WO2021193728A1 - 工作機械の制御装置、制御システム、及び制御方法 - Google Patents

工作機械の制御装置、制御システム、及び制御方法 Download PDF

Info

Publication number
WO2021193728A1
WO2021193728A1 PCT/JP2021/012272 JP2021012272W WO2021193728A1 WO 2021193728 A1 WO2021193728 A1 WO 2021193728A1 JP 2021012272 W JP2021012272 W JP 2021012272W WO 2021193728 A1 WO2021193728 A1 WO 2021193728A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
axis
calculation unit
matching
cutting tools
Prior art date
Application number
PCT/JP2021/012272
Other languages
English (en)
French (fr)
Inventor
潤弥 佐藤
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180023539.7A priority Critical patent/CN115315327A/zh
Priority to DE112021001856.6T priority patent/DE112021001856T5/de
Priority to JP2022510602A priority patent/JP7448637B2/ja
Priority to US17/906,977 priority patent/US20230176539A1/en
Publication of WO2021193728A1 publication Critical patent/WO2021193728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/36Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning specially-shaped surfaces by making use of relative movement of the tool and work produced by geometrical mechanisms, i.e. forming-lathes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/02Milling surfaces of revolution
    • B23C3/04Milling surfaces of revolution while revolving the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43132Rotation speed as function of minimum wave energy, toolwear, first learn for different speeds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45236Facing, polygon working, polyhedron machining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a control device, a control system, and a control method for controlling polygon machining performed by a tool equipped with a plurality of cutting tools.
  • polygon processing in which the outer peripheral surface of the work is processed into a polygon (polygon) by rotating the tool and the work at a constant ratio.
  • the surface of the work is machined into a polygonal shape by adjusting the number of cutting tools and the rotation ratio between the tool shaft and the work shaft. For example, when the number of cutting tools attached to the tool shaft is two and the rotation ratio between the work shaft and the tool shaft is 1: 2, the tool shaft rotates twice while the work shaft makes one rotation, and the two cutting tools Cuts two places each, for a total of four places, and the outer peripheral surface of the work becomes a square. When the number of tools attached to the tool shaft is three and the rotation ratio between the work shaft and the tool shaft is 1: 2, the outer peripheral surface of the work is hexagonal.
  • the work axis and the tool axis may be phase-aligned in order to perform accurate cutting. For example, after roughing the work, finishing is performed by changing the rotation speed, processing is performed so that a polygonal apex is formed at a specific position on the side surface of the work, or the work and the tool are once separated and then set to another position.
  • processing is performed so that a polygonal apex is formed at a specific position on the side surface of the work, or the work and the tool are once separated and then set to another position.
  • rotate the work shaft and the tool shaft so that they have a constant phase (relative angle) for example, when the work shaft is 0 degrees, the tool shaft must also be 90 degrees. (Rotate to the degree) is necessary.
  • FIG. 11A when both ends of the work are machined into a hexagon, it is necessary to align the machined surface on one end side with the machined surface on the other end side. If the work axis and the tool axis are out of phase, the machined surface will be out of phase as shown in FIG. 11B.
  • phase matching is required, as shown in FIG. 11C, machining is started after the phase of the work shaft and the tool shaft are matched.
  • Patent Document 1 states, “By simply stopping the spindle at a predetermined fixed point position such as the origin of the spindle, it is easy to perform polygon processing in which it is necessary to align a predetermined positional relationship with the outer peripheral surface of the work W. Can be done in. "
  • Patent Document 1 synchronizes the phases of a plurality of times of machining by stopping the tool at a predetermined position.
  • phase matching When phase matching is performed while the work shaft and tool shaft are rotating, the phase is shifted by accelerating or decelerating the work shaft or tool shaft. At this time, when the phase difference before and after the phase matching is large, as shown in FIGS. 9A and 9B, the amount of phase shift becomes large, and the time required for the phase matching becomes long.
  • the control device of one aspect of the present disclosure has a first shaft for rotating a tool having a plurality of cutting tools and a second shaft for rotating a work, and has a first shaft and a second shaft.
  • a control device that controls a machine tool that rotates at the same time to perform polygon machining and has a machining setting storage unit that stores the number of cutting tools, and a rotating first axis and second axis before phase matching.
  • the phase when the angle of the first axis is shifted by the interval of a plurality of cutting tools from the current phase calculation unit that calculates the phase of, the phase specified by the machining program, and the phase specified by the machining program.
  • the optimum phase calculation unit that calculates the phase that takes the shortest time to match the phase from among the plurality of phases calculated by the processable phase calculation unit, and the optimum phase calculation unit. It is provided with a phase matching control unit that controls the rotation of the first axis and the second axis so as to match the phase.
  • the control system of one aspect of the present disclosure has a first axis for rotating a tool having a plurality of cutting tools and a second axis for rotating a work, and has a first axis and a second axis.
  • a control system that controls a machine tool that rotates at the same time to perform polygon machining, and has a machining setting storage unit that stores the number of cutting tools, and a rotating first axis and second axis before phase matching.
  • the phase when the angle of the first axis is shifted by the interval of a plurality of cutting tools from the current phase calculation unit that calculates the phase of, the phase specified by the machining program, and the phase specified by the machining program.
  • the optimum phase calculation unit that calculates the phase that takes the shortest time to match the phase from among the plurality of phases calculated by the processable phase calculation unit, and the optimum phase calculation unit. It is provided with a phase matching control unit that controls the rotation of the first axis and the second axis so as to match the phase.
  • the control method of one aspect of the present disclosure has a first shaft for rotating a tool provided with a plurality of cutting tools and a second shaft for rotating a work, and has a first shaft and a second shaft. It is a control method that controls a machine tool that performs polygon machining by rotating it at the same time. It stores the number of cutting tools, and is instructed by the current position of the first axis, the current position of the second axis, and the machining program. The phase before phase matching between the first axis and the second axis is calculated based on the rotation ratio, the rotation ratio specified by the machining program, the phase command value specified by the machining program, and the cutting tool.
  • the time required for phase matching can be shortened.
