WO2023007662A1 - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
WO2023007662A1
WO2023007662A1 PCT/JP2021/028167 JP2021028167W WO2023007662A1 WO 2023007662 A1 WO2023007662 A1 WO 2023007662A1 JP 2021028167 W JP2021028167 W JP 2021028167W WO 2023007662 A1 WO2023007662 A1 WO 2023007662A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
polygon
rotary tool
rotation axis
workpiece
Prior art date
Application number
PCT/JP2021/028167
Other languages
English (en)
French (fr)
Inventor
高史 三好
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/028167 priority Critical patent/WO2023007662A1/ja
Priority to JP2023537852A priority patent/JPWO2023007662A1/ja
Priority to DE112021007701.5T priority patent/DE112021007701T5/de
Priority to CN202180100767.XA priority patent/CN117651918A/zh
Publication of WO2023007662A1 publication Critical patent/WO2023007662A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/24Making square or polygonal ends on workpieces, e.g. key studs on tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2265/00Details of general geometric configurations
    • B23C2265/12Eccentric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45236Facing, polygon working, polyhedron machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49361Workpiece and tool have each own rotation speed

Definitions

  • the present disclosure relates to a numerical controller for machine tools.
  • An object of the present disclosure is to provide a numerical control device capable of processing a polygon in a short time at a position eccentric from the rotation center of a work.
  • a numerical control device rotates the work around the rotation axis of the work, and rotates the rotary tool around the rotation axis of the rotary tool parallel to the rotation axis of the work at a constant rate with respect to the rotation speed of the work.
  • a second control unit that rotates the rotary tool at a speed, and a positional relationship between the central axis of the polygon that is parallel to the rotary axis of the workpiece and passes through a predetermined position of the workpiece and the rotary axis of the rotary tool is constant.
  • a third control unit that controls the relative position of the rotation axis of the rotary tool and the center axis of the polygon.
  • FIG. 4 is a diagram showing an example of a trajectory of a cutting edge of a rotary tool with respect to a work;
  • FIG. 4 is a diagram showing an example of a trajectory of a cutting edge of a rotary tool with respect to a work;
  • It is a figure explaining an example of the function of a numerical controller. It is a figure explaining an initial state.
  • FIG. 4 is a diagram for explaining the positional relationship between the rotation axis of the rotary tool and the center axis of the polygon;
  • FIG. 4 is a diagram for explaining the positional relationship between the rotation axis of the rotary tool and the center axis of the polygon;
  • FIG. 4 is a diagram showing an example of the flow of processing when a numerical control device executes polygon processing;
  • FIG. 4 is a diagram for explaining an example of the topology of polygons;
  • FIG. 4 is a diagram for explaining an example of the topology of polygons;
  • FIG. 4 is a diagram for explaining an example of the topology of polygons;
  • It is a figure explaining an example of the function of a numerical controller. It is a figure which shows an example of an initial state. It is a figure which shows an example of an initial state.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of a machine tool equipped with a numerical controller.
  • Machine tool 1 includes a lathe, a machining center, and a multitasking machine.
  • the machine tool 1 includes a numerical controller 2, an input/output device 3, a servo amplifier 4, a tool rotating servo motor 5, an X-axis servo motor 6, a Y-axis servo motor 7, and a Z-axis servo motor.
  • a motor 8, a spindle amplifier 9, a spindle motor 10, and an auxiliary device 11 are provided.
  • the numerical controller 2 is a device that controls the machine tool 1 as a whole.
  • the numerical controller 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 and a nonvolatile memory 205 .
  • the hardware processor 201 is a processor that controls the entire numerical controller 2 according to the system program.
  • a hardware processor 201 reads a system program or the like stored in a ROM 203 via a bus 202 and performs various processes based on the system program.
  • the hardware processor 201 controls the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, the Z-axis servomotor 8, and the spindle motor 10 based on the machining program.
  • the hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the hardware processor 201 analyzes, for example, a machining program, and analyzes the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, the Z-axis servomotor 8, and the spindle It outputs a control command to the motor 10 .
  • a bus 202 is a communication path that connects each piece of hardware in the numerical controller 2 to each other. Each piece of hardware within the numerical controller 2 exchanges data via the bus 202 .
  • the ROM 203 is a storage device that stores system programs and the like for controlling the numerical controller 2 as a whole.
  • a ROM 203 is a computer-readable storage medium.
  • the RAM 204 is a storage device that temporarily stores various data.
  • the RAM 204 functions as a work area for the hardware processor 201 to process various data.
  • the nonvolatile memory 205 is a storage device that retains data even when the machine tool 1 is powered off and power is not supplied to the numerical controller 2 .
  • the nonvolatile memory 205 stores, for example, machining programs and various parameters.
  • Non-volatile memory 205 is a computer-readable storage medium.
  • the nonvolatile memory 205 is composed of, for example, an SSD (Solid State Drive).
  • the numerical controller 2 further comprises an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • an interface 206 an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • the interface 206 connects the bus 202 and the input/output device 3 .
  • the interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
  • the input/output device 3 is a device that receives various data via the interface 206 and displays various data. The input/output device 3 also accepts input of various data and sends the various data to the hardware processor 201 via the interface 206 .
  • the input/output device 3 is, for example, a touch panel.
  • the touch panel is, for example, a capacitive touch panel. Note that the touch panel is not limited to the capacitive type, and may be a touch panel of another type.
  • the input/output device 3 is installed, for example, on a control panel (not shown) in which the numerical control device 2 is stored.
  • the axis control circuit 207 is a circuit that controls the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, and the Z-axis servomotor 8.
  • the axis control circuit 207 receives a control command from the hardware processor 201 and drives the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, and the Z-axis servomotor 8.
  • Various commands are output to the servo amplifier 4 .
  • the axis control circuit 207 sends to the servo amplifier 4 torque commands for controlling the torques of the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, and the Z-axis servomotor 8, for example.
  • the servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the tool rotating servomotor 5, the X-axis servomotor 6, the Y-axis servomotor 7, and the Z-axis servomotor 8.
  • the tool rotating servomotor 5 is driven by being supplied with current from the servo amplifier 4 .
  • the tool rotating servomotor 5 is connected to, for example, the shaft of a rotary tool installed on the tool post.
  • the rotary tool is rotated by driving the tool rotating servomotor 5 .
  • a rotary tool is, for example, a polygon cutter.
  • the X-axis servomotor 6 is driven by being supplied with current from the servo amplifier 4 .
  • the X-axis servomotor 6 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the X-axis direction.
  • the X-axis servomotor 6 may incorporate a speed detector (not shown) for detecting the feed speed of the X-axis.
  • the Y-axis servomotor 7 is driven by being supplied with current from the servo amplifier 4 .
  • the Y-axis servomotor 7 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the Y-axis direction.
  • the Y-axis servomotor 7 may incorporate a speed detector (not shown) for detecting the Y-axis feed speed.
  • the Z-axis servomotor 8 is driven by being supplied with current from the servo amplifier 4 .
  • the Z-axis servomotor 8 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the Z-axis direction.
  • the Z-axis servomotor 8 may incorporate a speed detector (not shown) for detecting the Z-axis feed speed.
  • a spindle control circuit 208 is a circuit for controlling the spindle motor 10 .
  • a spindle control circuit 208 receives a control command from the hardware processor 201 and outputs a command for driving the spindle motor 10 to the spindle amplifier 9 .
  • the spindle control circuit 208 for example, sends a torque command for controlling the torque of the spindle motor 10 to the spindle amplifier 9 .
  • the spindle amplifier 9 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 10 .
  • the spindle motor 10 is driven by being supplied with current from the spindle amplifier 9 .
  • a spindle motor 10 is connected to the main shaft and rotates the main shaft.
  • the spindle motor 10 has an angle detector (not shown) that detects the rotation angle of the main shaft.
  • the PLC 209 is a device that executes ladder programs and controls the auxiliary equipment 11 .
  • PLC 209 sends commands to auxiliary device 11 via I/O unit 210 .
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 11 .
  • the I/O unit 210 sends commands received from the PLC 209 to the auxiliary equipment 11 .
  • the auxiliary device 11 is a device that is installed in the machine tool 1 and performs an auxiliary operation in the machine tool 1.
  • the auxiliary equipment 11 operates based on commands received from the I/O unit 210 .
  • the auxiliary device 11 may be a device installed around the machine tool 1 .
  • the auxiliary device 11 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door driving device.
  • the numerical controller 2 executes polygon machining by controlling a tool rotating servomotor 5, an X-axis servomotor 6, a Y-axis servomotor 7, a Z-axis servomotor 8, and a spindle motor .
  • Polygon machining is machining for forming the cross-sectional shape of a workpiece into a polygonal shape.
  • the cross section is a cross section perpendicular to the rotation axis of the work.
  • the numerical controller 2 particularly performs processing to form polygons at positions eccentric from the rotation axis of the workpiece.
  • FIG. 2 is a diagram explaining an example of a polygon formed at a position eccentric from the rotation axis of the work.
  • the rotation axis Rw of the work is the center of rotation of the work. That is, the central axis Cp of the polygon is located at a position shifted from the rotation axis Rw of the work, in other words, at a position different from the rotation axis Rw of the work.
  • the central axis Cw of the work and the rotation axis Rw of the work match, but they do not necessarily have to match.
  • the central axis Cw of the workpiece does not coincide with the rotation axis Rw of the workpiece.
