WO2021192938A1 - 接合ウェーハの製造方法及び接合ウェーハ - Google Patents

接合ウェーハの製造方法及び接合ウェーハ Download PDF

Info

Publication number
WO2021192938A1
WO2021192938A1 PCT/JP2021/008849 JP2021008849W WO2021192938A1 WO 2021192938 A1 WO2021192938 A1 WO 2021192938A1 JP 2021008849 W JP2021008849 W JP 2021008849W WO 2021192938 A1 WO2021192938 A1 WO 2021192938A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
bonded
layer
compound semiconductor
substrate
Prior art date
Application number
PCT/JP2021/008849
Other languages
English (en)
French (fr)
Inventor
石崎 順也
翔吾 古屋
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP21775084.3A priority Critical patent/EP4131335A4/en
Priority to CN202180023402.1A priority patent/CN115315781A/zh
Publication of WO2021192938A1 publication Critical patent/WO2021192938A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Definitions

  • the present invention relates to a method for manufacturing a bonded wafer and a bonded wafer.
  • Epitaxial wafers (EPW) for various compound semiconductor devices have been realized using GaAs substrates and InP substrates.
  • the maximum diameter of a GaAs substrate is 6 inches (150 mm), and that of an InP substrate is 4 inches (100 mm).
  • One is to cut a groove for a small diameter on a large diameter wafer to make a template, and then place a compound semiconductor wafer on it to pass the process.
  • this method can be realized easily and inexpensively, there is a problem that the template and the wafer are not physically in close contact with each other.
  • Patent Document 1 discloses a method of adhering a template wafer and EPW with a polyimide temporary fixing material to carry out a process.
  • This method is excellent in terms of adhesion to the template, but it is necessary to peel it off from the template after the device process, and in principle, a residue is generated on the surface after peeling, so it is necessary to add a removal step. Since the polyimide cannot be sufficiently removed by thermal dissociation or an organic solvent, it is necessary to add oxygen plasma ashing, so that there is a problem that the surface of the compound wafer is oxidized in the removal process.
  • the compound EPW has a heteroepic structure.
  • growth is performed so that the lattice constants substantially match at the growth temperature, and when the temperature drops to room temperature, warpage occurs due to the difference in the coefficient of thermal expansion. That is, internal stress is generated in the compound semiconductor epi layer at room temperature. This internal stress changes continuously with temperature.
  • stress due to the difference in thermal expansion coefficient is applied to the compound semiconductor wafer.
  • the coefficient of thermal expansion is smaller than that of the compound semiconductor. Therefore, the compound semiconductor EPW bonded by applying heat is subjected to tensile stress after the temperature is lowered to room temperature.
  • the present invention has been made in view of the above problems, and when a substrate having a small diameter or a small size compound semiconductor epitaxial wafer bonded on a wafer to be bonded to produce a substrate capable of being made into a device process, cracks in the epitaxial layer are generated.
  • An object of the present invention is to provide a method for manufacturing a bonded wafer in which generation is suppressed.
  • the present invention is a method for manufacturing a bonded wafer in which a compound semiconductor wafer obtained by epitaxially growing a compound semiconductor on a growth substrate and a wafer to be bonded are bonded, and the area of the bonding surface of the wafer to be bonded is described.
  • a method for manufacturing a bonded wafer in which the area of the bonding surface of the compound semiconductor wafer is made larger than the area of the bonding surface of the compound semiconductor wafer, the wafer to be bonded and the compound semiconductor side of the compound semiconductor wafer are bonded as a bonding surface, and then the growth substrate is removed. do.
  • a method for manufacturing a bonded wafer when a substrate having a small diameter or a small size compound semiconductor wafer is bonded onto a wafer to be bonded to make a device process possible, the growth substrate after bonding is removed. Therefore, it is possible to obtain a bonded wafer in which the occurrence of cracks in the epitaxial layer is suppressed.
  • the metal is contained at least one of Au, Ag, Al, In, and Ga. Further, it is preferable that the resin or polymer is glass using benzocyclobutene, polyimide, or TEOS.
  • the total thickness of the compound semiconductor wafer from which the growth substrate has been removed is 15 ⁇ m or less.
  • the wafer to be joined is silicon, sapphire, or quartz.
  • the present invention is a bonded wafer in which a wafer to be bonded having an area larger than the area of the bonding surface of the compound semiconductor wafer is bonded to the compound semiconductor wafer, and the total thickness of the compound semiconductor wafer is 15 ⁇ m or less. Provide a bonded wafer.
  • the method for manufacturing a bonded wafer of the present invention when a substrate having a small diameter or a small size compound semiconductor epitaxial wafer is bonded onto a wafer to be bonded to produce a substrate that can be used as a device process, after bonding, the bonding is performed.
  • the bonding is performed.
  • the bonded wafer of the present invention can be a bonded wafer in which the occurrence of cracks in the epitaxial layer is suppressed.
  • the present inventors are a method for manufacturing a bonded wafer in which a compound semiconductor wafer in which a compound semiconductor is epitaxially grown on a growth substrate and a wafer to be bonded are bonded, and the bonding of the wafer to be bonded is performed.
  • the area of the surface is made larger than the area of the bonding surface of the compound semiconductor wafer, and the wafer to be bonded and the compound semiconductor side of the compound semiconductor wafer are bonded as the bonding surface, and then the growth substrate is removed.
  • the present invention has been found to be able to manufacture a bonded wafer in which cracks in the epitaxial layer are suppressed when a substrate that can be used as a device process is produced by bonding a compound semiconductor wafer having a small diameter or a small size on a bonded wafer. completed.
  • the bonded wafer is used.
  • the present invention has been completed by finding that a bonded wafer in which the occurrence of cracks in the epitaxial layer is suppressed can be obtained.
  • a GaAs having a thickness of 550 ⁇ m and a diameter of 6 inches is used as a growth substrate (starting substrate) 101.
  • a compound semiconductor wafer (EPW) 110 having a 0.1 ⁇ m-thick etch stop (ES) layer 102 made of InGaP, InAlP, or AlGaInP formed therein is prepared.
  • Emitting diode function layer 103 made of AlGaInP system in order from the starting substrate 101 side, for example, p-type Al 1-y In y P layer 1031 (0.4 ⁇ carrier concentration of 1 ⁇ m thickness is about 1 ⁇ 10 17 / cm 3 y ⁇ 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 1032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5) ) can be a carrier concentration of 1 ⁇ m thickness is about 1 ⁇ 10 17 / cm 3 n-type Al 1-y in y P layer 1033 (0.4 ⁇ y ⁇ 0.5) .
  • the thicknesses of the p-type Al 1-y In y P layer 1031, the active layer 1032, and the n-type Al 1-y In y P layer 1033 are limited to the illustrated values. It's not something.
  • the carrier concentration can be set in the range of about 3 ⁇ 10 18 / cm 3 depending on the desired function. Also, the carrier concentration profile is not limited to a uniform distribution. Further, it is needless to say that the illustrated carrier concentration is an average carrier concentration and includes a state in which the carrier concentration is partially low (for example, about 0.7 ⁇ 10 15 / cm 3) as a concept.
  • a window layer may be provided if necessary.
  • the window layer it is suitable to select GaP in the AlGaInP-based light emitting diode functional layer structure, and the window layer 1035 made of GaP may be laminated with a thickness of about 10 ⁇ m. Further, even if a relaxation layer 1034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity is provided between the window layer 1035 and the light emitting diode functional layer functional layer 103. good.
  • the AlGaInP-based light emitting diode functional layer is illustrated here, any function and structure can be selected as long as it is a material system lattice-matched to the GaAs substrate.
  • the InGaP-based heterobipolar It can also be applied to transistors, electric field effect transistors, InGaP / GaAs solar cells, GaAsP photodiodes, and the like.
  • InGaAs-based heterobipolar transistors InGaAs-based heterobipolar transistors, electric field effect transistors, InGaAs-based light emitting elements (semiconductor lasers and light emitting diodes), InGaAs (P) -based photodiodes, and the like can be applied.
  • the above applicable functional layer is merely an example, and is not particularly limited to this material system and application.
  • the total thickness of the functional layer including the case where the window layer is provided is 15 ⁇ m or less.
  • the warp of the wafer does not increase, the occurrence of cracks can be suppressed, and the decrease in yield due to wafer cracking at the time of joining can be suppressed.
  • the total thickness is designed to be within a film thickness of 7 ⁇ m or less, the occurrence of cracks can be further suppressed.
  • the lower limit of the total thickness is not particularly limited, but is preferably 0.5 ⁇ m or more.
  • the wafer to be bonded 120 is prepared as shown in FIG.
  • the wafer to be joined is a wafer having sufficient flatness, for example, silicon, sapphire, or quartz. In this way, the cost of the wafer to be bonded can be reduced.
  • a silicon wafer having a diameter of 8 inches can be used as the wafer to be bonded 120.
  • the area of the bonding surface of the wafer to be bonded is made larger than the area of the bonding surface of the compound semiconductor wafer.
  • a circular wafer is given as an example, but the wafer shape is not particularly limited, and may be, for example, a rectangular shape, a square shape, or the like.
  • wet surface treatment is applied to both the EPW 110 and the wafer to be bonded 120 with an alkaline solvent.
  • an alkaline solvent For example, it can be immersed in a 5 wt% NaOH aqueous solution for 10 minutes, rinsed, and dried in air.
  • the bonding is performed in a vacuum atmosphere to prepare a bonding substrate 150.
  • the deviation between the center of the compound semiconductor wafer and the center of the wafer to be joined is 5 mm or less for joining.
  • the center point 1101 of the EPW 110 shown in FIG. 4 may be arranged at a position where the deviation from the center point 1201 of the wafer 120 to be joined shown in FIG. 5 is suppressed to 5 mm or less. preferable.
  • the center is clear, but in the case of a non-round wafer 110 such as a rectangle as shown in FIG. 6, the center point 1101 is defined by replacing it with the center of gravity. (For example, in the case of a rectangle, the point where the intersections of the diagonal lines intersect is defined as the center point 1101.)
  • the epitaxially grown compound semiconductor side of the wafer to be bonded and the compound semiconductor wafer is bonded as a bonding surface.
  • the pressure at the time of joining can be 5 N / cm 2 or more and 400 N / cm 2 or less based on the pressure applied to the EPW 110.
  • the illustrated applied pressure is not limited to this range, and is not limited to the exemplified range when the small diameter EPW110 is performed under conditions that can withstand the applied pressure (increasing the thickness of the substrate, etc.). Needless to say, it is applicable even if it is increased beyond this range.
  • the bonding proceeds, so that the bonding can be performed even at a pressure lower than the illustrated pressure.
  • a method is conceivable in which an interfering material is inserted between the two wafers and the interfering material is removed in a vacuum to bring the two wafers into contact with each other. In this case, no pressure is applied. Since it is not always necessary to apply pressure at the stage of this step, a method of contacting the two in the disclosed vacuum can also be selected.
  • the starting substrate 101 is removed from the bonded substrate 150 by wet etching.