  • phase alignment of this disclosure It is a figure explaining the phase alignment of this disclosure. It is a figure explaining the phase alignment of this disclosure. It is a figure explaining the phase alignment of this disclosure. It is a figure explaining the phase alignment of this disclosure. It is a figure explaining the necessity of phase matching in polygon processing. It is a figure explaining the necessity of phase matching in polygon processing. It is a figure explaining the necessity of phase matching in polygon processing.
  • FIG. 1 is a hardware configuration diagram of a numerical control device 100 according to an embodiment.
  • the CPU 111 included in the numerical control device 100 is a processor that controls the numerical control device 100 as a whole.
  • the CPU 111 reads the system program stored in the ROM 112 via the bus 120, and controls the entire numerical control device 100 according to the system program.
  • Temporary calculation data, display data, various data input by the operator via the input unit 30, and the like are temporarily stored in the RAM 113.
  • the non-volatile memory 114 is composed of, for example, a memory backed up by a battery (not shown), an SSD (Solid State Drive), or the like.
  • the non-volatile memory 114 retains the storage state even when the power of the numerical control device 100 is turned off.
  • the non-volatile memory 114 stores a program read from the external device 72 via the interface 115 and a program input via the input unit 30. Further, the non-volatile memory 114 stores various data (for example, setting parameters acquired from the machine tool) acquired from each part of the numerical control device 100, the machine tool, or the like.
  • the programs and various data stored in the non-volatile memory 114 may be expanded in the RAM 113 at the time of execution / use. Further, various system programs such as a known analysis program are written in the ROM 112 in advance.
  • the interface 115 is an interface for connecting the numerical control device 100 and an external device 72 such as an adapter. Programs, various parameters, etc. are read from the external device 72 side. Further, the programs and various parameters edited in the numerical control device 100 can be stored in the external storage means via the external device 72.
  • the PLC (programmable logic controller) 116 is a sequence program built in the numerical control device 100 and communicates with a machine tool or a robot, or a device such as a sensor attached to the machine tool or the robot. Signals are input and output via the O unit 117 for control.
  • each data read into the memory, data obtained as a result of executing the program, etc. are output and displayed via the interface 118.
  • the input unit 30 composed of an MDI, an operation panel, a touch panel, etc. passes commands, data, and the like based on operations by the operator to the CPU 111 via the interface 119.
  • the axis control circuit 130 for controlling each axis of the machine tool receives the axis movement command from the CPU 111 and outputs the axis command to the servo amplifier 140. In response to this command, the servo amplifier 140 drives the servomotor 150 that moves the shaft included in the machine tool.
  • the shaft servomotor 150 has a built-in position / speed detector, feeds back the position / speed feedback signal from the position / speed detector to the shaft control circuit 130, and performs position / speed feedback control.
  • FIG. 1 only one axis control circuit 130, one servo amplifier 140, and one servo motor 150 are shown, but in reality, only the number of axes provided in the machine tool to be controlled Be prepared.
  • the functional block diagram (FIG. 2) described later shows an example in which at least two servomotors, one for the work shaft and the other for the tool shaft, exist.
  • the spindle control circuit 160 receives a spindle rotation command for rotating the spindle of the machine tool, and outputs a spindle speed signal to the spindle amplifier 161.
  • the spindle amplifier 161 receives the spindle speed signal and rotates the spindle motor 162 of the spindle at the commanded rotation speed.
  • a position coder 163 is coupled to the spindle motor 162, and the position coder 163 outputs a feedback pulse in synchronization with the rotation of the spindle. The output feedback pulse is read by the CPU 111.
  • FIG. 2 is a block diagram of the numerical control device 100 according to the embodiment of the present disclosure.
  • the numerical control device 100 includes a current phase calculation unit 11, a processable phase calculation unit 12, an optimum phase calculation unit 13, a program analysis unit 41, a phase matching control unit 20, an axis control unit 30, and a processing setting memory.
  • a unit 40, a processing data storage unit 50, and a processing program storage unit 42 are provided.
  • the numerical control device 100 is connected to a machine tool that performs polygon processing.
  • a machine tool that performs polygon processing has a tool shaft as a first shaft and a work shaft as a second shaft, a work is attached to the work shaft, and a tool is attached to the tool shaft.
  • a servomotor 150 is attached to the tool shaft and the work shaft, and the servo amplifier 140 performs phase matching of the servomotor 150 in accordance with a command from the phase matching control unit 20.
  • the machining setting storage unit 40 stores the number T of cutting tools attached to the tool shaft.
  • the program analysis unit 41 extracts the rotation ratio P: Q of the work and the tool and the phase command value R (angle) from the machining program.
  • the phase command value R is a command for designating the phase difference between the tool shaft and the work shaft.
  • the machining data storage unit 50 stores the machining positions (angles) of the work shaft and the tool shaft. The positions of the work shaft and the tool shaft are fed back from the servo amplifier 140.
  • the current phase calculation unit 11 determines the work shaft and the tool before phase matching from the current position X of the work shaft stored in the data storage unit 50 during machining, the current position Y of the tool shaft, and the rotation ratio output from the program analysis unit 41. Calculate the phase R CURRENT of the axis.
  • the machineable phase calculation unit 12 is a work shaft and a tool shaft that satisfy the conditions for machining from the number T of cutting tools stored in the machining setting storage unit 40, the rotation ratio output from the program analysis unit 41, and the phase command value. Calculate the phase difference of.
  • the number of phase differences satisfying this condition is the same as the number of cutting tools.
  • the optimum phase calculation unit 13 determines whether the work shaft and the tool shaft can accelerate or decelerate the amount of change when the phase of the work shaft and the tool shaft is changed until the phase difference satisfies the condition that machining is possible. Is calculated while taking into consideration. The optimum phase calculation unit 13 determines a new phase command value from the phase difference that minimizes the amount of change when the phase is changed.
  • the phase matching control unit 20 determines the work axis and the tool axis based on the current position X of the work axis, the current position Y of the tool axis, and the new phase command value calculated by the optimum phase calculation unit 13 stored in the data storage unit 50 during machining.
  • the movement amount of is output to the axis control unit 30.
  • the axis control unit 30 outputs an axis movement command to the tool axis and the work axis.
  • the servomotor 150 controls the tool shaft and the work shaft in accordance with the axis movement command.