  • the numerical controller 2 rotates the workpiece W and the rotary tool at a constant ratio, and maintains the relative position between the central axis Cp of the polygon and the rotary axis Rt of the rotary tool. , a polygon is machined on the surface of the work W.
  • FIG. For example, when the ratio of the rotation speed of the workpiece W and the rotation speed of the rotary tool is 1:2, the relative trajectory of the cutting edge of the rotary tool with respect to the workpiece W is represented by Equation 1 below.
  • Xn and Yn are the trajectories of the cutting edge in an orthogonal coordinate system with the central axis Cp of the polygon as the origin, ⁇ is the rotational speed of the workpiece W, and l is the distance between the central axis Cp of the polygon and the rotational axis of the rotary tool.
  • r is the radius of the rotary tool
  • N is the number of blades of the rotary tool
  • the cutting edge number is a number assigned to each cutting edge in order from 1 in order to identify each cutting edge of the rotary tool T. As shown in FIG.
  • FIG. 4 shows the trajectory of the cutting edge of the rotary tool with respect to the workpiece W when the ratio of the rotation speed of the workpiece W to the rotation speed of the rotary tool is 1:2 and polygon machining is performed with a two-bladed rotary tool. It is a figure which shows. In this example, the rotary tool T rotates twice while the work W rotates once. Further, the trajectory of each blade of the rotary tool T draws an ellipse, and the major axes of the ellipses are orthogonal to each other. Therefore, as shown in FIG. 4, a polygon P having four faces is formed on the workpiece W. As shown in FIG.
  • FIG. 5 shows the rotation speed of the rotary tool T with respect to the workpiece W when the ratio of the rotation speed of the workpiece W to the rotation speed of the rotary tool T is 1:2 and polygon machining is performed with the rotary tool T having three blades.
  • FIG. 4 is a diagram showing a trajectory of a cutting edge; In this example, the rotary tool T rotates twice while the work W rotates once. The trajectory of each blade of the rotary tool T draws an ellipse, and the major axes of the ellipses intersect each other at an angle of 120°. Therefore, as shown in FIG. 5, a polygon P having six faces is formed on the workpiece W. As shown in FIG.
  • the processing in which the ratio of the rotational speed of the workpiece W to the rotational speed of the rotary tool T is 1:2 has been described. Polygons are formed when the product of the number of teeth is an integer greater than or equal to 3.
  • FIG. 6 is a block diagram showing an example of functions of the numerical controller 2.
  • the numerical controller 2 includes a first controller 21 , a second controller 22 and a third controller 23 .
  • the first control unit 21 , the second control unit 22 , and the third control unit 23 for example, the hardware processor 201 executes the system program stored in the ROM 203 and the processing stored in the nonvolatile memory 205 . It is realized by executing arithmetic processing using a program and various data.
  • the first control unit 21 controls the spindle motor 10 to move the central axis Cp of the polygon to the initial position before polygon processing is started.
  • the second control unit 22 controls the tool rotation servomotor 5 to move the blade of the rotary tool T to the initial position before the machining of the polygon P is started. In other words, the second controller 22 matches the phase of the rotary tool T to the initial phase.
  • the third control unit 23 controls the X-axis servomotor 6 and the Y-axis servomotor 7 (Fig. 6) is controlled to move the rotation axis Rt of the rotary tool to the initial position.
  • the rotation axis Rt of the rotary tool and the rotation axis Rw of the workpiece may each be driven by the spindle motor 10, or may be driven by a servomotor.
  • the state in which the central axis Cp of the polygon is arranged at the initial position, the state in which the phase of the rotary tool T is the initial phase, and the central axis Cp of the polygon and the rotation axis of the rotary tool A state in which the positional relationship with Rt is a predetermined positional relationship is called an initial state.
  • FIG. 7 is a diagram explaining the initial state.
  • the initial state will be explained using a two-dimensional orthogonal coordinate system in which the rotation axis Rw of the work is the origin, the right direction is the positive direction of the X axis, and the upward direction is the positive direction of the Y axis.
  • the initial position of the central axis Cp of the polygon is, for example, the position where the X coordinate is 0 and the Y coordinate is k.
  • k is the distance between the rotation axis Rw of the workpiece and the center axis Cp of the polygon.
  • the initial phase of the rotary tool T is, for example, a phase in which one blade faces the central axis Cp of the polygon.
  • the position where the central axis Cp of the polygon and the rotation axis Rt of the rotary tool have a predetermined positional relationship is, for example, the position where the X coordinate of the rotary axis Rt of the rotary tool is 0 and the Y coordinate is k+l.
  • the position where the central axis Cp of the polygon and the rotational axis Rt of the rotary tool have a predetermined positional relationship is such that the initial position of the central axis Cp of the polygon is the initial position of the rotational axis Rw of the workpiece and the rotational axis Rt of the rotary tool. is the position that is placed on the line segment connecting the initial position of Note that l is a value obtained by multiplying the sum of the diameter 2r of the rotary tool T and the distance a between the pair of faces of the polygon P by 1/2.
  • the first control unit 21 controls the spindle motor 10, for example. By doing so, the work W is rotated around the rotation axis Rw of the work.
  • the rotation axis Rw of the work is, for example, the central axis of the main shaft.
  • the rotation axis Rw of the work may be the center of the axis connected to the rotary table.
  • the first control unit 21 rotates the main shaft in a state where the work W is gripped by a chuck connected to the main shaft, the first control unit 21 moves the work W around the rotation axis Rw of the work. rotate.
  • the second control unit 22 rotates the rotary tool T at a rotational speed of a constant ratio to the rotational speed of the workpiece W, centering on the rotational axis Rt of the rotary tool parallel to the rotational axis Rw of the workpiece.
  • the second control unit 22 rotates the rotary tool T at a speed twice as fast as that of the workpiece W, for example. That is, the second control unit 22 rotates the rotary tool T so that the rotation speed of the workpiece W and the rotation speed of the rotary tool T are in a ratio of 1:2.
  • a rotary tool T is used in which two blades are arranged at positions separated from each other by 180° around the rotation axis Rt of the rotary tool.
  • a rotary tool T in which three blades are arranged at positions separated from each other by 120° around the rotation axis Rt of the rotary tool T may be used.
  • the ratio between the rotational speed of the workpiece W and the rotational speed of the rotary tool T and the number of blades of the rotary tool T are not limited to these examples.
  • the ratio between the rotational speed of the work W and the rotational speed of the rotary tool T and the number of blades of the rotary tool T are determined according to the shape of the polygon P to be formed.
  • the third control unit 23 rotates the rotating tool so that the positional relationship between the rotating axis Rt of the rotating tool and the central axis Cp of the polygon parallel to the rotating axis Rw of the workpiece and passing through a predetermined position of the workpiece W is constant.
  • the relative positions of the rotational axis Rt of the polygon and the central axis Cp of the polygon are controlled.
  • the third control unit 23 controls the relative position between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon by controlling the position of the rotation axis Rt of the rotary tool.
  • the position of the rotation axis Rt of the rotary tool may be fixed, and the position of the rotation axis Rw of the workpiece may be movable.
  • the third control unit 23 controls the positional relationship between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon by controlling the position of the rotation axis Rw of the work.
  • FIG. 8 is a diagram explaining the positional relationship between the rotation axis Rt of the rotary tool and the central axis Cp of the polygon.
  • the X coordinate of the center axis Cp of the polygon and the X coordinate of the rotation axis Rt of the rotary tool are always the same.
  • the Y coordinate of the rotation axis Rt of the rotary tool is always a value obtained by adding 1 to the Y coordinate of the center axis Cp of the polygon. That is, if the trajectory along which the central axis Cp of the polygon moves is (Xt, Yt), the trajectory along which the rotation axis Rt of the rotary tool moves can be expressed as (Xt, Yt+1).
  • the central coordinates of the trajectory along which the rotation axis Rt of the rotary tool moves are (0, l).
  • the third control unit 23 controls the relative positions of the rotation axis Rt of the rotary tool and the central axis Cp of the polygon so that the positional relationship between the central axis Cp of the polygon and the rotation axis Rt of the rotary tool is constant.
  • the polygon P is machined.
  • the polygon P is machined around the central axis Cp of the polygon passing through a predetermined position k apart from the rotation axis Rw of the workpiece.
  • the central axis Cp of the polygon moves on the circumference of a circle A1 of radius k centered on the rotation axis Rw of the work.
  • the third control unit 23 moves the rotation axis Rt of the rotary tool along the circumference of the circle A2 of radius k so that the relative position between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon is constant.
  • the third control unit 23 controls the rotation angle ⁇ of the work rotation axis Rw and the distance between the work rotation axis Rw and the polygon center axis Cp. Cp may be located.
  • the rotation angle ⁇ of the workpiece rotation axis Rw is defined by the portion of the X-axis showing a positive value and the line segment connecting the workpiece rotation axis Rw and the origin in an orthogonal coordinate system having the workpiece rotation axis Rw as the origin. is the angle between
  • the third control unit 23 calculates the rotation angle ⁇ of the rotation axis Rw of the work based on information detected by an angle detector installed in the spindle motor 10, for example.
  • the third control unit 23 also reads, for example, a value indicating the distance between the rotation axis Rw of the workpiece and the center axis Cp of the polygon from the machining program. Thereby, the third control unit 23 specifies the position of the center axis Cp of the polygon with respect to the position of the rotation axis Rw of the work.
  • the third control unit 23 may use a feedback value of the rotation angle ⁇ of the rotation axis Rw of the work to control the relative position between the central axis Cp of the polygon and the rotation axis Rt of the rotary tool.