  • Wet etching is performed with a mixed solution of ammonia and hydrogen peroxide solution (APM). Since the APM liquid has etching selectivity with respect to the ES layer 102, only GaAs is etched, and the etching is stopped at the ES layer 102. Therefore, as shown in FIG. 7, it is possible to obtain the starting substrate removing wafer 160 in which only the GaAs substrate which is the growth substrate is removed from the bonding substrate 150.
  • APM ammonia and hydrogen peroxide solution
  • the substrate removal surface is coated with a silicon wafer 170 having a diameter of 6 inches.
  • a silicon wafer was selected as the coating material, but a material that ensures flatness and is inexpensive is preferable and is not limited to silicon.
  • the silicon wafer 170 is not limited to silicon having a diameter of 6 inches, and a wafer having a diameter of 8 inches or more can be selected according to the diameter of the material to be joined 120. No matter which wafer is selected, there is no difference in the results.
  • the bonded wafer on which the coated wafer is placed is crimped in a vacuum atmosphere and heat-treated at a temperature of 500 ° C. or lower.
  • the crimping pressure is 5 N / cm 2 or more and 400 N / cm 2 or less.
  • the heat treatment time can be about 5 minutes. The longer the heat treatment time, the higher the strength can be. However, in this step, it is sufficient that the strength is maintained so that the epitaxial layer does not peel off during the heat treatment in the next step, and the heat treatment beyond the disclosure may be performed.
  • the heat treatment furnace has an atmosphere that matches the material of the substrate removal surface.
  • the heat treatment is performed in a P atmosphere (1 ⁇ 10 5 atm), but when the InP substrate is used, the As system such as GaAs is exposed. In that case, heat treatment is performed in an As atmosphere (1 ⁇ 10 5 atm).
  • the heat treatment temperature is 600 to 800 ° C. The higher the temperature of the heat treatment, the higher the strength can be obtained in a shorter time, so that the higher the temperature, the higher the strength is preferable.
  • a GaAs having a thickness of 550 ⁇ m and a diameter of 6 inches is used as a growth substrate (starting substrate) 201.
  • a compound semiconductor wafer (EPW) 210 having a 0.1 ⁇ m-thick etch stop (ES) layer 202 made of InAlP or AlGaInP is prepared.
  • Emitting diode function layer 203 made of AlGaInP system in order from the side starting substrate 201, for example, p-type Al 1-y In y P layer 2031 (0.4 ⁇ carrier concentration of 1 ⁇ m thickness is about 1 ⁇ 10 17 / cm 3 y ⁇ 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 2032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5) ), can be a carrier concentration of 1 ⁇ m thickness is to 1 ⁇ 10 17 / cm is about 3 n-type Al 1-y in y P layer 2033 (0.4 ⁇ y ⁇ 0.5) .
  • the thicknesses of the p-type Al 1-y In y P layer 2031, the active layer 2032, and the n-type Al 1-y In y P layer 2033 are limited to the illustrated values. It's not something.
  • the carrier concentration can be set in the range of about 3 ⁇ 10 18 / cm 3 depending on the desired function. Also, the carrier concentration profile is not limited to a uniform distribution. Further, it is needless to say that the illustrated carrier concentration is an average carrier concentration and includes a state in which the carrier concentration is partially low (for example, about 0.7 ⁇ 10 15 / cm 3) as a concept.
  • a window layer may be provided if necessary.
  • the window layer it is suitable to select GaP in the AlGaInP-based light emitting diode functional layer structure, and the window layer 2035 made of GaP may be laminated with a thickness of about 10 ⁇ m.
  • a relaxation layer 2034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity may be provided between the window layer 2035 and the light emitting diode functional layer 203.
  • the AlGaInP-based light emitting diode functional layer is illustrated here, any function and structure can be selected as long as it is a material system lattice-matched to the GaAs substrate.
  • the InGaP-based heterobipolar It can also be applied to transistors, electric field effect transistors, InGaP / GaAs solar cells, GaAsP photodiodes, and the like.
  • InGaAs-based heterobipolar transistors InGaAs-based heterobipolar transistors, electric field effect transistors, InGaAs-based light emitting elements (semiconductor lasers and light emitting diodes), InGaAs (P) -based photodiodes, and the like can be applied. ..
  • the above applicable functional layer is merely an example, and is not limited to this material system and application.
  • the total thickness of the functional layer including the case where the window layer is provided is 15 ⁇ m or less.
  • the warp of the wafer does not increase, the occurrence of cracks can be suppressed, and the decrease in yield due to wafer cracking at the time of joining can be suppressed.
  • the total thickness is designed to be within a film thickness of 7 ⁇ m or less, the occurrence of cracks can be further suppressed.
  • the lower limit of the total thickness is not particularly limited, but is preferably 0.5 ⁇ m or more.
  • the wafer to be bonded 220 is prepared.
  • the wafer to be joined is a wafer having sufficient flatness, for example, silicon, sapphire, or quartz. In this way, the cost of the wafer to be joined can be suppressed.
  • a silicon wafer having a diameter of 8 inches can be used as the wafer to be bonded 220.
  • the area of the bonding surface of the wafer to be bonded is made larger than the area of the bonding surface of the compound semiconductor wafer.
  • a circular wafer is taken as an example, but the wafer shape is not particularly limited, and may be, for example, a rectangular shape, a square shape, or the like.
  • the wafer to be bonded and the compound semiconductor wafer are bonded via a metal. In this way, it can be joined relatively easily, and can be finally used as a device element while being joined.
  • a metal film is deposited on both the EPW 210 and the wafer to be bonded 220.
  • a thin-film deposition film of 0.1 ⁇ m for the Ti layer 211 and 1 ⁇ m for the Au layer 212 may be provided on the EPW 210
  • a thin-film deposition film of 0.1 ⁇ m for the Ti layer 221 and 1 ⁇ m for the Au layer 222 may be provided on the silicon wafer.
  • the above-mentioned structure and film thickness have been illustrated, but it goes without saying that any material can be selected as long as it is required for joining.
  • the material of the uppermost layer contains at least one of Au, Ag, Al, In, and Ga, and
  • the film thickness is preferably 0.3 ⁇ m or more. Further, there is no restriction in increasing the film thickness in terms of the joining yield, but the effect is the same in terms of the yield even if the film thickness is increased, and the upper limit of the film thickness is determined by economic efficiency. From the viewpoint of economy, it is desirable that it is 3 ⁇ m or less.
  • both the EPW 210 and the wafer to be bonded 220 are superposed on the Au layer 212 of the EPW and the Au layer 222 of the wafer to be bonded so as to face each other, and introduced into the bonding machine to perform bonding. This is done to prepare the bonding substrate 250.
  • the deviation between the center of the compound semiconductor wafer and the center of the wafer to be joined is 5 mm or less for joining.
  • the center point 2101 of the EPW 210 shown in FIG. 14 may be arranged at a position where the deviation from the center point 2201 of the wafer 220 to be joined shown in FIG. 15 is suppressed to 5 mm or less. preferable.
  • the center is clear, but in the case of a non-round wafer 210 such as a rectangle as shown in FIG. 16, the center point 2101 is defined by replacing it with the center of gravity. (For example, in the case of a rectangle, the point where the intersections of the diagonal lines intersect is defined as the center point 2101.)
  • the epitaxially grown compound semiconductor side of the wafer to be bonded and the compound semiconductor wafer is bonded as a bonding surface.
  • the pressure at the time of joining can be 5 N / cm 2 or more and 400 N / cm 2 or less based on the pressure applied to the small-diameter compound EPW.
  • a temperature of 400 ° C. or lower can be applied.
  • the illustrated applied pressure is not limited to this range, and is not limited to the exemplified range when the small diameter EPW210 is performed under conditions that can withstand the applied pressure (increasing the thickness of the substrate, etc.). It is applicable even if it is increased beyond this range.
  • the pressure application and the heating are performed at the same time here, the pressure application and the heat treatment may be performed separately, such as by applying the pressure only and then applying heat.
  • the starting substrate 201 is removed from the bonded substrate 250 shown in FIG. 13 by wet etching.
  • Wet etching is performed with a mixed solution of ammonia and hydrogen peroxide solution (APM). Since the APM liquid has etching selectivity with respect to the ES layer 202, only GaAs is etched, and the etching is stopped at the ES layer 202. Therefore, as shown in FIG. 17, it is possible to obtain the starting substrate removing wafer 260 in which only the GaAs substrate which is the growth substrate is removed from the bonding substrate 250. Further, although an example in which the heat treatment is applied before the substrate is removed is illustrated here, the same effect can be obtained by applying the heat treatment after the substrate is removed.
  • GaAs having a thickness of 550 ⁇ m and a diameter of 6 inches is used as a growth substrate (starting substrate) 301, and an InGaP or InAlP or AlGaInP is formed between the light emitting diode functional layer 303 made of an AlGaInP system and the starting substrate and the functional layer.
  • a compound semiconductor epiwafer (EPW) 310 having an etch stop (ES) layer 302 having a thickness of 0.1 ⁇ m is prepared.
  • Emitting diode function layer 303 made of AlGaInP system in order from the side starting substrate 301, for example, p-type Al 1-y In y P layer 3031 (0.4 ⁇ carrier concentration of 1 ⁇ m thickness is about 1 ⁇ 10 17 / cm 3 y ⁇ 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 3032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5) ), The carrier concentration of 1 ⁇ m thickness can be about 1 ⁇ 10 17 / cm 3 , and the n-type Al 1-y In y P layer 3033 (0.4 ⁇ y ⁇ 0.5) can be obtained.
  • the thicknesses of the p-type layer 3031, the active layer 3032, and the n-type layer 3033 are not limited to the illustrated numerical values.
  • the carrier concentration can be set in the range of about 3 ⁇ 10 18 / cm 3 depending on the desired function. Also, the carrier concentration profile is not limited to a uniform distribution. Further, it is needless to say that the illustrated carrier concentration is an average carrier concentration and includes a state in which the carrier concentration is partially low (for example, about 0.7 ⁇ 10 15 / cm 3) as a concept.
  • a window layer may be provided if necessary.
  • the window layer it is suitable to select GaP in the AlGaInP-based light emitting diode functional layer structure, and the window layer 3035 made of GaP is laminated with a thickness of 10 ⁇ m.
  • a relaxation layer 3034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity may be provided between the window layer 3035 and the light emitting diode functional layer 303.
  • the AlGaInP-based light emitting diode functional layer is illustrated here, any function and structure can be selected as long as it is a material system lattice-matched to the GaAs substrate.
  • the InGaP-based heterobipolar It can also be applied to transistors, electric field effect transistors, InGaP / GaAs solar cells, GaAsP photodiodes, and the like.
  • InGaAs-based heterobipolar transistors InGaAs-based heterobipolar transistors, electric field effect transistors, InGaAs-based light emitting elements (semiconductor lasers and light emitting diodes), InGaAs (P) -based photodiodes, and the like can be applied. ..
  • the above applicable functional layer is merely an example, and is not limited to this material system and application.
  • the total thickness of the functional layer including the case where the window layer is provided is 15 ⁇ m or less.
  • the warp of the wafer does not increase, the occurrence of cracks can be suppressed, and the decrease in yield due to wafer cracking at the time of joining can be suppressed.
  • the total thickness is designed to be within a film thickness of 7 ⁇ m or less, the occurrence of cracks can be further suppressed.
