WO2021197057A1 - 通过微反应器合成氧杂环丁烷衍生物的合成方法 - Google Patents

通过微反应器合成氧杂环丁烷衍生物的合成方法 Download PDF

Info

Publication number
WO2021197057A1
WO2021197057A1 PCT/CN2021/081185 CN2021081185W WO2021197057A1 WO 2021197057 A1 WO2021197057 A1 WO 2021197057A1 CN 2021081185 W CN2021081185 W CN 2021081185W WO 2021197057 A1 WO2021197057 A1 WO 2021197057A1
Authority
WO
WIPO (PCT)
Prior art keywords
microreactor
oxetane
catalyst
synthesizing
reaction
Prior art date
Application number
PCT/CN2021/081185
Other languages
English (en)
French (fr)
Inventor
钱晓春
Original Assignee
常州强力先端电子材料有限公司
常州强力电子新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110184195.XA external-priority patent/CN113493427A/zh
Application filed by 常州强力先端电子材料有限公司, 常州强力电子新材料股份有限公司 filed Critical 常州强力先端电子材料有限公司
Priority to JP2022560041A priority Critical patent/JP2023520477A/ja
Priority to EP21780711.4A priority patent/EP4112610A4/en
Priority to US17/913,671 priority patent/US20230116611A1/en
Priority to KR1020227037912A priority patent/KR20220161446A/ko
Publication of WO2021197057A1 publication Critical patent/WO2021197057A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/06Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors

Definitions

  • the present invention relates to the field of organic synthesis, in particular to a method for synthesizing oxetane derivatives through a microreactor.
  • etherification reaction with halogenated organic compounds under the action of alkali can obtain a series of oxetane derivatives, which can be used as photocurable cations
  • the monomers in the system are used in light-curable inks, coatings, adhesives and other fields.
  • Representative products are 3-ethyl-3-[(oxiranyl-2-methoxy)methyl]oxy Etidine, bis[1-ethyl(3-oxetanyl)methyl] ether and 3-benzyloxymethyl-3-ethyloxetane.
  • These oxetane products have become one of the raw materials with the most market potential in the field of cationic light curing due to their low viscosity, good dilution, fast crosslinking speed, and excellent film-forming properties.
  • the main purpose of the present invention is to provide a synthetic method for synthesizing oxetane derivatives through a microreactor, so as to solve the long reaction time, cumbersome operation and the existing synthetic methods of oxetane derivatives.
  • the problem of poor security While realizing continuous production, the selectivity of the etherification reaction is ensured, and the product yield is improved.
  • the present invention provides a synthetic method for synthesizing oxetane derivatives through a microreactor.
  • the oxetane derivatives have a structure represented by formula (I):
  • R is a straight or branched C 2 ⁇ C 12 alkyl group, an alkyl group containing an ethylene oxide structure, an alkyl group containing an oxetane structure, a phenyl group, a tolyl group, a benzyl group, or a bi- Phenyl group, n is 1-4;
  • the above-mentioned synthesis method for synthesizing oxetane derivatives by microreactor includes: combining 3-ethyl-3-hydroxymethyloxetane, raw material Ha, catalyst, alkali Transported to the micro-reactor for etherification reaction to obtain an etherification product system, the general formula of the raw material Ha is R-(X) n , X is a halogen; and the etherification product system is separated to obtain an oxetane derivative Things.
  • the inner diameter of the reaction channel of the microreactor is 200-10000 ⁇ m.
  • the alkali is an alkali metal compound or an aqueous solution of an alkali metal compound
  • the alkali metal compound is selected from one or more of the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; preferably, the alkali
  • the metal compound is sodium hydroxide; the concentration of the aqueous solution of the alkali metal compound is 10%-20%; the catalyst is selected from one or more of the group consisting of polyethers, cyclic polyethers and quaternary ammonium salts.
  • the catalyst is selected from the group consisting of polyethylene glycol, polyethylene glycol alkyl ether, 18-crown-6, 15-crown-5, tetraethylammonium bromide, tetrabutylammonium bromide, tetrabutylammonium chloride One or more of the group consisting of ammonium, trioctyl methyl ammonium chloride, dodecyl trimethyl ammonium chloride and tetradecyl trimethyl ammonium chloride.
  • the catalyst is selected from one or more of the group consisting of polyethylene glycol dimethyl ether, 18-crown-6 and tetrabutylammonium bromide.
  • the addition amount of the catalyst is 0.1 to 5%.
  • the addition amount of the catalyst is 0.5-2%.
  • reaction temperature of the etherification reaction is 10-60°C, and the material residence time is 2-5 min.
  • the device used in the separation step includes: a two-stage thin film evaporation device or a rectification tower.
  • the inner diameter of the reaction channel of the microreactor is 500-8000 ⁇ m.
  • the microreactor has the advantages of high heat and mass transfer coefficient, good mixing performance, easy temperature control, and safe and controllable process.
  • Using the advantages of the microreactor to prepare oxetane derivatives can greatly improve the mass and heat transfer of the reaction system, reduce the reaction time, increase production efficiency, increase product yield, and realize the continuity and automation of the process, and improve the process safety.
  • Limiting the pore diameter of the reaction channel of the microreactor within the above-mentioned range is beneficial to increase the selectivity of the etherification reaction, and thus is beneficial to increase the conversion rate of the oxetane derivative.
  • the reaction device required for the above synthesis process is small in size, the production site occupies a small area, the required human resources are small, and the safety is high.
  • Fig. 1 shows a schematic structural diagram of an oxetane derivative preparation device according to a typical embodiment of the present invention.