  • the third control unit 23 rotates the rotation axis Rt of the rotary tool until the positional relationship between the center axis Cp of the polygon and the rotation axis Rt of the rotary tool reaches the initial positional relationship.
  • the cutting feed may be used to approach the center axis Cp of the polygon.
  • the third control unit 23 moves the rotary tool T, for example, to the workpiece W so that the rotary tool T and a part of the workpiece W do not come into contact when moving the position of the rotary axis Rt of the rotary tool to the initial position. It may be positioned at a position a predetermined distance away from one end of W in the Z-axis direction. In this case, the polygon P is machined by moving the rotary tool T in the Z-axis direction.
  • FIG. 9 is a diagram showing an example of the flow of processing when the numerical controller 2 executes polygon processing.
  • the first control unit 21 moves the central axis Cp of the polygon to a predetermined initial position (step S1).
  • the second control unit 22 adjusts the phase of the rotary tool T to a predetermined initial phase (step S2).
  • the third control unit 23 moves the rotation axis Rt of the rotary tool to the initial position (step S3).
  • step S4 polygon processing is executed (step S4), and when the polygon processing is completed, the processing ends.
  • the first controller 21 rotates the workpiece W
  • the second controller 22 rotates the rotary tool T.
  • the first control unit 21 and the second control unit 22 rotate the workpiece W and the rotary tool T so that the rotation speed of the workpiece W and the rotation speed of the rotary tool T are at a constant ratio.
  • the third control unit 23 controls the position of the rotation axis Rt of the rotary tool so that the relative position between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon is constant. Furthermore, the rotary tool T is fed, for example, in the negative direction or the positive direction of the Z-axis. As a result, for example, a polygon P having a surface extending in the horizontal direction is formed with the work W placed at the initial position.
  • the numerical controller 2 includes the first control unit 21 that rotates the work W about the rotation axis Rw of the work, and the rotation axis Rt of the rotary tool that is parallel to the rotation axis Rw of the work. , a second control unit 22 that rotates the rotary tool T at a rotational speed that is a constant ratio to the rotational speed of the workpiece W; A third control unit 23 that controls the relative position between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon so that the positional relationship between the axis Cp and the rotation axis Rt of the rotary tool is constant. Therefore, the numerical controller 2 can process the polygon P at a position eccentric from the rotation center of the work W in a short time.
  • the third control unit 23 controls the rotation angle ⁇ of the work rotation axis Rw and the distance between the work rotation axis Rw and the polygon central axis Cp to determine the position of the polygon relative to the position of the work rotation axis Rw.
  • the position of the central axis Cp is specified, and the polygon is rotated so that the initial position of the central axis Cp is arranged on the line connecting the initial position of the rotary axis Rw of the workpiece and the initial position of the rotary axis Rt of the rotary tool. Determine the initial position of the rotation axis Rt of the tool.
  • the third control unit 23 uses the feedback value of the rotation angle ⁇ of the rotation axis Rw of the work to control the relative position between the central axis Cp of the polygon and the rotation axis Rt of the rotary tool. Thereby, the third control unit 23 can accurately control the relative position between the center axis Cp of the polygon and the rotation axis Rt of the rotary tool. As a result, the numerical controller 2 can process the polygon P with high precision.
  • the third control unit 23 controls the relative position between the rotation axis Rt of the rotary tool and the center axis Cp of the polygon by controlling the position of the rotation axis Rt of the rotary tool.
  • the position of the rotation axis Rt of the rotary tool may be fixed and the position of the rotation axis Rw of the workpiece may be movable.
  • the third control unit 23 controls the relative position of the rotation axis Rt of the rotary tool and the central axis Cp of the polygon by controlling the position of the rotation axis Rw of the work.
  • the third control unit 23 also controls the workpiece so that the initial position of the central axis Cp of the polygon is arranged on the line connecting the initial position of the rotary axis Rw of the workpiece and the position of the rotary axis Rt of the rotary tool. determines the initial position of the rotation axis Rw.
  • the X-axis servomotor 6 and the Y-axis servomotor 7 should be able to freely move the headstock in the XY plane. good.
  • the third control unit 23 controls both the position of the rotation axis Rw of the workpiece and the position of the rotation axis Rt of the rotary tool so that the relative positions of the center axis Cp of the polygon and the rotation axis Rt of the rotary tool are constant. may be controlled.
  • the numerical control device 2 further includes a setting section for setting the phase of the polygon P formed around the central axis Cp of the polygon, and based on the phase set by the setting section, the third control section 23 , the relative positions of the rotation axis Rt of the rotary tool and the central axis Cp of the polygon may be determined.
  • FIG. 10A is a diagram explaining an example of the phase of the polygon P.
  • FIG. 10A When the setting unit sets the phase to 0° and the polygon P is machined by the rotary tool T with two blades, the polygon P shown in FIG. 10A is formed. That is, a quadrangular polygon P having horizontal and vertical faces is formed with the central axis Cp of the polygon on the Y-axis.
  • the phase set by the setting unit is not limited to these values, and may be any value.
  • FIG. 11A is a diagram explaining an example of the phase of the polygon P.
  • FIG. 11A When the setting unit sets the phase to 0° and the polygon P is machined by the three-bladed rotary tool T, the polygon P shown in FIG. 11A is formed. That is, a hexagonal polygon P having a horizontal surface is formed with the central axis Cp of the polygon on the Y axis.
  • the setting unit sets the phase to 120° and the polygon P is processed by the rotary tool T with three blades, the polygon P shown in FIG. 11B is formed. That is, a hexagonal polygon P having a surface inclined by 120° with respect to the horizontal plane is formed with the central axis Cp of the polygon arranged on the Y-axis.
  • FIG. 12 is a diagram showing an example of functions of the numerical controller 2 having a setting unit. It should be noted that descriptions of the same functions as those of the numerical controller 2 shown in FIG. 6 will be omitted here.
  • the setting unit 24 sets the phase of the polygon P formed on the workpiece W.
  • the setting unit 24 determines the phase of the polygon P based on the input value input from the input/output device 3, for example.
  • the first control unit 21 moves the central axis Cp of the polygon to a predetermined initial position before processing of the polygon P is started.
  • the second control unit 22 determines the initial phase of the rotary tool T so that, for example, one blade faces the central axis Cp of the polygon before the machining of the polygon P is started.
  • the third control unit 23 adjusts the rotational axis of the rotary tool so that the central axis Cp of the polygon and the rotational axis Rt of the rotary tool have a predetermined positional relationship before the machining of the polygon P is started. Move Rt to the initial position.
  • FIG. 13 is a diagram showing an example of the initial state of the central axis Cp of the polygon, the position of the rotational axis Rt of the rotary tool, and the phase of the rotary tool T.
  • the initial position of the central axis Cp of the polygon is, for example, the position where the X coordinate is 0 and the Y coordinate is k.
  • the third control unit 23 controls the rotation of the polygon center axis Cp and the rotating tool at a position diagonally above 45° from the position of the center axis Cp of the polygon.
  • a position where the distance from the axis Rt is l is determined as the initial position.
  • l is a value obtained by multiplying the sum of the diameter of the rotary tool T and the distance between the pair of faces of the polygon P by 1/2.
  • the second control unit 22 determines the initial phase of the rotary tool T to be a phase in which the cutting edge of one blade faces obliquely downward at 45 degrees.
  • the third control unit 23 controls the position of the rotation axis Rt of the rotary tool so that the relative position between the central axis Cp of the polygon and the rotation axis Rt of the rotary tool is constant while the polygon P is being processed. to control. As a result, the polygon P having a shape reflecting the phase of the polygon P set by the setting unit 24 is processed.
  • the numerical controller 2 includes a setting unit 24 for setting the phase of the polygon P formed around the central axis Cp of the polygon. may determine the initial phase of the rotary tool T.
  • FIG. 14 is a diagram showing an example of the initial state of the central axis Cp of the polygon, the position of the rotary axis Rt of the rotary tool, and the phase of the rotary tool T.
  • the first control unit 21 moves the central axis Cp of the polygon to a predetermined initial position before processing of the polygon P is started.
  • the initial position of the central axis Cp of the polygon is, for example, the position where the X coordinate is 0 and the Y coordinate is k.
  • the third control unit 23 moves the rotation axis Rt of the rotary tool to the initial position before machining of the polygon P is started.
  • the initial position of the rotation axis Rt of the rotary tool is, for example, a position where the X coordinate is 0 and the Y coordinate is k+l.
  • the second control unit 22 rotates the rotary tool T so that the rotary tool T is in the initial phase before the machining of the polygon P is started.
  • the second control unit 22 determines the initial position of the blade of the rotary tool T based on the value indicating the phase of the polygon P set by the setting unit 24 .
  • the setting unit 24 sets the phase to 45°.
  • the second control unit 22 determines the initial position of the blade of the rotary tool T to a position where the cutting edge of one blade faces the horizontal direction.
  • the third control unit 23 controls the position of the rotation axis Rt of the rotary tool so that the relative position between the central axis Cp of the polygon and the rotation axis Rt of the rotary tool is constant while the polygon P is being processed. to control. As a result, the polygon P having a shape reflecting the phase of the polygon P set by the setting unit 24 is processed.
  • the numerical controller 2 determines the position of the rotation axis Rt of the rotary tool or the initial phase of the rotary tool T based on the value indicating the phase of the polygon P set by the setting unit 24. Both the position of the rotation axis Rt of the rotary tool and the initial phase of the rotary tool T may be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