  • the position information X and Y of the tool shaft and the work shaft are fed back to the numerical control device 100.
  • a new phase command value is calculated, and polygon processing is performed using this phase command value.
  • phase matching of the polygon processing of the present disclosure will be described while comparing with the phase matching of the conventional polygon processing.
  • FIGS. 3 and 4 show the time change of the tool axis when the phase is matched in the conventional polygon processing.
  • FIG. 3 is a diagram when the tool shaft is decelerated and phase-aligned.
  • FIG. 4 is a diagram when the work axis is accelerated and phase-aligned.
  • the solid line shows the actual tool axis angle.
  • the broken line indicates the angle of the tool shaft when the phases are matched, which is calculated from the rotation ratio, the phase command value, and the actual angle of the work shaft.
  • the phase of the work shaft and the tool shaft is adjusted to the phase determined by the phase command value.
  • FIG. 5 shows the phase alignment of the polygon processing of the present disclosure.
  • the phase difference between the work shaft and the tool shaft satisfying the conditions for machining is calculated.
  • the three types of broken lines in FIG. 5 show the angle of the tool shaft when it matches the phase of the phase command value commanded by the machining program, and the angle of the tool shaft when the angle is deviated from that angle by the distance between the cutting tools. Is shown.
  • the number of cutting tools is three. In the example of FIG.
  • the actual tool shaft is temporarily decelerated to match the phase when the tool shaft is shifted by 240 degrees from the angle of the tool shaft when it matches the phase of the phase command value commanded by the machining program. ing.
  • the time required for phase matching can be shortened.
  • phase matching in the present disclosure
  • the rotation ratio P: Q is defined that the tool shaft rotates Q while the work shaft rotates P.
  • the rotation ratio P: Q and the phase command value R are specified and the phases match, if the current position of the work axis is X and the current position of the tool axis is Y, X and Y are always as follows.
  • the work shaft and the tool shaft rotate at a specified rotation speed so as to satisfy the equation (1).
  • phase command value R of the equation 1 can be replaced with the phase command value R NEW (n) as shown in the following equation 4.
  • phase matching control unit 20 Of the processable phase command value R NEW (n) obtained by Equation 4, the amount of phase change when phase matching is performed from the phase R CURRENT of the work shaft and tool shaft before phase matching obtained by Equation 2.
  • the new phase command value R'NEW with the smallest value is calculated and used by the phase matching control unit 20.
  • the amount of phase change is the smallest when the difference between the phase command values before and after the phase matching is the smallest.
  • the phase R CURRENT can be changed only in the decreasing direction. Therefore, the phase command value closest to the above direction can minimize the amount of phase change.
  • FIG. 6 shows the relationship between the current position X of the work, the current position Y of the tools, and the number of tools T. As shown in FIG. 6, the current position X of the work is 90 ° counterclockwise from the origin of the work axis (the position pointed by the arrow at the top of the drawing). The current position Y of the tool is 330 ° counterclockwise from the origin of the tool axis.
  • phase R CURRENT of the work shaft and the tool shaft before phase matching can be calculated as follows by substituting the current position X of the work, the current position Y of the tool, and the rotation ratio 1: 2 into the equation 2.
  • phase command value R NEW (n) that can be machined can be calculated as follows.
  • the value of R NEW (n) exists as many as the number of cutting tools.
  • the amount of phase change is determined in consideration of restrictions such as the phase matching method and the maximum rotation speed of the work axis and tool axis. If there are no such restrictions, the R NEW (n) closest to R CURRENT The value becomes the new phase command value R'NEW .
  • the phase matching control unit 20 performs phase matching using the new phase command value R'NEW.
  • the shaft control unit 30 rotates the work shaft and the tool shaft in accordance with the command of the machining program.
  • step S5 When the workpiece axis and the tool axis reaches the specified speed of the polygon processing (step S5), and starts calculating a new phase command value R 'NEW (step S6).
  • the new phase command value R 'when NEW is determined, temporarily slowing or accelerating the tool axis or work axis, the new phase command value R' matching the phases in NEW (step S7).
  • the phase matching is completed, cutting by polygon processing is performed (step S8).
  • the new phase command value R 'NEW procedure of calculation of step S6 the new phase command value
  • the current position X of the work shaft and the current position Y of the tool shaft are acquired (step S11), and the phase R CURRENT of the work shaft and the tool shaft before phase matching is calculated (step S12).
  • the processable phase calculation unit 12 calculates the processable phase command value R NEW (n) using the number T of the cutting tools (step S13).
  • R NEW (n) has T number of cutting tools.
  • Optimum phase calculator 13 selected taking into account the restrictions such as the maximum rotational speed of the phasing methods and work axis and tool axis, a new phase command value R 'NEW amount change is minimized when changing the phase (Step S14).
  • FIGS. 10A to 10C show the phase alignment of the present disclosure.
  • 9A and 9B, and FIGS. 10A to 10C both show the amount of phase change when the work axis is 0 degrees and the tool axis is 195 degrees.
  • phase matching is performed based on the phase (phase command value R) commanded at the time of machining. Therefore, under the above conditions, the phase command value is 90 degrees, as shown in FIG. 10A. Since polygon machining has a plurality of cutting tools, there is no problem in performing phase matching with the angle of the tool axis shifted by the distance between the cutting tools. Therefore, there are as many appropriate phases as there are cutting tools.
  • FIG. 10A Since polygon machining has a plurality of cutting tools, there is no problem in performing phase matching with the angle of the tool axis shifted by the distance between the cutting tools. Therefore, there are as many appropriate phases as there are cutting tools.
  • FIG. 10A Since polygon machining has a plurality of cutting tools, there is no problem in performing phase
  • an appropriate phase is selected from a plurality of phases so that the time required for phase matching is the shortest (the amount of phase change is the smallest).
  • the amount of phase change is reduced by changing the phase command value from 90 degrees to 210 degrees.
  • the numerical control device 100 of the present disclosure calculates the phase R CURRENT of the work shaft and the tool shaft before the phase matching and the processable phase command value R NEW (n) in the phase matching of the polygon machining.
  • the new phase command value R'NEW is calculated while considering the restrictions such as the phase matching method and the maximum number of revolutions. The amount of change in the tool shaft or work shaft is shortened, and the time required for phase matching is shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