  • Micro mixer 11. Organic material storage tank; 12. Alkaline solution storage tank; 20. Micro reactor; 21. Buffer tank; 30. Phase separation tank; 31. Waste water storage tank; 32. Organic phase storage tank; 40. First-level thin-film evaporator; 41. Crude product storage tank; 42. Recovery material storage tank; 50. Second-level thin-film evaporator; 51. Finished product storage tank; 52. Reboil storage tank;
  • this application provides a synthetic method for synthesizing oxetane derivatives through a microreactor.
  • the oxetane derivatives have the structure shown in formula (I):
  • R is a straight or branched C 2 ⁇ C 12 alkyl group, an alkyl group containing an ethylene oxide structure, an alkyl group containing an oxetane structure, a phenyl group, a tolyl group, a benzyl group, or a bi- Phenyl, n is 1-4;
  • the synthesis method of the oxetane derivative includes: transporting 3-ethyl-3-hydroxymethyloxetane, raw material Ha, catalyst, and alkali to the microreactor
  • the etherification reaction is carried out in the process to obtain an etherification product system.
  • the general formula of the raw material Ha is R-(X) n , where X is a halogen; and the etherification product system is separated to obtain an oxetane derivative.
  • microreactors Compared with conventional reactors, microreactors have the advantages of high heat and mass transfer coefficient, good mixing performance, easy temperature control, and safe and controllable process.
  • Using the advantages of the microreactor to prepare oxetane derivatives can greatly improve the mass and heat transfer of the reaction system, reduce the reaction time, increase production efficiency, increase product yield, and realize the continuity and automation of the process, and improve the process safety.
  • the reaction device required for the above synthesis process is small in size, the production site occupies a small area, the required human resources are small, and the safety is high.
  • the inner diameter of the reaction channel of the microreactor is 200-10000 ⁇ m. Limiting the pore diameter of the reaction channel of the microreactor within the above range is beneficial to further increase the selectivity of the etherification reaction and further increase the conversion rate of the oxetane derivative.
  • the inner diameter of the reaction channel of the microreactor is 200 ⁇ m, 500 ⁇ m, 4000 ⁇ m, 6000 ⁇ m, 8000 ⁇ m, and 10000 ⁇ m. More preferably, the inner diameter of the reaction channel of the microreactor is 500-8000 ⁇ m.
  • the base is an alkali metal compound or an aqueous solution of an alkali metal compound.
  • Alkali metal compounds can be selected from those commonly used in this field.
  • the alkali metal compound includes but is not limited to one or more of the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; more preferably, the alkali metal compound is sodium hydroxide; The concentration of the aqueous solution of the compound is 10-20%.
  • the catalyst in the above synthesis method may be of the type commonly used in the art, and the catalyst includes, but is not limited to, one or more of the group consisting of polyethers, cyclic polyethers, and quaternary amine salts.
  • the catalyst includes but is not limited to polyethylene glycol, polyethylene glycol alkyl ether, 18-crown-6, 15-crown-5, tetraethylammonium bromide, tetrabutylammonium bromide, tetrabutyl
  • ammonium chloride, trioctyl methyl ammonium chloride, dodecyl trimethyl ammonium chloride and tetradecyl trimethyl ammonium chloride are examples of the group consisting of ammonium chloride, trioctyl methyl ammonium chloride, dodecyl trimethyl ammonium chloride and tetradecyl trimethyl ammonium chloride.
  • the use of the above-mentioned catalysts is beneficial to further increase the reaction rate of the etherification reaction and shorten the reaction period.
  • the catalyst includes, but is not limited to, one or more of the group consisting of polyethylene glycol dimethyl ether, 18-crown-6 and tetrabutylammonium bromide.
  • the added amount of the catalyst is 0.1 to 5%.
  • the amount of the catalyst includes but is not limited to the above range, and limiting it within the above range is beneficial to further increase the reaction rate of the etherification reaction.
  • the amount of catalyst added can be 0.1%, 0.5%, 1%, 1.5%, 2%, 3%, 4% by weight based on the weight of 3-ethyl-3-hydroxymethyloxetane. %. More preferably, the addition amount of the catalyst is 0.5-2% based on the weight percentage of the weight of 3-ethyl-3-hydroxymethyloxetane.
  • the molar ratio of 3-ethyl-3-hydroxymethyloxetane to the halogen in the raw material Ha is 1: (1.0-1.2).
  • the molar ratio of 3-ethyl-3-hydroxymethyloxetane to the halogen in the raw material Ha includes but is not limited to the above range, and limiting it within the above range is beneficial to increase 3-ethyl-3-hydroxymethyl Conversion rate of oxetane.