数値制御装置が、ワークの回転軸を中心にワークを回転させる第1の制御部と、ワークの回転軸に平行な回転工具の回転軸を中心に、ワークの回転速度に対して一定比率の回転速度で回転工具を回転させる第2の制御部と、ワークの回転軸に平行であってワークの所定の位置を通るポリゴンの中心軸と回転工具の回転軸との位置関係が一定となるように回転工具の回転軸とポリゴンの中心軸の相対位置を制御する第3の制御部と、を備える。

Description

数値制御装置
 本開示は、工作機械の数値制御装置に関する。
 従来、ポリゴン加工用工具(以下、回転工具という。)とワークとを同期して回転させることによってワーク表面にポリゴンを加工する技術が知られている(例えば、特許文献1)。この技術を利用することによって、フライスで加工する時間よりも短時間でポリゴンを加工することができる。
特開2021-43732号公報
 しかし、従来の技術では、ワークの回転中心から偏心した位置にポリゴンを加工することはできない。したがって、ワークの回転中心から偏心した位置に短時間でポリゴンを加工する技術が望まれている。
 本開示は、ワークの回転中心から偏心した位置に短時間でポリゴンを加工することが可能な数値制御装置を提供すること目的とする。
 数値制御装置が、ワークの回転軸を中心にワークを回転させる第1の制御部と、ワークの回転軸に平行な回転工具の回転軸を中心に、ワークの回転速度に対して一定比率の回転速度で回転工具を回転させる第2の制御部と、ワークの回転軸に平行であってワークの所定の位置を通るポリゴンの中心軸と回転工具の回転軸との位置関係が一定となるように回転工具の回転軸とポリゴンの中心軸の相対位置を制御する第3の制御部と、を備える。
 本開示の一態様により、ワークの回転中心から偏心した位置に短時間でポリゴンを加工することが可能となる。
工作機械のハードウェア構成の一例を示すブロック図である。 ポリゴンの一例を説明する図である。 ポリゴンの一例を説明する図である。 ワークに対する回転工具の刃先の軌跡の一例を示す図である。 ワークに対する回転工具の刃先の軌跡の一例を示す図である。 数値制御装置の機能の一例を説明する図である。 初期状態について説明する図である。 回転工具の回転軸とポリゴンの中心軸との位置関係を説明する図である。 数値制御装置がポリゴン加工を実行する際の処理の流れの一例を示す図である。 ポリゴンの位相の一例について説明する図である。 ポリゴンの位相の一例について説明する図である。 ポリゴンの位相の一例について説明する図である。 ポリゴンの位相の一例について説明する図である。 数値制御装置の機能の一例を説明する図である。 初期状態の一例を示す図である。 初期状態の一例を示す図である。
 以下、本開示の実施形態について図面を用いて説明する。なお、以下の実施形態で説明する特徴のすべての組み合わせが課題解決に必ずしも必要であるとは限らない。また、必要以上の詳細な説明を省略する場合がある。また、以下の実施形態の説明、および図面は、当業者が本開示を十分に理解するために提供されるものであり、特許請求の範囲を限定することを意図していない。
 図1は、数値制御装置を備える工作機械のハードウェア構成の一例を示すブロック図である。工作機械1は、旋盤、マシニングセンタおよび複合加工機を含む。
 工作機械1は、数値制御装置2と、入出力装置3と、サーボアンプ4と、工具回転用サーボモータ5と、X軸用サーボモータ6と、Y軸用サーボモータ7と、Z軸用サーボモータ8と、スピンドルアンプ9と、スピンドルモータ10と、補助機器11とを備える。
 数値制御装置2は、工作機械1全体を制御する装置である。数値制御装置2は、ハードウェアプロセッサ201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備えている。
 ハードウェアプロセッサ201は、システムプログラムに従って数値制御装置2全体を制御するプロセッサである。ハードウェアプロセッサ201は、バス202を介してROM203に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて各種処理を行う。ハードウェアプロセッサ201は、加工プログラムに基づいて、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、Z軸用サーボモータ8、およびスピンドルモータ10を制御する。ハードウェアプロセッサ201は、例えば、CPU(Central Processing Unit)、または電子回路である。
 ハードウェアプロセッサ201は、制御周期ごとに、例えば、加工プログラムの解析、ならびに、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、Z軸用サーボモータ8、およびスピンドルモータ10に対する制御指令の出力を行う。
 バス202は、数値制御装置2内の各ハードウェアを互いに接続する通信路である。数値制御装置2内の各ハードウェアはバス202を介してデータをやり取りする。
 ROM203は、数値制御装置2全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、ハードウェアプロセッサ201が各種データを処理するための作業領域として機能する。
 不揮発性メモリ205は、工作機械1の電源が切られ、数値制御装置2に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、加工プログラム、および各種パラメータを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、SSD(Solid State Drive)で構成される。
 数値制御装置2は、さらに、インタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210とを備える。
 インタフェース206は、バス202と入出力装置3とを接続する。インタフェース206は、例えば、ハードウェアプロセッサ201が処理した各種データを入出力装置3に送る。
 入出力装置3は、インタフェース206を介して各種データを受け、各種データを表示する装置である。また、入出力装置3は、各種データの入力を受け付けてインタフェース206を介して各種データをハードウェアプロセッサ201に送る。入出力装置3は、例えば、タッチパネルである。入出力装置3がタッチパネルである場合、タッチパネルは、例えば、静電容量方式のタッチパネルである。なお、タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、例えば、数値制御装置2が格納される操作盤(不図示)に設置される。
 軸制御回路207は、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、およびZ軸用サーボモータ8を制御する回路である。軸制御回路207は、ハードウェアプロセッサ201からの制御指令を受けて工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、およびZ軸用サーボモータ8を駆動させるための各種指令をサーボアンプ4に出力する。軸制御回路207は、例えば、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、およびZ軸用サーボモータ8のトルクを制御するトルクコマンドをサーボアンプ4に送る。
 サーボアンプ4は、軸制御回路207からの指令を受けて、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、およびZ軸用サーボモータ8に電流を供給する。
 工具回転用サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。工具回転用サーボモータ5は、例えば、刃物台に設置された回転工具の軸に連結される。工具回転用サーボモータ5が駆動することにより、回転工具が回転する。回転工具は、例えば、ポリゴンカッタである。
 X軸用サーボモータ6は、サーボアンプ4から電流の供給を受けて駆動する。X軸用サーボモータ6は、例えば、刃物台を駆動させるボールねじに連結される。X軸用サーボモータ6が駆動することにより、刃物台などの工作機械1の構造物がX軸方向に移動する。なお、X軸用サーボモータ6は、X軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。
