram of a circuit structure of a drive circuit for a channel switch provided by an embodiment of the present application.
  • the driving circuit 20 includes an isolation circuit 21 , a regulating circuit 22 and a push-pull circuit 23 .
  • the isolation circuit 21 is used for receiving a control signal, specifically for receiving a control signal sent by the main control circuit 11, the control signal includes a switch-on signal or a switch-off signal, and the switch-on signal is used to control the channel switch 10 to be turned on, such as a high voltage
  • the level signal may be, for example, 3.3V
  • the switch-off signal is used to control the channel switch 10 to be turned off, such as a low-level signal, which may be, for example, 0V.
  • the adjustment circuit 22 is used to adjust the response time of the channel switch 10 , specifically, to adjust the response time of the two MOS tubes of the channel switch 10 , including the response time when the MOS tube is turned on and the response time when the MOS tube is turned off.
  • the push-pull circuit 23 is connected to the isolation circuit 21 through the regulating circuit 22 , and is also connected to the channel switch 10 , specifically, to the gates of the two MOS transistors of the channel switch 10 . It is used to convert the preset power supply voltage VCC2 into a driving signal according to the control signal received by the isolation circuit 21, so as to drive the channel switch 10 to be turned on or off according to the response time.
  • the isolation circuit 21 when the isolation circuit 21 receives the switch-on signal, it controls the push-pull circuit 23 to turn the preset power supply voltage VCC2 out of the drive signal. Amplification of the control signal is realized), and the response time is adjusted by the adjustment circuit 22 to drive the MOS transistor of the channel switch 10 to turn on according to the corresponding response time, thereby charging the battery.
  • the preset power supply voltage VCC2 is 12V, but of course it can be other values.
  • the voltage level of the preset power supply voltage VCC2 is related to different types of MOS transistors. For example, a MOS that requires a larger driving capability requires a larger voltage preset power supply voltage VCC2.
  • the power supply voltage VCC1 in FIG. 4 is used as a charging power supply, eg, 60V, for charging the battery.
  • the control signal is first isolated by the isolation circuit, and the response time of the channel switch is adjusted by the adjustment circuit, and then the control signal is amplified by the push-pull circuit to obtain the drive signal for driving the channel switch, and then The turn-on or turn-off of the drive channel switch is realized, thereby preventing the channel switch from being in the linear region for a long time, thereby improving the charging safety.
  • the charging safety is greatly improved.
  • the isolation circuit 21 includes a control switch, which is connected to the preset power supply voltage VCC2 and is turned on or off according to a control signal of the main control circuit 11 to output the preset power supply voltage VCC2 to the push-pull circuit 23 , and then The drive signal is generated.
  • the control switch includes an optocoupler or a transformer.
  • the driving circuit 20 includes: an isolated power supply module, the isolated power supply includes a first isolated power supply and a second isolated power supply.
  • the first isolated power supply is VCC1
  • the second isolated power supply is VCC2, wherein the first isolated power supply VCC1 is used as a charging power supply to charge the battery, and the second isolated power supply VCC2 is used as the preset power supply voltage .
  • the isolation circuit 21 and the push-pull circuit 23 are both connected to the second isolation power supply VCC2, and are used for converting the voltage of the second isolation power supply VCC2 into a driving signal according to the control signal.
  • the voltages of the first isolated power supply and the second isolated power supply are different, for example, the first isolated power supply is 60V and the second isolated power supply is 12V.
  • the magnitude of the voltage of the second isolated power supply is related to the corresponding parameters of the field effect transistor of the channel switch, specifically related to the response time of the field effect transistor. For example, the response time of the field effect transistor is longer, the corresponding The higher voltage is used to adjust the response time of the channel switch. For lithium batteries that require large charging and discharging currents, such as agricultural drone batteries, the charging safety is greatly improved.
  • the isolated power supply can improve the safety of the circuit, due to the high price of the isolated power supply, the long procurement cycle, and the large volume of the isolated power supply, it needs to occupy a large PCB area, and the height space is limited, which is inconvenient for PCB layout and component placement. This is not conducive to the design and miniaturization of the product.
  • FIG. 5 is a schematic diagram of a circuit structure of an isolated power supply module according to an embodiment of the present application.
  • the isolated power module 110 has a power input terminal Vin and a power output terminal Vout.
  • the isolated power module 110 includes a charge pump circuit 111 .
  • the power input terminal Vin is connected to the power output terminal Vout through the charge pump circuit 111 .
  • the power input terminal Vin is connected to the voltage source VCC for receiving an input voltage.
  • the input voltage provided by the voltage source VCC is, for example, 12V.
  • the power output terminal Vout is used to output an output voltage
  • the charge pump circuit 111 is used to isolate the output voltage from the input voltage.
  • the so-called "isolation" means that there is no direct electrical connection between the input loop and the output loop of the power supply.
  • FIG. 6 discloses a working principle diagram of a charge pump circuit.
  • the charge pump circuit includes a pumping capacitor Cp and an output capacitor Cout.
  • the pumping capacitor Cp is used as an intermediate transfer station for charges.
  • the input voltage Uin can supply the pumping capacitor Cp Charge.
  • the pumping capacitor Cp is connected in parallel with the output capacitor Cout, the pumping capacitor Cp is discharged, and the charge of the pumping capacitor Cp is transferred to the output capacitor Cout, thereby outputting an output Voltage Uout.
  • the charge pump circuit further includes an input capacitor Cin.
  • the isolated power module 110 is designed by utilizing the charge transfer principle of the pumping capacitor Cp of the charge pump circuit 111 , so as to be suitable for a high-end MOS driving circuit.
  • both the first isolated power supply and the second isolated power supply provided in the above-mentioned embodiments can use the isolated power supply module provided in FIG. 5 .
  • the control switch is electrically connected to the power output terminal Vout of the isolated power supply module 110 and receives the control signal of the main control circuit.
  • the channel switch 10 is connected to the control switch through the push-pull circuit 23 and the regulating circuit, and is connected to the battery. The channel switch 10 is used to turn on and off under the control of the control switch to control whether to charge the battery.
  • the first isolated power supply VCC1 can also use the isolated power supply module provided in FIG. 5 , and the connection method and working principle are referred to the second isolated power supply VCC2 .
  • the channel switch 10 When the control switch is closed based on the control signal, the channel switch 10 is turned on by the action of the push-pull circuit 23 under the trigger of the output voltage output by the isolation power supply module 110 , thereby charging the battery.
  • the driving circuit of the embodiment of the present application uses the charge pump circuit 111 to design the isolated power supply module 110 to realize the output of the isolated output voltage, thereby saving the high material cost of purchasing the isolated power supply.
  • the output voltage may be equal to the input voltage.
  • the output voltage may also be greater than the input voltage, and the charge pump circuit 111 may provide a multiplied output voltage.
  • FIG. 7 shows a schematic diagram of the circuit structure of the charge pump circuit 111 according to an embodiment of the present application.
  • the charge pump circuit 111 includes a pumping capacitor Cp, an output capacitor Cout connected to the power output terminal Vout, a first switch module 112 and a second switch module 113 .
  • the voltage source VCC is connected to both ends of the pumping capacitor Cp, and the input voltage charges the pumping capacitor Cp.
  • the pumping capacitor Cp is connected in parallel with the output capacitor Cout, and the pumping capacitor Cp charges the output capacitor Cout.
  • the charge pump circuit 111 further includes an input capacitor Cin connected to the power input terminal Vin.
  • the input capacitor Cin When the first switch module 112 is closed, the input capacitor Cin is connected in parallel with the pumping capacitor Cp.
  • the input capacitor Cin can be used to stabilize the input voltage.
  • the voltage is alternating, due to the charging effect of the input capacitor Cin, the voltage across the input capacitor Cin cannot be abruptly changed, thus ensuring the stability of the input voltage.
  • the pumping capacitor Cp, the output capacitor Cout, and the input capacitor Cin may include ceramic capacitors.
  • the pumping capacitor Cp, the output capacitor Cout and/or the input capacitor Cin are selected as chip ceramic capacitors, and the capacitance value of the ceramic capacitors does not need to be large.
  • a ceramic capacitor can have a capacitance value of 100NF (nanofarads) to 1 ⁇ F (microfarads).
  • the isolated power module 110 using the charge pump circuit 111 is small in size, occupies a small area of the PCB, and is convenient for PCB layout and component placement.
  • FIG. 8 shows a schematic diagram of a circuit structure of an isolated power supply module according to an embodiment of the present application.
  • the first switch module 112 includes a first diode D1 , the anode of the first diode D1 is connected to the voltage source VCC, and the cathode of the first diode D1 is connected to the pumping capacitor Cp positive extreme.
  • the second switch module 113 includes a second diode D2, the anode of the second diode D2 is connected to the positive terminal of the pumping capacitor Cp, and the cathode of the second diode D2 is connected to the positive terminal of the output capacitor Cout.
  • the first diode D1 and the second diode D2 can function as switches.
  • the first diode D1 and the second diode D2 may function as the switches K1 and K2 in the working principle diagram of the charge pump circuit shown in FIG. 6 .
  • the isolated power module 110 of the embodiment of the present application cleverly uses the first diode D1 and the second diode D2 in the charge pump circuit 111 to function as switches, so that the triggering operation of the switches can be omitted, and the structure very simple.
  • the first switch module 112 has a first control terminal T1, and the first control terminal T1 is used to receive the first control signal S1, and control the opening and closing of the first switch module 112 through the first control signal S1.
  • the first switch module 112 may include a first switch tube, and the opening and closing of the first switch module 112 is controlled by controlling the turn-on and turn-off of the first switch tube through the first control signal S1.
  • the first switching transistor includes a first field effect transistor, the gate of the first field effect transistor is connected to the first control terminal T1, the drain of the first field effect transistor is connected to the negative terminal of the pumping capacitor, and the first field effect transistor is connected to the negative terminal of the pumping capacitor.
  • the source of the FET is grounded.
  • a resistor is arranged between the gate electrode and the source electrode of the first field effect transistor, which plays the role of voltage divider protection.
  • the first switch transistor includes a first NMOS transistor Q50.
  • the gate G of the first NMOS is connected to the first control terminal T1 of the first switch module 112 for receiving the first control signal S1.
  • the drain D of the first NMOS is connected to the negative terminal of the pumping capacitor Cp, and the source S of the first NMOS is grounded to GND.
  • a first resistor R1 is set between the gate G and the source S of the first NMOS transistor Q50, and the first resistor R1 is a voltage dividing resistor, which can play a role of voltage dividing.
  • the gate G of the first NMOS transistor Q50 is connected to the first control terminal T1 of the first switch module 112 through the second resistor R2.
  • the drain D of the first NMOS transistor Q50 is connected to the negative terminal of the pumping capacitor Cp through the third resistor R3.
  • the second resistor R2 and the third resistor R3 are current limiting resistors, which can play a current limiting role.
  • the second switch module 113 has a second control terminal T2, and the second control terminal T2 is used to receive the second control signal S2, and control the opening and closing of the second switch module 113 through the second control signal S2.
  • the second switch module 113 may include a second switch tube and a third switch tube, the second switch tube is connected between the negative terminal of the pumping capacitor Cp and the negative terminal of the output capacitor Cout, and the third switch is controlled by the second control signal S2 The turn-on and turn-off of the tube are used to control the second switch tube.
  • the second switch transistor includes a second field effect transistor
  • the third switch transistor includes a third field effect transistor
  • the second field effect transistor includes a PMOS transistor
  • the third field effect transistor includes an NMOS transistor
  • the second field effect transistor includes an NMOS transistor
  • the drain of the effect tube is connected to the negative terminal of the pumping capacitor
  • the source of the second field effect tube is connected to the negative terminal of the output capacitor
  • the gate of the second field effect tube is connected to the drain of the third field effect tube
  • the third field effect tube is connected to the drain of the third field effect tube.
  • the source of the effect transistor is grounded, and the gate of the third field effect transistor is connected to the second control terminal.
  • a resistor is arranged between the gate and the source of the second field effect transistor, and a resistor is arranged between the gate and the source of the third field effect transistor, which plays the role of voltage divider protection.
  • the second switch transistor includes a PMOS transistor Q51
  • the third switch transistor includes a second NMOS transistor Q52.
  • the drain D of the PMOS transistor Q51 is connected to the negative terminal of the pumping capacitor Cp
  • the source S of the PMOS transistor Q51 is connected to the negative terminal of the output capacitor Cout
  • the gate G of the PMOS transistor Q51 is connected to the drain D of the second NMOS transistor Q52
  • the source S of the second NMOS transistor Q52 is grounded to GND
  • the gate G of the second NMOS transistor Q52 is connected to the second control terminal T2 of the second switch module 113 for receiving the second control signal S2.
  • the first control signal S1 received by the first control terminal T1 of the first switch module 112 and the second control signal S2 received by the second control terminal T2 of the second switch module 113 are inverse complementary signals.
  • the first control signal S1 and the second control signal S2 are both PWM (Pulse Width Modulation) signals with a 50% duty cycle and a frequency of 100KHz to 1MHz.
  • the first control signal S1 When the first control signal S1 is at a high level, the first NMOS transistor Q50 is turned on, the input voltage such as 12V provided by the voltage source VCC charges the pumping capacitor Cp, and the pumping capacitor Cp is charged to 12V. Since the first control signal S1 and the second control signal S2 are inversely complementary to each other, at this time, the second control signal S2 is at a low level, and the second NMOS transistor Q52 is turned off.
  • the first NMOS transistor Q50 When the first control signal S1 is at a low level, the first NMOS transistor Q50 is turned off. Since the first control signal S1 and the second control signal S2 are inversely complementary to each other, the second control signal S2 is at a high level at this time, and the second NMOS transistor Q52 is turned on, so the gate G of the PMOS transistor Q51 is at a low level Then the PMOS transistor Q51 is also turned on, the pumping capacitor Cp is connected in parallel with the output capacitor Cout, the pumping capacitor Cp charges the output capacitor Cout, and the output capacitor Cout is charged to 12V. Therefore, an output voltage of 12V can be output.
  • a fourth resistor R4 is set between the gate G and the source S of the PMOS transistor Q51, and a fifth resistor R5 is set between the gate G and the source S of the second NMOS transistor Q52.
  • the fourth resistor R4 and the fifth resistor R5 are voltage divider resistors, which can protect the voltage divider.
  • the gate G of the second NMOS transistor Q52 is connected to the second control terminal T2 through a sixth resistor R6.