  • the reaction temperature of the etherification reaction is 10-60°C, and the material residence time is 2-5 min.
  • the reaction temperature and material residence time of the etherification reaction include but are not limited to the above range, and limiting it to the above range is beneficial to further increase the yield of the etherified product.
  • the reaction temperature of the etherification reaction can be 10°C, 20°C, 30°C, 40°C, 50°C, 60°C.
  • the above-mentioned separation step can be carried out by using devices commonly used in the art.
  • the device used in the separation step includes: a two-stage thin film evaporation device or a rectification tower.
  • the microreactor 20, the first-stage thin film evaporator 40, and the second-stage thin film evaporator 50 are adjusted to the set temperature, and the organic raw material feed pump 101 and the raw material feed pump 102 are turned on to make the raw materials enter the micromixer 10 for processing. Mix, stay in the microreactor 20 for a certain period of time, then enter the buffer tank 21, and take the organic phase GC to detect the conversion rate.
  • phase separation tank 30 After accumulating a certain amount of material in the buffer tank 21, it enters the phase separation tank 30, stands still to separate the organic phase and the water phase, and the two phases enter the waste water storage tank 31 and the organic phase storage tank 32 respectively.
  • Example 2 The difference from Example 1 is that the inner diameter of the reaction channel of the microreactor is 200 ⁇ m.
  • Example 2 The difference from Example 1 is that the reaction channel size of the microreactor is 10000 ⁇ m.
  • Example 2 The difference from Example 1 is that the addition amount of the catalyst is 1.0%, the catalyst is polyethylene glycol dimethyl ether, and the material residence time is 5 minutes.
  • Example 1 The difference from Example 1 is: the addition amount of the catalyst is 1.0%, the catalyst is 18-crown-6, and the material residence time is 4 min.
  • Example 1 The difference from Example 1 is: the addition amount of the catalyst is 1.0%, the catalyst is polyethylene glycol, and the material residence time is 4 min.
  • Example 1 The difference from Example 1 is: the addition amount of the catalyst is 1.0%, the catalyst is tetradecyl trimethyl ammonium chloride, and the material residence time is 5 min.
  • Example 1 The difference from Example 1 is that the reaction temperature of the etherification reaction is 30°C.
  • Example 2 The difference from Example 1 is that the reaction channel size of the microreactor is 12000 ⁇ m.
  • Example 1 The difference from Example 1 is that the metered amount of 3-ethyl-3-hydroxymethyloxetane (MOX101), caustic soda, and catalyst are mixed and uniformly charged into the organic material storage tank 11, and the epichlorohydrin is charged.
  • the inner diameter of the reaction channel of the microreactor is 500 ⁇ m.
  • Example 1 The difference from Example 1 is that the metered amount of 3-ethyl-3-hydroxymethyloxetane (MOX101), epichlorohydrin, and the catalyst are mixed and uniformly charged into the organic material storage tank 11, and the alkaline solution is charged. Into the raw material storage tank 12.
  • the reaction channel size of the microreactor is 8000 ⁇ m.
  • Example 1 The difference from Example 1 is that the reaction temperature of the etherification reaction is 100°C.
  • Example 1 The difference from Example 1 is that the reaction temperature of the etherification reaction is 5°C.
  • Example 1 The difference from Example 1 is: the addition amount of the catalyst is 0.1%, the catalyst is tetrabutylammonium bromide, and the material residence time is 5 min.
  • Example 1 The difference from Example 1 is that the metered 3-ethyl-3-hydroxymethyloxetane (MOX101) and caustic soda are mixed and uniformly charged into the organic material storage tank 11, and the epichlorohydrin and the catalyst are loaded. Into the raw material storage tank 12. The addition amount of the catalyst is 5%, the catalyst is 18-crown-6, and the material residence time is 2 min.
  • Example 1 The difference from Example 1 is that the metered 3-ethyl-3-hydroxymethyloxetane (MOX101) and caustic soda are mixed and uniformly charged into the organic material storage tank 11, and the epichlorohydrin and the catalyst are loaded. Into the raw material storage tank 12. The catalyst addition amount is 4%, the catalyst is tetrabutylammonium bromide, and the material residence time is 3min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明提供了一种通过微反应器合成氧杂环丁烷衍生物的合成方法。该合成方法包括:将3-乙基-3-羟甲基氧杂环丁烷、原料Ha、催化剂、碱输送至微反应器中进行醚化反应,得到醚化产物体系,原料Ha的通式为R-(X) n,X为卤素;将醚化产物体系进行分离,得到氧杂环丁烷衍生物。利用微反应器可大幅提高反应体系传质传热性,减少反应时间提高生产效率,提高产品收率,并实现过程的连续化、自动化,提高过程安全性。同时上述合成过程所需的反应装置体积小,所需人力资源少,安全性高。