 Y軸用サーボモータ7は、サーボアンプ4から電流の供給を受けて駆動する。Y軸用サーボモータ7は、例えば、刃物台を駆動させるボールねじに連結される。Y軸用サーボモータ7が駆動することにより、刃物台などの工作機械1の構造物がY軸方向に移動する。なお、Y軸用サーボモータ7は、Y軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。
 Z軸用サーボモータ8は、サーボアンプ4から電流の供給を受けて駆動する。Z軸用サーボモータ8は、例えば、刃物台を駆動させるボールねじに連結される。Z軸用サーボモータ8が駆動することにより、刃物台などの工作機械1の構造物がZ軸方向に移動する。なお、Z軸用サーボモータ8は、Z軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。
 スピンドル制御回路208は、スピンドルモータ10を制御するための回路である。スピンドル制御回路208は、ハードウェアプロセッサ201からの制御指令を受けてスピンドルモータ10を駆動させるための指令をスピンドルアンプ9に出力する。スピンドル制御回路208は、例えば、スピンドルモータ10のトルクを制御するトルクコマンドをスピンドルアンプ9に送る。
 スピンドルアンプ9は、スピンドル制御回路208からの指令を受けて、スピンドルモータ10に電流を供給する。
 スピンドルモータ10は、スピンドルアンプ9から電流の供給を受けて駆動する。スピンドルモータ10は、主軸に連結され、主軸を回転させる。スピンドルモータ10は、主軸の回転角度を検出する角度検出器(不図示)を備える。
 PLC209は、ラダープログラムを実行して補助機器11を制御する装置である。PLC209は、I/Oユニット210を介して補助機器11に対して指令を送る。
 I/Oユニット210は、PLC209と補助機器11とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器11に送る。
 補助機器11は、工作機械1に設置され、工作機械1において補助的な動作を行う機器である。補助機器11は、I/Oユニット210から受けた指令に基づいて動作する。補助機器11は、工作機械1の周辺に設置される機器であってもよい。補助機器11は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。
 次に、数値制御装置2の機能について説明する。数値制御装置2は、工具回転用サーボモータ5、X軸用サーボモータ6、Y軸用サーボモータ7、Z軸用サーボモータ8、およびスピンドルモータ10を制御することによりポリゴン加工を実行する。ポリゴン加工とは、ワークの断面形状を多角形に形成する加工である。ここで、断面は、ワークの回転軸に直交する断面である。数値制御装置2は、特に、ワークの回転軸から偏心した位置にポリゴンを形成する加工を行う。
 図2は、ワークの回転軸から偏心した位置に形成されるポリゴンの一例を説明する図である。ワークの回転軸Rwとは、ワークの回転中心である。つまり、ワークの回転軸Rwからずれた位置、言い換えれば、ワークの回転軸Rwとは異なる位置にポリゴンの中心軸Cpが位置する。
 図2に示す例では、ワークの中心軸Cwとワークの回転軸Rwとが一致しているが、必ずしも、これらは一致していなくてもよい。例えば、図3に示すように、偏心チャックによりワークの回転軸Rwから偏心した位置でワークWが把持された場合、ワークの中心軸Cwとワークの回転軸Rwは一致しない。
 数値制御装置2は、ワークWの回転速度と回転工具の回転速度とを一定の比率で回転させ、かつ、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの相対位置を一定に保つことによって、ワークWの表面にポリゴンを加工する。例えば、ワークWの回転速度と回転工具の回転速度との比率が1:2である場合、ワークWに対する回転工具の刃先の相対的な軌跡は、以下の数1で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Xn、およびYnは、ポリゴンの中心軸Cpを原点とする直交座標系での刃先の軌跡、ωはワークWの回転速度、lはポリゴンの中心軸Cpと回転工具の回転軸との間の距離、rは回転工具の半径、Nは回転工具の刃数、n(=1~N)は刃先の番号である。なお、刃先の番号とは、回転工具Tの刃先をそれぞれ識別するために、各刃先に1から順に付与される数字である。
 図4は、ワークWの回転速度と回転工具の回転速度との比率が1:2であり、かつ、2枚刃の回転工具でポリゴン加工が行なわれる場合におけるワークWに対する回転工具の刃先の軌跡を示す図である。この例では、ワークWが1回転する間に回転工具Tが2回転する。また、回転工具Tの各刃の軌跡は、それぞれ楕円を描き、かつ、それぞれの楕円の長軸は互いに直交する。よって、図4に示すように、ワークWには4つの面を有するポリゴンPが形成される。
 図5は、ワークWの回転速度と回転工具Tの回転速度との比率が1:2であり、かつ、3枚刃の回転工具Tでポリゴン加工が行なわれる場合におけるワークWに対する回転工具Tの刃先の軌跡を示す図である。この例では、ワークWが1回転する間に回転工具Tが2回転する。また、回転工具Tの各刃の軌跡は、それぞれ楕円を描き、かつ、それぞれの楕円の長軸は互いに120°の角度で交わる。よって、図5に示すように、ワークWには6つの面を有するポリゴンPが形成される。ここでは、一例として、ワークWの回転速度と回転工具Tの回転速度との比率が1:2である場合の加工について説明したが、ワークWの回転速度に対する回転工具Tの回転速度の比率と刃数の積が3以上の整数になる場合にポリゴンが形成される。
 図6は、数値制御装置2の機能の一例を示すブロック図である。数値制御装置2は、第1の制御部21と、第2の制御部22と、第3の制御部23とを備える。第1の制御部21、第2の制御部22、および第3の制御部23は、例えば、ハードウェアプロセッサ201が、ROM203に記憶されているシステムプログラムならびに不揮発性メモリ205に記憶されている加工プログラム、および各種データを用いて演算処理を実行することにより実現される。
 第1の制御部21は、ポリゴン加工が開始される前に、スピンドルモータ10を制御してポリゴンの中心軸Cpを初期位置に移動させる。第2の制御部22は、ポリゴンPの加工が開始される前に、工具回転用サーボモータ5を制御して回転工具Tの刃を初期位置に移動させる。言い換えれば、第2の制御部22は、回転工具Tの位相を初期位相に合わせる。第3の制御部23は、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が所定の位置関係となるように、X軸用サーボモータ6、およびY軸用サーボモータ7(図6では図示省略)の少なくともいずれかを制御して回転工具の回転軸Rtを初期位置に移動させる。回転工具の回転軸Rtおよびワークの回転軸Rwはそれぞれ、スピンドルモータ10で駆動されてもよく、あるいは、サーボモータで駆動されてもよい。
 以下では、ポリゴンPの加工の開始時に、ポリゴンの中心軸Cpが初期位置に配置されている状態、回転工具Tの位相が初期位相である状態、およびポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が所定の位置関係である状態を初期状態という。
 図7は、初期状態について説明する図である。ここでは、ワークの回転軸Rwを原点、右方向をX軸の正方向、上方向をY軸の正方向とする2次元直交座標系を便宜的に用いて初期状態について説明する。
 ポリゴンの中心軸Cpの初期位置は、例えば、X座標が0、Y座標がkとなる位置である。ここで、kは、ワークの回転軸Rwとポリゴンの中心軸Cpとの間の距離である。また、回転工具Tの初期位相は、例えば、1つの刃がポリゴンの中心軸Cpの方向を向く位相である。また、ポリゴンの中心軸Cpと回転工具の回転軸Rtとが所定の位置関係となる位置は、例えば、回転工具の回転軸RtのX座標が0、Y座標がk+lとなる位置である。言い換えれば、ポリゴンの中心軸Cpと回転工具の回転軸Rtとが所定の位置関係となる位置は、ポリゴンの中心軸Cpの初期位置がワークの回転軸Rwの初期位置と回転工具の回転軸Rtの初期位置とを結ぶ線分上に配置される位置である。なお、lは、回転工具Tの直径2rとポリゴンPの一対の面の間の距離aとを加算した値に1/2を乗算した値である。