  • the gate G of the PMOS transistor Q51 is connected to the drain D of the second NMOS transistor Q52 through a seventh resistor R7.
  • the sixth resistor R6 and the seventh resistor R7 are current limiting resistors, which can play a current limiting role.
  • the 12V voltage source VCC is used to supply power to the isolated power module 110 .
  • a voltage source VCC that provides a higher voltage may also be used for power supply. Therefore, in this case, the isolated power supply module 110 in this embodiment of the present application may further include a boost circuit (not shown), which boosts the The voltage circuit can be used to boost the voltage of the voltage source VCC.
  • the power input terminal Vin of the isolated power module 110 is connected to the voltage source VCC through a boost circuit, and the boost circuit provides the boosted voltage to the power input terminal Vin of the isolated power module 110 .
  • a lower voltage voltage source VCC may also be provided to supply power. Therefore, in this case, the isolated power module 110 in this embodiment of the present application may further include a step-down circuit (not shown in the figure). shown), the step-down circuit can be used to step down the voltage of the voltage source VCC.
  • the channel switch includes a fourth field effect transistor M4 and a fifth field effect transistor M5 , and the fourth field effect transistor M4 and the fifth field effect transistor M5 are electrically coupled and connected back to back.
  • the drain D of the fourth field effect transistor M4 is connected to the first isolated power supply VCC1
  • the source S of the fourth field effect transistor M4 is connected to the drain of the fifth field effect transistor M5, and the source of the fifth field effect transistor M5
  • the pole S is used to connect the battery
  • the drain D of the fifth field effect transistor M5 is connected to the source S of the fourth field effect transistor M4, and the gates of the fourth field effect transistor M4 and the fifth field effect transistor are connected to the push-pull circuit 23 output connections.
  • the gate G of the fourth field effect transistor M4 is connected to the output end of the push-pull circuit 23 through the first resistor R13, and the gate of the fifth field effect transistor M5 is connected to the push-pull circuit 23 through the second resistor R15 output connection.
  • the resistance value of the first resistor R13 is related to the response parameter of the fourth field effect transistor M4, and is used to adjust the response time of the fourth field effect transistor M4; and/or, the resistance value of the second resistor R15 is related to the fifth field effect transistor M4.
  • the response parameters of the field effect transistor M5 are related, and are used to adjust the response time of the fifth field effect transistor M5.
  • the response parameter specifically refers to the parameter of the field effect tube, which determines the length of the response time of the field effect tube. For example, if the response time is longer, a resistor with a larger resistance value can be selected.
  • the source S of the fourth field effect transistor M4 or the drain D of the fifth field effect transistor M5 is connected to the output end of the push-pull circuit 23 through a resistor R14 to play a voltage divider protection role.
  • the isolation circuit 21 includes a control switch, and the control switch may include an optocoupler U11 , wherein the optocoupler U11 includes a light emitting diode and a phototransistor.
  • the anode of the light emitting diode is connected to the DC power supply terminal, which can be the power supply terminal of the main control circuit.
  • the collector C of the phototransistor is connected to the positive terminal Vout+ of the power output terminal of the second isolated power supply VCC to receive the output voltage output by the isolated power supply module, and the emitter E of the phototransistor is connected to the regulating circuit 22 and is grounded through the resistor R12.
  • the push-pull circuit includes two switches of the same type with different polarities; wherein one of the switches is in an on state or an off state, and correspondingly, the other switch is in an off state or a lead state. pass status. Then, the amplification effect of the push-pull circuit on the control signal is realized.
  • the switch tube includes a triode or a field effect tube.
  • the two triodes are a first triode Q11 and a second triode Q12 respectively, wherein the first triode Q11 is an NPN triode, and the second triode
  • the tube Q12 is a PNP type triode.
  • the bases of the first triode Q11 and the second triode Q12 are connected as the control terminals of the push-pull circuit 23 and are connected to the isolation circuit 21 through the regulating circuit 22 and grounded, and the collector of the first triode Q11 is connected to the preset power supply Voltage VCC2, the emitter of the first transistor Q11 is connected to the emitter of the second transistor Q12, and the collector of the second transistor Q12 is grounded.
  • control terminal of the push-pull circuit 23 may also be grounded through a third resistor (not shown in the figure) to play a voltage division protection function.
  • the adjustment circuit 22 includes an adjustable resistor R10 for adjusting the response time of the channel switch. Specifically, it is used to adjust the response time of the MOS transistor of the channel switch. In this way, it is realized that for MOS tubes with different parameters, the corresponding response times of MOS tubes with different parameters are different.
  • the resistance of the adjustable resistor By adjusting the resistance of the adjustable resistor, the application in different scenarios can be realized, and it can become a general-purpose channel switch composed of back-to-back MOS tubes.
  • the platform solution for example, when replacing MOS tubes with different parameters, the response time of the replaced MOS tubes can be adjusted by adjusting the resistance value of the adjustable resistor, thereby realizing the design of discrete components, and the cost of the discrete components is relatively high.
  • the cost of dedicated integrated ICs can have great advantages; at the same time, for lithium batteries that require large charging and discharging currents, such as agricultural drone batteries, the charging safety is greatly improved.
  • the adjustment circuit 22 includes a first adjustable resistor R101 and a second adjustable resistor R102.
  • One end of the first adjustable resistor R101 is connected to the base of the first triode Q11
  • one end of the second adjustable resistor R102 is connected to the base of the second triode Q12
  • the other end of the first adjustable resistor R101 is connected to the base of the second triode Q12.
  • the other end of the second adjustable resistor R102 is connected to the isolation circuit 21 after being connected.
  • the first adjustable resistor R101 and the second adjustable resistor R102 are used to adjust the turn-on response time and the turn-off response time, respectively.
  • the adjustment circuit 21 includes a resistor with a preset resistance value, and the preset resistance value is determined according to a response parameter of a field effect transistor of the channel switch.
  • the optocoupler receives the control signal sent by the main control circuit 11, the control signal includes the switch on signal or the switch off signal, the switch on signal is high level, the switch The shutdown signal is low.
  • the control signal includes the switch on signal or the switch off signal
  • the switch on signal is high level
  • the switch The shutdown signal is low.
  • the light-emitting diode of the optocoupler U11 turns on and emits light
  • the triode of the optocoupler U11 senses the light-emitting diode to emit light and turns on.
  • the adjustment circuit 22 is used to adjust the response time of the channel switch.
  • the base (the base of the first transistor Q11 and the second transistor Q12) is input with a high level, the first transistor Q11 is turned on, the second transistor Q11 is turned off, the fourth field effect transistor M4 and the third transistor Q11 are turned off.
  • the gate voltage Vgs of the five field effect transistors M5 rises rapidly, that is, the MOS transistors M4 and M5 are turned on, and the channel switch 10 outputs a high voltage to charge the battery.
  • the light emitting diode of the optocoupler U11 When receiving a low level, the light emitting diode of the optocoupler U11 is turned off, the transistor of the optocoupler U11 is turned off, and the bases of the push-pull circuit 23 (the bases of the first transistor Q11 and the second transistor Q12) are input Low level, the first transistor Q11 is turned off, the second transistor Q11 is turned on, the gate voltage Vgs of the fourth field effect transistor M4 and the fifth field effect transistor M5 decreases rapidly, that is, the MOS transistors M4 and M5 are turned off. , the channel switch 10 is turned off to stop charging the battery.
  • the inventor selects two identical MOS transistors in FIG. 1 for simulation simulation, and the simulation simulation is that the selected drive signal is high When the voltage level is 12V, the corresponding voltage when the driving signal is low level is 0V, and the voltage of the charging power supply is 60V.
  • the simulation results are shown in Figure 11a and Figure 11b.
  • Figure 2a shows the simulation results when the channel switch is turned on.
  • the response time (ie, the turn-on time) corresponding to the turn-on of the channel switch is 2.2013 ⁇ s;
  • Figure 2b shows the simulation result when the channel switch is turned off.
  • the response time (ie, the turn-off time) corresponding to the turn-off of the channel switch is 32.323 ⁇ s. It can be seen that, using the driving circuit provided by the embodiment of the present application can effectively reduce the response time of the channel switch, thereby improving the safety of battery charging. For lithium batteries that require large charging and discharging currents, such as agricultural drone batteries, the charging safety is greatly improved.
  • V_R6 represents the time change of the battery when the channel switch is turned on or off
  • V1 represents the level change of the driving signal, corresponding to 12V and 0V respectively
  • M1_Vgs represents the channel switch is on or off the voltage change at the time.
  • Table 1 is a comparison of the simulation results of the response time corresponding to different driving schemes
  • the drive circuit of the channel switch can be applied to a charger, and the charger is a high-current charger, such as a charger of a drone, that is, the charging current of the charger is greater than a preset current threshold, For example, more than 3A; or a charger for an unmanned vehicle battery. Due to the high current charger, if the MOS tube works in the linear region for a long time, it is more prone to the accident of "exploding the tube". By using the driving circuit provided by the embodiments of the present application, the safety and reliability of the battery during charging can be improved.
  • agricultural drones need to perform cyclic operations, so it is necessary to improve the charging efficiency of the battery, so it is necessary to use a large current to charge the battery to improve the charging efficiency of the battery, and use the
  • the driving circuit improves the charging efficiency, it can also improve the safety and reliability during charging.
  • the main control circuit of the charger when using the charger to charge the battery, is further configured to: obtain the charging request current of the battery, and determine the charging current of the charger according to the charging request current ; Determine the safe response time range of the channel switch according to the charging current, so as to adjust the response time of the channel switch through the adjustment circuit according to the safe response time range.
  • the battery may be an intelligent battery, that is, the battery includes an MCU, and specifically, when the battery is connected to the charger, the requested charging current (eg, 3A) of the battery may be sent to the charger.
  • the charger receives the requested charging current, it determines the charging current of the charger according to the requested charging current. For example, the charging current is set to be equal to the requested charging current, that is, the charging current is equal to 3A, and of course it can be greater than the requested charging current. For example, set the charging current to 3.1A, etc. Then, the safe response time range of the channel switch (MOS tube) is determined according to the charging current.
  • the safe response time range can ensure that the response time of the MOS tube will not cause the MOS tube to appear when the charging current is used to charge the battery.
  • the adjustment circuit includes an adjustable resistor, so the response time of the channel switch can be adjusted by adjusting the resistance value of the adjustable resistor.
  • the adjustment method of the adjustable resistor corresponding to the response time of the channel switch can be determined according to the safe response time range, and the adjustment method adjusts the current resistance value of the adjustable resistor.
  • the adjustment method of the adjustable resistor corresponding to the response time of the channel switch can be determined according to the safe response time range, The adjustment method increases or decreases the current resistance value of the adjustable resistor, and the main control circuit adjusts the adjustable resistor according to the adjustment method.
  • a preset mapping relationship table between the charging current corresponding to the MOS transistor of the channel switch and the safe response time range can be tested in advance through experiments, as shown in Table 2.
  • Table 2 is the preset mapping relationship between the charging current and the safe response time range
  • i1, i2 and i3 represent different charging currents, and a11-a13 and a21-a23 represent different times.
  • the corresponding relationship in Table 2 is obtained by experimental testing of the MOS in the channel switch of the charger, that is, using When charging with the corresponding charging current, if the response time is guaranteed to be within the safe response time range corresponding to the charging current, it can be ensured that there will be no "explosion”.
  • a preset mapping relationship table between the charging current and the safety response time range can be obtained, and the safety response time range corresponding to the charging current can be queried according to the mapping relationship table as the safety response time range of the channel switch.
  • the use of the drive circuit provided by the above embodiment can effectively prevent the MOS tube of the charger channel switch from being in the linear region for a long time, and thus will not cause "exploding". "tube” phenomenon, thus improving the safety and reliability of the charger when charging.
  • the charger has one charging gear, ie, the device to be powered can only be charged by one current and/or voltage.
  • the charger has multiple charging gears, and in each charging gear, the charger can provide corresponding charging current and/or voltage to charge the device to be charged. Therefore, it can be applied to devices to be powered with different charging requirements.
  • the charger may have a charging function, and/or a discharging function, and/or a cell balancing function, for the device to be powered.
  • the charger can supply power to the battery, the drone body, the handheld gimbal, and the unmanned vehicle waiting for power supply.
  • FIG. 12 discloses a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • the charging control method is applied to the charger provided by the above embodiments, and the charger completes charging the battery by running the charging control method.
  • the charging control method includes step S101.
  • an isolation circuit of the drive circuit receives the control signal, and a push-pull circuit of the drive circuit converts a preset power supply voltage according to the control signal received by the isolation circuit
  • a driving signal is generated to drive the channel switch to be turned on or off according to the response time, so as to charge or stop charging the battery.
  • the main control circuit of the charger sends a control signal to the isolation circuit of the drive circuit, and the control signal includes a switch-on signal or a switch-off signal; after receiving the switch-on signal or the switch-off signal, the isolation circuit adjusts the The response time of the channel switch, while the push-pull circuit converts the preset power supply voltage into a drive signal according to the switch on signal or switch off signal, so as to drive the channel switch to turn on or off according to the response time, and then charge the battery or Stop charging.
  • the charging control method of the embodiment of the present application is simple and easy to implement, and at the same time, the response time of the channel switch can be adjusted to ensure the safety of the charger when charging the battery.
  • FIG. 13 discloses a schematic block diagram of a charger according to an embodiment of the present application.
  • the charger includes one or more processors 101 .
  • the processor 101 may be, for example, a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Procesor, DSP) or the like.
  • the processors 41 work individually or collectively to execute the charging control method as described above.
  • the chargers of the embodiments of the present application have similar beneficial technical effects to those of the chargers of the above-mentioned embodiments, and therefore are not repeated here.