Description

通过微反应器合成氧杂环丁烷衍生物的合成方法 技术领域
本发明涉及有机合成领域,具体而言,涉及一种通过微反应器合成氧杂环丁烷衍生物的合成方法。
背景技术
以3-乙基-3-羟甲基氧杂环丁烷为原料,与卤代有机化合物在碱作用下进行醚化反应可得到一系列的氧杂环丁烷衍生物,可作为光固化阳离子体系中的单体,应用于光固化油墨、涂料、胶黏剂等领域,代表性的产品有3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷、双[1-乙基(3-氧杂环丁基)甲基]醚和3-苄氧甲基-3-乙基氧杂环丁烷。这些氧杂环丁烷产品由于粘度低、稀释性佳、交联速度快、成膜后性能优异,成为阳离子光固化领域最具市场潜力的原材料之一。
以3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷为例,其工业生产是以3-乙基-3-羟甲基氧杂环丁烷和环氧氯丙烷为原料,在固体氢氧化钠作用下进行醚化反应制得,由于反应体系为液-固非均相,传质较困难,为了保证转化率,环氧氯丙烷和氢氧化钠需要过量50%以上,以2m 3反应釜生产,反应过程约12h,后处理包括过滤、精馏等工序需要约30h,生产过程中分批投加固体氢氧化钠操作繁琐且存在飞温等安全隐患。
鉴于上述问题的存在,有必要提供一种反应时间短、传质效率高、安全性好的氧杂环丁烷衍生物的合成方法。
发明内容
本发明的主要目的在于提供一种通过微反应器合成氧杂环丁烷衍生物的合成方法,以解决现有的氧杂环丁烷衍生物的合成方法中存在的反应时间长、操作繁琐及安全性差的问题。在实现连续化生产的同时确保了醚化反应的选择性,提高产物收率。
为了实现上述目的,本发明提供了一种通过微反应器合成氧杂环丁烷衍生物的合成方法,氧杂环丁烷衍生物具有式(Ⅰ)所示的结构:
Figure PCTCN2021081185-appb-000001
其中,R为C 2~C 12的直链或支链烷基、含有环氧乙烷结构的烷基、含有氧杂环丁烷结构的烷基、苯基、甲苯基、苯甲基或联苯基,n为1-4;上述通过微反应器合成氧杂环丁烷衍生 物的合成方法包括:将3-乙基-3-羟甲基氧杂环丁烷、原料Ha、催化剂、碱输送至微反应器中进行醚化反应,得到醚化产物体系,原料Ha的通式为R-(X) n,X为卤素;及将醚化产物体系进行分离,得到氧杂环丁烷衍生物。
进一步地,微反应器的反应通道内径为200~10000μm。
进一步地,碱为碱金属化合物或碱金属化合物的水溶液,碱金属化合物选自氢氧化锂、氢氧化钠、氢氧化钾和氢氧化钙组成的组中的一种或多种;优选地,碱金属化合物为氢氧化钠;碱金属化合物的水溶液的浓度为10%~20%;催化剂选自聚醚类、环状聚醚类和季胺盐类组成的组中的一种或多种。
进一步地,催化剂选自聚乙二醇、聚乙二醇烷基醚、18-冠-6、15-冠-5、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵和十四烷基三甲基氯化铵组成的组中的一种或多种。
进一步地,催化剂选自聚乙二醇二甲醚、18-冠-6和四丁基溴化铵组成的组中的一种或多种。
进一步地,以占3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,催化剂添加量为0.1~5%。
进一步地,以占3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,催化剂添加量为0.5~2%。
进一步地,醚化反应的反应温度为10~60℃,物料停留时间为2~5min。
进一步地,分离的步骤采用的装置包括:二级薄膜蒸发装置或精馏塔。
进一步地,微反应器的反应通道内径为500~8000μm。
应用本发明的技术方案,相对于常规反应器,微反应器具有传热传质系数高,混合性能好,温度容易控制和过程安全可控等优点。利用微反应器的优势制备氧杂环丁烷衍生物,可大幅提高反应体系传质传热性,减少反应时间提高生产效率,提高了产品收率,并实现过程的连续化、自动化,提高过程安全性。将微反应器的反应通道的孔径限定在上述范围内有利于提高醚化反应的选择性,从而有利于提高氧杂环丁烷衍生物的转化率。此外,上述合成过程所需的反应装置体积小,生产场地占用面积小,所需人力资源少,安全性高。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种典型的实施方式提供的氧杂环丁烷衍生物的制备装置的结构示意图。
其中,上述附图包括以下附图标记:
10、微混合器;11、有机物原料储罐;12、碱溶液储罐;20、微反应器;21、缓冲罐;30、分相罐;31、废水储罐;32、有机相储罐;40、一级薄膜蒸发器;41、粗产品储罐;42、回收原料储罐;50、二级薄膜蒸发器;51、成品储罐;52、重沸物储罐;
101、有机物原料进料泵;102、原料进料泵;103、一级薄膜蒸发器进料泵;104、二级薄膜蒸发器进料泵。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有的氧杂环丁烷衍生物的合成方法中存在的反应时间长、操作繁琐及安全性差的问题。为了解决上述技术问题,本申请提供了一种通过微反应器合成氧杂环丁烷衍生物的合成方法,氧杂环丁烷衍生物具有式(Ⅰ)所示的结构:
Figure PCTCN2021081185-appb-000002
其中,R为C 2~C 12的直链或支链烷基、含有环氧乙烷结构的烷基、含有氧杂环丁烷结构的烷基、苯基、甲苯基、苯甲基或联苯基,n为1-4;该氧杂环丁烷衍生物的合成方法包括:将3-乙基-3-羟甲基氧杂环丁烷、原料Ha、催化剂、碱输送至微反应器中进行醚化反应,得到醚化产物体系,原料Ha的通式为R-(X) n,其中X为卤素;及将醚化产物体系进行分离,得到氧杂环丁烷衍生物。
相对于常规反应器,微反应器具有传热传质系数高,混合性能好,温度容易控制和过程安全可控等优点。利用微反应器的优势制备氧杂环丁烷衍生物,可大幅提高反应体系传质传热性,减少反应时间提高生产效率,提高了产品收率,并实现过程的连续化、自动化,提高过程安全性。此外,上述合成过程所需的反应装置体积小,生产场地占用面积小,所需人力资源少,安全性高。
优选地,微反应器的反应通道内径为200~10000μm。将微反应器的反应通道的孔径限定在上述范围内有利于进一步提高醚化反应的选择性,并进一步提高氧杂环丁烷衍生物的转化率。比如微反应器的反应通道内径为200μm、500μm、4000μm、6000μm、8000μm、10000μm,更优选地,微反应器的反应通道内径为500~8000μm。
上述合成方法中碱为碱金属化合物或碱金属化合物的水溶液。碱金属化合物可以选用本领域常用的种类。优选地,碱金属化合物包括但不限于氢氧化锂、氢氧化钠、氢氧化钾和氢 氧化钙组成的组中的一种或多种;更优选地,碱金属化合物为氢氧化钠;碱金属化合物的水溶液的浓度为10~20%。