  • the lower limit of the total thickness is not particularly limited, but is preferably 0.5 ⁇ m or more.
  • the wafer to be bonded 320 is prepared as shown in FIG.
  • the wafer to be joined is a wafer having sufficient flatness, for example, silicon, sapphire, or quartz. In this way, the cost of the wafer to be joined can be suppressed.
  • a silicon wafer having a diameter of 8 inches can be used as the wafer to be bonded 320.
  • the area of the bonding surface of the wafer to be bonded is made larger than the area of the bonding surface of the compound semiconductor wafer.
  • a circular wafer is given as an example, but the wafer shape is not particularly limited, and may be, for example, a rectangular shape, a square shape, or the like.
  • the wafer to be joined and the compound semiconductor wafer via a resin or a polymer. In this way, it can be joined relatively easily, and it can be finally used as a device element while being joined.
  • the resin or polymer is glass using benzocyclobutene, polyimide, or TEOS. By doing so, it is possible to further suppress a decrease in yield due to poor joining at the time of joining.
  • BCB Spin coat benzocyclobutene
  • the viscosity and the number of spins are adjusted to form a BCB film 311 having a thickness of, for example, about 3 ⁇ m.
  • the BCB film 311 is formed only on the EPW 310 is illustrated, but it may be formed on both the EPW 310 and the wafer to be bonded 320, or it may be formed only on the wafer 320 to be bonded to have the same effect. Is obtained.
  • the film thickness can be changed to about 0.5 to 20 ⁇ m by adjusting the viscosity.
  • the thermal resistance it is preferably set to about 0.5 to 20 ⁇ m.
  • forming a thick BCB film also leads to a cost increase factor. From the above viewpoint, it is appropriate to set the film thickness to 12 ⁇ m or less, but this range may be exceeded.
  • polyimide may be spin-coated in addition to BCB.
  • the same effect can be obtained by forming a porous silicon film or other porous film on the EPW 310, on the wafer 320 to be bonded, or on both the EPW 310 and the wafer 320 to be bonded, and then spin-coating TEOS. Is obtained.
  • both the EPW 310 and the wafer to be bonded 320 are superposed on the BCB layer 311 of the EPW and the surface 321 of the wafer to be bonded so as to face each other, and introduced into the joining machine to perform bonding. , A bonding substrate 350 is manufactured.
  • the deviation between the center of the compound semiconductor wafer and the center of the wafer to be joined is 5 mm or less for joining.
  • the center point 3101 of the EPW 310 shown in FIG. 21 may be arranged at a position where the deviation from the center point 3201 of the wafer 320 to be joined shown in FIG. 22 is suppressed to 5 mm or less. preferable.
  • the center is clear, but in the case of a rectangular or non-round wafer 310 as shown in FIG. 23, the center point 3101 is defined by replacing it with the center of gravity. (For example, in the case of a rectangle, the point where the intersections of the diagonal lines intersect is defined as the center point 3101.)
  • the epitaxially grown compound semiconductor side of the wafer to be bonded and the compound semiconductor wafer is bonded as a bonding surface.
  • the pressure at the time of joining can be 5 N / cm 2 or more and 400 N / cm 2 or less based on the pressure applied to the small-diameter compound EPW.
  • the illustrated applied pressure is not limited to this range, and is not limited to the exemplified range when the small diameter EPW310 is performed under conditions that can withstand the applied pressure (increasing the thickness of the substrate, etc.). It is applicable even if it is increased beyond this range. Further, here, pressure application and heating may be performed at the same time, and the same effect can be obtained by separately performing pressure application and heat treatment, such as applying pressure only and then applying heat.
  • the starting substrate 301 is removed from the bonding substrate 350 by wet etching.
  • Wet etching is performed with a mixed solution of ammonia and hydrogen peroxide solution (APM). Since the APM liquid has etching selectivity with respect to the ES layer 302, only GaAs is etched, and the etching is stopped at the ES layer 302. Therefore, as shown in FIG. 24, it is possible to obtain the starting substrate removing wafer 360 in which only the GaAs substrate which is the growth substrate is removed from the bonding substrate 350. Further, although an example in which the heat treatment is not applied after the substrate is removed is illustrated here, it goes without saying that the same effect can be obtained even if the heat treatment is applied after the substrate is removed.
  • Example 1 A 505 ⁇ m thick GaAs with a diameter of 6 inches (150 mm) is used as a growth substrate (starting substrate) 101, and a 0.1 ⁇ m thick light emitting diode functional layer 103 made of an AlGaInP system and a 0.1 ⁇ m thick light emitting diode functional layer made of InGaP between the starting substrate and the light emitting diode functional layer.
  • An epi-wafer (EPW) 110 having an etch stop (ES) layer 102 was prepared.
  • the light emitting diode functional layer 103 made of the AlGaInP system has a carrier concentration of 1 ⁇ m thickness of about 1 ⁇ 10 17 / cm 3 in order from the starting substrate 101 side, and is a p-type Al 1-y In y P layer 1031 (0.4 ⁇ y ⁇ ). 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 1032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5), The carrier concentration of 1 ⁇ m thickness was about 1 ⁇ 10 17 / cm 3 , and the n-type Al 1-y In y P layer 1033 (0.4 ⁇ y ⁇ 0.5) was used.
  • the window layer 1035 made of GaP was laminated with a thickness of 10 ⁇ m.
  • a relaxation layer 1034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity is provided between the window layer 1035 and the functional layer 103.
  • a silicon wafer with a diameter of 8 inches (200 mm) was used as the wafer to be bonded 120.
  • both the EPW 110 and the wafer to be bonded 120 were subjected to a wet surface treatment with an alkaline solvent.
  • a wet surface treatment with an alkaline solvent.
  • a rinsing treatment was performed, and then a drying treatment was performed in the air.
  • Both the EPW 110 and the wafer 120 to be bonded are superposed on the epitaxial surface 131 of the EPW 110 and the polished surface 121 of the wafer 120 to be bonded so as to face each other, introduced into the bonding machine, and bonded at 200 ° C. in a vacuum atmosphere.
  • a bonded substrate 150 was produced.
  • the center point 1101 of the EPW 110 was joined by changing the deviation from the center point 1201 of the wafer 120 to be joined in 1 mm increments from 1 to 9 mm.
  • the pressure at the time of joining was 50 N / cm 2 . The above is shown in Table 1.
  • the starting substrate 101 was removed from the bonded substrate 150 by wet etching.
  • Wet etching was performed with a mixed solution of ammonia and hydrogen peroxide solution (APM). Since the APM liquid has etching selectivity with respect to the ES layer 102, only GaAs is etched, and the etching is stopped at the ES layer 102. Therefore, it was possible to obtain the starting substrate removing wafer 160 in which only the GaAs substrate which is the growth substrate is removed from the bonding substrate 150.
  • APM ammonia and hydrogen peroxide solution
  • a silicon wafer 170 having a diameter of 6 inches was coated on the surface from which the starting substrate was removed.
  • the bonded wafer on which the coated wafer was placed was crimped in a vacuum atmosphere and heat-treated at a temperature of 200 ° C.
  • the pressure was 50 N / cm 2 .
  • the heat treatment time was 5 minutes in this example.
  • the silicon wafer 170 was removed, and the starting substrate removal wafer 160 was introduced into the heat treatment furnace. Because InGaP layer in Example 1 is exposed and subjected to heat treatment at P atmosphere (1 ⁇ 10 5 atm). The heat treatment was performed at a temperature of 700 ° C. for about 30 minutes.
  • FIG. 25 shows the number of cracks (lines) with respect to the deviation from the center point 1101 of the EPW 110 of the bonded wafer manufactured as described above and the center point 1201 of the wafer to be bonded 120.
  • Example 2 A 505 ⁇ m thick 6-inch diameter GaAs is used as the growth substrate (starting substrate) 201, and a 0.1 ⁇ m thick etch stop made of InGaP is formed between the light emitting diode functional layer 203 made of the AlGaInP system and the starting substrate and the light emitting diode functional layer.
  • An epi-wafer (EPW) 210 having an ES) layer 202 was prepared.
  • the light emitting diode functional layer 203 made of the AlGaInP system has a carrier concentration of 1 ⁇ m thickness of about 1 ⁇ 10 17 / cm 3 in order from the starting substrate 201 side, and is a p-type Al 1-y In y P layer 2031 (0.4 ⁇ y ⁇ ). 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 2032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5), The carrier concentration of 1 ⁇ m thickness was about 1 ⁇ 10 17 / cm 3 , and the n-type Al 1-y In y P layer 2033 (0.4 ⁇ y ⁇ 0.5) was used.
  • the window layer 2035 made of GaP was laminated with a thickness of 10 ⁇ m.
  • a relaxation layer 2034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity is provided between the window layer 2035 and the functional layer 203.
  • a silicon wafer with a diameter of 8 inches was used as the wafer to be bonded 220.
  • a metal film was deposited on both the EPW 210 and the wafer to be bonded 220.
  • a thin-film deposition film of 0.1 ⁇ m for the Ti layer 211 and 1 ⁇ m for the Au layer 212 was provided on the EPW 210, and a thin-film deposition film of 0.1 ⁇ m for the Ti layer 221 and 1 ⁇ m for the Au layer 222 was provided on the silicon wafer.
  • Both the EPW 210 and the wafer to be bonded 220 were superposed on the Au layer 212 of the EPW and the Au layer 222 of the wafer to be bonded so as to face each other, introduced into the bonding machine, and bonded to produce a bonding substrate 250.
  • the center point 2101 of the EPW 210 was joined by changing the deviation from the center point 2201 of the wafer to be bonded 220 from the center point 2201 to 1 to 9 mm in 1 mm increments.
  • the pressure at the time of joining was 50 N / cm 2 .
  • heating at 350 ° C. was performed. The above is also shown in Table 1.
  • the starting substrate 201 was removed from the bonded substrate 250 by wet etching.
  • Wet etching was performed with a mixed solution of ammonia and hydrogen peroxide solution (APM).
  • FIG. 25 also shows the number of cracks (lines) with respect to the deviation from the center point 2101 of the EPW210 of the bonded wafer manufactured as described above and the center point 2201 of the wafer to be bonded 220.
  • Example 3 A 505 ⁇ m thick 6-inch diameter GaAs is used as the growth substrate (starting substrate) 301, and a 0.1 ⁇ m thick etch stop (starting substrate) made of InGaP is formed between the light emitting diode functional layer 303 made of the AlGaInP system and the starting substrate and the light emitting diode functional layer.
  • An epi-wafer (EPW) 310 having an ES) layer 302 was prepared.
  • the light emitting diode functional layer 303 made of the AlGaInP system has a carrier concentration of about 1 ⁇ 10 17 / cm 3 with a thickness of 1 ⁇ m in order from the starting substrate 301 side, and is a p-type Al 1-y In y P layer 3031 (0.4 ⁇ y ⁇ ). 0.5), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) 3032 (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5), The carrier concentration of 1 ⁇ m thickness was about 1 ⁇ 10 17 / cm 3 , and the n-type Al 1-y In y P layer 3033 (0.4 ⁇ y ⁇ 0.5) was used.
  • the window layer 3035 made of GaP was laminated with a thickness of 10 ⁇ m.