複数の刃具を有するポリゴン加工装置において、位相合わせにかかる時間を短縮する。 ポリゴン加工の位相合わせにおいて、位相合わせ前のワーク軸と工具軸の位相RCURRENTと、加工可能な位相指令値RNEW(n)を算出し、位相合わせの方法や最大回転数などの制限を考慮しながら、新しい位相指令値R'NEWを算出する。新しい位相指令値R'NEWに位相を合わせることで、位相合わせにかかる時間を短縮することができる。

Description

工作機械の制御装置、制御システム、及び制御方法
 本発明は、複数の刃具を備えた工具によって行われるポリゴン加工を制御する制御装置、制御システム、及び制御方法に関する。
 従来、工具とワークとを一定の比率で回転させることにより、ワークの外周面を多角形(ポリゴン:polygon)に加工するポリゴン加工が存在する。ポリゴン加工では、刃具の数や工具軸とワーク軸との回転比を調整してワークの表面を多角形状に加工する。例えば、工具軸に取り付けられた刃具の数が2本、ワーク軸と工具軸の回転比が1:2の場合、ワーク軸が1回転する間に、工具軸が2回転し、2本の刃具がそれぞれ2箇所、合計4箇所を切削して、ワークの外周面は4角形になる。工具軸に取り付けられた工具の数が3本、ワーク軸と工具軸の回転比が1:2の場合、ワークの外周面は6角形になる。
 ポリゴン加工を行う工作機械では、正確な切削を行うために、ワーク軸と工具軸との位相合わせを行うことがある。例えば、ワークを荒加工した後、回転数を変えて仕上げ加工を行ったり、ワーク側面の特定位置に多角形の頂点ができるように加工したり、ワークと工具とを一旦離したのち別の位置から再加工を行ったりする場合には、ワーク軸と工具軸とが一定の位相(相対的な角度)になるよう回転させる(例えば、ワーク軸が0度であるときに、工具軸も必ず90度になるように回転させる)必要がある。
 一例をあげると、図11Aのように、ワークの両端を六角形に加工する場合、一端側の加工面と他端側の加工面の位置合わせを行う必要がある。ワーク軸と工具軸の位相がずれている場合、図11Bに示すように、加工面がずれてしまう。位相合わせが必要な場合には、図11Cに示すように、ワーク軸と工具軸の位相を合わせてから加工を開始する。
 特許文献1には『主軸を主軸原点等の予め定められた所定の定点の位置に停止させるだけで、ワークWの外周面に対して、互いに所定の位置関係を合わせる必要があるポリゴン加工を簡単に行うことができる』と記載されている。
特開2014-188660号公報
 特許文献1に記載の技術は、工具を所定の位置で停止させることにより、複数回の加工の位相を同期させるものである。しかしながら、特許文献1の技術では、工具を一旦停止させる必要がある。
 ワーク軸と工具軸を回転させたまま位相合わせをする場合、ワーク軸または工具軸を加速または減速させることで位相をシフトさせる。このとき、位相合わせ前後の位相差が大きい場合には、図9Aおよび図9Bに示すように、位相をシフトする量が多くなり、位相合わせにかかる時間が長くなる。
 複数の刃具を有するポリゴン加工装置では、位相合わせにかかる時間を短縮する技術が望まれている。
 本開示の一態様の制御装置は、複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御装置であって、刃具の本数を記憶する加工設定記憶部と、位相合わせ前の回転している第1の軸と第2の軸との位相を算出する現在位相算出部と、加工プログラムで指定される位相、及び、加工プログラムで指定される位相から、複数の刃具の間隔だけ、第1の軸の角度をずらしたときの位相を算出する加工可能位相算出部と、加工可能位相算出部で算出した複数の位相の中から、位相を合わせるまでに掛かる時間が最も短くなる位相を求める最適位相算出部と、最適位相算出部で算出した位相に合うように第1の軸と第2の軸が回転するように制御する位相合わせ制御部と、を備える。
 本開示の一態様の制御システムは、複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御システムであって、刃具の本数を記憶する加工設定記憶部と、位相合わせ前の回転している第1の軸と第2の軸との位相を算出する現在位相算出部と、加工プログラムで指定される位相、及び、加工プログラムで指定される位相から、複数の刃具の間隔だけ、第1の軸の角度をずらしたときの位相を算出する加工可能位相算出部と、加工可能位相算出部で算出した複数の位相の中から、位相を合わせるまでに掛かる時間が最も短くなる位相を求める最適位相算出部と、最適位相算出部で算出した位相に合うように第1の軸と第2の軸が回転するように制御する位相合わせ制御部と、を備える。
 本開示の一態様の制御方法は、複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御方法であって、刃具の本数を記憶し、第1の軸の現在位置と、第2の軸の現在位置と、加工プログラムで指令される回転比とを基に、第1の軸と第2の軸との位相合わせ前の位相を算出し、加工プログラムで指定される回転比と、加工プログラムで指定される位相指令値と、刃具の本数とを基に、加工が可能な位相を複数算出し、位相合わせ前の位相と、加工が可能な位相の差から、第1の軸と第2の軸との位相を変化させるのに必要な時間が最も短い最適位相を算出し、最適位相を基準とし、第1の軸と第2の軸の位相合わせを行う。
 本発明の一態様によれば、複数の刃具を有するポリゴン加工装置において、位相合わせにかかる時間を短縮することができる。
本開示における数値制御装置のハードウェア構成図である。 本開示における数値制御装置のブロック図である。 工具軸を一時的に減速させて位相合わせをしたときの図である。 ワーク軸を一時的に加速させて位相合わせしたときの図である。 本開示のポリゴン加工の位相合わせを示す図である。 ワークの現在位置X、工具の現在位置Y、工具本数Tの関係を示す図である。 本開示の位相合わせ方法について説明するフローチャートである。 新しい位相指令値R′NEWの算出手順を説明するフローチャートである。 従来の位相合わせを説明する図である。 従来の位相合わせを説明する図である。 本開示の位相合わせを説明する図である。 本開示の位相合わせを説明する図である。 本開示の位相合わせを説明する図である。 ポリゴン加工における位相合わせの必要性を説明する図である。 ポリゴン加工における位相合わせの必要性を説明する図である。 ポリゴン加工における位相合わせの必要性を説明する図である。
 以下、本開示の制御装置を数値制御装置100に実装した一実施形態を示す。
 図1は一実施形態による数値制御装置100のハードウェア構成図である。
 本実施形態による数値制御装置100が備えるCPU111は、数値制御装置100を全体的に制御するプロセッサである。CPU111は、バス120を介してROM112に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って数値制御装置100の全体を制御する。RAM113には一時的な計算データや表示データ、入力部30を介してオペレータが入力した各種データ等が一時的に格納される。