上述合成方法中催化剂可以采用本领域常用的种类,催化剂包括但不限于聚醚类、环状聚醚类和季胺盐类组成的组中的一种或多种。优选地,催化剂包括但不限于聚乙二醇、聚乙二醇烷基醚、18-冠-6、15-冠-5、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵和十四烷基三甲基氯化铵组成的组中的一种或多种。相比于其它催化剂,采用上述几种催化剂有利于进一步提高醚化反应的反应速率,缩短反应周期。更优选地,催化剂包括但不限于聚乙二醇二甲醚、18-冠-6和四丁基溴化铵组成的组中的一种或多种。
在一种优选的实施例中,以占3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,催化剂添加量为0.1~5%。催化剂的用量包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高醚化反应的反应速率。比如以占3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,催化剂添加量可以为0.1%、0.5%、1%、1.5%、2%、3%、4%。更优选地,以占3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,催化剂添加量为0.5~2%。
在一种优选的实施例中,3-乙基-3-羟甲基氧杂环丁烷和原料Ha中卤素的摩尔比为1:(1.0~1.2)。3-乙基-3-羟甲基氧杂环丁烷和原料Ha中卤素的摩尔比包括但不限于上述范围,而将其限定在上述范围内有利于提高3-乙基-3-羟甲基氧杂环丁烷的转化率。
在一种优选的实施例中,醚化反应的反应温度为10~60℃,物料停留时间为2~5min。醚化反应的反应温度和物料停留时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高醚化产物的产率。比如醚化反应的反应温度可以为10℃、20℃、30℃、40℃、50℃、60℃。
上述分离步骤可以采用本领域常用的装置进行。优选地,分离的步骤采用的装置包括:二级薄膜蒸发装置或精馏塔。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例采用图1所示的装置制备氧杂环丁烷衍生物,合成方法包括:
(1)将计量的3-乙基-3-羟甲基氧杂环丁烷(MOX101)和原料R-(X)n混合均匀装入有机物原料储罐11中,碱溶液和催化剂混合均匀装入碱溶液储罐12。
(2)微反应器20、一级薄膜蒸发器40、二级薄膜蒸发器50调节至设定温度,开启有机物原料进料泵101和原料进料泵102,使原料进入微混合器10中进行混合,在微反应器20中停留一定时间后进入缓冲罐21,取有机相GC检测转化率。
(3)在缓冲罐21中积累一定物料后进入分相罐30,静置分离有机相和水相,两相分别进入废水储罐31和有机相储罐32中。
(4)开启进入一级薄膜蒸发器进料泵103,有机相经一级薄膜蒸发器40分离回收过量的原料,得粗产品,回收的原料储存在回收原料储罐42中,粗产品储存在粗产品储罐41中;开启二级薄膜蒸发器的进料泵104,粗产品进入二级薄膜蒸发器50提纯得产品,成品储存在成品储罐51中,重沸物储存在重沸物储罐52中。实施例1至9中的工艺参数见表1和表2。
表1
Figure PCTCN2021081185-appb-000003
Figure PCTCN2021081185-appb-000004
表2
Figure PCTCN2021081185-appb-000005
Figure PCTCN2021081185-appb-000006
实施例10
与实施例1的区别为:微反应器的反应通道内径为200μm。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为90.5%,收率为74.6%。
实施例11
与实施例1的区别为:微反应器的反应通道尺寸为10000μm。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为95.2%,收率为76.7wt%。
实施例12
与实施例1的区别为:催化剂添加量为1.0%,催化剂为聚乙二醇二甲醚,物料停留时间为5min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为94.4%,收率为82.4wt%。
实施例13
与实施例1的区别为:催化剂添加量为1.0%,催化剂为18-冠-6,物料停留时间为4min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为95.2%,收率为81.9wt%。
实施例14
与实施例1的区别为:催化剂添加量为1.0%,催化剂为聚乙二醇,物料停留时间为4min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为96.2%,收率为80.5wt%。
实施例15
与实施例1的区别为:催化剂添加量为1.0%,催化剂为十四烷基三甲基氯化铵,物料停留时间为5min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为95.4%,收率为82.4wt%。
实施例16
与实施例1的区别为:醚化反应的反应温度为30℃。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为92.8%,收率为72.4wt%。
实施例17
与实施例1的区别为:微反应器的反应通道尺寸为12000μm。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为90.8%,收率为67.5wt%。
实施例18
与实施例1的区别为:将计量的3-乙基-3-羟甲基氧杂环丁烷(MOX101)、片碱、催化剂混合均匀装入有机物原料储罐11中,环氧氯丙烷装入原料储罐12。微反应器的反应通道内径为500μm。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为95.0%,收率为80.6%。
实施例19
与实施例1的区别为:将计量的3-乙基-3-羟甲基氧杂环丁烷(MOX101)、环氧氯丙烷、催化剂混合均匀装入有机物原料储罐11中,碱溶液装入原料储罐12。微反应器的反应通道尺寸为8000μm。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为95.6%,收率为82.3wt%。
实施例20
与实施例1的区别为:醚化反应的反应温度为100℃。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为94.6%,收率为76.1wt%。
实施例21
与实施例1的区别为:醚化反应的反应温度为5℃。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为85.9%,收率为72.4wt%。
实施例22
与实施例1的区别为:催化剂添加量为0.1%,催化剂为四丁基溴化铵,物料停留时间为5min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为90.3%,收率为73.5wt%。