 ポリゴンの中心軸Cp、回転工具Tの位相、およびポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が初期状態になると、第1の制御部21は、例えば、スピンドルモータ10を制御することにより、ワークの回転軸Rwを中心にワークWを回転させる。ワークの回転軸Rwは、例えば、主軸の中心軸である。ワークの回転軸Rwは、回転テーブルに連結される軸の中心であってもよい。
 例えば、主軸に連結されたチャックでワークWが把持されている状態において第1の制御部21が主軸を回転させることにより、第1の制御部21はワークの回転軸Rwを中心にワークWを回転させる。
 第2の制御部22は、ワークの回転軸Rwに平行な回転工具の回転軸Rtを中心に、ワークWの回転速度に対して一定比率の回転速度で回転工具Tを回転させる。
 第2の制御部22は、例えば、ワークWの回転速度に対して2倍の速さで回転工具Tを回転させる。つまり、第2の制御部22は、ワークWの回転速度と回転工具Tの回転速度とが、1:2の比率となるように、回転工具Tを回転させる。この場合、例えば、回転工具の回転軸Rtを中心に互いに180°離間した位置に2つの刃が配置される回転工具Tが用いられる。あるいは、回転工具Tの回転軸Rtを中心に互いに120°離間した位置に3つの刃が配置される回転工具Tが用いられてもよい。
 なお、ワークWの回転速度と回転工具Tの回転速度との比率および回転工具Tの刃の枚数はこれらの例に限られない。ワークWの回転速度と回転工具Tの回転速度との比率および回転工具Tの刃の枚数は、形成されるポリゴンPの形状に応じて決定される。
 第3の制御部23は、ワークの回転軸Rwに平行であってワークWの所定の位置を通るポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が一定となるように回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を制御する。
 本実施形態では、ワークの回転軸Rwの位置は、固定されているものとする。したがって、第3の制御部23は、回転工具の回転軸Rtの位置を制御することにより、回転工具の回転軸Rtとポリゴンの中心軸Cpとの相対位置を制御する。ただし、回転工具の回転軸Rtの位置が固定され、ワークの回転軸Rwの位置が移動可能であってもよい。この場合、第3の制御部23は、ワークの回転軸Rwの位置を制御することにより、回転工具の回転軸Rtとポリゴンの中心軸Cpとの位置関係を制御する。
 図8は、回転工具の回転軸Rtとポリゴンの中心軸Cpとの位置関係を説明する図である。図8に示す例において、ポリゴンの中心軸CpのX座標と回転工具の回転軸RtのX座標は常に同じである。また、回転工具の回転軸RtのY座標は常にポリゴンの中心軸CpのY座標にlを加算した値である。つまり、ポリゴンの中心軸Cpが移動する軌跡を(Xt,Yt)とすると、回転工具の回転軸Rtが移動する軌跡は(Xt,Yt+l)と表すことができる。また、回転工具の回転軸Rtが移動する軌跡の中心座標は(0,l)である。
 第3の制御部23が、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が一定となるように回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を制御することにより、ポリゴンPが加工される。ポリゴンPは、ワークの回転軸Rwからkだけ離れた所定の位置を通るポリゴンの中心軸Cpを中心に加工される。ポリゴンの中心軸Cpは、ワークWの回転に伴って、ワークの回転軸Rwを中心とする半径kの円A1の円周上を移動する。第3の制御部23は、回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置が一定となるように、回転工具の回転軸Rtを半径kの円A2の円周上を移動させる。
 第3の制御部23は、ワークの回転軸Rwの回転角度θ、およびワークの回転軸Rwとポリゴンの中心軸Cpとの間の距離に基づいてワークの回転軸Rwの位置に対するポリゴンの中心軸Cpの位置を特定してよい。ワークの回転軸Rwの回転角度θは、ワークの回転軸Rwを原点とする直交座標系において、X軸の正の値を示す部分と、ワークの回転軸Rwと原点とを結ぶ線分との間の角度である。
 第3の制御部23は、例えば、スピンドルモータ10に設置された角度検出器が検出する情報に基づいて、ワークの回転軸Rwの回転角度θを算出する。また、第3の制御部23は、例えば、加工プログラムからワークの回転軸Rwとポリゴンの中心軸Cpとの間の距離を示す値を読み込む。これにより、第3の制御部23は、ワークの回転軸Rwの位置に対するポリゴンの中心軸Cpの位置を特定する。第3の制御部23は、ワークの回転軸Rwの回転角度θのフィードバック値を利用して、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの相対位置を制御してもよい。
 第3の制御部23は、ポリゴンPの加工が開始される際、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が初期状態の位置関係となるまで回転工具の回転軸Rtをポリゴンの中心軸Cpに切削送りで接近させるようにしてもよい。
 あるいは、第3の制御部23は、回転工具の回転軸Rtの位置を初期位置に移動させる際、回転工具TとワークWの一部とが接触しないように、回転工具Tを、例えば、ワークWの一端からZ軸方向に所定の距離だけ離れた位置に位置決めするようにしてもよい。この場合、回転工具TがZ軸方向に移動することにより、ポリゴンPの加工が行われる。
 次に、図9を用いてポリゴン加工が実行される際の処理の流れについて説明する。
 図9は、数値制御装置2がポリゴン加工を実行する際の処理の流れの一例を示す図である。
 まず、第1の制御部21があらかじめ定められた初期位置にポリゴンの中心軸Cpを移動させる(ステップS1)。
 次に、第2の制御部22が回転工具Tの位相をあらかじめ定められた初期位相に合わせる(ステップS2)。
 次に、ワークの回転軸Rwの位置に対するポリゴンの中心軸Cpの位置に基づいて、第3の制御部23が回転工具の回転軸Rtを初期位置に移動させる(ステップS3)。
 次に、ポリゴン加工が実行され(ステップS4)、ポリゴン加工が完了すると、処理は終了する。ポリゴン加工では、第1の制御部21がワークWを回転させ、第2の制御部22が回転工具Tを回転させる。第1の制御部21、および第2の制御部22は、ワークWの回転速度と回転工具Tの回転速度とが一定の比率となるように、ワークW、および回転工具Tをそれぞれ回転させる。
 また、第3の制御部23は、回転工具の回転軸Rtとポリゴンの中心軸Cpとの相対位置が一定となるように回転工具の回転軸Rtの位置を制御する。さらに、回転工具Tは、例えば、Z軸のマイナス方向、またはプラス方向に切削送りされる。これにより、例えば、ワークWが初期位置に配置された状態において水平方向に延在する面を有するポリゴンPが形成される。
 以上説明したように、数値制御装置2は、ワークの回転軸Rwを中心にワークWを回転させる第1の制御部21と、ワークの回転軸Rwに平行な回転工具の回転軸Rtを中心に、ワークWの回転速度に対して一定比率の回転速度で回転工具Tを回転させる第2の制御部22と、ワークの回転軸Rwに平行であってワークWの所定の位置を通るポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が一定となるように回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を制御する第3の制御部23と、を備える。したがって、数値制御装置2は、ワークWの回転中心から偏心した位置に短時間でポリゴンPを加工することができる。
 また、第3の制御部23が、ワークの回転軸Rwの回転角度θ、およびワークの回転軸Rwとポリゴンの中心軸Cpとの間の距離に基づいてワークの回転軸Rwの位置に対するポリゴンの中心軸Cpの位置を特定し、ポリゴンの中心軸Cpの初期位置がワークの回転軸Rwの初期位置と回転工具の回転軸Rtの初期位置とを結ぶ線分上に配置されるように、回転工具の回転軸Rtの初期位置を決定する。さらに、第3の制御部23は、ワークの回転軸Rwの回転角度θのフィードバック値を利用して、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの相対位置を制御する。これにより、第3の制御部23は、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの相対位置を精度よく制御することができる。その結果、数値制御装置2は、精度の高いポリゴンPを加工することができる。