 不揮発性メモリ114は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成される。不揮発性メモリ114は、数値制御装置100の電源がオフされても記憶状態を保持する。不揮発性メモリ114には、インタフェース115を介して外部機器72から読み込まれたプログラムや入力部30を介して入力されたプログラムが記憶される。また、不揮発性メモリ114には、数値制御装置100の各部や工作機械等から取得された各種データ(例えば、工作機械から取得した設定パラメータ等)が記憶される。不揮発性メモリ114に記憶されたプログラムや各種データは、実行時/利用時にはRAM113に展開されても良い。また、ROM112には、公知の解析プログラムなどの各種のシステム・プログラムがあらかじめ書き込まれている。
 インタフェース115は、数値制御装置100とアダプタ等の外部機器72と接続するためのインタフェースである。外部機器72側からはプログラムや各種パラメータ等が読み込まれる。また、数値制御装置100内で編集したプログラムや各種パラメータ等は、外部機器72を介して外部記憶手段に記憶させることができる。PLC(プログラマブル・ロジック・コントローラ)116は、数値制御装置100に内蔵されたシーケンス・プログラムで工作機械やロボット、該工作機械や該ロボットに取り付けられたセンサ等のような装置との間でI/Oユニット117を介して信号の入出力を行い制御する。
 表示部70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等がインタフェース118を介して出力されて表示される。また、MDIや操作盤、タッチパネル等から構成される入力部30は、インタフェース119を介して作業者による操作に基づく指令やデータ等をCPU111に渡す。
 工作機械の各軸を制御するための軸制御回路130はCPU111からの軸の移動指令を受けて、軸の指令をサーボアンプ140に出力する。サーボアンプ140はこの指令を受けて、工作機械が備える軸を移動させるサーボモータ150を駆動する。軸のサーボモータ150は位置・速度検出器を内蔵し、この位置・速度検出器からの位置・速度フィードバック信号を軸制御回路130にフィードバックし、位置・速度のフィードバック制御を行う。なお、図1のハードウェア構成図では軸制御回路130、サーボアンプ140、サーボモータ150は1つずつしか示されていないが、実際には制御対象となる工作機械に備えられた軸の数だけ用意される。後述する機能ブロック図(図2)では、ワーク軸用と工具軸用の少なくとも2つのサーボモータが存在する例を示す。
 スピンドル制御回路160は、工作機械の主軸を回転させる主軸回転指令を受け、スピンドルアンプ161にスピンドル速度信号を出力する。スピンドルアンプ161はこのスピンドル速度信号を受けて、主軸のスピンドルモータ162を指令された回転速度で回転させる。スピンドルモータ162にはポジションコーダ163が結合され、ポジションコーダ163が主軸の回転に同期して帰還パルスを出力する。出力された帰還パルスはCPU111によって読み取られる。
 図2は、本開示の一実施形態である数値制御装置100のブロック図である。数値制御装置100は、現在位相算出部11と、加工可能位相算出部12と、最適位相算出部13と、プログラム解析部41と、位相合わせ制御部20と、軸制御部30と、加工設定記憶部40と、加工中データ記憶部50と、加工プログラム記憶部42と、を備える。
 数値制御装置100は、ポリゴン加工を行う工作機械に接続されている。ポリゴン加工を行う工作機械は、第1の軸としての工具軸と、第2の軸としてのワーク軸とを有し、ワーク軸にはワークが取り付けられており、工具軸には工具が取り付けられている。工具軸とワーク軸にはサーボモータ150が取り付けられており、サーボアンプ140は位相合わせ制御部20からの指令に従いサーボモータ150の位相合わせを行う。
 加工設定記憶部40は、工具軸に取り付けられた刃具の本数Tを記憶している。
 プログラム解析部41は、ワークと工具の回転比P:Q、位相指令値R(角度)を加工プログラムから抽出する。位相指令値Rとは、工具軸とワーク軸の位相差を指定するための指令である。
 加工中データ記憶部50は、ワーク軸及び工具軸の加工中の位置(角度)を記憶している。ワーク軸と工具軸の位置は、サーボアンプ140からフィードバックされる。
 現在位相算出部11は、加工中データ記憶部50に記憶するワーク軸の現在位置X、工具軸の現在位置Y、プログラム解析部41から出力される回転比から、位相合わせ前のワーク軸と工具軸の位相RCURRENTを算出する。
 加工可能位相算出部12は、加工設定記憶部40に記憶する刃具の本数T、プログラム解析部41から出力される回転比、及び位相指令値から、加工が可能な条件を満たすワーク軸と工具軸の位相差を算出する。この条件を満たす位相差は刃具の本数と同じ数だけある。
 最適位相算出部13は、ワーク軸と工具軸の位相を、加工が可能な条件を満たす位相差になるまで変化させるときの変化量を、ワーク軸と工具軸がそれぞれ加速または減速が可能かどうかを考慮しながら算出する。最適位相算出部13は、位相を変化させるときの変化量が最小になる位相差から新しい位相指令値を決定する。
 位相合わせ制御部20は、加工中データ記憶部50に記憶するワーク軸の現在位置X、工具軸の現在位置Y、最適位相算出部13が算出した新しい位相指令値に基づき、ワーク軸と工具軸の移動量を軸制御部30に出力する。
 軸制御部30は、軸の移動指令を工具軸及びワーク軸に出力する。サーボモータ150は、軸の移動指令に従い工具軸及びワーク軸を制御する。工具軸及びワーク軸の位置情報X、Yは、数値制御装置100にフィードバックされる。
 本開示のポリゴン加工では、新しい位相指令値を算出し、この位相指令値でポリゴン加工を行う。位相を変化させるときの変化量が最小になる位相指令値で位相合わせを行うことにより、位相合わせに要する時間を短縮できる。
 以下、従来のポリゴン加工の位相合わせと比較しながら本開示のポリゴン加工の位相合わせについて説明する。
[従来の位相合わせ]
 図3、4は、従来のポリゴン加工において位相合わせしたときの工具軸の時間変化を示している。図3は、工具軸を減速させて位相合わせしたときの図である。図4は、ワーク軸を加速させて位相合わせしたときの図である。これらの図において、実線は実際の工具軸の角度を示している。破線は、回転比と、位相指令値と、ワーク軸の実際の角度から算出した、位相が合っているときの工具軸の角度を示している。
 従来は、ワーク軸と工具軸の少なくとも一方を、指令されている回転速度から加速、又は減速させることで、ワーク軸と工具軸の位相を位相指令値によって決まる位相に合わせる。
[本開示の位相合わせの概要]
 図5は、本開示のポリゴン加工の位相合わせを示している。本開示のポリゴン加工では、加工が可能な条件を満たすワーク軸と工具軸の位相差を算出する。図5の3種類ある破線は、加工プログラムで指令される位相指令値の位相と一致しているときの工具軸の角度と、その角度から刃具の間隔だけ角度をずらしたときの工具軸の角度を示している。この図5では、刃具の本数を3本としている。
 図5の例では、実際の工具軸を一時的に減速させて、加工プログラムで指令される位相指令値の位相と一致しているときの工具軸の角度から240度ずらしたときの位相に合わせている。位相の変化量が少なくなる位相になる位相指令値を選択することにより、位相合わせに要する時間が短縮できる。
[本開示の位相合わせの説明]