Abstract

一种通道开关的驱动电路、充电控制方法及充电器,该驱动电路(20)包括:隔离电路(21)、调节电路(22)和推挽电路(23),隔离电路(21)用于接收控制信号,所述控制信号包括开关导通信号或开关关闭信号;调节电路(22)用于调节通道开关(10)的响应时间;推挽电路(23)通过调节电路(22)与隔离电路(21)连接,并且还与通道开关(10)连接;其中,推挽电路(23)用于根据所述控制信号将预设电源电压转换成驱动信号,以驱动通道开关(10)按照所述响应时间导通或关闭。

Description

通道开关的驱动电路、充电控制方法及充电器 技术领域
本申请涉及充电技术领域,尤其涉及一种通道开关的驱动电路、充电控制方法及充电器。
背景技术
无人机的充电器的通道开关,通常采用两个场效应管(MOS管)背靠背连接组成,由于采用背靠背连接MOS管无法直接通过微控制单元(Microcontroller Unit,MCU)进行驱动,需要使用特殊的驱动IC或者光耦合器进行驱动,对于需要较大的充放电电流的锂电池,比如大型农业无人机的锂电池,如果MOS管的响应时间(导通或关断对应的时间)过长会导致MOS管长期处于线性区,从而会导致MOS管发热损坏,甚至会出现“炸管”的危险。
发明内容
基于此,本申请提实施例供了一种通道开关的驱动电路、充电控制方法及充电器,能够适配通道开关的MOS管的响应时间,进而提高通道开关在充电时的安全性和可靠性。
第一方面,本申请实施例提供了一种通道开关的驱动电路,所述驱动电路包括:
隔离电路,所述隔离电路用于接收控制信号,所述控制信号包括开关导通信号或开关关闭信号;
调节电路,用于调节所述通道开关的响应时间;
推挽电路,所述推挽电路通过所述调节电路与所述隔离电路连接,并且还与所述通道开关连接;
其中,所述推挽电路用于根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭。
第二方面,本申请实施例提供了一种充电器,所述充电器包括主控电路、至少一个通道开关以及用于驱动所述通道开关导通或关闭的驱动电路;所述驱动电路包括:
隔离电路,所述隔离电路用于接收所述主控电路发送的控制信号,所述控制信号包括开关导通信号或开关关闭信号;
调节电路,用于调节所述通道开关的响应时间;
推挽电路,所述推挽电路通过所述调节电路与所述隔离电路连接,并且还与所述通道开关连接;
其中,所述推挽电路用于根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭。
第三方面,本申请实施例还提供了一种充电控制方法,应用于本申请实施例提供的充电器,所述充电控制方法包括:
向所述驱动电路发送控制信号,所述驱动电路的隔离电路接收所述控制信号,所述驱动电路的推挽电路根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭,进而为电池充电或停止充电。
第四方面,本申请实施例还提供了一种充电器,所述充电器包括:一个或多个处理器,所述处理器单独地或共同地工作,用于执行本申请实施例提供的充电控制方法。
本申请实施例公开的通道开关的驱动电路、充电控制方法及充电器,能够适配通道开关的MOS管的响应时间,因此在给电池进行充电时或者给电池进行供电时,可以避免MOS管长时间处于线性区域,进而提高了电池在充电时的安全性和可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实 施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种充电器的电路结构示意图;
图2a是本申请实施例提供的通道开关导通时仿真效果示意图;
图2b是本申请实施例提供的通道开关关断时仿真效果示意图;
图3是本申请实施例提供的一种充电器的电路结构示意图;
图4是本申请实施例提供的驱动电路的电路结构示意图;
图5是本申请实施例提供的隔离电源模块的电路结构示意图;
图6是本申请实施例提供的电荷泵电路的电路结构示意图;
图7是本申请实施例提供的电荷泵电路的电路结构示意图;
图8是本申请实施例提供的隔离电源模块的电路结构示意图;
图9是本申请实施例提供的一种驱动电路的电路结构示意图;
图10是本申请实施例提供的另一种驱动电路的电路结构示意图;
图11a是本申请实施例提供的通道开关导通时仿真效果示意图;
图11b是本申请实施例提供的通道开关关断时仿真效果示意图;
图12是本申请的实施例提供的一种充电控制方法的示意流程图;
图13是本申请的实施例提供的一种充电器的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包 括这些组合。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
目前,充电器的通道开关通常采用两个场效应管(MOS管)背靠背连接组成,由于采用背靠背MOS管无法直接通过微控制单元(Microcontroller Unit,MCU)进行驱动,需要使用特殊的驱动IC或者光耦合器进行驱动,比如大型农业无人机的充电器、工业多电源系统或工业锂电池充放电柜等。
对于大型农业无人机的充电器,由于大型农业无人机的锂电池具有较大的充放电电流,如果MOS管的响应时间(导通或关断对应的时间)过长会导致MOS管长期处于线性区,从而会导致MOS管发热损坏,甚至会出现“炸管”的危险。
对于工业多电源系统,一般需要多电源系统能够长期稳定地工作,通常需要多电源系统能够不间断电。该多电源系统通常由多个电源,并且不同的电源通过通道开关(背靠背连接的MOS管)并联在一起进行供电。在多电源系统正常工作时,只由一路供电电源进行供电,当此路供电电源由于一些外发因素停止输出时,需要备用的电源立刻开启,这对通道开关的开通速率(响应时间)有较高的要求,MOS管的开通速度越快,越能够保持系统稳定性,否则导致MOS管发热损坏,甚至会出现“炸管”的危险。
对于工业锂电池充放电柜,由于工业锂电池充放电柜需要同时给多路锂电池充放电,所以往往会有一路电源带多路输出通道的设计,多路输出通道均包括通道开关(背靠背连接的MOS管)。由于工业锂电池充放电柜需要给不同的锂电池充放电,所以其驱动必须是隔离的,其次若给容量较大的电池进行充放电,同样需要较快的开关速度,否则MOS管也会因为长期处于线性区发热而损坏。
然而,目前通道开关的MOS管一般采用专用集成IC进驱动,或者使用光耦合器驱动。专用集成IC应用有限,对于不同的MOS管需要采用不同的专用集成IC进行驱动,专用集成IC一般成本较高且价格昂贵,并且可替代方案较少,经常会遇到供应紧张的问题,专用集成IC由于集成度较高,当一些集成IC出现故障时,其调试和维修难度较大。采用光耦合器的驱动方式,由于光耦 合器的驱动能力较弱,无法实现快速开关MOS管的目的,MOS管在开关过程中由于处于线性区经常会遇到“炸管”的问题。
请参阅图1所示,图1是本申请实施例提供的一种充电器的电路结构示意图。该充电器100包括通道开关10、主控电路11、电源接口12、电池接口13。其中,电源接口12用于连接充电电源,电池接口13用连接电池。
通道开关10包括两个背靠背耦合连接的MOS管,该通道开关10连接在电源接口12和电池接口13之间,光耦合器14连接在主控电路11和通道开关10之间,即采用光耦合器的驱动方式。具体地,对应的驱动原理如下:
主控电路11向光耦合器14输出控制信号,比如输出高电平V1,光耦合器14接收到高电平V1导通并向通道开关10的MOS管的栅极输出驱动信号,该驱动信号比如为高电平V2,MOS管的栅极接收到高电平V2后导通,进而给电池充电;主控电路11向光耦合器14输出控制信号,比如输出低电平V3,光耦合器14关断,向通道开关10的MOS管的栅极输出低电平的驱动信号,比如输出低电平V4,通道开关的MOS管关断进而停止给电池充电。
基于图1提供的光耦合器驱动方式,发明人选择两个MOS管进行仿真模拟,仿真模拟选择的高电平驱动信号的电压为12V,低电平驱动信号的电压为0V,充电电源的电压为60V,仿真模拟结果图2a和图2b所示,图2a为通道开关导通时的仿真结果,从仿真结果发现该通道开关导通对应的响应时间(即开通时间)约为7.2419μs;图2b为通道开关关断时的仿真结果,从仿真结果发现该通道开关的关断对应的响应时间(即关断时间)约为833.71μs。由此可见,现有的光耦合器的驱动方式导致通道开关的MOS管的响应时间较大,进而会导致MOS管发热,严重时会出现“炸管”的问题。
在图2a和图2b中,V_R6表示电池在通道开关导通或关断时随时间变化量;V1表示驱动信号的电平变化,对应12V和0V;M1_Vgs表示通道开关在导通或关断时的电压变化量。
为此,本申请的实施例提供了一种通道开关的驱动电路、充电控制方法及充电器,以解决上述问题。其中,该通道开关的驱动电路可以应用在充电器中,同时该充电控制方法也应用于充电器中,以调整通道开关的响应时间,进而确保电池充电时的安全性。在农业无人机等大电流等充电场景下,可以在使用大电流对电池进行充电,使用该驱动电路在提高充电效率的同时,还可以提高充 电时安全性和可靠性。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图3,图3是本申请的实施例提供的一种充电器的电路结构示意性框图。该充电器100包括通道开关10、主控电路11、电源接口12、电池接口13和驱动电路20。其中,电源接口12用于连接充电电源,电池接口13用连接电池。
通道开关10包括两个背靠背耦合连接的MOS管,该通道开关10连接在电源接口12和电池接口13之间,驱动电路20连接在主控电路11和通道开关10之间,用于接收主控电路11的控制信号并根据控制信号驱动通道开关10的导通或关断,以给电池充电或停止充电。
请参阅图4,图4是本申请实施例提供的一种通道开关的驱动电路的电路结构示意图。如图4所示,该驱动电路20包括:隔离电路21、调节电路22和推挽电路23。
隔离电路21用于接收控制信号,具体用于接收主控电路11发送的控制信号,控制信号包括开关导通信号或开关关闭信号,开关导通信号用于控制通道开关10导通,比如高电平信号,可例如为3.3V,开关关闭信号用于控制通道开关10关断,比如低电平信号,可例如为0V。
调节电路22用于调节通道开关10的响应时间,具体用于调节通道开关10的两个MOS管的响应时间,包括MOS管导通时的响应时间和MOS管关断时的响应时间。
推挽电路23通过调节电路22与隔离电路21连接,并且还与通道开关10连接,具体是与通道开关10的两个MOS管的栅极连接。用于根据隔离电路21接收到的控制信号将预设电源电压VCC2转换成驱动信号,以驱动通道开关10按照所述响应时间导通或关闭。
具体地,隔离电路21在接收到开关导通信号时,控制推挽电路23将预设电源电压VCC2转出驱动信号,比如控制推挽电路23导通将预设电源电压VCC2作为驱动信号(即实现了对控制信号的放大),同时通过调节电路22调节响应时间,以驱动通道开关10的MOS管按照对应的响应时间导通,进而为电池充电。
在本申请的实施例中,预设电源电压VCC2为12V,当然也可以为其他值。在一些实施例中,预设电源电压VCC2的电压大小与不同类型的MOS管相关,比如需要较大驱动能力的MOS需要较大电压的预设电源电压VCC2。
需要说明的是,图4中的电源电压VCC1作为充电电源,比如为60V,用于给电池充电。