  • a relaxation layer 3034 composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity is provided between the window layer 3035 and the functional layer 303.
  • a silicon wafer with a diameter of 8 inches was used as the wafer to be bonded 320.
  • both the EPW 310 and the wafer to be bonded 320 are overlapped and bonded so that the BCB layer 311 of the EPW and the surface 321 of the wafer to be bonded are opposed to each other. It was introduced into the machine and joined to prepare a bonded substrate 350.
  • the center point 3101 of the EPW 310 was joined by changing the deviation from the center point 3201 of the wafer to be bonded 320 from the center point 3201 to 1 to 9 mm in 1 mm increments.
  • the pressure at the time of joining was 50 N / cm 2 .
  • heating at 350 ° C. was performed. The above is also shown in Table 1.
  • the starting substrate 301 was removed from the bonded substrate 350 by wet etching.
  • Wet etching was performed with a mixed solution of ammonia and hydrogen peroxide solution (APM).
  • FIG. 25 also shows the number of cracks (lines) with respect to the deviation from the center point 3101 of the EPW 310 of the bonded wafer manufactured as described above and the center point 3201 of the wafer to be bonded 320.
  • Example 4 Examples 1 to 3 except that a compound wafer having a diameter of 2 inches (50 mm) was formed on a silicon wafer having a diameter of 4 inches (100 mm), and a window layer made of GaP and a relaxation layer made of GaInP were not formed. It was done in the same way.
  • FIG. 26 shows the relationship between the distance from the center to the end of the compound semiconductor wafer of the bonded wafer thus produced and the wafer height. In FIG. 26, the horizontal axis is 0 mm at the center of the compound semiconductor wafer of the bonded wafer and -25.4 mm (-1 inch) at the outermost peripheral portion.
  • Example 1 A 550 ⁇ m thick GaAs with a diameter of 6 inches is used as a growth substrate (starting substrate), and a 0.1 ⁇ m thick etch stop (ES) layer made of InGaP is formed between the light emitting diode functional layer made of AlGaInP system and the starting substrate and the functional layer.
  • An epi-wafer (EPW) to be held was prepared.
  • the light emitting diode functional layer made of AlGaInP system has a carrier concentration of 1 ⁇ m thickness of about 1 ⁇ 10 17 / cm 3 in order from the starting substrate side, and is a p-type Al 1-y In y P layer (0.4 ⁇ y ⁇ 0.5). ), 0.6 ⁇ m thick (Al 1-x Ga x ) 1-y In y P layer (active layer) (0.45 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.5), 1 ⁇ m thick carrier An n-type Al 1-y In y P layer (0.4 ⁇ y ⁇ 0.5) having a concentration of about 1 ⁇ 10 17 / cm 3 was used.
  • a window layer made of GaP was laminated with a thickness of 10 ⁇ m. Further, a relaxation layer composed of a Ga 1-y In y P layer (0 ⁇ y ⁇ 1) for relaxing the amount of band band discontinuity was provided between the window layer and the functional layer.
  • the back surface side of the starting substrate was wrapped and then polished to form a polished surface, and the thickness was 150 ⁇ m.
  • a silicon wafer with a diameter of 8 inches was used as the wafer to be joined.
  • Both the EPW and the wafer to be bonded are superposed on the polished surface of the EPW starting substrate and the polished surface of the wafer to be bonded so as to face each other, introduced into the bonding machine, bonded at 350 ° C. in a vacuum atmosphere, and the bonded substrate is bonded.
  • the deviation from the center point of the EPW and the center point of the wafer to be joined was changed from 1 to 4 mm in 1 mm increments for joining.
  • the pressure applied to EPW was 50 N / cm 2 .
  • the starting substrate removal wafer was introduced into the heat treatment furnace, and the heat treatment furnace had an atmosphere suitable for the material of the substrate removal surface.
  • heat treatment was performed at 700 ° C. for about 30 minutes in an As atmosphere (1 ⁇ 10 5 atm).
  • FIG. 25 also shows the number of cracks (lines) with respect to the deviation from the center point of the epitaxial layer of the bonded wafer manufactured as described above and the center point of the wafer to be bonded.
  • Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that a compound wafer having a diameter of 2 inches was formed on a silicon wafer having a diameter of 4 inches.
  • the epitaxial layer of the bonded wafer in Examples 1 to 3 using the method for manufacturing the bonded wafer of the present invention was able to suppress an increase in the number of cracks entering the epitaxial layer when the deviation from the center position was 1 to 5 mm. ..
  • the starting substrate side of the small-diameter wafer can be bonded to a level that can be bonded. It needs to be flat at the atomic level.
  • the growth raw material during epitaxial growth wraps around the starting substrate side, it is necessary to remove it. Therefore, it is necessary to perform a polishing process after performing a wrapping process.
  • the compound wafer is a brittle material
  • the polishing speed of the outer peripheral portion of the wafer is high, and the film thickness of the outer peripheral portion is reduced.
  • the film thickness has decreased in the range of about 1 mm on the outer peripheral portion of the wafer.
  • the height distribution of the wafer occurs between the outer peripheral portion and the inner side thereof, and the yield decreases due to the difference in the depth of focus during the photolithography process. Since the film thickness difference is on the order of microns, the depth of focus cannot be kept constant if the height changes significantly only in Comparative Example 2, so that the pattern size deviates in the range of about 1 mm on the outer circumference, and the yield is greatly reduced. ..
  • Example 4 using the method for manufacturing a bonded wafer of the present invention, a large difference in height (in other words, a difference in film thickness) at the outer peripheral portion as in the comparative example almost occurs in each case. Not. It was found that in the examples, it was effective to essentially eliminate the polishing step after the epitaxial growth. Therefore, in the fourth embodiment, there is no such problem and the yield is stabilized.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、成長基板上に化合物半導体をエピタキシャル成長させた化合物半導体ウェーハと被接合ウェーハを接合する接合ウェーハの製造方法であって、前記被接合ウェーハの接合面の面積を前記化合物半導体ウェーハの接合面の面積より大きくし、前記被接合ウェーハと前記化合物半導体ウェーハを接合した後、前記成長基板を除去することを特徴とする接合ウェーハの製造方法である。これにより、クラックの発生が抑制された接合ウェーハの製造方法が提供される。