 本開示の位相合わせについて具体的に説明する。前提として、回転比P:Qは、ワーク軸がP回転する間に工具軸がQ回転する、と定義する。また、回転比P:Q、位相指令値Rを指定し、位相が一致している状態では、ワーク軸の現在位置をX、工具軸の現在位置をYとすると、XとYが常に以下の数1式を満たすように、ワーク軸と工具軸が指定された回転速度で回転する。
Figure JPOXMLDOC01-appb-M000001
 上記の式では、任意の角度Aと、Aに360の整数倍の数値を足した角度は等しいとする。
 位相合わせをする直前のワーク軸と工具軸は、回転比P:Qを満たしつつ、指令された回転速度で回転しているとする。
 以下の説明では、軸の原点(ゼロ点)は、図面最上部の矢印の指す位置とする。軸上の位置は1回転する(360°を超える)毎に丸められてゼロになる。
 本開示の位置合わせでは、最初に、位相合わせ前のワーク軸と工具軸の位相RCURRENTを算出する。
 ワーク軸の現在位置をXと、工具軸の現在位置をYとした場合、回転比P:Qから、上記の位相RCURRENTは数22式より、以下のように計算できる。
Figure JPOXMLDOC01-appb-M000002
 刃具が複数本ある場合、工具を刃具の間隔だけ回転させると、刃具の順番が入れ替わるだけであり、刃具がある位置は変化しない。そのため、位相が一致している状態から工具軸が刃具の間隔だけずれる状態で加工しても、位相が一致している状態と同じ加工結果になる。刃具の本数をTとした場合、位相指令値で指定した加工結果になる位相は、数1式より、以下のように表せる。
Figure JPOXMLDOC01-appb-M000003
 上記数3式より、数1式の位相指令値Rを、以下の数4式に示すように位相指令値RNEW(n)に置き換えることができる。
Figure JPOXMLDOC01-appb-M000004
 数4式で求められる加工可能な位相指令値RNEW(n)のうち、数2式で求められる位相合わせ前のワーク軸と工具軸の位相RCURRENTから位相合わせをするときの位相の変化量が最も少なくなる新しい位相指令値R′NEWを算出し、位相合わせ制御部20で使用する。
 位相の変化量は、例えば、ワーク軸と工具軸を自由に制御できる場合は、位相合わせ前と後の位相指令値の差が最も少ないときが、最も少なくなる。また、工具軸を一時的に減速して位相を変化させることしかできない場合は、位相RCURRENTを減少させていく方向にのみ変化させることができる。そのため、上記の方向で最も近い位相指令値が、位相の変化量を最も少なくすることができる。
[本開示の位相合わせの計算例]
 本開示の位相合わせを、実際の数値を用いて説明する。加工設定記憶部40は、刃具の本数T=3を記憶している。加工プログラムにおいて、回転比1:2、位相指令値R=60として指令する。位相合わせ開始前のワーク軸の現在位置X=90、工具軸の現在位置Y=330とする。図6は、ワークの現在位置X、工具の現在位置Y、工具本数Tの関係を示している。
 図6に示すように、ワークの現在位置Xはワーク軸の原点(図面最上部の矢印の指す位置)から反時計回りに90°の位置である。工具の現在位置Yは工具軸の原点から反時計回りに330°の位置である。
 位相合わせ前のワーク軸と工具軸の位相RCURRENTは、ワークの現在位置X、工具の現在位置Y、回転比1:2を数2式に代入して以下のように算出できる。
Figure JPOXMLDOC01-appb-M000005
 ワークの現在位置X、工具の現在位置Y、回転比1:2、位相指令値Rを数4式に代入すると加工可能な位相指令値RNEW(n)は以下のように算出できる。RNEW(n)の値は、刃具の本数だけ存在する。
Figure JPOXMLDOC01-appb-M000006
 位相の変化量は、位相合わせの方法やワーク軸と工具軸の最大回転数などの制限を考慮して求めるが、これらの制限がない場合には、RCURRENTに最も近いRNEW(n)の値が新しい位相指令値R′NEWとなる。位相合わせ制御部20は、新しい位相指令値R′NEWを用いて位相合わせを行う。
 次いで、図7を参照して、本開示の数値制御装置100の位相合わせ方法について説明する。加工プログラムを開始する前に、刃具の本数を設定する。ここでは刃具の本数T=3とする(ステップS1)。
 次いで、加工プログラムを開始する(ステップS2)。プログラム解析部41は、加工プログラムを解析し、まず、ワーク回転軸の回転を開始する(ステップS3)。さらに、プログラム解析部41は、ワークと工具の回転比P:Q=1:2、位相指令値R=60でポリゴン加工を開始する指令を解析する(ステップS4)。軸制御部30は、加工プログラムの指令に従い、ワーク軸と工具軸を回転させる。
 ワーク軸と工具軸がポリゴン加工の指定速度に到達すると(ステップS5)、新しい位相指令値R′NEWの算出を開始する(ステップS6)。
 新しい位相指令値R′NEWが決定すると、工具軸又はワーク軸を一時的に減速又は加速させて、新しい位相指令値R′NEWに位相を合わせる(ステップS7)。位相合わせが完了すると、ポリゴン加工による切削を行う(ステップS8)。
 図8を参照して、ステップS6の新しい位相指令値R′NEWの算出手順を説明する。新しい位相指令値の算出では、ワーク軸の現在位置Xと工具軸の現在位置Yを取得し(ステップS11)、位相合わせ前のワーク軸と工具軸の位相RCURRENTを算出する(ステップS12)。そして、加工可能位相算出部12は、刃具の本数Tを用いて、加工可能な位相指令値RNEW(n)を算出する(ステップS13)。RNEW(n)は刃具の本数T個ある。最適位相算出部13は、位相合わせの方法やワーク軸と工具軸の最大回転速度などの制限を考慮しながら、位相を変化させるときの変化量が最小になる新しい位相指令値R′NEWを選択する(ステップS14)。
 図9A及び図9Bは従来の位相合わせ、図10A~図10Cは本開示の位相合わせを示している。図9A及び図9B、ならびに図10A~図10Cは、共に、ワーク軸0度、工具軸195度のときの位相の変化量を示している。従来は加工時に指令された位相(位相指令値R)を基準に位相合わせを行っている。そのため、上記の条件では、図10Aに示すように、位相指令値は90度となる。
 ポリゴン加工では複数の刃具を有するため、工具軸の角度を刃具の間隔だけずらした位相で位相合わせを行っても問題はないため、適切な位相は刃具の数だけある。
 本開示では、図10Bに示すように、複数の位相から、適当な位相を選択し、位相合わせにかかる時間が最も短くなる(位相の変化量が最も少ない)ようにしている。図10Cの例では位相指令値を90度から210度に変更することで位相の変化量が少なくなる。
 以上説明したように本開示の数値制御装置100は、ポリゴン加工の位相合わせにおいて、位相合わせ前のワーク軸と工具軸の位相RCURRENTと、加工可能な位相指令値RNEW(n)を算出し、位相合わせの方法や最大回転数などの制限を考慮しながら、新しい位相指令値R′NEWを算出する。工具軸又はワーク軸の変化量が短くなり、位相合わせに要する時間が短くなる。
  100 数値制御装置
  111 CPU
  11  現在位相算出部
  12  加工可能位相算出部
  13  最適位相算出部
  20  位相合わせ制御部
  30  軸制御部
  40  加工設定記憶部
  41  プログラム解析部
  42  加工プログラム記憶部
  50  加工中データ記憶部