 上述した実施形態では、ワークの回転軸Rwの位置が固定されている。したがって、第3の制御部23は、回転工具の回転軸Rtの位置を制御することにより、回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を制御する。しかし、回転工具の回転軸Rtの位置が固定され、ワークの回転軸Rwの位置が移動可能であってもよい。この場合、第3の制御部23は、ワークの回転軸Rwの位置を制御することにより、回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を制御する。また、第3の制御部23は、ポリゴンの中心軸Cpの初期位置がワークの回転軸Rwの初期位置と回転工具の回転軸Rtの位置とを結ぶ線分上に配置されるように、ワークの回転軸Rwの初期位置を決定する。
 なお、ワークの回転軸Rwを移動可能にするためには、X軸用サーボモータ6、およびY軸用サーボモータ7がX-Y平面において主軸台を自在に移動させることができるようにすればよい。
 また、第3の制御部23は、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの相対位置が一定となるようにワークの回転軸Rwの位置および回転工具の回転軸Rtの位置の両方を制御してもよい。
 さらに、数値制御装置2は、ポリゴンの中心軸Cpを中心に形成されるポリゴンPの位相を設定する設定部をさらに備え、設定部によって設定された位相に基づいて、第3の制御部23が、回転工具の回転軸Rtとポリゴンの中心軸Cpの相対位置を決定してもよい。
 図10Aは、ポリゴンPの位相の一例について説明する図である。設定部が位相を0°に設定し、かつ、2枚刃の回転工具TによってポリゴンPが加工される場合、図10Aに示すポリゴンPが形成される。すなわち、ポリゴンの中心軸CpがY軸上に配置された状態において水平および垂直に形成された面を有する4角形のポリゴンPが形成される。
 設定部が位相を45°に設定し、かつ、2枚刃の回転工具TによってポリゴンPが加工される場合、図10Bに示すポリゴンPが形成される。すなわち、ポリゴンの中心軸CpがY軸上に配置された状態において水平面に対して45°、および135°傾いた面を有する4角形のポリゴンPが形成される。なお、設定部が設定する位相は、これらの値に限られず、どのような値であってもよい。
 図11Aは、ポリゴンPの位相の一例について説明する図である。設定部が位相を0°に設定し、かつ、3枚刃の回転工具TによってポリゴンPが加工される場合、図11Aに示すポリゴンPが形成される。すなわち、ポリゴンの中心軸CpがY軸上に配置された状態において水平に形成された面を有する6角形のポリゴンPが形成される。
 設定部が位相を120°に設定し、かつ、3枚刃の回転工具TによってポリゴンPが加工される場合、図11Bに示すポリゴンPが形成される。すなわち、ポリゴンの中心軸CpがY軸上に配置された状態において水平面に対して120°傾いた面を有する6角形のポリゴンPが形成される。
 図12は、設定部を備えた数値制御装置2の機能の一例を示す図である。なお、図6に示す数値制御装置2の機能と同じ機能については、ここでの説明を省略する。
 設定部24は、ワークWに形成されるポリゴンPの位相を設定する。設定部24は、例えば、入出力装置3から入力された入力値に基づいてポリゴンPの位相を決定する。
 第1の制御部21は、ポリゴンPの加工が開始される前に、ポリゴンの中心軸Cpをあらかじめ定められた初期位置に移動させる。第2の制御部22は、ポリゴンPの加工が開始される前に、例えば、1つの刃がポリゴンの中心軸Cpの方向を向くように回転工具Tの初期位相を決定する。第3の制御部23は、ポリゴンPの加工が開始される前に、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの位置関係が所定の位置関係となるように、回転工具の回転軸Rtを初期位置に移動させる。
 図13は、ポリゴンの中心軸Cp、回転工具の回転軸Rtの位置、および回転工具Tの位相の初期状態の一例を示す図である。ポリゴンの中心軸Cpの初期位置は、例えば、X座標が0、Y座標がkとなる位置である。
 設定部24が、例えば、位相を45°に設定した場合、第3の制御部23は、ポリゴンの中心軸Cpの位置から45°斜め上方であって、ポリゴンの中心軸Cpと回転工具の回転軸Rtとの間の距離がlとなる位置を初期位置に決定する。ここで、lは、回転工具Tの直径とポリゴンPの一対の面の間の距離とを加算した値に1/2を乗算した値である。また、第2の制御部22は、回転工具Tの初期位相を、1つの刃の刃先が45°斜め下方を向く位相に決定する。
 第3の制御部23は、ポリゴンPの加工が行われている間、ポリゴンの中心軸Cpと、回転工具の回転軸Rtとの相対位置が一定となるように回転工具の回転軸Rtの位置を制御する。これにより、設定部24が設定したポリゴンPの位相を反映した形状を有するポリゴンPの加工が行われる。
 なお、数値制御装置2は、ポリゴンの中心軸Cpを中心に形成されるポリゴンPの位相を設定する設定部24を備え、設定部24によって設定された位相に基づいて、第2の制御部22が、回転工具Tの初期位相を決定するようにしてもよい。
 図14はポリゴンの中心軸Cp、回転工具の回転軸Rtの位置、および回転工具Tの位相の初期状態の一例を示す図である。第1の制御部21は、ポリゴンPの加工が開始される前に、ポリゴンの中心軸Cpをあらかじめ定められた初期位置に移動させる。ポリゴンの中心軸Cpの初期位置は、例えば、X座標が0、Y座標がkとなる位置である。
 第3の制御部23は、ポリゴンPの加工が開始される前に、回転工具の回転軸Rtを初期位置に移動させる。回転工具の回転軸Rtの初期位置は、例えば、X座標が0、Y座標がk+lとなる位置である。
 第2の制御部22は、ポリゴンPの加工が開始される前に、回転工具Tが初期位相となるように回転工具Tを回転させる。第2の制御部22は、設定部24が設定したポリゴンPの位相を示す値に基づいて回転工具Tの刃の初期位置を決定する。
 例えば、ワークWの回転速度と回転工具Tの回転速度との比率を1:2とし、かつ、2枚刃の回転工具Tを用いた場合であって、設定部24が、位相を45°に設定した場合、第2の制御部22は、回転工具Tの刃の初期位置を、1つの刃の刃先が水平方向を向く位置に決定する。
 第3の制御部23は、ポリゴンPの加工が行われている間、ポリゴンの中心軸Cpと、回転工具の回転軸Rtとの相対位置が一定となるように回転工具の回転軸Rtの位置を制御する。これにより、設定部24が設定したポリゴンPの位相を反映した形状を有するポリゴンPの加工が行われる。
 上述した実施形態では、数値制御装置2は、設定部24が設定したポリゴンPの位相を示す値に基づいて、回転工具の回転軸Rtの位置、または回転工具Tの初期位相を決定するが、回転工具の回転軸Rtの位置、および回転工具Tの初期位相の両方を決定してもよい。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本開示では、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
  1     工作機械
  2     数値制御装置
  201   ハードウェアプロセッサ
  202   バス
  203   ROM
  204   RAM
  205   不揮発性メモリ
  206   インタフェース
  207   軸制御回路
  208   スピンドル制御回路
  209   PLC
  210   I/Oユニット
  21    第1の制御部
  22    第2の制御部
  23    第3の制御部
  24    設定部
  3     入出力装置
  4     サーボアンプ
  5     工具回転用サーボモータ
  6     X軸用サーボモータ
  7     Y軸用サーボモータ
  8     Z軸用サーボモータ
  9     スピンドルアンプ
  10    スピンドルモータ
  11    補助機器
  Cw    ワークの中心軸
  Cp    ポリゴンの中心軸
  Rt    回転工具の回転軸
  Rw    ワークの回転軸