实施例23
与实施例1的区别为:将计量的3-乙基-3-羟甲基氧杂环丁烷(MOX101)、片碱混合均匀装入有机物原料储罐11中,环氧氯丙烷、催化剂装入原料储罐12。催化剂添加量为5%,催化剂为18-冠-6,物料停留时间为2min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为92.1%,收率为78.3wt%。
实施例24
与实施例1的区别为:将计量的3-乙基-3-羟甲基氧杂环丁烷(MOX101)、片碱混合均匀装入有机物原料储罐11中,环氧氯丙烷、催化剂装入原料储罐12。催化剂添加量为4%,催化剂为四丁基溴化铵,物料停留时间为3min。
3-乙基-3-[(环氧乙烷基-2-甲氧基)甲基]氧杂环丁烷的选择性为91.7%,收率为75.3wt%。
对比例1至5采用常规的反应器制备氧杂环丁烷衍生物,具体工艺参数见表3,合成方法包括:
在四口烧瓶中投入3-乙基-3-羟甲基氧杂环(MOX101)和原料R-(X)n,开启搅拌混合均匀,将碱溶液和催化剂混合均匀滴加至上述四口烧瓶中,滴加完毕后保温,进行反应,取有机层GC检测转化率,转化率不再变化后停止反应。将反应产物体系进行静置分相,然后将其进行精馏得到成品。
表3
Figure PCTCN2021081185-appb-000007
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
比较实施例1至24及对比例1至5可知,选用本申请提供的方法有利于氧杂环丁烷衍生物的选择性和收率。
比较实施例1、6、10、11、17至19可知,将微反应器反应通道的内径限定在本申请的范围内有利于提高氧杂环丁烷衍生物的选择性和收率。
比较实施例1、16、20和21可知,将醚化反应的反应温度限定在本申请的范围内有利于提高氧杂环丁烷衍生物的选择性和收率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种通过微反应器合成氧杂环丁烷衍生物的合成方法,所述氧杂环丁烷衍生物具有式(Ⅰ)所示的结构:
    Figure PCTCN2021081185-appb-100001
    其中,所述R为C 2~C 12的直链或支链烷基、含有环氧乙烷结构的烷基、含有氧杂环丁烷结构的烷基、苯基、甲苯基、苯甲基或联苯基,所述n为1-4;
    其特征在于,所述通过微反应器合成氧杂环丁烷衍生物的合成方法包括:
    将3-乙基-3-羟甲基氧杂环丁烷、原料Ha、催化剂、碱输送至微反应器中进行醚化反应,得到醚化产物体系,所述原料Ha的通式为R-(X) n,所述X为卤素;及
    将所述醚化产物体系进行分离,得到所述氧杂环丁烷衍生物。
  2. 根据权利要求1所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述微反应器的反应通道内径为200~10000μm。
  3. 根据权利要求1所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述碱为碱金属化合物或碱金属化合物的水溶液,碱金属化合物选自氢氧化锂、氢氧化钠、氢氧化钾和氢氧化钙组成的组中的一种或多种;优选地,所述碱金属化合物为氢氧化钠;所述碱金属化合物的水溶液的浓度为10~20%;
    所述催化剂选自聚醚类、环状聚醚类和季胺盐类组成的组中的一种或多种。
  4. 根据权利要求1或2所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述催化剂选自聚乙二醇、聚乙二醇烷基醚、18-冠-6、15-冠-5、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵和十四烷基三甲基氯化铵组成的组中的一种或多种。
  5. 根据权利要求4所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述催化剂选自聚乙二醇二甲醚、18-冠-6和四丁基溴化铵组成的组中的一种或多种。
  6. 根据权利要求1至5中任一项所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,以占所述3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,所述催化剂添加量为0.1~5%。
  7. 根据权利要求6所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,以占所述3-乙基-3-羟甲基氧杂环丁烷重量的重量百分含量计,所述催化剂添加量为0.5~2%。
  8. 根据权利要求1所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述醚化反应的反应温度为10~60℃,物料停留时间为2~5min。
  9. 根据权利要求8所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述分离的步骤采用的装置包括:二级薄膜蒸发装置或精馏塔。
  10. 根据权利要求1所述的通过微反应器合成氧杂环丁烷衍生物的合成方法,其特征在于,所述微反应器的反应通道内径为500~8000μm。
PCT/CN2021/081185 2020-04-03 2021-03-16 通过微反应器合成氧杂环丁烷衍生物的合成方法 WO2021197057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022560041A JP2023520477A (ja) 2020-04-03 2021-03-16 オキセタン誘導体をマイクロ反応器により合成する合成方法
EP21780711.4A EP4112610A4 (en) 2020-04-03 2021-03-16 SYNTHESIS PROCESS FOR THE SYNTHESIS OF AN OXETONE DERIVATIVE USING A MICROREACTOR
US17/913,671 US20230116611A1 (en) 2020-04-03 2021-03-16 Synthesis method for synthesizing oxetane derivative by microreactor
KR1020227037912A KR20220161446A (ko) 2020-04-03 2021-03-16 마이크로 반응기를 통해 옥세탄 유도체를 합성하는 합성 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010261424 2020-04-03
CN202010261424.9 2020-04-03
CN202110184195.X 2021-02-10
CN202110184195.XA CN113493427A (zh) 2020-04-03 2021-02-10 通过微反应器合成氧杂环丁烷衍生物的合成方法