Claims (6)

  1.  複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、前記第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御装置であって、
     前記刃具の本数を記憶する加工設定記憶部と、
     位相合わせ前の回転している前記第1の軸と第2の軸との位相を算出する現在位相算出部と、
     加工プログラムで指定される位相、及び、前記加工プログラムで指定される位相から、前記複数の刃具の間隔だけ、前記第1の軸の角度をずらしたときの位相を算出する加工可能位相算出部と、
     前記加工可能位相算出部で算出した複数の位相の中から、位相を合わせるまでに掛かる時間が最も短くなる位相を求める最適位相算出部と、
     前記最適位相算出部で算出した位相に合うように前記第1の軸と第2の軸が回転するように制御する位相合わせ制御部と、
     を備える制御装置。
  2.  前記現在位相算出部は、前記第1の軸の現在位置と、第2の軸の現在位置と、前記加工プログラムで指令される回転比とを基に、前記第1の軸と第2の軸との位相合わせ前の位相を算出する、請求項1記載の制御装置。
  3.  前記加工可能位相算出部は、前記加工プログラムで指定される回転比と、前記加工プログラムで指定される位相指令値と、前記刃具の本数とを基に、加工が可能な位相を複数算出する、請求項1記載の制御装置。
  4.  前記最適位相算出部は、前記位相合わせ前の位相と、前記加工が可能な位相の差から、前記第1の軸と第2の軸との位相を変化させるのに必要な時間が最も短い最適位相を算出する、請求項3記載の制御装置。
  5.  複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、前記第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御システムであって、
     前記刃具の本数を記憶する加工設定記憶部と、
     位相合わせ前の回転している前記第1の軸と第2の軸との位相を算出する現在位相算出部と、
     加工プログラムで指定される位相、及び、前記加工プログラムで指定される位相から、前記複数の刃具の間隔だけ、前記第1の軸の角度をずらしたときの位相を算出する加工可能位相算出部と、
     前記加工可能位相算出部で算出した複数の位相の中から、位相を合わせるまでに掛かる時間が最も短くなる位相を求める最適位相算出部と、
     前記最適位相算出部で算出した位相に合うように前記第1の軸と第2の軸が回転するように制御する位相合わせ制御部と、
     を備える、制御システム。
  6.  複数の刃具を備えた工具を回転させる第1の軸と、ワークを回転させる第2の軸とを有し、前記第1の軸と第2の軸とを同時に回転させて、ポリゴン加工を行う工作機械を制御する制御方法であって、
     前記刃具の本数を記憶し、
     前記第1の軸の現在位置と、第2の軸の現在位置と、前記加工プログラムで指令される回転比とを基に、前記第1の軸と第2の軸との位相合わせ前の位相を算出し、
     前記加工プログラムで指定される回転比と、前記加工プログラムで指定される位相指令値と、前記刃具の本数とを基に、加工が可能な位相を複数算出し、
     前記位相合わせ前の位相と、前記加工が可能な位相の差から、前記第1の軸と第2の軸との位相を変化させるのに必要な時間が最も短い最適位相を算出し、
     前記最適位相を基準とし、前記第1の軸と前記第2の軸の位相合わせを行う、制御方法。
PCT/JP2021/012272 2020-03-26 2021-03-24 工作機械の制御装置、制御システム、及び制御方法 WO2021193728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180023539.7A CN115315327A (zh) 2020-03-26 2021-03-24 机床的控制装置、控制系统以及控制方法
DE112021001856.6T DE112021001856T5 (de) 2020-03-26 2021-03-24 Steuerung, Steuersystem und Steuerverfahren für eine Werkzeugmaschine
JP2022510602A JP7448637B2 (ja) 2020-03-26 2021-03-24 工作機械の制御装置、制御システム、及び制御方法
US17/906,977 US20230176539A1 (en) 2020-03-26 2021-03-24 Controller, control system, and control method of machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056665 2020-03-26
JP2020-056665 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193728A1 true WO2021193728A1 (ja) 2021-09-30