Claims (6)

  1.  ワークの回転軸を中心にワークを回転させる第1の制御部と、
     前記ワークの前記回転軸に平行な回転工具の回転軸を中心に、前記ワークの回転速度に対して一定比率の回転速度で前記回転工具を回転させる第2の制御部と、
     前記ワークの前記回転軸に平行であって前記ワークの所定の位置を通るポリゴンの中心軸と前記回転工具の前記回転軸との位置関係が一定となるように前記回転工具の前記回転軸と前記ポリゴンの前記中心軸の相対位置を制御する第3の制御部と、
    を備える数値制御装置。
  2.  前記第3の制御部が、前記ワークの前記回転軸の回転角度、および前記ワークの前記回転軸と前記ポリゴンの前記中心軸との間の距離に基づいて前記ワークの前記回転軸の位置に対する前記ポリゴンの前記中心軸の位置を特定し、前記ポリゴンの前記中心軸の初期位置が前記ワークの前記回転軸の初期位置と前記回転工具の前記回転軸の初期位置とを結ぶ線分上に配置されるように、前記ワークの前記回転軸の前記初期位置および前記回転工具の前記回転軸の前記初期位置の少なくともいずれかを決定する請求項1に記載の数値制御装置。
  3.  前記第3の制御部は、前記ワークの前記回転軸の前記回転角度のフィードバック値を利用して、前記ポリゴンの前記中心軸と前記回転工具の前記回転軸の相対位置を制御する請求項2に記載の数値制御装置。
  4.  前記ポリゴンの位相を設定する設定部をさらに備え、
     前記設定部によって設定される前記位相に基づいて、前記第3の制御部が、前記回転工具の前記回転軸と前記ポリゴンの前記中心軸との前記相対位置を決定する請求項1~3のいずれか1項に記載の数値制御装置。
  5.  前記ポリゴンの位相を設定する設定部をさらに備え、
     前記設定部によって設定される前記位相に基づいて、前記第2の制御部が、前記回転工具の初期位相を決定する請求項1~3のいずれか1項に記載の数値制御装置。
  6.  前記第3の制御部は、前記位置関係が一定となる位置まで前記ワークの前記回転軸および前記回転工具の前記回転軸の少なくともいずれかを切削送りで接近させる請求項1~5のいずれか1項に記載の数値制御装置。
PCT/JP2021/028167 2021-07-29 2021-07-29 数値制御装置 WO2023007662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/028167 WO2023007662A1 (ja) 2021-07-29 2021-07-29 数値制御装置
JP2023537852A JPWO2023007662A1 (ja) 2021-07-29 2021-07-29
DE112021007701.5T DE112021007701T5 (de) 2021-07-29 2021-07-29 Numerische Steuerung
CN202180100767.XA CN117651918A (zh) 2021-07-29 2021-07-29 数值控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028167 WO2023007662A1 (ja) 2021-07-29 2021-07-29 数値制御装置

Publications (1)

Publication Number Publication Date
WO2023007662A1 true WO2023007662A1 (ja) 2023-02-02

Family

ID=85087679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028167 WO2023007662A1 (ja) 2021-07-29 2021-07-29 数値制御装置

Country Status (4)

Country Link
JP (1) JPWO2023007662A1 (ja)
CN (1) CN117651918A (ja)
DE (1) DE112021007701T5 (ja)
WO (1) WO2023007662A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399114A (ja) * 1986-10-16 1988-04-30 Fanuc Ltd ポリゴン加工制御装置
JPH02309401A (ja) * 1989-05-24 1990-12-25 Okuma Mach Works Ltd 数値制御装置
JPH04164557A (ja) * 1990-10-29 1992-06-10 Fanuc Ltd ポリゴン加工方法
JP2015079348A (ja) * 2013-10-17 2015-04-23 ブラザー工業株式会社 数値制御装置
JP2021043732A (ja) * 2019-09-11 2021-03-18 ファナック株式会社 工作機械の制御装置および制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399114A (ja) * 1986-10-16 1988-04-30 Fanuc Ltd ポリゴン加工制御装置
JPH02309401A (ja) * 1989-05-24 1990-12-25 Okuma Mach Works Ltd 数値制御装置
JPH04164557A (ja) * 1990-10-29 1992-06-10 Fanuc Ltd ポリゴン加工方法
JP2015079348A (ja) * 2013-10-17 2015-04-23 ブラザー工業株式会社 数値制御装置
JP2021043732A (ja) * 2019-09-11 2021-03-18 ファナック株式会社 工作機械の制御装置および制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO, MASARU: "High-precision mass production parts processing technology, Cylindrical grinding machine utilization technology for high-precision mass production processing.", MACHINES AND TOOLS, vol. 47, no. 6, 1 June 2003 (2003-06-01), JP, pages 18 - 24, ISSN: 0387-1053 *

Also Published As

Publication number Publication date
DE112021007701T5 (de) 2024-03-14
JPWO2023007662A1 (ja) 2023-02-02
CN117651918A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
JP4261563B2 (ja) 加工原点設定方法及びその方法を実施するための工作機械
JP2996804B2 (ja) 偏心形状加工装置
JP2001009603A (ja) インコーナ切削加工方法および切削工具
JP5240412B1 (ja) 数値制御装置
US9631632B2 (en) Impeller having blade having blade surface made up of line elements and method of machining the impeller
WO2023007662A1 (ja) 数値制御装置
WO1988002676A1 (en) Polygon manufacturing tool
JP6008294B2 (ja) 旋削による非円形加工方法
TW201941867A (zh) 工作機械
JP7448637B2 (ja) 工作機械の制御装置、制御システム、及び制御方法
WO2023007664A1 (ja) 推定装置
WO2023012990A1 (ja) 数値制御装置
JP6394156B2 (ja) 歯車加工方法
JP3275599B2 (ja) 回転切削工具を用いた切削加工方法
CN115297994A (zh) 机床的控制装置、控制方法
JPH1190773A (ja) スクロール板の加工方法及び加工装置
WO2023127155A1 (ja) 数値制御装置、およびコンピュータ読み取り可能な記憶媒体
JP2004030422A (ja) 旋回工具タレットを備えた工作機械の制御方法
US20230408986A1 (en) Controller
JP2769252B2 (ja) ねじ切り加工装置
CN109884982B (zh) 数值控制装置
WO2023139743A1 (ja) 情報処理装置、工作機械の制御装置、及びコンピュータプログラム
JP2023137665A (ja) 工作機械の制御装置及び制御方法、並びに、工作機械
JP2024013605A (ja) 加工方法、加工プログラム、工作機械、自動プログラミング装置
CN117961130A (zh) 模块化宏程序的阿基米德螺旋铣削加工孔的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021007701

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180100767.X

Country of ref document: CN