上述实施例提供的驱动电路,首先将控制信号通过隔离电路隔离,并且通过调节电路调节通道开关的响应时间,然后通过推挽电路对控制信号进行放大以得到用于驱动通道开关的驱动信号,进而实现驱动通道开关的导通或关断,由此可以避免通道开关长时间处于线性区域,进而提高了充电安全性。对于需要较大的充放电电流的锂电池,例如农业无人机电池,大大提高了充电安全性。
在一些实施例中,隔离电路21包括控制开关,控制开关连接预设电源电压VCC2并根据主控电路11的控制信号导通或关闭,以将预设电源电压VCC2输出至推挽电路23,进而生成所述驱动信号。具体地,控制开关包括光耦合器或变压器。
在一些实施例中,为了进一步地提高电路的安全性,驱动电路20包括:隔离电源模块,该隔离电源包括的第一隔离电源和第二隔离电源。示例性的,如图4所示,第一隔离电源为VCC1,第二隔离电源为VCC2,其中,第一隔离电源VCC1作为充电电源为电池充电,第二隔离电源VCC2作为所述预设电源电压。隔离电路21、推挽电路23均与第二隔离电源VCC2连接,用于根据所述控制信号将第二隔离电源VCC2的电压转换成驱动信号。
在一些实施例中,第一隔离电源和第二隔离电源的电压不同,比如第一隔离电源为60V,第二隔离电源为12V。在另一些实施例中,第二隔离电源的电压大小与通道开关的场效应管的相应参数相关,具体地与场效应管的响应时间相关,比如场效应管的响应时间较长,则对应的电压较大,进而用于调节通道开关的响应时间。对于需要较大的充放电电流的锂电池,例如农业无人机电池,大大提高了充电安全性。
虽然隔离电源可以提高电路的安全性,但是由于隔离电源的价格高、采购周期长,而且隔离电源的体积大,需要占用较大PCB面积,高度空间有限制,不方便PCB布局和元件摆放,由此不利于产品的设计和小型化。
有鉴于此,本申请实施例还提出了一种替代的解决方案。具体地,如图5 所示,图5为本申请实施例提供一种的隔离电源模块的电路结构示意图。隔离电源模块110具有电源输入端Vin和电源输出端Vout,隔离电源模块110包括电荷泵电路111,电源输入端Vin通过电荷泵电路111连接到电源输出端Vout。电源输入端Vin连接电压源VCC,用于接收一输入电压,电压源VCC提供的输入电压例如为12V电压。电源输出端Vout用于输出一输出电压,电荷泵电路111用于将输出电压与输入电压隔离。所谓“隔离”是指电源的输入回路和输出回路之间没有直接的电气连接,输入和输出之间是绝缘的高阻态,没有电流回路。
图6揭示了一种电荷泵电路的工作原理图。如图6所示,电荷泵电路包括泵送电容Cp和输出电容Cout,通过泵送电容Cp作为电荷的中间转移站,在开关K1、K3同时接通时,输入电压Uin可以给泵送电容Cp充电。当开关K1、K3断开,同时开关K2、K4开通时,泵送电容Cp与输出电容Cout并联,泵送电容Cp放电,泵送电容Cp的电荷转移到输出电容Cout上面,从而,输出一输出电压Uout。为了稳定输入电压Uin,电荷泵电路还包括输入电容Cin。
本申请实施例利用电荷泵电路111的泵送电容Cp电荷迁移原理设计出了隔离电源模块110,从而可以适合高端MOS驱动电路。
需要说明的是,上述实施例提供的第一隔离电源和第二隔离电源均可采用图5中提供的隔离电源模块。
请继续参阅图4和图5,比如以第二隔离电源VCC2为例进行,控制开关与隔离电源模块110的电源输出端Vout电连接,并接收主控电路的控制信号。通道开关10通过推挽电路23、调节电路与控制开关连接,并且通道开关10连接到电池,通道开关10用于在控制开关的控制下导通与断开,以控制是否对电池的充电。
需要说明的是,第一隔离电源VCC1也可以采用图5中提供的隔离电源模块,其连接方式和工作原理参照第二隔离电源VCC2。
当控制开关基于控制信号闭合时,通过推挽电路23的作用通道开关10在隔离电源模块110输出的输出电压的触发下导通,从而对电池进行充电。
本申请实施例的驱动电路利用电荷泵电路111设计出隔离电源模块110,实现输出隔离的输出电压,从而可以省去购买隔离电源的高昂的物料成本。
在一个实施例中,输出电压可以等于输入电压。当然,在其他实施例中, 输出电压也可以大于输入电压,电荷泵电路111可以提供倍增的输出电压。
图7揭示了本申请一个实施例的电荷泵电路111的电路结构示意图。如图7所示,电荷泵电路111包括泵送电容Cp、连接电源输出端Vout的输出电容Cout、第一开关模块112和第二开关模块113。
在第一开关模块112闭合时,电压源VCC连接到泵送电容Cp的两端,输入电压对泵送电容Cp充电。在第一开关模块112断开,第二开关模块113闭合时,泵送电容Cp与输出电容Cout并联,泵送电容Cp对输出电容Cout充电。
在一些实施例中,电荷泵电路111还包括连接电源输入端Vin的输入电容Cin。在第一开关模块112闭合时,输入电容Cin与泵送电容Cp并联。输入电容Cin可以用来稳定输入电压。当电压交变时,由于输入电容Cin的充电作用,输入电容Cin两端的电压不能突变,因此保证了输入电压的平稳性。
在一些实施例中,泵送电容Cp、输出电容Cout及输入电容Cin可以包括陶瓷电容。在本申请实施例的电荷泵电路111中,泵送电容Cp、输出电容Cout和/或输入电容Cin选用贴片陶瓷电容,陶瓷电容的容值不需要很大。例如,陶瓷电容的容值可以为100NF(纳法)-1μF(微法)。
因此,采用这种电荷泵电路111的隔离电源模块110体积小,占用PCB面积小,便于PCB布局和元件摆放。
图8揭示了本申请实施例的一种隔离电源模块的电路结构示意图。如图8并结合图7所示,第一开关模块112包括第一二极管D1,第一二极管D1的阳极连接电压源VCC,第一二极管D1的阴极连接泵送电容Cp的正极端。第二开关模块113包括第二二极管D2,第二二极管D2的阳极连接泵送电容Cp的正极端,第二二极管D2的阴极连接输出电容Cout的正极端。
由于二极管的单向导通性,正向导通,反向截止,因此,第一二极管D1和第二二极管D2可以起到开关的作用。例如,第一二极管D1和第二二极管D2可以起到图6所示的电荷泵电路的工作原理图中的开关K1和K2的作用。
本申请实施例的隔离电源模块110巧妙地在电荷泵电路111中采用第一二极管D1和第二二极管D2来充当开关的作用,因而可以省去对开关的触发操作,而且,结构非常简单。
在一些实施例中,第一开关模块112具有第一控制端T1,第一控制端T1用于接收第一控制信号S1,通过第一控制信号S1控制第一开关模块112的开 闭。第一开关模块112可以包括第一开关管,通过第一控制信号S1控制第一开关管的导通和截止来控制第一开关模块112的开闭。
在一个实施例中,第一开关管包括第一场效应管,第一场效应管的栅极连接到第一控制端T1,第一场效应管的漏极连接泵送电容的负极端,第一场效应管的源极接地。在第一场效应管的栅极和源极之间设置有电阻,起到分压保护作用。
示例性的,第一开关管包括第一NMOS管Q50。第一NMOS的栅极G连接到第一开关模块112的第一控制端T1,用以接收第一控制信号S1。第一NMOS的漏极D连接泵送电容Cp的负极端,第一NMOS的源极S接地GND。
可选地,在第一NMOS管Q50的栅极G和源极S之间设置第一电阻R1,第一电阻R1为分压电阻,可以起到分压的作用。
可选地,第一NMOS管Q50的栅极G通过第二电阻R2连接到第一开关模块112的第一控制端T1。可选地,第一NMOS管Q50的漏极D通过第三电阻R3连接到泵送电容Cp的负极端。第二电阻R2和第三电阻R3为限流电阻,可以起到限流的作用。
在一些实施例中,第二开关模块113具有第二控制端T2,第二控制端T2用于接收第二控制信号S2,通过第二控制信号S2控制第二开关模块113的开闭。第二开关模块113可以包括第二开关管及第三开关管,第二开关管连接于泵送电容Cp的负极端与输出电容Cout的负极端之间,通过第二控制信号S2控制第三开关管的导通和截止来控制第二开关管。
在一个实施例中,第二开关管包括第二场效应管,第三开关管包括第三场效应管,其中第二场效应管包括PMOS管,第三场效应管包括NMOS管;第二场效应管的漏极连接泵送电容的负极端,第二场效应管的源极连接输出电容的负极端,第二场效应管的栅极连接到第三场效应管的漏极,第三场效应管的源极接地,第三场效应管的栅极连接到第二控制端。其中,在第二场效应管的栅极和源极之间设置有电阻,在第三场效应管的栅极和源极之间设置有电阻,起到分压保护作用。
示例性的,第二开关管包括PMOS管Q51,第三开关管包括第二NMOS管Q52。PMOS管Q51的漏极D连接泵送电容Cp的负极端,PMOS管Q51的源极S连接输出电容Cout的负极端,PMOS管Q51的栅极G连接到第二NMOS 管Q52的漏极D,第二NMOS管Q52的源极S接地GND,第二NMOS管Q52的栅极G连接到第二开关模块113的第二控制端T2,用以接收第二控制信号S2。
在一个实施例中,第一开关模块112的第一控制端T1接收的第一控制信号S1和第二开关模块113的第二控制端T2接收的第二控制信号S2为反相互补的信号。例如,第一控制信号S1和第二控制信号S2均为50%占空比,频率为100KHz~1MHz的PWM((Pulse Width Modulation,脉宽调制)信号。
当第一控制信号S1为高电平时,第一NMOS管Q50导通,电压源VCC提供的例如12V的输入电压对泵送电容Cp充电,泵送电容Cp被充电到12V。由于第一控制信号S1和第二控制信号S2反相互补,因此,此时第二控制信号S2为低电平,第二NMOS管Q52关断。
当第一控制信号S1为低电平时,第一NMOS管Q50关断。由于第一控制信号S1和第二控制信号S2反相互补,因此,第二控制信号S2此时为高电平,第二NMOS管Q52导通,故,PMOS管Q51的栅极G为低电平,继而PMOS管Q51也导通,泵送电容Cp与输出电容Cout并联,泵送电容Cp对输出电容Cout充电,输出电容Cout被充电到12V。因此,可以输出12V的输出电压。
可选地,在PMOS管Q51的栅极G和源极S之间设置第四电阻R4,在第二NMOS管Q52的栅极G和源极S之间设置第五电阻R5。第四电阻R4和第五电阻R5为分压电阻,可以起到分压的保护作用。
可选地,第二NMOS管Q52的栅极G通过第六电阻R6连接到第二控制端T2。可选地,PMOS管Q51的栅极G通过第七电阻R7连接到第二NMOS管Q52的漏极D。第六电阻R6和第七电阻R7为限流电阻,可以起到限流的作用。
在上面所述的实施例中,采用12V的电压源VCC来给隔离电源模块110供电。在其他实施例中,也可以采用提供更高电压的电压源VCC来供电,因此,在这种情况下,本申请实施例的隔离电源模块110还可以包括升压电路(未图示),升压电路可以用来对电压源VCC的电压进行升压。
在一个实施例中,隔离电源模块110的电源输入端Vin通过升压电路连接到电压源VCC,升压电路将升压后的电压提供给隔离电源模块110的电源输入端Vin。
可以理解的是,在一些实施例中,也可以提供更低电压的电压源VCC来 供电,因此,在这种情况下,本申请实施例的隔离电源模块110还可以包括降压电路(未图示),降压电路可以用来对电压源VCC的电压进行降压。
请参阅图9,通道开关包括第四场效应管M4和第五场效应管M5,第四场效应管M4和第五场效应管M5背靠背电耦合连接。具体地,第四场效应管M4的漏极D连接第一隔离电源VCC1,第四场效应管M4的源极S与第五场效应管M5的漏极连接,第五场效应管M5的源极S用于连接电池,第五场效应管M5的漏极D与第四场效应管M4的源极S连接,第四场效应管M4和第五场效应管的栅极均与推挽电路23的输出端连接。
在一些实施例中,第四场效应管M4的栅极G通过第一电阻R13与推挽电路23的输出端连接,第五场效应管M5的栅极通过第二电阻R15与推挽电路23的输出端连接。其中,第一电阻R13的阻值大小与第四场效应管M4的响应参数有关,用于调节第四场效应管M4的响应时间;和/或,第二电阻R15的阻值大小与第五场效应管M5的响应参数有关,用于调节第五场效应管M5的响应时间。
其中,响应参数具体是指场效应管的参数,确定场效应管的响应时间的长短。比如响应时间较长,可以选择较大阻值的电阻。
在一些实施例中,第四场效应管M4的源极S或第五场效应管M5的漏极D,通过一电阻R14与推挽电路23的输出端连接,起到分压保护作用。
在一些实施例中,参照图9所示,隔离电路21包括控制开关,控制开关可以包括光耦合器U11,其中,光耦合器U11包括发光二极管和光敏三极管。发光二极管的阳极连接直流供电端,该供电端可以为主控电路的供电端,例如可以为3.3V电压作为开关导通控制信号,发光二极管的阴极通过电阻R11接地。光敏三极管的集电极C连接到第二隔离电源VCC的电源输出端的正极端Vout+以接收隔离电源模块输出的输出电压,光敏三极管的发射极E连接到调节电路22并通过电阻R12接地。
在一些实施例中,推挽电路包括两个同一类型不同极性的开关管;其中,一个所述开关管处于导通状态或截止状态,相应地,另一个所述开关管处于截止状态或导通状态。进而实现推挽电路对控制信号的放大作用。其中,开关管包括三极管或场效应管。
在一些实施例中,参照图9所示,两个三级管分别为第一三级管Q11和第 二三极管Q12,其中,第一三极管Q11为NPN型三极管,第二三极管Q12为PNP型三极管。第一三级管Q11和第二三极管Q12的基极连接作为推挽电路23的控制端通过调节电路22与隔离电路21连接并接地,第一三级管Q11的集电极连接预设电源电压VCC2,第一三极管Q11的发射极与第二三极管Q12的发射极连接,第二三极管Q12的集电极接地。
在一些实施例中,推挽电路23的控制端还可以通过第三电阻(图未示)接地,起到分压保护作用。
在一些实施例中,如图9所示,调节电路22包括可调电阻R10,可调电阻R10用于调节通道开关的响应时间。具体地,用于调节通道开关的MOS管的响应时间。由此实现了对于不同参数的MOS管,不同参数的MOS管对应的响应时间不同,通过调节可调电阻的阻值即可实现不同场景的应用,能够成为背靠背MOS管组成通道开关的一种通用平台方案,比如在更换不同参数的MOS管时,通过调节可调电阻的阻值即可实现调节更换后的MOS管的响应时间,由此实现了分立元器件设计,该分立元器件的成本相对于专用集成IC的成本能够有较大的优势;同时,对于需要较大的充放电电流的锂电池,例如农业无人机电池,大大提高了充电安全性。
在一些实施例中,如图10所示,调节电路22包括第一可调电阻R101和第二可调电阻R102。第一可调电阻R101的一端与第一三级管Q11的基极连接,第二可调电阻R102的一端与第二三级管Q12的基极连接,第一可调电阻R101的另一端与第二可调电阻R102的另一端连接,并在连接后并与隔离电路21连接。其中,第一可调电阻R101和第二可调电阻R102分别用于调节开通响应时间和关断响应时间。
在一些实施例,调节电路21包括具有预设阻值的电阻,所述预设阻值根据所述通道开关的场效应管的响应参数确定。
针对图9和图10中的驱动电路的工作原理:光耦合器接收主控电路11发送的控制信号,该控制信号包括开关导通信号或开关关闭信号,开关导通信号为高电平,开关关闭信号为低电平。在接收到高电平时,光耦合器U11的发光二极管导通发光,光耦合器U11的三极管感应到发光二极管发光并导通,调节电路22用于调节通道开关的响应时间,推挽电路23的基极(第一三极管Q11和第二三极管Q12的基极)输入高电平,第一三极管Q11导通,第二三极管 Q11截止,第四场效应管M4和第五场效应管M5的栅极电压Vgs迅速升高,即MOS管M4、M5导通,通道开关10输出高压给电池充电。在接收到低电平时,光耦合器U11的发光二极管截止,光耦合器U11的三极管截止,推挽电路23的基极(第一三极管Q11和第二三极管Q12的基极)输入低电平,第一三极管Q11截止,第二三极管Q11导通,第四场效应管M4和第五场效应管M5的栅极电压Vgs迅速降低,即MOS管M4、M5关断,通道开关10关断进而停止给电池充电。
对于本申请实施例提供的通道开关的驱动电路,具体为图10中通道开关的驱动电路,发明人选择图1中完全相同的两个MOS管进行仿真模拟,仿真模拟是选择的驱动信号为高电平时对应的电压为12V,驱动信号为低电平时对应的电压为0V,充电电源的电压为60V,仿真模拟结果图11a和图11b所示,图2a为通道开关导通时的仿真结果,该通道开关导通对应的响应时间(即开通时间)为2.2013μs;图2b为通道开关关断时的仿真结果,该通道开关的关断对应的响应时间(即关断时间)为32.323μs。由此可见,采用本申请实施例提供的驱动电路,可以有效地降低通道开关的响应时间,进而提高了电池充电的安全性。对于需要较大的充放电电流的锂电池,例如农业无人机电池,大大提高了充电安全性。
在图11a和图11b中,V_R6表示电池在通道开关导通或关断时随时间变化量;V1表示驱动信号的电平变化,分别对应12V和0V;M1_Vgs表示通道开关在导通或关断时的电压变化量。
表1为不同的驱动方案对应的响应时间的仿真结果对比
Figure PCTCN2020106943-appb-000001
从表1可以看出,使用本申请实施例提供的驱动电路,可以大大降低MOS管的响应时间,进而避免MOS管出现“炸管”,提高了电池充电的安全性。
在一些实施例中,该通道开关的驱动电路可以应用于充电器中,该充电器为大电流充电器,比如为无人机的充电器,即该充电器的充电电流大于预设电 流阈值,比如大于3A;或者无人车电池的充电器。由于大电流充电器,其MOS管若长时间工作在线性区域,更容易出现“炸管”的意外。通过使用本申请实施例提供的驱动电路,可以提高电池充电时的安全性和可靠性。
在一些应用场景中,比如农业无人机,农业无人机需要进行循环作业,因此需要提高电池的充电效率,因此需要使用大电流对电池进行充电,以提高电池的充电效率,并在使用该驱动电路在提高充电效率时,还可以提高充电时安全性和可靠性。
在一些实施例中,在使用所述充电器给电池充电时,充电器的主控电路还用于:获取所述电池的充电请求电流,根据所述充电请求电流确定所述充电器的充电电流;根据所述充电电流确定所述通道开关的安全响应时间范围,以根据所述安全响应时间范围通过所述调节电路调节所述通道开关的响应时间。
具体地,该电池可以为智能电池,即该电池包括MCU,具体可以在电池与充电器连接时,将该电池的请求充电电流(比如为3A)发送给充电器。充电器在接收到请求充电电流时,根据该请求充电电流确定所述充电器的充电电流,比如将充电电流设置为与请求充电电流相等,即充电电流等于3A,当然也可以大于请求充电电流,比如将充电电流设置为3.1A等。然后,再根据充电电流确定所述通道开关(MOS管)的安全响应时间范围,该安全响应时间范围可以确保在使用充电电流给电池进行充电时,确保MOS管的响应时间不至于导致MOS管出现“炸管”。再确定所述通道开关的安全响应时间范围后,再根据根据所述安全响应时间范围通过所述调节电路调节所述通道开关的响应时间,比如将所述通道开关的响应时间调整至所述安全响应时间范围内。
需要说明的是,调节电路包括可调电阻,因此可以通过调节该可调电阻的阻值大小,来调节通道开关的响应时间。
比如,若该可调电阻的阻值需要人为调节,可以根据所述安全响应时间范围确定所述通道开关的响应时间对应的可调电阻的调节方式,调节方式将可调电阻的当前阻值调大或调小,并根据该调节方式生成调节提示信息,输出给用户,比如通过充电器的显示屏显示该调节提示信息,或者语音播报该调节提示信息。
再比如,若该可调电阻的阻值不需要人为调节,比如为热敏电阻或光敏电阻,可以根据所述安全响应时间范围确定所述通道开关的响应时间对应的可调 电阻的调节方式,调节方式将可调电阻的当前阻值调大或调小,并由主控电路根据该调节方式对该可调电阻进行调节。
在一些实施例中,可以预先通过实验测试通道开关的MOS管对应的充电电流与安全响应时间范围之间预设的映射关系表,具体如表2所示。
表2为充电电流与安全响应时间范围之间预设的映射关系表
充电电流(A) 安全响应时间范围(us)
i1 a11~a21
i2 a12~a22
i3 a13~a23
在表2中,i1、i2和i3表示不同的充电电流,a11-a13和a21-a23表示不同的时间,表2中的对应关系是针对充电器的通道开关中MOS进行实验测试得到,即使用相应的充电电流充电时,若确保响应时间在该充电电流对应的安全响应时间范围内,则可以确保不会出现“炸管”。
因此,可以通过获取充电电流与安全响应时间范围之间预设的映射关系表,根据所述映射关系表查询所述充电电流对应的安全响应时间范围,作为所述通道开关的安全响应时间范围。
因此,对于大电流的充电器,比如农业无人机的充电器,使用上述实施例提供的驱动电路,可以有效避免充电器通道开关的MOS管的长时间处于线性区域,进而不会出现“炸管”的现象,由此提高了充电器充电时的安全性和可靠性。
在一些实施例中,充电器具有一种充电档位,即,只能通过一种电流和/或电压对待供电设备进行充电。
在一些实施例中,充电器具有多种充电档位,在每个充电档位下,充电器能够提供相应的充电电流和/或电压给待充电设备进行充电。因此可以适用于不同充电要求的待供电设备。
在一些实施例中,充电器对待供电设备可以具有充电功能,和/或放电功能,和/或电量均衡功能。
在一些实施例中,充电器可以对电池、无人机机身、手持云台、无人车等待供电设备供电。
图12揭示了本申请的实施例提供的一种充电控制方法的示意流程图。该充电控制方法应用于上述各个实施例所提供的充电器,该充电器通过运行该充电控制方法来完成对电池进行充电。
如图12所示,该充电控制方法包括步骤S101。
S101、向所述驱动电路发送控制信号,所述驱动电路的隔离电路接收所述控制信号,所述驱动电路的推挽电路根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭,进而为电池充电或停止充电。
具体的,充电器的主控电路向驱动电路的隔离电路发送控制信号,该控制信号包括开关导通信号或开关关闭信号;隔离电路接收到开关导通信号或开关关闭信号后,通过调节电路调节通道开关的响应时间,同时通过推挽电路根据开关导通信号或开关关闭信号预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭,进而为电池充电或停止充电。本申请实施例的充电控制方法简单易行,同时可以调节通道开关的响应时间,确保充电器给电池充电时安全性。
图13揭示了本申请一个实施例的充电器的示意性框图。如图13所示,该充充电器包括一个或多个处理器101。处理器101例如可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Procesor,DSP)等。处理器41单独地或共同地工作,用于执行如上所述的充电控制方法。
本申请实施例的充电器具有与上面所述各个实施例的充电器相类似的有益技术效果,故,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (76)

  1. 一种通道开关的驱动电路,其特征在于,包括:
    隔离电路,所述隔离电路用于接收控制信号,所述控制信号包括开关导通信号或开关关闭信号;
    调节电路,用于调节所述通道开关的响应时间;
    推挽电路,所述推挽电路通过所述调节电路与所述隔离电路连接,并且还与所述通道开关连接;
    其中,所述推挽电路用于根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭。
  2. 根据权利要求1所述的电路,其特征在于,所述隔离电路包括控制开关,所述控制开关连接所述预设电源电压并根据所述控制信号导通或关闭,以将所述预设电源电压输出至所述推挽电路,进而生成所述驱动信号。
  3. 根据权利要求2所述的电路,其特征在于,所述控制开关包括光耦合器或变压器。
  4. 根据权利要求1所述的电路,其特征在于,所述推挽电路包括两个同一类型不同极性的开关管;其中,一个所述开关管处于导通状态或截止状态,相应地,另一个所述开关管处于截止状态或导通状态。
  5. 根据权利要求4所述的电路,其特征在于,所述开关管包括三极管或场效应管。
  6. 根据权利要求5所述的电路,其特征在于,两个三级管分别为第一三级管和第二三极管,其中,所述第一三极管为NPN型三极管,所述第二三极管为PNP型三极管;
    所述第一三级管和第二三极管的基极连接作为所述推挽电路的控制端通过所述调节电路与所述隔离电路连接并接地,所述第一三级管的集电极连接预设电源电压,所述第一三极管的发射极与所述第二三极管的发射极连接,所述第二三极管的集电极接地。
  7. 根据权利要求6所述的电路,其特征在于,所述推挽电路的控制端通过 第三电阻接地。
  8. 根据权利要求1所述的电路,其特征在于,所述调节电路包括可调电阻,所述可调电阻用于调节所述通道开关的响应时间。
  9. 根据权利要求6所述的电路,其特征在于,所述调节电路包括第一可调电阻和第二可调电阻;所述第一可调电阻的一端与所述第一三级管的基极连接,所述第二可调电阻的一端与所述第二三级管的基极连接,所述第一可调电阻的另一端与所述第二可调电阻的另一端连接并与所述隔离电路连接。
  10. 根据权利要求1所述的电路,其特征在于,所述调节电路包括具有预设阻值的电阻,所述预设阻值根据所述通道开关的场效应管的响应参数确定。
  11. 根据权利要求1所述的电路,其特征在于,还包括:
    隔离电源模块,所述隔离电源包括的第一隔离电源和第二隔离电源;
    其中,所述第一隔离电源作为充电电源为电池充电;所述第二隔离电源作为所述预设电源电压,所述隔离电路、推挽电路与所述第二隔离电源连接,用于根据所述控制信号将所述第二隔离电源的电压转换成驱动信号。
  12. 根据权利要求11所述的电路,其特征在于,所述隔离电源模块,包括:
    电荷泵电路;
    电源输入端和电源输出端,所述电源输入端通过所述电荷泵电路连接到所述电源输出端,所述电源输入端连接电压源,用于接收一输入电压,所述电源输出端用于输出一输出电压,所述电荷泵电路用于将所述输出电压与所述输入电压隔离。
  13. 根据权利要求12所述的电路,其特征在于,所述输出电压等于所述输入电压。
  14. 根据权利要求12所述的电路,其特征在于,所述电荷泵电路包括:泵送电容、连接所述电源输出端的输出电容、第一开关模块和第二开关模块;
    其中,在所述第一开关模块闭合时,所述电压源连接到所述泵送电容的两端,所述输入电压对所述泵送电容充电;
    在所述第一开关模块断开,所述第二开关模块闭合时,所述泵送电容与所述输出电容并联,所述泵送电容对所述输出电容充电。
  15. 根据权利要求14所述的电路,其特征在于,所述电荷泵电路还包括连接所述电源输入端的输入电容,其中,在所述第一开关模块闭合时,所述输入 电容与所述泵送电容并联。
  16. 根据权利要求15所述的电路,其特征在于,所述泵送电容、所述输出电容及所述输入电容包括:陶瓷电容。
  17. 根据权利要求14所述的电路,其特征在于,所述第一开关模块包括第一二极管,所述第一二极管的阳极连接所述电压源,所述第一二极管的阴极连接所述泵送电容的正极端。
  18. 根据权利要求17所述的电路,其特征在于,所述第二开关模块包括第二二极管,所述第二二极管的阳极连接所述泵送电容的正极端,所述第二二极管的阴极连接所述输出电容的正极端。
  19. 根据权利要求14所述的电路,其特征在于,所述第一开关模块具有第一控制端,所述第一控制端用于接收第一控制信号,通过所述第一控制信号控制所述第一开关模块的开闭。
  20. 根据权利要求19所述的电路,其特征在于,所述第一开关模块包括第一开关管,通过所述第一控制信号控制所述第一开关管的导通或截止来控制所述第一开关模块的开闭。
  21. 根据权利要求20所述的电路,其特征在于,所述第一开关管包括第一场效应管,所述第一场效应管的栅极连接到所述第一控制端,所述第一场效应管的漏极连接所述泵送电容的负极端,所述第一场效应管的源极接地。
  22. 根据权利要求21所述的电路,其特征在于,在所述第一场效应管的栅极和源极之间设置有电阻。
  23. 根据权利要求14所述的电路,其特征在于,所述第二开关模块具有第二控制端,所述第二控制端用于接收第二控制信号,通过所述第二控制信号控制所述第二开关模块的开闭。
  24. 根据权利要求23所述的电路,其特征在于,所述第二开关模块包括第二开关管及第三开关管,所述第二开关管连接于所述泵送电容的负极端与所述输出电容的负极端之间,通过所述第二控制信号控制所述第三开关管的导通或截止来控制所述第二开关管。
  25. 根据权利要求24所述的电路,其特征在于,所述第二开关管包括第二场效应管,所述第三开关管包括第三场效应管,其中所述第二场效应管包括PMOS管,所述第三场效应管包括NMOS管;
    所述第二场效应管的漏极连接所述泵送电容的负极端,所述第二场效应管的源极连接所述输出电容的负极端,所述第二场效应管的栅极连接到所述第三场效应管的漏极,所述第三场效应管的源极接地,所述第三场效应管的栅极连接到所述第二控制端。
  26. 根据权利要求25所述的电路,其特征在于,在所述第二场效应管的栅极和源极之间设置有电阻,在所述第三场效应管的栅极和源极之间设置有电阻。
  27. 根据权利要求12所述的电路,其特征在于,所述隔离电源模块还包括升压电路,所述升压电路用于对所述电压源的电压进行升压。
  28. 根据权利要求27所述的电路,其特征在于,所述电源输入端通过所述升压电路连接到所述电压源,所述升压电路将升压后的电压提供给所述电源输入端。
  29. 根据权利要求11所述的电路,其特征在于,所述第一隔离电源和第二隔离电源的电压不同。
  30. 根据权利要求11所述的电路,其特征在于,所述第二隔离电源的电压大小与所述通道开关的场效应管的相应参数相关。
  31. 根据权利要求1所述的电路,其特征在于,所述通道开关包括第四场效应管和第五场效应管,所述第四场效应管和第五场效应管背靠背电耦合连接。
  32. 根据权利要求31所述的电路,其特征在于,所述第四场效应管的漏极连接第一隔离电源,所述第四场效应管的源极与所述第五场效应管的漏极连接,所述第四场效应管的栅极与所述推挽电路的输出端连接;
    所述第五场效应管的源极用于连接电池,所述第五场效应管的漏极与所述第四场效应管的源极连接,所述第五场效应管的栅极与所述推挽电路的输出端连接。
  33. 根据权利要求31所述的电路,其特征在于,所述第四场效应管的栅极通过第一电阻与所述推挽电路的输出端连接,所述第五场效应管的栅极通过第二电阻与所述推挽电路的输出端连接。
  34. 根据权利要求33所述的电路,其特征在于,所述第一电阻的阻值大小与所述第四场效应管的响应参数有关,用于调节所述第四场效应管的响应时间;和/或,所述第二电阻的阻值大小与所述第五场效应管的响应参数有关,用于调节所述第五场效应管的响应时间。
  35. 根据权利要求33所述的电路,其特征在于,所述第四场效应管的源极或所述第五场效应管的漏极,通过一电阻与所述推挽电路的输出端连接。
  36. 根据权利要求1所述的电路,其特征在于,还包括:
    主控电路,所述主控电路与所述隔离电路连接,用于向所述隔离电路发送所述控制信号。
  37. 根据权利要求36所述的电路,其特征在于,所述驱动电路应用于充电器,所述充电器的充电电流大于或等于预设电流阈值。
  38. 根据权利要求37所述的电路,其特征在于,在使用所述充电器给电池充电时,所述主控电路还用于:
    获取所述电池的充电请求电流,根据所述充电请求电流确定所述充电器的充电电流;
    根据所述充电电流确定所述通道开关的安全响应时间范围,以根据所述安全响应时间范围通过所述调节电路调节所述通道开关的响应时间。
  39. 根据权利要求38所述的电路,其特征在于,所述根据所述充电电流确定所述通道开关的安全响应时间范围,包括:
    获取充电电流与安全响应时间范围之间预设的映射关系表,根据所述映射关系表查询所述充电电流对应的安全响应时间范围,作为所述通道开关的安全响应时间范围。
  40. 一种充电器,其特征在于,包括主控电路、至少一个通道开关与用于驱动所述通道开关导通或关闭的驱动电路;所述驱动电路包括:
    隔离电路,所述隔离电路用于接收所述主控电路发送的控制信号,所述控制信号包括开关导通信号或开关关闭信号;
    调节电路,用于调节所述通道开关的响应时间;
    推挽电路,所述推挽电路通过所述调节电路与所述隔离电路连接,并且还与所述通道开关连接;
    其中,所述推挽电路用于根据所述隔离电路接收到的所述控制信号将预设电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭。
  41. 根据权利要求40所述的充电器,其特征在于,所述隔离电路包括控制开关,所述控制开关连接所述预设电源电压并根据所述控制信号导通或关闭,以将所述预设电源电压输出至所述推挽电路,进而生成所述驱动信号。
  42. 根据权利要求41所述的充电器,其特征在于,所述控制开关包括光耦合器或变压器。
  43. 根据权利要求40所述的充电器,其特征在于,所述推挽电路包括两个同一类型不同极性的开关管;其中,一个所述开关管处于导通状态或截止状态,相应地,另一个所述开关管处于截止状态或导通状态。
  44. 根据权利要求43所述的充电器,其特征在于,所述开关管包括三极管或场效应管。
  45. 根据权利要求44所述的充电器,其特征在于,两个三级管分别为第一三级管和第二三极管,其中,所述第一三极管为NPN型三极管,所述第二三极管为PNP型三极管;
    所述第一三级管和第二三极管的基极连接作为所述推挽电路的控制端通过所述调节电路与所述隔离电路连接并接地,所述第一三级管的集电极连接预设电源电压,所述第一三极管的发射极与所述第二三极管的发射极连接,所述第二三极管的集电极接地。
  46. 根据权利要求45所述的充电器,其特征在于,所述推挽电路的控制端通过第三电阻接地。
  47. 根据权利要求40所述的充电器,其特征在于,所述调节电路包括可调电阻,所述可调电阻用于调节所述通道开关的响应时间。
  48. 根据权利要求45所述的充电器,其特征在于,所述调节电路包括第一可调电阻和第二可调电阻;所述第一可调电阻的一端与所述第一三级管的基极连接,所述第二可调电阻的一端与所述第二三级管的基极连接,所述第一可调电阻的另一端与所述第二可调电阻的另一端连接并与所述隔离电路连接。
  49. 根据权利要求40所述的充电器,其特征在于,所述调节电路包括具有预设阻值的电阻,所述预设阻值根据所述通道开关的场效应管的响应参数确定。
  50. 根据权利要求40所述的充电器,其特征在于,还包括:
    隔离电源模块,所述隔离电源包括的第一隔离电源和第二隔离电源;
    其中,所述第一隔离电源作为充电电源为电池充电;所述第二隔离电源作为所述预设电源电压,所述隔离电路、推挽电路与所述第二隔离电源连接,用于根据所述控制信号将所述第二隔离电源的电压转换成驱动信号。
  51. 根据权利要求50所述的充电器,其特征在于,所述隔离电源模块,包 括:
    电荷泵电路;
    电源输入端和电源输出端,所述电源输入端通过所述电荷泵电路连接到所述电源输出端,所述电源输入端连接电压源,用于接收一输入电压,所述电源输出端用于输出一输出电压,所述电荷泵电路用于将所述输出电压与所述输入电压隔离。
  52. 根据权利要求51所述的充电器,其特征在于,所述输出电压等于所述输入电压。
  53. 根据权利要求51所述的充电器,其特征在于,所述电荷泵电路包括:泵送电容、连接所述电源输出端的输出电容、第一开关模块和第二开关模块;
    其中,在所述第一开关模块闭合时,所述电压源连接到所述泵送电容的两端,所述输入电压对所述泵送电容充电;
    在所述第一开关模块断开,所述第二开关模块闭合时,所述泵送电容与所述输出电容并联,所述泵送电容对所述输出电容充电。
  54. 根据权利要求53所述的充电器,其特征在于,所述电荷泵电路还包括连接所述电源输入端的输入电容,其中,在所述第一开关模块闭合时,所述输入电容与所述泵送电容并联。
  55. 根据权利要求54所述的充电器,其特征在于,所述泵送电容、所述输出电容及所述输入电容包括:陶瓷电容。
  56. 根据权利要求53所述的充电器,其特征在于,所述第一开关模块包括第一二极管,所述第一二极管的阳极连接所述电压源,所述第一二极管的阴极连接所述泵送电容的正极端。
  57. 根据权利要求56所述的充电器,其特征在于,所述第二开关模块包括第二二极管,所述第二二极管的阳极连接所述泵送电容的正极端,所述第二二极管的阴极连接所述输出电容的正极端。
  58. 根据权利要求53所述的充电器,其特征在于,所述第一开关模块具有第一控制端,所述第一控制端用于接收第一控制信号,通过所述第一控制信号控制所述第一开关模块的开闭。
  59. 根据权利要求58所述的充电器,其特征在于,所述第一开关模块包括第一开关管,通过所述第一控制信号控制所述第一开关管的导通或截止来控制 所述第一开关模块的开闭。
  60. 根据权利要求59所述的充电器,其特征在于,所述第一开关管包括第一场效应管,所述第一场效应管的栅极连接到所述第一控制端,所述第一场效应管的漏极连接所述泵送电容的负极端,所述第一场效应管的源极接地。
  61. 根据权利要求60所述的充电器,其特征在于,在所述第一场效应管的栅极和源极之间设置有电阻。
  62. 根据权利要求53所述的充电器,其特征在于,所述第二开关模块具有第二控制端,所述第二控制端用于接收第二控制信号,通过所述第二控制信号控制所述第二开关模块的开闭。
  63. 根据权利要求62所述的充电器,其特征在于,所述第二开关模块包括第二开关管及第三开关管,所述第二开关管连接于所述泵送电容的负极端与所述输出电容的负极端之间,通过所述第二控制信号控制所述第三开关管的导通或截止来控制所述第二开关管。
  64. 根据权利要求63所述的充电器,其特征在于,所述第二开关管包括第二场效应管,所述第三开关管包括第三场效应管,其中所述第二场效应管包括PMOS管,所述第三场效应管包括NMOS管;
    所述第二场效应管的漏极连接所述泵送电容的负极端,所述第二场效应管的源极连接所述输出电容的负极端,所述第二场效应管的栅极连接到所述第三场效应管的漏极,所述第三场效应管的源极接地,所述第三场效应管的栅极连接到所述第二控制端。
  65. 根据权利要求64所述的充电器,其特征在于,在所述第二场效应管的栅极和源极之间设置有电阻,在所述第三场效应管的栅极和源极之间设置有电阻。
  66. 根据权利要求51所述的充电器,其特征在于,所述隔离电源模块还包括升压电路,所述升压电路用于对所述电压源的电压进行升压。
  67. 根据权利要求66所述的充电器,其特征在于,所述电源输入端通过所述升压电路连接到所述电压源,所述升压电路将升压后的电压提供给所述电源输入端。
  68. 根据权利要求50所述的充电器,其特征在于,所述第一隔离电源和第二隔离电源的电压不同;和/或,
    所述第二隔离电源的电压大小与所述通道开关的场效应管的相应参数相关。
  69. 根据权利要求40所述的充电器,其特征在于,所述充电器设有一个充电档位;或者,
    所述充电器设有多个充电档位,在每个所述充电档位下,能够以相应的电流和/或电压对带供电设备充电。
  70. 根据权利要求40所述的充电器,其特征在于,所述通道开关包括第四场效应管和第五场效应管,所述第四场效应管和第五场效应管背靠背电耦合连接。
  71. 根据权利要求70所述的充电器,其特征在于,所述第四场效应管的漏极连接第一隔离电源,所述第四场效应管的源极与所述第五场效应管的漏极连接,所述第四场效应管的栅极与所述推挽电路的输出端连接;
    所述第五场效应管的源极用于连接电池,所述第五场效应管的漏极与所述第四场效应管的源极连接,所述第五场效应管的栅极与所述推挽电路的输出端连接。
  72. 根据权利要求70所述的充电器,其特征在于,所述第四场效应管的栅极通过第一电阻与所述推挽电路的输出端连接,所述第五场效应管的栅极通过第二电阻与所述推挽电路的输出端连接。
  73. 根据权利要求72所述的充电器,其特征在于,所述第一电阻的阻值大小与所述第四场效应管的响应参数有关,用于调节所述第四场效应管的响应时间;和/或,所述第二电阻的阻值大小与所述第五场效应管的响应参数有关,用于调节所述第五场效应管的响应时间;和/或,
    所述第四场效应管的源极或所述第五场效应管的漏极,通过一电阻与所述推挽电路的输出端连接。
  74. 根据权利要求40所述的充电器,其特征在于,所述充电器的充电电流大于或等于预设电流阈值。
  75. 一种充电控制方法,其特征在于,应用于权利要求40至74任一项所述的充电器,所述充电控制方法包括:
    向所述驱动电路发送控制信号,所述驱动电路的隔离电路接收所述控制信号,所述驱动电路的推挽电路根据所述隔离电路接收到的所述控制信号将预设 电源电压转换成驱动信号,以驱动所述通道开关按照所述响应时间导通或关闭,进而为电池充电或停止充电。
  76. 一种充电器,其特征在于,包括:一个或多个处理器,所述处理器单独地或共同地工作,用于执行如权利要求75所述的充电控制方法。
PCT/CN2020/106943 2020-08-05 2020-08-05 通道开关的驱动电路、充电控制方法及充电器 WO2022027264A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/106943 WO2022027264A1 (zh) 2020-08-05 2020-08-05 通道开关的驱动电路、充电控制方法及充电器
CN202080005978.0A CN113169663A (zh) 2020-08-05 2020-08-05 通道开关的驱动电路、充电控制方法及充电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106943 WO2022027264A1 (zh) 2020-08-05 2020-08-05 通道开关的驱动电路、充电控制方法及充电器

Publications (1)

Publication Number Publication Date
WO2022027264A1 true WO2022027264A1 (zh) 2022-02-10

Family

ID=76879314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106943 WO2022027264A1 (zh) 2020-08-05 2020-08-05 通道开关的驱动电路、充电控制方法及充电器

Country Status (2)

Country Link
CN (1) CN113169663A (zh)
WO (1) WO2022027264A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505773A (zh) * 2023-06-21 2023-07-28 广东省洛仑兹技术股份有限公司 电池变压电路及电池系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197265A1 (zh) * 2022-04-14 2023-10-19 京东方科技集团股份有限公司 显示驱动电路及显示装置
CN117614264A (zh) * 2024-01-23 2024-02-27 苏州锴威特半导体股份有限公司 一种用于桥式驱动的电荷泵电路和升压方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346767A (zh) * 2013-06-28 2013-10-09 清华大学 一种电子开关设备
CN104716833A (zh) * 2013-12-11 2015-06-17 Abb公司 用于平衡电流的方法和设备
CN104811174A (zh) * 2015-05-15 2015-07-29 上海新时达电气股份有限公司 可调节功率开关管开关速度的功率开关管驱动电路
CN209120504U (zh) * 2018-08-29 2019-07-16 浙江绍兴苏泊尔生活电器有限公司 Igbt驱动电路和电磁炉
CN110829830A (zh) * 2019-11-19 2020-02-21 思瑞浦微电子科技(苏州)股份有限公司 基于ldo的输出自适应电荷泵跟随电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009535A1 (de) * 2009-02-18 2010-08-19 Osram Gesellschaft mit beschränkter Haftung Schaltung zur Ansteuerung eines Betriebsgeräts für eine Lichtanwendung, Betriebsgerät und Verfahren zum Betrieb der Schaltung
KR101907687B1 (ko) * 2017-07-03 2018-10-12 현대오트론 주식회사 Igbt 게이트 드라이버
CN108377142B (zh) * 2018-03-26 2023-11-07 郑州安纳信电子科技有限公司 一种电子开关电路
CN110071630A (zh) * 2019-05-30 2019-07-30 上海南芯半导体科技有限公司 一种无缝切换降压和直通工作模式的转换电路及实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346767A (zh) * 2013-06-28 2013-10-09 清华大学 一种电子开关设备
CN104716833A (zh) * 2013-12-11 2015-06-17 Abb公司 用于平衡电流的方法和设备
CN104811174A (zh) * 2015-05-15 2015-07-29 上海新时达电气股份有限公司 可调节功率开关管开关速度的功率开关管驱动电路
CN209120504U (zh) * 2018-08-29 2019-07-16 浙江绍兴苏泊尔生活电器有限公司 Igbt驱动电路和电磁炉
CN110829830A (zh) * 2019-11-19 2020-02-21 思瑞浦微电子科技(苏州)股份有限公司 基于ldo的输出自适应电荷泵跟随电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505773A (zh) * 2023-06-21 2023-07-28 广东省洛仑兹技术股份有限公司 电池变压电路及电池系统
CN116505773B (zh) * 2023-06-21 2023-11-10 广东省洛仑兹技术股份有限公司 电池变压电路及电池系统

Also Published As

Publication number Publication date
CN113169663A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022027264A1 (zh) 通道开关的驱动电路、充电控制方法及充电器
US8710875B2 (en) Bootstrap gate driver
WO2021237615A1 (zh) 充电器驱动电路、集成电路、充电器、充电控制方法及充电控制系统
US9350197B2 (en) Charger and electronic device
TWI508410B (zh) 電源管理電路
TWM472362U (zh) 降壓型切換式電源供應器
US20210273470A1 (en) Driving circuit for switch and battery control circuit using the same
WO2019161711A1 (zh) 一种低导通压降的启动电路
JP2016116415A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、1次側コントローラ
WO2023016574A1 (zh) 开关电路、电池管理系统、电池包、用电设备及控制方法
JP2016116414A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、フィードバックアンプ集積回路
CN108631565B (zh) 两级式开关电源
WO2020156160A1 (zh) 升压芯片及其短路保护电路
TWI538333B (zh) 軟啟動開關電路及電子裝置
US8213196B2 (en) Power supply circuit with protecting circuit having switch element for protecting pulse width modulation circuit
CN107086772B (zh) 升压电路
WO2022242037A1 (zh) 供电电路、供电系统及智能门锁
CN114928147A (zh) 一种电池充电保护电路、芯片以及电源模块
CN210202140U (zh) 一种基于led恒流驱动电源的led感应灯控制电路
CN108696267B (zh) 一种场效应管驱动装置、驱动方法以及供电装置
TWI445439B (zh) 驅動發光二極體的升壓電路及其方法
CN109302052A (zh) 一种高压启动电路及开关电源
CN216872845U (zh) 一种浪涌限制与软启动延时保护电路及锂电池充电器
CN109347465B (zh) 开关管驱动电路、关断器和分布式发电系统
CN219643792U (zh) N型开关管驱动电路结构、电路板及智能电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947948

Country of ref document: EP

Kind code of ref document: A1