Family

ID=77892234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012272 WO2021193728A1 (ja) 2020-03-26 2021-03-24 工作機械の制御装置、制御システム、及び制御方法

Country Status (5)

Country Link
US (1) US20230176539A1 (ja)
JP (1) JP7448637B2 (ja)
CN (1) CN115315327A (ja)
DE (1) DE112021001856T5 (ja)
WO (1) WO2021193728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211307A (zh) * 2021-12-30 2022-03-22 綦江齿轮传动有限公司 一种变速器输入轴的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188103U (ja) * 1983-05-31 1984-12-13 三菱重工業株式会社 多角形加工装置
JPS6399114A (ja) * 1986-10-16 1988-04-30 Fanuc Ltd ポリゴン加工制御装置
JPS63105802A (ja) * 1986-10-22 1988-05-11 Okuma Mach Works Ltd Nc旋盤における多面体のフラツトタ−ニング装置
JPH02181805A (ja) * 1989-01-09 1990-07-16 Fanuc Ltd 同期パルス補間方式
JPH03109701U (ja) * 1990-02-28 1991-11-11
JPH04164557A (ja) * 1990-10-29 1992-06-10 Fanuc Ltd ポリゴン加工方法
US6298758B1 (en) * 2000-05-19 2001-10-09 Hsuan-Lung Wu Lathe with a polygon machining device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080120B2 (ja) 2007-04-20 2012-11-21 株式会社ツガミ ポリゴン加工装置及びポリゴン加工方法
JP6049519B2 (ja) 2013-03-28 2016-12-21 シチズン時計株式会社 ポリゴン加工装置およびポリゴン加工方法
JP6157171B2 (ja) 2013-03-28 2017-07-05 シチズン時計株式会社 ポリゴン加工装置およびポリゴン加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188103U (ja) * 1983-05-31 1984-12-13 三菱重工業株式会社 多角形加工装置
JPS6399114A (ja) * 1986-10-16 1988-04-30 Fanuc Ltd ポリゴン加工制御装置
JPS63105802A (ja) * 1986-10-22 1988-05-11 Okuma Mach Works Ltd Nc旋盤における多面体のフラツトタ−ニング装置
JPH02181805A (ja) * 1989-01-09 1990-07-16 Fanuc Ltd 同期パルス補間方式
JPH03109701U (ja) * 1990-02-28 1991-11-11
JPH04164557A (ja) * 1990-10-29 1992-06-10 Fanuc Ltd ポリゴン加工方法
US6298758B1 (en) * 2000-05-19 2001-10-09 Hsuan-Lung Wu Lathe with a polygon machining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211307A (zh) * 2021-12-30 2022-03-22 綦江齿轮传动有限公司 一种变速器输入轴的加工方法

Also Published As

Publication number Publication date
DE112021001856T5 (de) 2023-01-12
US20230176539A1 (en) 2023-06-08
JPWO2021193728A1 (ja) 2021-09-30
CN115315327A (zh) 2022-11-08
JP7448637B2 (ja) 2024-03-12

Similar Documents

Publication Publication Date Title
US5822212A (en) Machining load monitoring system
US20110046773A1 (en) Tool vector display apparatus for a machine tool with rotational axes
JPH01252340A (ja) 力センサを用いた加工制御装置
US9122265B2 (en) Numerical control device for drilling and tapping with two synchronized spindles
DE112008003859T5 (de) Numerisches Steuerverfahren und numerische Steuervorrichtung
US8630732B2 (en) Method for avoiding an unwanted collision between a tool and a workpiece in a machine tool
JP7364396B2 (ja) 工作機械の制御装置および制御システム
US9631632B2 (en) Impeller having blade having blade surface made up of line elements and method of machining the impeller
WO2021193728A1 (ja) 工作機械の制御装置、制御システム、及び制御方法
JPS62237504A (ja) 数値制御装置
WO1988002676A1 (en) Polygon manufacturing tool
JPWO2004087359A1 (ja) ネジ切り制御方法及びその装置
JP3959482B2 (ja) 数値制御方法及びその装置
JPH11202926A (ja) 数値制御における送り速度制御方法および装置
JPS58117007A (ja) 数値制御旋盤における割り込み制御方法
WO2023162001A1 (ja) 加工面推定装置およびコンピュータ読み取り可能な記憶媒体
JP7440614B2 (ja) プログラム解析装置及び制御システム
JP6640822B2 (ja) 数値制御装置
WO2023012990A1 (ja) 数値制御装置
WO2021187498A1 (ja) 速度調整支援装置
JP6871221B2 (ja) 数値制御装置
WO2021182305A1 (ja) 数値制御装置
JP2617931B2 (ja) ワーク加工装置の加工速度設定方法
JP2006072909A (ja) 数値制御装置
CN117813173A (zh) 加工辅助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510602

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21775035

Country of ref document: EP

Kind code of ref document: A1