Description

接合ウェーハの製造方法及び接合ウェーハ
 本発明は、接合ウェーハの製造方法及び接合ウェーハに関する。
 GaAs基板やInP基板を用いて各種化合物半導体素子用のエピタキシャルウェーハ(EPW)が実現されている。GaAs基板は6インチ(150mm)、InP基板は4インチ(100mm)基板が最大直径である。
 EPWを作製した後は電極を形成し、素子化を行う工程を実施する必要があるが、現在では8インチ(200mm)以上の直径の製造装置が主流で、6インチ以下の直径の装置を新規で入手することは難しい。そのため、小直径のウェーハを大直径用の装置を用いて素子工程を実施するため、様々な方法が提案されている。
 ひとつは大直径のウェーハに小直径用の溝を切ってテンプレートとし、その上に化合物半導体ウェーハを乗せて工程を通す、というものである。この方法は簡便、かつ安価に実現できるが、テンプレートとウェーハ間が物理的に密着していないという問題がある。
 また、フォトリソグラフィー工程では、レジスト感光前後にホットプレートにてウェーハに熱を加える工程が必要だが、テンプレートとの密着度が低くなると、テンプレートとウェーハとの間の熱抵抗が大きくなり、フォトリソ条件が安定化しない、という問題点がある。
 以上の問題を解決するためには、テンプレートウェーハとEPWを密着させる必要がある。特許文献1ではテンプレートウェーハとEPWをポリイミド仮固定材で接着し、プロセスを行う方法が開示されている。
 この方法はテンプレートとの密着という点では優れた方法だが、デバイス工程後はテンプレートから剥離する必要があり、原理的に剥離後の表面に残渣が発生することから除去工程を加える必要がある。熱乖離や有機溶剤では十分にポリイミドを除去しきれないために酸素プラズマアッシングを加える必要があるため、除去工程で化合物ウェーハ表面が酸化される問題がある。
 また、化合物EPWはヘテロエピ構造を有する。ヘテロエピでは成長温度にて格子定数が略一致する様に成長を行っており、室温まで低下した場合、熱膨張係数差に起因する反りが生じている。つまり、室温では化合物半導体エピ層には内部応力が発生している。この内部応力は温度により連続的に変化する。
 接合時の温度が高くなる程、室温に低下させた時の内部応力の差は大きくなる。テンプレートとなる被接合ウェーハがEPWと異種材料である場合、原理的に熱膨張係数差による応力が化合物半導体ウェーハに印加される。
 被接合部材の熱膨張係数がEPW基板より小さい場合、接合時の温度から室温に低下させた際、EPW基板には引張応力がかかることになる。この引張応力が大きいほど、基板は割れやすくなる。
 テンプレート基板がシリコンである場合、化合物半導体より熱膨張係数が小さいことから、熱を加えて接合した化合物半導体EPWは、その温度を室温に低下させた後、引張応力がかかる。
 異径ウェーハへの接合の場合、200℃以上の温度で接合した場合、一般には化合物半導体に多数のクラックが入って化合物半導体EPWが破壊される。これは、熱膨張係数差に起因する内部応力に起因する問題であり、普通に接合しただけではこの問題を解決できない。
特許第6213977号
 本発明は上記の課題に鑑みてなされたもので、被接合ウェーハ上に小直径あるいは小サイズの化合物半導体エピタキシャルウェーハを接合してデバイスプロセス化可能とした基板を作製する際、エピタキシャル層のクラックの発生が抑制された接合ウェーハの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、成長基板上に化合物半導体をエピタキシャル成長させた化合物半導体ウェーハと被接合ウェーハを接合する接合ウェーハの製造方法であって、前記被接合ウェーハの接合面の面積を前記化合物半導体ウェーハの接合面の面積より大きくし、前記被接合ウェーハと前記化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合した後、前記成長基板を除去する接合ウェーハの製造方法を提供する。
 このような接合ウェーハの製造方法によれば、被接合ウェーハ上に小直径あるいは小サイズの化合物半導体ウェーハを接合してデバイスプロセス化可能とした基板を作製する際、接合後成長基板を除去することで、エピタキシャル層のクラックの発生が抑制された接合ウェーハとすることができる。
 このとき、前記被接合ウェーハと前記化合物半導体ウェーハとの接合を、何も介さない直接接合、金属を介する金属接合、及び樹脂または高分子を介して接合する方法のいずれかとすることが好ましい。
 このような接合方法であれば、比較的容易に接合でき、接合したまま最終的にデバイス素子として使用することができる。
 このとき、前記金属をAu,Ag,Al,In,Gaのうち少なくとも1種類以上含むことが好ましい。また、前記樹脂または高分子を、ベンゾシクロブテン、ポリイミド、TEOSを用いたガラスとすることが好ましい。
 このようにすれば、接合時の接合不良の発生を抑制することができる。
 このとき、前記化合物半導体ウェーハの中心と被接合ウェーハの中心のずれを5mm以下として配置し接合することが好ましい。
 このようにすれば、更にクラックの発生を抑制することができる。
 前記成長基板が除去された化合物半導体ウェーハの総厚を15μm以下とする。
 このようにすれば、より確実にクラックの発生を抑制することができる。
 前記被接合ウェーハをシリコン、サファイア、石英とすることが好ましい。
 このようにすれば、安価な接合ウェーハとすることができる。
 また、本発明は、化合物半導体ウェーハに該化合物半導体ウェーハの接合面の面積より面積が大きい被接合ウェーハが接合された接合ウェーハであって、前記化合物半導体ウェーハの総厚が15μm以下のものである接合ウェーハを提供する。
 このような接合ウェーハであれば、エピタキシャル層のクラックの発生が抑制された接合ウェーハとすることができる。
 以上のように、本発明の接合ウェーハの製造方法によれば、被接合ウェーハ上に小直径あるいは小サイズの化合物半導体エピタキシャルウェーハを接合してデバイスプロセス化可能とした基板を作製する際、接合後成長基板を除去することで薄膜化を計り、エピタキシャル層のクラックの発生が抑制された接合ウェーハを製造することができる。また、本発明の接合ウェーハであれば、エピタキシャル層のクラックの発生が抑制された接合ウェーハとすることができる。
本発明の接合ウェーハの製造方法に用いることができる化合物半導体ウェーハ(EPW)の概略断面図の一例を示す図である(第一の実施形態)。 第一の実施形態における化合物半導体ウェーハ(EPW)と被接合ウェーハの一例を示す図である。 第一の実施形態における化合物半導体ウェーハ(EPW)と被接合ウェーハを接合した一例を示す図である。 第一の実施形態における円形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第一の実施形態における円形状の被接合ウェーハとその中心点(黒丸)を示す図である。 第一の実施形態における矩形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第一の実施形態における化合物半導体ウェーハ(EPW)を被接合ウェーハに接合した後、成長基板を取り除いた一例を示す図である。 第一の実施形態における化合物半導体ウェーハ(EPW)を被接合ウェーハに接合した後、成長基板を取り除いた後、シリコンウェーハで被覆した一例を示す図である。 本発明の接合ウェーハの製造方法に用いることができる化合物半導体ウェーハ(EPW)の概略断面図の一例を示す図である(第二の実施形態)。 第二の実施形態における化合物半導体ウェーハ(EPW)表面にTi層とAu層を蒸着した一例を示す図である。 第二の実施形態における被接合ウェーハ表面にTi層とAu層を蒸着した一例を示す図である。 第二の実施形態における表面にTi層とAu層が蒸着された化合物半導体ウェーハ(EPW)と表面にTi層とAu層が蒸着された被接合ウェーハの一例を示す図である。 第二の実施形態における表面にTi層とAu層が蒸着された化合物半導体ウェーハ(EPW)と表面にTi層とAu層が蒸着された被接合ウェーハを接合した一例を示す図である。 第二の実施形態における円形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第二の実施形態における円形状の被接合ウェーハとその中心点(黒丸)を示す図である。 第二の実施形態における矩形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第二の実施形態における表面にTi層とAu層が蒸着された化合物半導体ウェーハ(EPW)と表面にTi層とAu層が蒸着された被接合ウェーハを接合した後、成長基板を取り除いた一例を示す図である。 本発明の接合ウェーハの製造方法に用いることができる化合物半導体ウェーハ(EPW)の概略断面図の一例を示す図である(第三の実施形態)。 第三の実施形態における表面にBCB膜が形成された化合物半導体ウェーハ(EPW)と被接合ウェーハの一例を示す図である。 第三の実施形態における表面にBCB膜が形成された化合物半導体ウェーハ(EPW)を被接合ウェーハに接合した一例を示す図である。 第三の実施形態における円形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第三の実施形態における円形状の被接合ウェーハとその中心点(黒丸)を示す図である。 第三の実施形態における矩形状の化合物半導体ウェーハ(EPW)とその中心点(黒丸)を示す図である。 第三の実施形態における表面にBCB膜が形成された化合物半導体ウェーハ(EPW)を被接合ウェーハに接合した後、成長基板を取り除いた一例を示す図である。 化合物半導体ウェーハの中心と被接合ウェーハの中心からのズレとクラック本数の関係を示した図である。 化合物半導体ウェーハの中心からの距離とウェーハの高さの関係を示した図である(実施例4、比較例)。
 本発明者らは、上記課題について鋭意検討を重ねた結果、成長基板上に化合物半導体をエピタキシャル成長させた化合物半導体ウェーハと被接合ウェーハを接合する接合ウェーハの製造方法であって、被接合ウェーハの接合面の面積を化合物半導体ウェーハの接合面の面積より大きくし、被接合ウェーハと化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合した後、成長基板を除去する接合ウェーハの製造方法により、被接合ウェーハ上に小直径あるいは小サイズの化合物半導体ウェーハを接合してデバイスプロセス化可能とした基板を作製する際、エピタキシャル層のクラックの発生が抑制された接合ウェーハを製造できることを見出し、本発明を完成した。
 また、化合物半導体ウェーハに化合物半導体ウェーハの接合面の面積より面積が大きい被接合ウェーハが接合された接合ウェーハであって、化合物半導体ウェーハの総厚が15μm以下のものである接合ウェーハであれば、エピタキシャル層のクラックの発生が抑制された接合ウェーハとすることができることを見出し、本発明を完成した。
 以下、図を用いて本発明の接合ウェーハ、及び接合ウェーハに用いることができる接合ウェーハの製造方法を詳細に説明するが、本発明はこれらに限定されるものではない。
 (第一の実施形態)
 図1に示すように、例えば550μm厚の直径6インチのGaAsを成長基板(出発基板)101とし、例えばMOVPE法でAlGaInP系からなる発光ダイオード機能層103と成長基板と発光ダイオード機能層との間にInGaPまたはInAlPまたはAlGaInPからなる0.1μm厚のエッチストップ(ES)層102を形成した化合物半導体ウェーハ(EPW)110を準備する。
 AlGaInP系からなる発光ダイオード機能層103は出発基板101側から順に、例えば1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層1031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)1032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層1033(0.4≦y≦0.5)とすることができる。なお、ここでは基本構造を例示しているが、p型Al1-yInP層1031、活性層1032、n型Al1-yInP層1033の厚さは例示した数値に限定されるものではない。
 また、キャリア濃度は求める機能によって3×1018/cm程度までの範囲で設定可能である。また、キャリア濃度プロファイルも一様分布に限定されない。また、例示したキャリア濃度は平均的なキャリア濃度であり、部分的にキャリア濃度が低い(たとえば0.7×1015/cm程度)状態を概念として含むことはいうまでもない。
 また、必要に応じて窓層を設けても良い。窓層はAlGaInP系発光ダイオード機能層構造ではGaPを選択することが適しており、GaPから成る窓層1035を10μm厚程度で積層してもよい。また、窓層1035と発光ダイオード機能層機能層103との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層1034を設けてもよい。
 また、ここではAlGaInP系発光ダイオード機能層を例示したが、GaAs基板に格子整合する材料系であれば、どのような機能、構造も選択可能であり、AlGaInP系半導体レーザーの他、InGaP系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaP/GaAs系太陽電池、GaAsP系フォトダイオード、等でも適用可能である。
 また、InP基板に格子整合する材料系であれば、InGaAs系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaAs系発光素子(半導体レーザー及び発光ダイオード)InGaAs(P)系フォトダイオード、等が適用可能である。
 また、上記の適用可能な機能層はあくまで例示であり、この材料系及び用途に特に限定されない。
 このとき、窓層を設けた場合を含めた機能層の総厚、即ち、後述する成長基板が除去された化合物半導体ウェーハの総厚を15μm以下とすることが好ましい。このようにすれば、ウェーハの反りが増大せず、クラックの発生を抑制でき、接合時にウェーハ割れによる歩留まりの低下を抑制することができる。より好ましくは、総厚を7μm以下の膜厚に収めるように設計すれば、クラックの発生をより抑制することができる。総厚の下限値は特に限定されないが、0.5μm以上とすることが好ましい。
 次に図2に示すように被接合ウェーハ120を準備する。このとき、被接合ウェーハを平坦度が十分なウェーハ、例えばシリコン、サファイア、石英とすることが好ましい。このようにすれば、被接合ウェーハのコストを安価にすることができる。被接合ウェーハ120は、例えば直径8インチのシリコンウェーハを用いることができる。
 本発明では、被接合ウェーハの接合面の面積を化合物半導体ウェーハの接合面の面積より大きくする。なお第一の実施形態では、円形ウェーハを例に挙げているがウェーハ形状は特に限定されず、例えば、矩形状、正方形等としてもよい。
 次に、EPW110と被接合ウェーハ120の両方にアルカリ系溶剤でウェット表面処理を施す。例えば、5wt% NaOH水溶液中に10分間浸した後、リンス処理を行い、空気中で乾燥処理を施すことができる。
 このとき、化合物半導体ウェーハと被接合ウェーハを直接、接合することが好ましい。このようにすれば、接合時の接合不良による歩留まりの低下を抑制することができる。
 図2、3に示すように、EPW110と被接合ウェーハ120の双方を、EPW110のエピタキシャル面131と被接合ウェーハ120のポリッシュ面121を対向する形で重ね合わせて接合機内に導入し、200℃にて真空雰囲気下、接合を行い、接合基板150を作製する。
 このとき、化合物半導体ウェーハの中心と被接合ウェーハの中心のずれを5mm以下として配置し接合することが好ましい。このようにすれば、クラックの発生を抑制することができる。
 即ち、第一の実施形態では、接合の際、図4に示すEPW110の中心点1101を、図5に示す被接合ウェーハ120の中心点1201からのズレを5mm以下に抑える位置に配置することが好ましい。
 丸形状のウェーハの場合の中心は明確であるが、図6に示すような矩形等で丸形状でないウェーハ110の場合、中心点1101は重心に置き換えて定義する。(たとえば、矩形の場合は対角線の交点が交わる点を中心点1101と定義する。)
 被接合ウェーハと化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合する。接合時の圧力は、EPW110に印加される圧力を基準に、5N/cm以上400N/cm以下で行うことができる。
 例示した印加圧力は、この範囲に限定されるものではなく、小直径のEPW110が印加圧力に耐える条件(基板の厚さを増加する、等)下で行う場合、例示範囲に限定されるものではなく、この範囲以上に増やしても適用可能であることはいうまでもない。
 また、アルカリ処理を施された表面は接触することで接合が進むため、例示した圧力よりも低い圧力でも接合は可能である。たとえば、両者のウェーハ間に干渉材を入れておき、真空中で干渉材を抜くことで両者のウェーハを接触させる、などの方法が考えられる。この場合、圧力は印加されない。この工程の段階では必ずしも圧力印加は必要ではないため、開示した真空中で両者を接触させる方法も選択可能である。
 次に接合基板150より、出発基板101をウェットエッチングで除去する。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行う。APM液はES層102に対してエッチング選択性を有するため、GaAsのみをエッチングし、ES層102でエッチングは停止する。そのため、図7に示すように、接合基板150より成長基板であるGaAs基板のみを除去した出発基板除去ウェーハ160を得ることができる。
 次に、図8に示すように、基板除去面に直径6インチのシリコンウェーハ170を被覆する。ここではシリコンウェーハを被覆材に選択したが、平坦性が確保され、かつ、安価な材料なものが好ましくシリコンに限定されない。また、シリコンウェーハ170は直径6インチのシリコンに限定されるものではなく、被接合材120の直径に合わせた直径8インチ以上のウェーハも選択可能である。どちらのウェーハを選択しても結果に差異は生じない。
 被覆ウェーハを乗せた接合ウェーハを真空雰囲気下にて圧着し、500℃以下の温度で熱処理する。圧着圧力は5N/cm以上400N/cm以下で行う。熱処理時間は5分程度とすることができる。熱処理時間は長いほど強度は高めることができるが、本工程では、次工程の熱処理時にエピタキシャル層が剥離しない程度の強度が保てれば良く、開示した以上の熱処理を行ってもよい。
 次に、シリコンウェーハ170を除去し、熱処理炉に出発基板除去ウェーハ160を導入する。熱処理炉は基板除去面の材料に合わせた雰囲気とする。第一の実施形態ではInGaP層が露出しているため、P雰囲気(1×10atm)にて熱処理を行ったが、InP基板を用いた場合はGaAs等のAs系が露出しているため、その際はAs雰囲気(1×10atm)にて熱処理を行う。熱処理の温度は600~800℃で行う。熱処理の温度は高い方がより短時間で高い強度を得られるため、高い方が好ましいが、その分、高いV族圧力が必要となるため、製造する系や設計等に適宜合わせてよい。
 以上の工程を行うことにより、接合強度が強く、大直径シリコン基板上にクラックの無い薄膜化合物エピ機能層のみが存在するウェーハを実現することができる。
 (第二の実施形態)
 図9に示すように、例えば550μm厚の直径6インチのGaAsを成長基板(出発基板)201とし、例えばMOVPE法でAlGaInP系からなる発光ダイオード機能層203と出発基板と機能層との間にInGaPまたはInAlPまたはAlGaInPからなる0.1μm厚のエッチストップ(ES)層202を形成した化合物半導体ウェーハ(EPW)210を準備する。
 AlGaInP系からなる発光ダイオード機能層203は出発基板201側から順に、例えば1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層2031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)2032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層2033(0.4≦y≦0.5)とすることができる。なお、ここでは基本構造を例示しているが、p型Al1-yInP層2031、活性層2032、n型Al1-yInP層2033の厚さは例示した数値に限定されるものではない。
 また、キャリア濃度は求める機能によって3×1018/cm程度までの範囲で設定可能である。また、キャリア濃度プロファイルも一様分布に限定されない。また、例示したキャリア濃度は平均的なキャリア濃度であり、部分的にキャリア濃度が低い(たとえば0.7×1015/cm程度)状態を概念として含むことはいうまでもない。
 また、必要に応じて窓層を設けても良い。窓層はAlGaInP系発光ダイオード機能層構造ではGaPを選択することが適しており、GaPから成る窓層2035を10μm厚程度で積層してもよい。また、窓層2035と発光ダイオード機能層203との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層2034を設けてもよい。
 また、ここではAlGaInP系発光ダイオード機能層を例示したが、GaAs基板に格子整合する材料系であれば、どのような機能、構造も選択可能であり、AlGaInP系半導体レーザーの他、InGaP系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaP/GaAs系太陽電池、GaAsP系フォトダイオード、等でも適用可能である。
 また、InP基板に格子整合する材料系であれば、InGaAs系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaAs系発光素子(半導体レーザー及び発光ダイオード)、InGaAs(P)系フォトダイオード、等が適用可能である。
 また、上記適用可能な機能層はあくまで例示であり、この材料系及び用途に限定されない。
 このとき、窓層を設けた場合を含めて機能層の総厚、即ち、後述する成長基板が除去された化合物半導体ウェーハの総厚を15μm以下とすることが好ましい。このようにすれば、ウェーハの反りが増大せず、クラックの発生を抑制でき、接合時にウェーハ割れによる歩留まりの低下を抑制することができる。より好ましくは、総厚を7μm以下の膜厚に収めるように設計すれば、クラックの発生をより抑制することができる。総厚の下限値は特に限定されないが、0.5μm以上とすることが好ましい。
 次に、被接合ウェーハ220を準備する。このとき、被接合ウェーハを平坦度が十分なウェーハ、例えばシリコン、サファイア、石英とすることが好ましい。このようにすれば、被接合ウェーハのコストを抑制することができる。被接合ウェーハ220は、直径8インチのシリコンウェーハを用いることができる。
 本発明では、被接合ウェーハの接合面の面積を化合物半導体ウェーハの接合面の面積より大きくする。なお第二の実施形態では、円形ウェーハを例に挙げているがウェーハ形状は特に限定されず、例えば、矩形状、正方形等としてもよい。
 このとき、被接合ウェーハと化合物半導体ウェーハの接合を、金属を介する金属接合とすることが好ましい。このようにすれば、比較的容易に接合でき、接合したまま最終的にデバイス素子として使用することができる。
 図10及び図11に示すようにEPW210と被接合ウェーハ220の双方に金属膜を蒸着する。EPW210上に、例えばTi層211を0.1μm、Au層212を1μmの蒸着膜を設け、シリコンウェーハ上には例えばTi層221を0.1μm、Au層222を1μmの蒸着膜を設けることができる。ここでは前述の構造及び膜厚を例示したが、接合に要すればどの様な材料も選択可能であることはいうまでもない。
 このとき、金属接合の金属としてAu,Ag,Al,In,Gaのうち少なくとも1種類以上含むことが好ましい。このようにすれば、接合時の接合不良による歩留まりの低下を抑制することができる。
 接合時の接合不良を低下させ歩留まりを上げるためには、最上層(例示した実施形態ではAu)の材料は、Au,Ag,Al,In,Gaのうち少なくとも1種類以上含むことが望ましく、かつ、その膜厚は0.3μm以上であることが望ましい。また、接合歩留まりの点で、膜厚を厚くすることに制約はないが、厚くしても歩留まりの点では効果は同様であり、経済性によって膜厚の上限は決められる。経済性の観点から3μm以下であることが望ましい。
 次に図12及び図13に示すようにEPW210と被接合ウェーハ220の双方を、EPWのAu層212と被接合ウェーハのAu層222を対向する形で重ね合わせて接合機内に導入し、接合を行い、接合基板250を作製する。
 このとき、化合物半導体ウェーハの中心と被接合ウェーハの中心のずれを5mm以下として配置し接合することが好ましい。このようにすれば、クラックの発生をより抑制することができる。
 即ち、第二の実施形態では、接合の際、図14に示すEPW210の中心点2101を、図15に示す被接合ウェーハ220の中心点2201からのズレを5mm以下に抑える位置に配置することが好ましい。
 丸形状のウェーハの場合の中心は明確であるが、図16に示すような矩形等で丸形状でないウェーハ210の場合、中心点2101は重心に置き換えて定義する。(たとえば、矩形の場合は対角線の交点が交わる点を中心点2101と定義する。)
 被接合ウェーハと化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合する。接合時の圧力は、小直径の化合物EPWに印加される圧力を基準に、5N/cm以上400N/cm以下で行うことができる。また同時に、400℃以下の温度を印加することができる。例示した印加圧力は、この範囲に限定されるものではなく、小直径のEPW210が印加圧力に耐える条件(基板の厚さを増加する、等)下で行う場合、例示範囲に限定されるものではなく、この範囲以上に増やしても適用可能である。また、ここでは圧力印加と加熱を同時に行っているが、印加のみを実施し、その後、熱を加えるなどの様に、圧力印加と熱処理を分離して行ってもよい。
 次に図13に示す接合基板250より、出発基板201をウェットエッチングで除去する。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行う。APM液はES層202に対してエッチング選択性を有するため、GaAsのみをエッチングし、ES層202でエッチングは停止する。そのため、図17に示すように、接合基板250より成長基板であるGaAs基板のみを除去した出発基板除去ウェーハ260を得ることができる。
 また、ここでは基板除去前に熱処理を加える例を例示しているが、基板除去後において熱処理を加えても同様の効果が得られる。
 以上の工程を行うことにより、接合強度が強く、大直径シリコン基板上にクラックの無い薄膜化合物エピ機能層のみが存在するウェーハを実現することができる。
 (第三の実施形態)
 図18に示すように、例えば550μm厚の直径6インチのGaAsを成長基板(出発基板)301とし、AlGaInP系からなる発光ダイオード機能層303と出発基板と機能層との間にInGaPまたはInAlPまたはAlGaInPからなる0.1μm厚のエッチストップ(ES)層302を有する化合物半導体エピウェーハ(EPW)310を準備する。
 AlGaInP系からなる発光ダイオード機能層303は出発基板301側から順に、例えば1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層3031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)3032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層3033(0.4≦y≦0.5)とすることができる。なお、ここでは基本構造を例示しているが、p型層3031、活性層3032、n型層3033の厚さは例示した数値に限定されるものではない。
 また、キャリア濃度は求める機能によって3×1018/cm程度までの範囲で設定可能である。また、キャリア濃度プロファイルも一様分布に限定されない。また、例示したキャリア濃度は平均的なキャリア濃度であり、部分的にキャリア濃度が低い(たとえば0.7×1015/cm程度)状態を概念として含むことはいうまでもない。
 また、必要に応じて窓層を設けても良い。窓層はAlGaInP系発光ダイオード機能層構造ではGaPを選択することが適しており、GaPから成る窓層3035を10μm厚で積層した。また、窓層3035と発光ダイオード機能層303との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層3034を設けてもよい。
 また、ここではAlGaInP系発光ダイオード機能層を例示したが、GaAs基板に格子整合する材料系であれば、どのような機能、構造も選択可能であり、AlGaInP系半導体レーザーの他、InGaP系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaP/GaAs系太陽電池、GaAsP系フォトダイオード、等でも適用可能である。
 また、InP基板に格子整合する材料系であれば、InGaAs系ヘテロバイポーラトランジスタや電界効果トランジスタ、InGaAs系発光素子(半導体レーザー及び発光ダイオード)、InGaAs(P)系フォトダイオード、等が適用可能である。
 また、上記の適用可能な機能層はあくまで例示であり、この材料系及び用途に限定されない。
 このとき、窓層を設けた場合を含めて機能層の総厚、即ち、後述する成長基板が除去された化合物半導体ウェーハの総厚を15μm以下とすることが好ましい。このようにすれば、ウェーハの反りが増大せず、クラックの発生を抑制でき、接合時にウェーハ割れによる歩留まりの低下を抑制することができる。より好ましくは、総厚を7μm以下の膜厚に収めるように設計すれば、クラックの発生をより抑制することができる。総厚の下限値は特に限定されないが、0.5μm以上とすることが好ましい。
 次に図19に示すように被接合ウェーハ320を準備する。このとき、被接合ウェーハを平坦度が十分なウェーハ、例えばシリコン、サファイア、石英とすることが好ましい。このようにすれば、被接合ウェーハのコストを抑制することができる。被接合ウェーハ320は、例えば直径8インチのシリコンウェーハを用いることができる。
 本発明では、被接合ウェーハの接合面の面積を化合物半導体ウェーハの接合面の面積より大きくする。なお第三の実施形態では、円形ウェーハを例に挙げているがウェーハ形状は特に限定されず、例えば、矩形状、正方形等としてもよい。
 このとき、被接合ウェーハと化合物半導体ウェーハの接合を、樹脂または高分子を介して接合することが好ましい。このようにすれば、比較的容易に接合でき、接合したまま最終的にデバイス素子として使用することもできる。
 また、このとき、樹脂または高分子を、ベンゾシクロブテン、ポリイミド、TEOSを用いたガラスとすることが好ましい。このようにすれば、接合時の接合不良による歩留まりの低下をより抑制することができる。
 EPW310上にベンゾシクロブテン(BCB)をスピンコートする。粘度とスピン数を調整し、BCB膜311を例えば3μm厚程度、形成する。ここでは、BCB膜311はEPW310上にのみ形成した場合を例示しているが、EPW310、被接合ウェーハ320双方に形成しても良く、あるいは、被接合ウェーハ320のみに形成しても同様の効果が得られる。
 また、ここでは、BCB厚が3μmの場合を例示したが、粘度を調整することによって、0.5~20μm程度まで膜厚を変更することが可能である。しかし、BCB膜厚の増大は熱抵抗を増大させるため、0.5~20μm程度までとすることが好ましい。更に、厚いBCB膜を形成することはコストアップ要因にもつながる。以上の観点から12μm以下の膜厚とすることが適切であるが、この範囲を超えてもよい。
 また、ここでは、BCBをスピンコートする場合を例示したが、BCBの他、ポリイミド(PI)をスピンコートしても良い。また、EPW310上、あるいは被接合ウェーハ320上、あるいはEPW310及び被接合ウェーハ320の双方の上に、ポーラスシリコン膜あるいはその他の多孔質膜を形成した上で、TEOSをスピンコートすることでも同様の効果が得られる。
 次に図19及び図20に示すようにEPW310と被接合ウェーハ320の双方を、EPWのBCB層311と被接合ウェーハの表面321を対向する形で重ね合わせて接合機内に導入し、接合を行い、接合基板350を作製する。
 このとき、化合物半導体ウェーハの中心と被接合ウェーハの中心のずれを5mm以下として配置し接合することが好ましい。このようにすれば、クラックの発生を抑制することができる。 
 即ち、第三の実施形態では、接合の際、図21に示すEPW310の中心点3101を、図22に示す被接合ウェーハ320の中心点3201からのズレを5mm以下に抑える位置に配置することが好ましい。
 丸形状のウェーハの場合の中心は明確であるが、図23に示すような矩形等で丸形状でないウェーハ310の場合、中心点3101は重心に置き換えて定義する。(たとえば、矩形の場合は対角線の交点が交わる点を中心点3101と定義する。)
 被接合ウェーハと化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合する。接合時の圧力は、小直径の化合物EPWに印加される圧力を基準に、5N/cm以上400N/cm以下で行うことができる。例示した印加圧力は、この範囲に限定されるものではなく、小直径のEPW310が印加圧力に耐える条件(基板の厚さを増加する、等)下で行う場合、例示範囲に限定されるものではなく、この範囲以上に増やしても適用可能である。また、ここでは圧力印加と加熱を同時に行ってよく、印加のみを実施し、その後、熱を加えるなどの様に、圧力印加と熱処理を分離して行っても同様の効果が得られる。
 次に接合基板350より、出発基板301をウェットエッチングで除去する。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行う。APM液はES層302に対してエッチング選択性を有するため、GaAsのみをエッチングし、ES層302でエッチングは停止する。そのため、図24に示すように、接合基板350より成長基板であるGaAs基板のみを除去した出発基板除去ウェーハ360を得ることができる。
 また、ここでは、基板除去後に熱処理を加えない例を例示しているが、基板除去後において熱処理を加えても同様の効果が得られることは言うまでもない。
 以上の工程を行うことにより、接合強度が強く、大直径シリコン基板上にクラックの無い薄膜化合物エピタキシャル機能層のみが存在するウェーハを実現することができる。
 以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
 (実施例1)
 550μm厚の直径6インチ(150mm)のGaAsを成長基板(出発基板)101とし、AlGaInP系からなる発光ダイオード機能層103と出発基板と発光ダイオード機能層との間にInGaPからなる0.1μm厚のエッチストップ(ES)層102を有するエピウェーハ(EPW)110を準備した。
 AlGaInP系からなる発光ダイオード機能層103は出発基板101側から順に1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層1031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)1032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層1033(0.4≦y≦0.5)とした。
 また、GaPから成る窓層1035を10μm厚で積層した。また、窓層1035と機能層103との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層1034を設けた。
 被接合ウェーハ120として直径8インチ(200mm)のシリコンウェーハを用いた。
 次に、EPW110と被接合ウェーハ120の両方にアルカリ系溶剤でウェット表面処理を施した。本実施例においては、5wt% NaOH水溶液中に10分間浸した後、リンス処理を行い、空気中で乾燥処理を施した。
 EPW110と被接合ウェーハ120の双方を、EPW110のエピタキシャル面131と被接合ウェーハ120のポリッシュ面121を対向する形で重ね合わせて接合機内に導入し、200℃にて真空雰囲気下、接合を行い、接合基板150を作製した。
 接合の際、EPW110の中心点1101は、被接合ウェーハ120の中心点1201からのズレを1~9mmまで1mm刻みで変化させて接合した。また、接合時の圧力は、50N/cmとした。以上を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、接合基板150より、出発基板101をウェットエッチングで除去した。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行った。APM液はES層102に対してエッチング選択性を有するため、GaAsのみをエッチングし、ES層102でエッチングは停止する。そのため、接合基板150より成長基板であるGaAs基板のみを除去した出発基板除去ウェーハ160を得ることができた。
 次に、出発基板除去面に直径6インチのシリコンウェーハ170を被覆した。被覆ウェーハを乗せた接合ウェーハを真空雰囲気下にて圧着し、200℃の温度で熱処理した。圧力は50N/cmにて実施した。熱処理時間は本実施例では5分行った。
 シリコンウェーハ170を除去し、熱処理炉に出発基板除去ウェーハ160を導入した。実施例1ではInGaP層が露出しているため、P雰囲気(1×10atm)にて熱処理を行った。温度は700℃にて30分程度、熱処理を行った。
 以上のように作製した接合ウェーハのEPW110の中心点1101と被接合ウェーハ120の中心点1201からのズレに対するクラック本数(本)を図25に示す。
 (実施例2)
 550μm厚の直径6インチのGaAsを成長基板(出発基板)201とし、AlGaInP系からなる発光ダイオード機能層203と出発基板と発光ダイオード機能層との間にInGaPからなる0.1μm厚のエッチストップ(ES)層202を有するエピウェーハ(EPW)210を準備した。
 AlGaInP系からなる発光ダイオード機能層203は出発基板201側から順に1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層2031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)2032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層2033(0.4≦y≦0.5)とした。
 また、GaPから成る窓層2035を10μm厚で積層した。また、窓層2035と機能層203との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層2034を設けた。
 被接合ウェーハ220として直径8インチのシリコンウェーハを用いた。
 次に、EPW210と被接合ウェーハ220の双方に金属膜を蒸着した。EPW210上にはTi層211を0.1μm、Au層212を1μmの蒸着膜を設け、シリコンウェーハ上にはTi層221を0.1μm、Au層222を1μmの蒸着膜を設けた。
 EPW210と被接合ウェーハ220の双方を、EPWのAu層212と被接合ウェーハのAu層222を対向する形で重ね合わせて接合機内に導入し、接合を行い、接合基板250を作製した。
 接合の際、EPW210の中心点2101は、被接合ウェーハ220の中心点2201からのズレを1~9mmまで1mm刻みで変えて接合した。接合時の圧力は、50N/cmとした。また同時に、350℃の加熱を行った。以上を表1に併せて示す。
 接合基板250より、出発基板201をウェットエッチングで除去した。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行った。
 以上のように作製した接合ウェーハのEPW210の中心点2101と被接合ウェーハ220の中心点2201からのズレに対するクラック本数(本)を図25に併せて示す。
 (実施例3)
 550μm厚の直径6インチのGaAsを成長基板(出発基板)301とし、AlGaInP系からなる発光ダイオード機能層303と出発基板と発光ダイオード機能層との間にInGaPからなる0.1μm厚のエッチストップ(ES)層302を有するエピウェーハ(EPW)310を準備した。
 AlGaInP系からなる発光ダイオード機能層303は出発基板301側から順に1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層3031(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)3032(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層3033(0.4≦y≦0.5)とした。
 また、GaPから成る窓層3035を10μm厚で積層した。また、窓層3035と機能層303との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層3034を設けた。
 被接合ウェーハ320には直径8インチのシリコンウェーハを用いた。
 次に、EPW310上にベンゾシクロブテン(BCB)をスピンコートする。粘度とスピン数を調整し、BCB膜311を3μm厚程度形成した後、EPW310と被接合ウェーハ320の双方を、EPWのBCB層311と被接合ウェーハの表面321を対向する形で重ね合わせて接合機内に導入し、接合を行い、接合基板350を作製した。
 接合の際、EPW310の中心点3101は、被接合ウェーハ320の中心点3201からのズレを1~9mmまで1mm刻みで変えて接合した。接合時の圧力は、50N/cmとした。また同時に、350℃の加熱を行った。以上を表1に併せて示す。
 接合基板350より、出発基板301をウェットエッチングで除去した。ウェットエッチングは、アンモニアと過酸化水素水(APM)との混合液にて行った。
 以上のように作製した接合ウェーハのEPW310の中心点3101と被接合ウェーハ320の中心点3201からのズレに対するクラック本数(本)を図25に併せて示す。
 (実施例4)
 直径2インチ(50mm)の化合物ウェーハを直径4インチ(100mm)のシリコンウェーハ上に形成し、GaPからなる窓層及びGaInPからなる緩和層を形成しなかったこと以外は、実施例1~3と同様に行った。このようにして作製した接合ウェーハの化合物半導体ウェーハの中心から端部における距離とウェーハ高さの関係を図26に示す。なお、図26における横軸は、接合ウェーハの化合物半導体ウェーハの中心を0mmとし、最外周部を-25.4mm(-1インチ)とした。
 (比較例1)
 550μm厚の直径6インチのGaAsを成長基板(出発基板)とし、AlGaInP系からなる発光ダイオード機能層と出発基板と機能層との間にInGaPからなる0.1μm厚のエッチストップ(ES)層を有するエピウェーハ(EPW)を準備した。
 AlGaInP系からなる発光ダイオード機能層は出発基板側から順に1μm厚のキャリア濃度が1×1017/cm程度であるp型Al1-yInP層(0.4≦y≦0.5)、0.6μm厚の(Al1-xGa1-yInP層(活性層)(0.45≦x≦1,0.4≦y≦0.5)、1μm厚のキャリア濃度が1×1017/cm程度であるn型Al1-yInP層(0.4≦y≦0.5)とした。
 次に、GaPから成る窓層を10μm厚で積層した。また、窓層と機能層との間にはバンド帯不連続量を緩和するGa1-yInP層(0<y<1)からなる緩和層を設けた。
 EPW形成後、出発基板の裏面側をラップ処理の後、ポリッシュ処理し、ポリッシュ処理面を形成し、150μmの厚さとした。
 被接合ウェーハには直径8インチのシリコンウェーハを用いた。
 EPWと被接合ウェーハの両方にアルカリ系溶剤でウェット表面処理を施した。5wt% NaOH水溶液中に10分間浸した後、リンス処理を行い、空気中で乾燥処理を施した。
 EPWと被接合ウェーハの双方を、EPWの出発基板ポリッシュ面と被接合ウェーハのポリッシュ面を対向する形で重ね合わせて接合機内に導入し、350℃にて真空雰囲気下、接合を行い、接合基板を作製した。
 接合の際、EPWの中心点と被接合ウェーハの中心点からのズレを1~4mmまで1mm刻みで変えて接合した。接合時の圧力は、EPWに印加される圧力を50N/cmにて実施した。
 熱処理炉に出発基板除去ウェーハを導入し、熱処理炉は基板除去面の材料に合わせた雰囲気とした。比較例1では出発基板が露出しているため、As雰囲気(1×10atm)にて700℃にて30分程度、熱処理を行った。
 以上のように作製した接合ウェーハのエピタキシャル層の中心点と被接合ウェーハの中心点からのズレに対するクラック本数(本)を図25に併せて示す。
 (比較例2)
 直径2インチの化合物ウェーハを直径4インチのシリコンウェーハ上に形成した以外は、比較例1と同様に行った。
 図25に示すように、接合ウェーハは、エピタキシャル層の中心位置からのズレ具合が大きくなる程、エピタキシャル層に入るクラック本数が増大する傾向が分かった。
 一方、本発明の接合ウェーハの製造方法を用いた実施例1~3における接合ウェーハのエピタキシャル層は、中心位置からのズレが1~5mmにおいて、エピタキシャル層に入るクラックの本数の増加を抑制できた。
 また、比較例2に示したように、化合物半導体からなる小直径ウェーハを大直径のシリコンウェーハ上に永久接合する形で形成するためには、小直径ウェーハの出発基板側を接合可能なレベルまで原子レベルでフラットにする必要がある。また、出発基板側にはエピタキシャル成長中の成長原料が回り込んでいるため、これを除く必要がある。そのため、ラップ処理を行った後、ポリッシュ加工を施す必要がある。
 しかし、化合物ウェーハは脆性材料であるため、ウェーハ外周部のポリッシュ速度が速く、外周部の膜厚が減少してしまった。特にウェーハ外周部1mm程度の範囲において膜厚の減少が生じてしまった。この状態でのウェーハの接合は可能だが、外周部とその内側とでウェーハの高さ分布が発生し、フォトリソグラフィー工程時の焦点深度の差異により歩留まりが低下してしまう。膜厚差異はミクロンオーダーであるため、比較例2だけ大きく高さが変わると焦点深度が一定には保てないため、外周部1mm程度の範囲ではパターンサイズにズレが生じ、歩留まりが大きく低下する。
 一方、本発明の接合ウェーハの製造方法を用いた実施例4では、いずれの場合も比較例で生じている様な外周部での大きな高さの差異(言い換えると膜厚の差異)はほぼ生じていない。実施例では本質的にエピタキシャル成長後のポリッシュ工程を排除していることが功を奏していることが分かった。従って、実施例4はそのような問題は無く、歩留まりが安定化する。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  成長基板上に化合物半導体をエピタキシャル成長させた化合物半導体ウェーハと被接合ウェーハを接合する接合ウェーハの製造方法であって、
     前記被接合ウェーハの接合面の面積を前記化合物半導体ウェーハの接合面の面積より大きくし、
     前記被接合ウェーハと前記化合物半導体ウェーハのエピタキシャル成長した化合物半導体側を接合面として接合した後、前記成長基板を除去することを特徴とする接合ウェーハの製造方法。
  2.  前記被接合ウェーハと前記化合物半導体ウェーハとの接合を、何も介さない直接接合、金属を介する金属接合、及び樹脂または高分子を介して接合する方法のいずれかとすることを特徴とする請求項1に記載の接合ウェーハの製造方法。
  3.  前記金属をAu,Ag,Al,In,Gaのうち1種類以上含むことを特徴とする請求項2に記載の接合ウェーハの製造方法。
  4.  前記樹脂または高分子を、ベンゾシクロブテン、ポリイミド、TEOSを用いたガラスとすること特徴とする請求項2に記載の接合ウェーハの製造方法。
  5.  前記化合物半導体ウェーハの中心と前記被接合ウェーハの中心のずれを5mm以下として配置し接合することを特徴とする請求項1から請求項4いずれか一項に記載の接合ウェーハの製造方法。
  6.  前記成長基板が除去された化合物半導体ウェーハの総厚を15μm以下とすることを特徴とする請求項1から請求項5のいずれか一項に記載の接合ウェーハの製造方法。
  7.  前記被接合ウェーハをシリコン、サファイア、石英とすることを特徴とする請求項1から請求項6のいずれか一項に記載の接合ウェーハの製造方法。
  8.  化合物半導体ウェーハに該化合物半導体ウェーハの接合面の面積より面積が大きい被接合ウェーハが接合された接合ウェーハであって、
     前記化合物半導体ウェーハの総厚が15μm以下のものであることを特徴とする接合ウェーハ。
PCT/JP2021/008849 2020-03-25 2021-03-08 接合ウェーハの製造方法及び接合ウェーハ WO2021192938A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21775084.3A EP4131335A4 (en) 2020-03-25 2021-03-08 METHOD FOR MANUFACTURING BONDED WAFER AND BONDED WAFER
CN202180023402.1A CN115315781A (zh) 2020-03-25 2021-03-08 接合晶圆的制造方法及接合晶圆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054968A JP7276221B2 (ja) 2020-03-25 2020-03-25 接合ウェーハの製造方法及び接合ウェーハ
JP2020-054968 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192938A1 true WO2021192938A1 (ja) 2021-09-30

Family

ID=77891314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008849 WO2021192938A1 (ja) 2020-03-25 2021-03-08 接合ウェーハの製造方法及び接合ウェーハ

Country Status (5)

Country Link
EP (1) EP4131335A4 (ja)
JP (1) JP7276221B2 (ja)
CN (1) CN115315781A (ja)
TW (1) TW202205378A (ja)
WO (1) WO2021192938A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243255A1 (ja) * 2022-06-15 2023-12-21 信越半導体株式会社 接合型発光素子ウェーハの製造方法およびマイクロledの移載方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213977B1 (en) 1995-06-22 2001-04-10 Pharmacia Ab Limited depth penetration needle housing
JP2004296796A (ja) * 2003-03-27 2004-10-21 Shin Etsu Handotai Co Ltd 発光素子および発光素子の製造方法
JP2010114112A (ja) * 2008-11-04 2010-05-20 Canon Inc 窒化ガリウム系化合物半導体層の形成方法、移設方法、及び窒化ガリウム系化合物半導体層が接合されたシリコン基板
JP2015533774A (ja) * 2012-10-26 2015-11-26 エレメント シックス テクノロジーズ ユーエス コーポレイション 信頼性および動作寿命を改善した半導体デバイスならびにその製造方法
US9762032B1 (en) * 2014-02-07 2017-09-12 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664169B1 (en) * 1999-06-08 2003-12-16 Canon Kabushiki Kaisha Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
US20140170792A1 (en) * 2012-12-18 2014-06-19 Nthdegree Technologies Worldwide Inc. Forming thin film vertical light emitting diodes
US10535685B2 (en) * 2013-12-02 2020-01-14 The Regents Of The University Of Michigan Fabrication of thin-film electronic devices with non-destructive wafer reuse
WO2016205751A1 (en) * 2015-06-19 2016-12-22 QMAT, Inc. Bond and release layer transfer process
JP6854516B2 (ja) * 2017-07-19 2021-04-07 株式会社テンシックス 化合物半導体基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213977B1 (en) 1995-06-22 2001-04-10 Pharmacia Ab Limited depth penetration needle housing
JP2004296796A (ja) * 2003-03-27 2004-10-21 Shin Etsu Handotai Co Ltd 発光素子および発光素子の製造方法
JP2010114112A (ja) * 2008-11-04 2010-05-20 Canon Inc 窒化ガリウム系化合物半導体層の形成方法、移設方法、及び窒化ガリウム系化合物半導体層が接合されたシリコン基板
JP2015533774A (ja) * 2012-10-26 2015-11-26 エレメント シックス テクノロジーズ ユーエス コーポレイション 信頼性および動作寿命を改善した半導体デバイスならびにその製造方法
US9762032B1 (en) * 2014-02-07 2017-09-12 Soraa Laser Diode, Inc. Semiconductor laser diode on tiled gallium containing material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131335A4

Also Published As

Publication number Publication date
EP4131335A4 (en) 2024-04-17
CN115315781A (zh) 2022-11-08
EP4131335A1 (en) 2023-02-08
TW202205378A (zh) 2022-02-01
JP7276221B2 (ja) 2023-05-18
JP2021158159A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
CN100587919C (zh) 用于氮化物外延生长的纳米级图形衬底的制作方法
TW201807839A (zh) 用於功率及rf應用的工程基板結構
WO2018086380A1 (zh) 一种大尺寸iii-v异质衬底的制备方法
US10014216B2 (en) Method for manufacturing semiconductor device using high speed epitaxial lift-off and template for III-V direct growth and semiconductor device manufactured using the same
US11626283B2 (en) Compound semiconductor substrate, a pellicle film, and a method for manufacturing a compound semiconductor substrate
JP2007326771A (ja) 形成方法および化合物半導体ウェハ
JP6511516B2 (ja) ゲルマニウム・オン・インシュレータ基板の製造方法
KR101255489B1 (ko) 반도체 소자와 반도체 소자의 제조 방법
JP2010147164A (ja) 半導体素子の製造方法
FR2995136A1 (fr) Pseudo-substrat avec efficacite amelioree d'utilisation d'un materiau monocristallin
JP2018514083A (ja) プレパターニングされたメサを経由する歪み緩和エピタキシャルリフトオフ
US8648387B2 (en) Nitride semiconductor template and method of manufacturing the same
WO2021192938A1 (ja) 接合ウェーハの製造方法及び接合ウェーハ
JP2010147163A (ja) 半導体発光素子の製造方法
TWI721107B (zh) 化合物半導體基板、膠片膜及化合物半導體基板之製造方法
TWI414021B (zh) 具有氮化銦鎵層之半導體裝置
CN116995172A (zh) 一种绿光led芯片及其制备方法
JP5598321B2 (ja) 半導体デバイスの製造方法
JP5990014B2 (ja) 半導体発光素子及びその製造方法
WO2018034065A1 (ja) 発光素子及び発光素子の製造方法
CN111435694A (zh) GaN外延片及其制备方法
WO2023021972A1 (ja) 仮接合ウェーハ及びその製造方法
JP2013135175A (ja) 複合基板およびその製造方法
KR20230034310A (ko) 자기 지지 서브스트레이트의 제조 방법
CN117373912A (zh) 一种异质衬底的制备方法及异质衬底、半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17909785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775084

Country of ref document: EP

Effective date: 20221025