Publications (1)

Publication Number Publication Date
WO2021197057A1 true WO2021197057A1 (zh) 2021-10-07

Family

ID=77927690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081185 WO2021197057A1 (zh) 2020-04-03 2021-03-16 通过微反应器合成氧杂环丁烷衍生物的合成方法

Country Status (6)

Country Link
US (1) US20230116611A1 (zh)
EP (1) EP4112610A4 (zh)
JP (1) JP2023520477A (zh)
KR (1) KR20220161446A (zh)
TW (1) TWI807290B (zh)
WO (1) WO2021197057A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262310A (zh) * 2021-12-27 2022-04-01 山东广浦生物科技有限公司 双(1-2(3-氧杂环丁基)甲基)醚的制备方法
CN114957168A (zh) * 2022-05-17 2022-08-30 大连天源基化学有限公司 一种3,3′-(氧基双亚甲基)双(3-乙基)氧杂环丁烷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750590A (en) * 1995-02-22 1998-05-12 Heraeus Kulzer Gmbh Polymerizable material
JP2000086646A (ja) * 1998-09-11 2000-03-28 Toagosei Co Ltd ビス(3−アルキルオキセタン−3−イルメチル)エーテルの製造方法
JP2002138084A (ja) * 2000-11-01 2002-05-14 Toagosei Co Ltd 3−アルキル−3−ヒドロキシメチルオキセタンを原料とするエーテル類の製造方法
WO2004106314A1 (ja) * 2003-05-28 2004-12-09 Ube Industries, Ltd. オキセタン環含有ビフェニル化合物の製造方法
JP2007217471A (ja) * 2006-02-14 2007-08-30 Fujifilm Corp カチオン重合性組成物、並びにこれを用いた画像形成方法および記録物
CN104876807A (zh) * 2015-05-19 2015-09-02 安徽生源化工有限公司 羟基苯醚(iii)的合成工艺
CN104892549A (zh) * 2015-04-20 2015-09-09 南昌大学 一种可用于紫外光固化的烯丙基氧杂环丁烷类化合物的合成方法
CN110845643A (zh) * 2018-08-21 2020-02-28 常州强力电子新材料股份有限公司 可能量固化的环氧接枝改性的氯磺化聚乙烯树脂、含有其的可能量固化组合物及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1021858B (de) * 1956-12-14 1958-01-02 Bayer Ag Verfahren zur Herstellung aromatischer Oxacyclobutanderivate
US5463084A (en) * 1992-02-18 1995-10-31 Rensselaer Polytechnic Institute Photocurable silicone oxetanes
JP3508502B2 (ja) * 1997-09-30 2004-03-22 宇部興産株式会社 オキセタン環を有するビフェニル誘導体
WO2005080364A1 (ja) * 2004-02-23 2005-09-01 Nippon Steel Chemical Co., Ltd. 脂環式オキセタン化合物の製造方法
US20110236269A1 (en) * 2008-09-20 2011-09-29 National University Corporation Nagaoka University Of Technology Microreactor
JP5683796B2 (ja) * 2009-07-13 2015-03-11 株式会社Kri 微小構造体の製造方法およびマイクロリアクター
JP2017133039A (ja) * 2017-05-10 2017-08-03 Dic株式会社 重合体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750590A (en) * 1995-02-22 1998-05-12 Heraeus Kulzer Gmbh Polymerizable material
JP2000086646A (ja) * 1998-09-11 2000-03-28 Toagosei Co Ltd ビス(3−アルキルオキセタン−3−イルメチル)エーテルの製造方法
JP2002138084A (ja) * 2000-11-01 2002-05-14 Toagosei Co Ltd 3−アルキル−3−ヒドロキシメチルオキセタンを原料とするエーテル類の製造方法
WO2004106314A1 (ja) * 2003-05-28 2004-12-09 Ube Industries, Ltd. オキセタン環含有ビフェニル化合物の製造方法
JP2007217471A (ja) * 2006-02-14 2007-08-30 Fujifilm Corp カチオン重合性組成物、並びにこれを用いた画像形成方法および記録物
CN104892549A (zh) * 2015-04-20 2015-09-09 南昌大学 一种可用于紫外光固化的烯丙基氧杂环丁烷类化合物的合成方法
CN104876807A (zh) * 2015-05-19 2015-09-02 安徽生源化工有限公司 羟基苯醚(iii)的合成工艺
CN110845643A (zh) * 2018-08-21 2020-02-28 常州强力电子新材料股份有限公司 可能量固化的环氧接枝改性的氯磺化聚乙烯树脂、含有其的可能量固化组合物及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112610A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262310A (zh) * 2021-12-27 2022-04-01 山东广浦生物科技有限公司 双(1-2(3-氧杂环丁基)甲基)醚的制备方法
CN114957168A (zh) * 2022-05-17 2022-08-30 大连天源基化学有限公司 一种3,3′-(氧基双亚甲基)双(3-乙基)氧杂环丁烷及其制备方法

Also Published As

Publication number Publication date
JP2023520477A (ja) 2023-05-17
TWI807290B (zh) 2023-07-01
EP4112610A4 (en) 2024-04-10
TW202138358A (zh) 2021-10-16
KR20220161446A (ko) 2022-12-06
US20230116611A1 (en) 2023-04-13
EP4112610A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021197057A1 (zh) 通过微反应器合成氧杂环丁烷衍生物的合成方法
CN109517141A (zh) 一种腰果酚改性水性环氧固化剂及其制备方法
CN110655645B (zh) 强碱性阴离子交换树脂在制备端羟基聚醚季铵盐中的应用
CN106243344B (zh) 一种环氧基封端聚醚连续开环生产工艺
CN110305237B (zh) 一种链转移剂、其制备方法及应用
CN104592166B (zh) 一种烯丙基缩水甘油醚的分子筛固载催化合成方法
CN101525320B (zh) 3,4-环氧基环己基甲酸-3',4'-环氧基环己基甲酯的制备方法
CN115785028B (zh) 一种高环氧值腰果酚缩水甘油醚的制备方法
CN108250428B (zh) 一种梳型多亲水链松香嵌段聚醚磺酸盐及其制备方法
CN106366090A (zh) α‑松油醇合成1,8‑桉叶素的方法
EP2964619B1 (en) Process for the preparation of triazine carbamates
CN102766156A (zh) 四甲基二乙烯基二硅氮烷的制备方法
CN105348029A (zh) 一种对二甲苯环二体的制备方法
CN113493427A (zh) 通过微反应器合成氧杂环丁烷衍生物的合成方法
CN109320522A (zh) 一种制备异山梨醇的方法
CN105585451B (zh) 一种环戊烯直接水合制备环戊醇的方法
JP7438391B2 (ja) マイクロ反応器によってオキセタン化合物を合成する方法
CN102924407A (zh) 一种一元羧酸缩水甘油酯的精制方法
CN103288641B (zh) 一种甲基丙烯酸羟丙酯的合成方法
CN104961617A (zh) 一种姥鲛烷的合成方法
CN102212044B (zh) 一种氧杂环丁烷类化合物的合成方法
CN104496739A (zh) 二苯甲烷的绿色催化合成方法
CN111100053B (zh) 二硒醚及其制备方法、含硒表面活性剂及其制备方法、用途
CN112246279B (zh) 催化剂和乙二醇二甲醚的制备方法
CN107216606B (zh) 环氧树脂/硫化物纳米复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560041

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021780711

Country of ref document: EP

Effective date: 20220923

ENP Entry into the national phase

Ref document number: 20227037912

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE