WO2021192163A1 - 燃料電池発電システム - Google Patents

燃料電池発電システム Download PDF

Info

Publication number
WO2021192163A1
WO2021192163A1 PCT/JP2020/013742 JP2020013742W WO2021192163A1 WO 2021192163 A1 WO2021192163 A1 WO 2021192163A1 JP 2020013742 W JP2020013742 W JP 2020013742W WO 2021192163 A1 WO2021192163 A1 WO 2021192163A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
power generation
generation system
utilization rate
Prior art date
Application number
PCT/JP2020/013742
Other languages
English (en)
French (fr)
Inventor
雄三 白川
石川 敬郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP20927780.5A priority Critical patent/EP4131524A1/en
Priority to PCT/JP2020/013742 priority patent/WO2021192163A1/ja
Priority to US17/639,771 priority patent/US11888195B2/en
Priority to JP2022510275A priority patent/JP7340093B2/ja
Publication of WO2021192163A1 publication Critical patent/WO2021192163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell power generation system.
  • SOFC solid oxide fuel cell
  • an oxide ion conduction type SOFC is known.
  • the oxide ion conduction type SOFC uses an oxide ion conductive solid electrolyte as an electrolyte, supplies fuel gas to the fuel electrode, and supplies air or oxygen as an oxidant gas to the air electrode, resulting in a power generation reaction. Generate power. Since the oxide ion conduction type SOFC operates at a high temperature of, for example, about 600 to 800 ° C., there are drawbacks such as limited materials that can be used and high cost. For this reason, the development of SOFCs capable of operating in a lower temperature medium temperature region (600 ° C. or lower) is underway.
  • PCFC proton-conducting Ceramic-electrolyte Fuel Cell
  • An object of the present invention is to provide a fuel cell power generation system capable of increasing the fuel utilization rate and at the same time increasing the power generation efficiency.
  • the fuel cell power generation system includes an oxide ion conduction type first fuel cell that reforms and generates power of a fuel containing hydrocarbons, and hydrogen from the first fuel cell. It is equipped with a proton conduction type second fuel cell that is supplied with fuel cells to generate power.
  • the present invention can provide a fuel cell power generation system capable of increasing the fuel utilization rate and at the same time increasing the power generation efficiency.
  • This fuel cell power generation system includes a first fuel cell 11 and a second fuel cell 12 located in a subsequent stage.
  • both the first fuel cell 11 and the second fuel cell 12 can be configured as an SOFC stack in which a plurality of cells are laminated via an interconnector.
  • the first fuel cell 11 is an oxide ion conduction type fuel cell.
  • the first fuel cell 11 includes a fuel electrode 11a, an electrolyte membrane 11b, and an air electrode 11c.
  • the fuel electrode 11a is composed of a porous body made of a mixture of, for example, nickel (Ni) and yttria-stabilized zirconia (YSZ).
  • the air electrode 11c is composed of, for example, a porous body such as Sr-doped LaFeO 3 and LaMnO 3.
  • the electrolyte membrane 11b may be composed of, for example, a sintered body made of yttria-stabilized zirconia (YSZ).
  • the materials of the fuel electrode 11a, the electrolyte membrane 11b, and the air electrode 11c are not limited thereto. Further, the fuel electrode 11a, the electrolyte membrane 11b, and the air electrode 11c may be of a flat plate method, a cylindrical method, or an integrally laminated method.
  • the second fuel cell 12 is a proton conduction type fuel cell.
  • the second fuel cell 12 includes a fuel electrode 12a, an electrolyte membrane 12b, and an air electrode 12c.
  • the material of the fuel pole 12a and the air pole 12c may be the same as that of the fuel pole 11a and the air pole 11c.
  • the electrolyte membrane 12b unlike the oxide ion conduction type fuel cell, for example, a material of BaZrCeO 3 system or BaZrO 3 system can be used.
  • the materials of the fuel electrode 12a, the electrolyte membrane 12b, and the air electrode 12c are not limited thereto.
  • the oxide ion conduction type first fuel cell 11 and the proton conduction type second fuel cell 12 are arranged in multiple stages (in series) in one system. , The former is arranged in front of the latter (upstream side).
  • the advantages of such an arrangement have been found by the present inventor based on the properties of both. This point will be described later.
  • the first fuel cell 11 can be controlled to operate at a higher temperature than the second fuel cell 12.
  • the first fuel cell 11 can be operated at a temperature of 650 ° C. or higher
  • the second fuel cell 12 can be operated at a temperature of 600 ° C. or lower.
  • the fuel utilization rate in the first fuel cell 11 can be set to a value lower than the fuel utilization rate in the second fuel cell 12.
  • the former can be 30% or less, while the latter can be 70% or more.
  • the fuel cell power generation system of this embodiment further includes a fuel supply device 13, a first heat exchanger 14, an air supply device 15, a second heat exchanger 16, a CO / CO 2 converter 17, and a third heat exchanger 18. , A water recovery mechanism 19, and a combustor 20.
  • the fuel supply device 13 supplies a mixed solution of hydrocarbon fuel (for example, ethanol) and water as the fuel of this system.
  • hydrocarbon fuel for example, ethanol
  • water for example, water
  • low-concentration hydrous ethanol ethanol concentration of 46 wt% or less, preferably 20 wt% or less
  • ethanol concentration of 46 wt% or less preferably 20 wt% or less
  • the first heat exchanger 14 exchanges heat between the supply from the fuel supply device 13 and the supply from the third heat exchanger 18, which will be described later.
  • the fuel heated in the first heat exchanger 14 is further heated in the second heat exchanger 16.
  • the second heat exchanger 16 is configured to exchange heat between the gas generated in the combustor 20 and the fuel discharged from the first heat exchanger 14.
  • the fuel (ethanol + water) and air (or oxygen) that have been heated and vaporized by the second heat exchanger 16 are supplied to the fuel poles 11a and the air poles 11c of the first fuel cell 11, respectively.
  • Oxygen in the air becomes oxygen ions at the air electrode 11c and reaches the fuel electrode 11a through the electrolyte membrane 11b.
  • Oxygen ions react with the fuel supplied to the fuel electrode 11a to emit electrons, water (H 2 O) as the reaction product, to produce carbon dioxide (CO 2).
  • the fuel generates hydrogen (H 2 ) and carbon monoxide (CO) at the fuel electrode 11a of the first fuel cell 11 by the catalytic action of nickel or the like. Hydrogen and carbon monoxide serve as fuel in the first fuel cell 11. Hydrogen (H 2 ) and carbon monoxide (CO), which were not targeted for combustion, are released from the first fuel cell 11. In this way, from the fuel electrode 11a of the first fuel cell 11, the reaction products water (H 2 O) and carbon dioxide (CO 2 ), the unreacted fuel hydrogen (H 2 ), and carbon monoxide (CO) ) And are released as anode off-gas.
  • the residual air (or oxygen) supplied to the air electrode 11c but not used for combustion is discharged from the air electrode 11c as cathode off gas.
  • the discharged air is supplied to the air electrode 12c of the second fuel cell 12 by an air pipe.
  • the CO / CO 2 converter 17 is a device that converts carbon monoxide (CO) contained in the anode off-gas into carbon dioxide (CO 2 ) and hydrogen (H 2 ) by reacting with water vapor (H 2 O). As a result, the content of hydrogen in the anode off-gas can be increased, and more hydrogen can be supplied to the second fuel cell 12.
  • the third heat exchanger 18 outputs the gas (water vapor (H 2 O), carbon dioxide (CO 2 ), hydrogen (H 2 )) discharged from the CO / CO 2 converter 17 and the water recovery mechanism 19. It is a device that exchanges heat with carbon dioxide. As a result, the exhaust gas 17 from the CO / CO 2 converter 17 is cooled to a predetermined temperature.
  • the exhaust gas (H 2 , CO 2 , H 2 O) from the first fuel cell 11 cooled by the third heat exchanger 18 is further fuel supplied from the fuel supply device 13 in the first heat exchanger 14.
  • the temperature is further lowered, for example, the temperature is lowered to about 40 degrees or less and condensed to become condensed water. After that, this condensed water is supplied to the water recovery mechanism 19, and the water is removed and recovered.
  • the gas (H 2 , CO 2 ) from which water has been removed by the water recovery mechanism 19 is heated in the third heat exchanger 18 and then supplied as fuel to the fuel electrode 12a of the second fuel cell 12.
  • the hydrogen supplied to the fuel electrode 12a is converted into hydrogen ions, reaches the air electrode 12c through the electrolyte membrane 11b, reacts with oxygen ions, and emits electrons.
  • the fuel utilization rate of the second fuel cell 12 is set to a high value of, for example, 70% or more, and most of the supplied hydrogen is subject to combustion, but the remaining hydrogen is discharged from the fuel electrode 12a and reaches the combustor 20. do.
  • the combustor 20 burns the residual hydrogen and discharges water (H 2 O) together with other gases (CO 2 , N 2 , O 2 ) and the like. This exhaust gas is used for heat exchange in the second heat exchanger 16 as described above.
  • the oxide ion conduction type first fuel cell 11 and the proton conduction type second fuel cell 12 are used in combination, and the first fuel is used.
  • a configuration is adopted in which the battery 11 is arranged on the upstream side of the second fuel cell 12. The technical significance of such a configuration will be described below.
  • Oxide ion conduction type fuel cells tend to have lower power generation efficiency as the fuel utilization rate increases.
  • the power generation efficiency hardly changes regardless of the magnitude of the fuel utilization rate.
  • the present inventors can improve the power generation efficiency as a whole and also improve the fuel utilization rate by the multi-stage connection in which the oxide ion conduction type fuel cell is placed in the front stage and the proton conduction type fuel cell is placed in the rear stage. I found that I could do it.
  • the oxide ion conduction type first fuel cell 11 in the previous stage does not intentionally increase the fuel utilization rate, but improves the power generation efficiency.
  • the preliminary catalyst 21 is a catalyst for reforming the fuel heated by the first heat exchanger 14 and the second heat exchanger 16.
  • hydrocarbons other than methane are contained in the fuel, carbon is generated in the piping, the fuel electrode 11a, and the like, which may deteriorate the battery performance.
  • the precatalyst 21 can change such a hydrocarbon having 2 or more carbon atoms into a reformed gas containing hydrogen, carbon monoxide and methane.
  • Examples of the reforming catalyst used for the precatalyst 21 include nickel, platinum, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron, niobium, copper, zinc and the like.
  • a composite catalyst in which these are combined can be mentioned.
  • the carrier supporting the modification catalyst for example, ⁇ -alumina, titania, zirconia, niobium oxide, silica, magnesia, ceria and the like, or a composite carrier in which these are combined can be used.
  • the shape of the carrier can be, for example, an appropriate shape such as a pellet shape, a honeycomb shape, a sheet shape, a monolith shape, or a granular shape.
  • the pump 22 is arranged on the fuel line between the first fuel cell 11 and the second fuel cell 12, for example, after the CO / CO 2 converter 17.
  • the pump 22 has a role of operating the fuel line of the first fuel cell 11 under the reduced pressure condition, while operating the fuel line of the second fuel cell 12 under the pressurized condition. By operating the second fuel cell 12 under pressurized conditions, the fuel utilization rate in the second fuel cell 12 can be further improved.
  • the CO 2 recovery device 23 is a device that recovers and removes carbon dioxide (CO 2 ) from the gas discharged from the first fuel cell 11 and discharged from the third heat exchanger 18. By removing carbon dioxide, the fuel utilization rate in the second fuel cell 12 can be further improved.
  • the recovery method in the CO 2 recovery device 23 can be a chemical adsorption method, a physical adsorption method, a membrane separation method, or the like, and is not limited to a specific method.
  • the same effect as the system of the first embodiment can be obtained. Further, the addition of the preliminary catalyst 21, the pump 22, and the CO 2 recovery device 23 makes it possible to further improve the fuel utilization rate in the second fuel cell 12.
  • the present invention is not limited to the above-mentioned examples, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Abstract

本発明は、燃料利用率を高めると共に、同時に発電効率を高めることも出来る燃料電池発電システムを提供することを目的とする。この燃料電池発電システムは、炭化水素を含む燃料の改質及び発電を行う、酸化物イオン伝導型の第1燃料電池11と、第1燃料電池11から水素を供給されて発電を行う、プロトン伝導型の第2燃料電池12とを備える。第1燃料電池11における燃料利用率は、例えば30%以下とし、第2燃料電池12における燃料利用率は、例えば70%以上に設定することができる。このような多段構成を採用することで、全体として発電効率を上げることが出来ると共に、同時に高い燃料利用率を得ることができる。

Description

燃料電池発電システム
 本発明は、燃料電池発電システムに関する。
 バイオ燃料等の炭化水素と酸素とを化学反応させることにより発電する燃料電池として、固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下「SOFC」と称する)を用いた燃料電池発電システムが知られ、既に実用段階、さらには普及段階に移っている。SOFCにおいては、高効率化を目的に、様々な改良が試みられている。SOFCは一般に燃料極と空気極の間に、セラミクス等からなる電解質膜を挟んだ燃料極/電解質膜/空気極の三層構造を有する。
 広く知られているSOFCの一形態として、酸化物イオン伝導型のSOFCが知られている。酸化物イオン伝導型のSOFCは、電解質として酸化物イオン導電性固体電解質を用い、燃料極に燃料ガスを供給し、空気極に酸化剤ガスとしての空気又は酸素を供給することにより生じる発電反応により発電を行う。酸化物イオン伝導型のSOFCは、例えば600~800℃程度の高温で動作するため、使用できる材料が限定されコストが高いなどの欠点がある。このため、より温度の低い中温領域(600℃以下)での動作が可能なSOFCの開発が進められている。
 また、燃料電池発電システムにおいては、高い燃料利用率を得る一方で、熱効率を高めることも求められる。しかし、現在普及している酸化物イオン伝導型のSOFCでは、燃料利用率と熱効率の両立を図ることは困難であった。
 一方、プロトン(H+(水素イオン))を伝導イオンとしたプロトン伝導性の固体酸化物を固体電解質として採用したプロトン伝導型燃料電池(PCFC:Proton-conducting Ceramic-electrolyte Fuel Cell)も、次世代の燃料電池として注目されている。しかし、PCFCは、熱効率の面で酸化物イオン伝導型のSOFCに比べ十分でない。
特開2000-268832号公報 特開2012-150988号公報 特開2007-164989号公報
 本発明は、燃料利用率を高めると共に、同時に発電効率を高めることも出来る燃料電池発電システムを提供することを目的とする。
 上記の課題を解決するため、本発明に係る燃料電池発電システムは、炭化水素を含む燃料の改質及び発電を行う、酸化物イオン伝導型の第1燃料電池と、前記第1燃料電池から水素を供給されて発電を行う、プロトン伝導型の第2燃料電池とを備える。
 本発明によれば、本発明は、燃料利用率を高めると共に、同時に発電効率を高めることも出来る燃料電池発電システムを提供することができる。
第1の実施の形態に係る燃料電池発電システムの全体構成を示すブロック図である。 第2の実施の形態に係る燃料電池発電システムの全体構成を示すブロック図である。
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
[第1の実施の形態]
 第1の実施の形態に係る燃料電池発電システムの全体構成を、図1のブロック図を参照して説明する。この燃料電池発電システムは、第1燃料電池11と、その後段に位置する第2燃料電池12とを備えて構成される。なお、図示は省略するが、第1燃料電池11、第2燃料電池12のいずれも、複数のセルをインターコネクタを介して積層したSOFCスタックとして構成することができる。
 第1燃料電池11は、酸化物イオン伝導型の燃料電池である。一例として、第1燃料電池11は、燃料極11aと、電解質膜11bと、空気極11cとを備える。燃料極11aは、例えばニッケル(Ni)とイットリア安定化ジルコニア(YSZ)等の混合物を材料とした多孔質体で構成される。また、空気極11cは、例えばSrドープのLaFeO、LaMnO等の多孔質体で構成される。電解質膜11bは、例えばイットリア安定化ジルコニア(YSZ)を材料とした焼結体により構成され得る。上記は一例であって、燃料極11a、電解質膜11b、及び空気極11cの材料はこれに限定されるものではない。また、燃料極11aと、電解質膜11bと、空気極11cは、平板方式、円筒方式、一体積層方式のいずれであってもよい。
 一方、第2燃料電池12は、プロトン伝導型の燃料電池である。一例として、第2燃料電池12は、燃料極12aと、電解質膜12bと、空気極12cとを備える。燃料極12a及び空気極12cの材料は、燃料極11a及び空気極11cと同様であってよい。電解質膜12bは、酸化物イオン伝導型の燃料電池とは異なり、例えばBaZrCeO系又はBaZrO系の材料が用いられ得る。上記は同様に一例であって、燃料極12a、電解質膜12b、及び空気極12cの材料はこれに限定されるものではない。
 この実施の形態の燃料電池発電システムは、酸化物イオン伝導型の第1燃料電池11とプロトン伝導型の第2燃料電池12とを、1つのシステムの中で多段に(直列に)配列すると共に、前者を後者よりも前段(上流側)に配列する。このような配列の利点が、両者の特性に基づいて本発明者によって見出されたものである。この点は後述する。
 第1燃料電池11は、第2燃料電池12に比べ、高い温度で動作するように制御されることができる。一例として、第1燃料電池11は650℃以上の温度で動作させ、第2燃料電池12は、600℃以下の温度で動作させることができる。また、第1燃料電池11における燃料利用率は、第2燃料電池12における燃料利用率に比べて低い値に設定することができる。一例として、前者は30%以下とする一方で、後者は70%以上とすることができる。燃料利用率を上記のように設定することで、システム全体として高い燃料利用率を達成することが出来ると共に、同時に発電効率を向上させることができる。
 この実施の形態の燃料電池発電システムは更に、燃料供給装置13、第1熱交換器14、空気供給装置15、第2熱交換器16、CO/CO変換器17、第3熱交換器18、水回収機構19、及び燃焼器20を備える。
 燃料供給装置13は、本システムの燃料としての炭化水素系燃料(例えばエタノール)と水の混合溶液を供給する。燃料には、バイオエタノール製造時に蒸留工程を簡略化できる低濃度含水エタノール(エタノール濃度46wt%以下、好適には20wt%以下)を採用することができるが、これに限定されるものではない。
 第1熱交換器14は、燃料供給装置13からの供給物と、後述する第3熱交換器18からの供給物との間での熱交換を行う。第1熱交換器14で昇温された燃料は、第2熱交換器16において更に昇温される。第2熱交換器16は、燃焼器20で発生したガスと、第1熱交換器14から排出された燃料との間で熱交換を行うよう構成されている。
 第2熱交換器16で昇温され気化した燃料(エタノール+水)、及び空気(又は酸素)は、それぞれ第1燃料電池11の燃料極11a、空気極11cに供給される。空気中の酸素は、空気極11cにおいて酸素イオンとなり、電解質膜11bを通って燃料極11aに到達する。酸素イオンは、燃料極11aに供給された燃料と反応して電子を放出し、反応生成物として水(HO)、二酸化炭素(CO)を生成する。
 燃料は、第1燃料電池11の燃料極11aにおいて、ニッケル等の触媒作用により水素(H)と一酸化炭素(CO)を発生させる。水素及び一酸化炭素は、第1燃料電池11において燃料となる。燃焼の対象とされなかった水素(H)及び一酸化炭素(CO)は、第1燃料電池11からは放出される。こうして、第1燃料電池11の燃料極11aからは、反応生成物の水(HO)及び二酸化炭素(CO)と、未反応の燃料である水素(H)と一酸化炭素(CO)とが、アノードオフガスとして放出される。
 また、空気極11cに供給されたが燃焼に用いられなかった残余の空気(又は酸素)は、カソードオフガスとして空気極11cから排出される。排出された空気は、空気配管により第2燃料電池12の空気極12cに供給される。
 CO/CO変換器17は、アノードオフガスに含まれる一酸化炭素(CO)を水蒸気(HO)と反応させて二酸化炭素(CO)と水素(H)に変換する装置である。これにより、アノードオフガス中の水素の含有率を高め、より多くの水素を第2燃料電池12に供給することができる。
 第3熱交換器18は、CO/CO変換器17から排出されたガス(水蒸気(HO)、二酸化炭素(CO)、水素(H))と、水回収機構19から出力されたガスとの間の熱交換を行う装置である。これにより、CO/CO変換器17からの排出ガス17は、所定の温度まで降温される。
 第3熱交換器18で降温された第1燃料電池11からの排出ガス(H、CO、HO)は、更に第1熱交換器14において、燃料供給装置13から供給される燃料(エタノールと水の混合溶液)との間の熱交換により、更に降温され、例えば40度以下程度まで降温されて凝縮し、凝縮水となる。その後、この凝縮水は、水回収機構19に供給され、水分が除去・回収される。
 水回収機構19において水分を除去されたガス(H、CO)は、第3熱交換器18において昇温された後、燃料として第2燃料電池12の燃料極12aに供給される。燃料極12aに供給された水素は、水素イオンとされ、電解質膜11bを通って空気極12cに到達し、酸素イオンと反応し、電子を放出する。第2燃料電池12の燃料利用率は例えば70%以上と高い値に設定され、供給される水素の多くは燃焼の対象となるが、残余の水素は燃料極12aから排出され燃焼器20に到達する。燃焼器20は、残余の水素を燃焼させて水(HO)を、他のガス(CO、N、O)等とともに排出する。この排出ガスは、前述のように第2熱交換器16における熱交換に供される。
 上述のように、本実施の形態では、燃料電池発電システムにおいて、酸化物イオン伝導型の第1燃料電池11と、プロトン伝導型の第2燃料電池12とを組み合わせて使用すると共に、第1燃料電池11を、第2燃料電池12よりも上流側に配置する構成を採用する。このような構成の技術的意義を以下で説明する。
 酸化物イオン伝導型の燃料電池は、燃料利用率が上昇するほど発電効率が低下する傾向にある。一方で、プロトン伝導型の燃料電離では、燃料利用率の大小に拘わらず、発電効率は殆ど変化しない。本発明者らは、酸化物イオン伝導型の燃料電池を前段に、プロトン伝導型の燃料電池を後段に置く多段接続により、全体として発電効率を向上させることができ、しかも燃料利用率も向上させることができることを見出した。この構成によれば、前段の酸化物イオン伝導型の第1燃料電池11は、あえて燃料利用率を上げず、発電効率を向上させる。低い燃料利用率が設定されることにより、第1燃料電池11からは多くの水素が排出されるが、この水素は、後段の第2燃料電池12において燃料として使用される。第2燃料電池12はプロトン伝導型であるので、高い燃料利用率を設定したとしても発電効率は大きく変化しない。このように、本実施の形態の構成によれば、全体として高い燃料利用率と高い発電効率の両立を図ることができる。
[第2の実施の形態]
 次に、第2の実施の形態に係る燃料電池発電システムの全体構成を、図2のブロック図を参照して説明する。この第2の実施の形態のシステムは、第1の実施の形態のシステムに対し、更に予備触媒21、ポンプ22、及びCO回収器23を追加した点が異なっている。その他の構成要素は同一であり、図2において同一の参照符号を付している。これら同一の構成要素については、説明の重複を避けるため、以下では説明を省略する。
 予備触媒21は、第1熱交換器14及び第2熱交換器16で昇温された燃料を改質するための触媒である。燃料中にメタン以外の炭化水素が含まれる場合、配管や燃料極11aなどにおいて炭素が発生し、電池性能を劣化させる場合がある。予備触媒21は、このような炭素数が2以上の炭化水素を、水素、一酸化炭素及びメタンを含む改質ガスに変化させることができる。予備触媒21に使用する改質触媒としては、例えば、ニッケル、白金、パラジウム、ロジウム、イリジウム、ルテニウム、モリブデン、レニウム、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄、ニオブ、銅、亜鉛等や、これらが組み合わされた複合触媒が挙げられる。また、改質触媒を担持する担体としては、例えば、α-アルミナ、チタニア、ジルコニア、酸化ニオブ、シリカ、マグネシア、セリア等や、これらが組み合わされた複合担体を用いることができる。担体の形状は、例えば、ペレット状、ハニカム状、シート状、モノリス状、粒状等の適宜の形状とすることができる。
 ポンプ22は、第1燃料電池11と第2燃料電池12との間の燃料ラインの、例えばCO/CO変換器17の後段に配設される。ポンプ22は、第1燃料電池11の燃料ラインを減圧条件で運転する一方、第2燃料電池12の燃料ラインを加圧条件で運転する役割を有する。第2燃料電池12が加圧条件で運転されることにより、第2燃料電池12における燃料利用率を更に向上させることができる。
 CO回収器23は、第1燃料電池11から排出され第3熱交換器18から排出されたガスの中から二酸化炭素(CO)を回収・除去する装置である。二酸化炭素が除去されることで、第2燃料電池12における燃料利用率を更に向上させることができる。なお、CO回収器23における回収方式は、化学吸着法、物理吸着法、膜分離法などを採用することができ、特定のものには限定されない。
 第2の実施の形態によれば、第1の実施の形態のシステムと同様の効果を得ることができる。さらに、予備触媒21、ポンプ22、及びCO回収器23の追加により、第2燃料電池12における燃料利用率を更に向上させることが可能になる。
 本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 11…第1燃料電池(酸化物イオン伝導型)、 12…第2燃料電池(プロトン伝導型)、 13…燃料供給装置、14…第1熱交換器、 15…空気供給装置、 16…第2熱交換器、 17…CO/CO変換器、 18…第3熱交換器、 19…水回収機構、 20…燃焼器、 21…予備触媒、 22…ポンプ、 23…CO回収器。

Claims (15)

  1.  炭化水素を含む燃料の改質及び発電を行う、酸化物イオン伝導型の第1燃料電池と、
     前記第1燃料電池から水素を供給されて発電を行う、プロトン伝導型の第2燃料電池と
    を備える、燃料電池発電システム。
  2.  前記第1燃料電池から排出された一酸化炭素を二酸化炭素に変換するCO/CO変換器を更に備える、請求項1に記載の燃料電池発電システム。
  3.  前記第1燃料電池から排出された後降温されて凝縮した凝縮水を回収する水回収機構を更に備えた請求項1に記載の燃料電池発電システム。
  4.  前記第2燃料電池における燃料利用率は、前記第1燃料電池における燃料利用率よりも高い、請求項1に記載の燃料電池発電システム。
  5.  前記第1燃料電池の燃料利用率は30%以下であり、前記第2燃料電池の燃料利用率70%以上である、請求項4に記載の燃料電池発電システム。
  6.  前記第1燃料電池は、第1温度領域で運転され、前記第2燃料電池は、前記第1温度領域よりも低い第2温度領域で運転される、請求項1に記載の燃料電池発電システム。
  7.  前記第2燃料電池から排出される空気と燃料ガスとを燃焼させる燃焼器と、
     前記第1燃料電池に供給される燃料と前記第1燃料電池から排出される燃料との間で熱交換を行う第1熱交換器と、
     前記第1熱交換器で昇温された燃料と前記燃焼器より排出されるガスとで熱交換を行う第2熱交換器と、
     前記第1燃料電池から排出される燃料ガスと前記第2燃料電池に供給される燃料ガスとの間で熱交換を行う第3熱交換器と
     を更に備えたことを特徴とする請求項1に記載の燃料電池発電システム。
  8.  前記第1燃料電池から排出された一酸化炭素を二酸化炭素に変換するCO/CO変換器を更に備える、請求項7に記載の燃料電池発電システム。
  9.  前記第1燃料電池から排出された後降温されて凝縮した凝縮水を回収する水回収機構を更に備えた請求項7に記載の燃料電池発電システム。
  10.  前記第2燃料電池における燃料利用率は、前記第1燃料電池における燃料利用率よりも高い、請求項7に記載の燃料電池発電システム。
  11.  前記第1燃料電池の燃料利用率は30%以下であり、前記第2燃料電池の燃料利用率70%以上である、請求項10に記載の燃料電池発電システム。
  12.  前記第1燃料電池の前段に、燃料を改質するための予備触媒を更に備えた、請求項1に記載の燃料電池発電システム。
  13.  前記第1燃料電池と前記第2燃料電池との間の燃料ラインに配置されるポンプを備え、前記第1燃料電池の燃料ラインを減圧条件で運転する一方、前記第2燃料電池の燃料ラインを加圧条件で運転する、請求項1に記載の燃料電池発電システム。
  14.  前記第1燃料電池から排出されたガスに含まれる二酸化炭素を回収するためのCO回収器を更に備える、請求項1に記載の燃料電池発電システム。
  15.  炭化水素を含む燃料の改質及び発電を行う、酸化物イオン伝導型の第1燃料電池と、
     前記第1燃料電池から水素を供給されて発電を行う、プロトン伝導型の第2燃料電池と、
     前記燃料を供給する燃料供給装置と、
     前記第2燃料電池から排出される空気と燃料ガスとを燃焼させる燃焼器と、
     前記第1燃料電池に供給される燃料と前記第1燃料電池から排出される燃料との間で熱交換を行う第1熱交換器と、
     前記第1熱交換器で昇温された燃料と前記燃焼器より排出されるガスとで熱交換を行う第2熱交換器と、
     前記第1燃料電池から排出される燃料ガスと前記第2燃料電池に供給される燃料ガスとの間で熱交換を行う第3熱交換器と、
     前記第1燃料電池から排出された一酸化炭素を二酸化炭素に変換するCO/CO変換器と、
     前記第1燃料電池から排出された後前記第2熱交換器及び前記第3熱交換器により降温されて凝縮した凝縮水を回収する水回収機構と
    を備え、
     前記第2燃料電池における燃料利用率は、前記第1燃料電池における燃料利用率よりも高く、
     前記第1燃料電池は、第1温度領域で運転され、前記第2燃料電池は、前記第1温度領域よりも低い第2温度領域で運転される
    ことを特徴とする燃料電池発電システム。
PCT/JP2020/013742 2020-03-26 2020-03-26 燃料電池発電システム WO2021192163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20927780.5A EP4131524A1 (en) 2020-03-26 2020-03-26 Fuel cell power generation system
PCT/JP2020/013742 WO2021192163A1 (ja) 2020-03-26 2020-03-26 燃料電池発電システム
US17/639,771 US11888195B2 (en) 2020-03-26 2020-03-26 Fuel cell power generation system
JP2022510275A JP7340093B2 (ja) 2020-03-26 2020-03-26 燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013742 WO2021192163A1 (ja) 2020-03-26 2020-03-26 燃料電池発電システム

Publications (1)

Publication Number Publication Date
WO2021192163A1 true WO2021192163A1 (ja) 2021-09-30

Family

ID=77891099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013742 WO2021192163A1 (ja) 2020-03-26 2020-03-26 燃料電池発電システム

Country Status (4)

Country Link
US (1) US11888195B2 (ja)
EP (1) EP4131524A1 (ja)
JP (1) JP7340093B2 (ja)
WO (1) WO2021192163A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238765A (ja) * 1990-02-15 1991-10-24 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池の運転方法
JP2000268832A (ja) 1999-03-18 2000-09-29 Agency Of Ind Science & Technol 二温制御連結式固体酸化物型燃料電池
JP2007164989A (ja) 2005-12-09 2007-06-28 Tsutomu Toida 固体酸化物型燃料電池と水素製造工程との組み合わせ方法
JP2009048854A (ja) * 2007-08-20 2009-03-05 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電装置およびその制御方法
JP2011181489A (ja) * 2010-02-05 2011-09-15 Toshiba Corp 固体酸化物型燃料電池システム
JP2012150988A (ja) 2011-01-19 2012-08-09 Tokyo Gas Co Ltd 固体酸化物形燃料電池からco2の分離回収システム及びその運転方法
JP2016115479A (ja) * 2014-12-12 2016-06-23 東京瓦斯株式会社 燃料電池システム
JP2017183033A (ja) * 2016-03-30 2017-10-05 東京瓦斯株式会社 燃料電池システム
JP2019196286A (ja) * 2018-05-11 2019-11-14 東京瓦斯株式会社 二酸化炭素供給システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238765B2 (ja) 1992-10-26 2001-12-17 日本電産コパル株式会社 カメラ用位置決め装置の駆動装置
CA2448715C (en) * 2002-11-11 2011-07-05 Nippon Telegraph And Telephone Corporation Fuel cell power generating system with two fuel cells of different types and method of controlling the same
US7396603B2 (en) * 2004-06-03 2008-07-08 Fuelcell Energy, Inc. Integrated high efficiency fossil fuel power plant/fuel cell system with CO2 emissions abatement
JP2006031989A (ja) 2004-07-13 2006-02-02 Tokyo Gas Co Ltd 固体酸化物形燃料電池による発電方法及びシステム
JP2007194095A (ja) 2006-01-20 2007-08-02 Tsutomu Toida MeOH・DME原料固体酸化物型燃料電池発電システム
JP2015015100A (ja) 2013-07-03 2015-01-22 三菱重工業株式会社 ガス化燃料電池複合発電システム
EP3061146B1 (en) * 2013-10-23 2018-03-07 Bloom Energy Corporation Pre-reformer for selective reformation of higher hydrocarbons

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238765A (ja) * 1990-02-15 1991-10-24 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池の運転方法
JP2000268832A (ja) 1999-03-18 2000-09-29 Agency Of Ind Science & Technol 二温制御連結式固体酸化物型燃料電池
JP2007164989A (ja) 2005-12-09 2007-06-28 Tsutomu Toida 固体酸化物型燃料電池と水素製造工程との組み合わせ方法
JP2009048854A (ja) * 2007-08-20 2009-03-05 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電装置およびその制御方法
JP2011181489A (ja) * 2010-02-05 2011-09-15 Toshiba Corp 固体酸化物型燃料電池システム
JP2012150988A (ja) 2011-01-19 2012-08-09 Tokyo Gas Co Ltd 固体酸化物形燃料電池からco2の分離回収システム及びその運転方法
JP2016115479A (ja) * 2014-12-12 2016-06-23 東京瓦斯株式会社 燃料電池システム
JP2017183033A (ja) * 2016-03-30 2017-10-05 東京瓦斯株式会社 燃料電池システム
JP2019196286A (ja) * 2018-05-11 2019-11-14 東京瓦斯株式会社 二酸化炭素供給システム

Also Published As

Publication number Publication date
US11888195B2 (en) 2024-01-30
JP7340093B2 (ja) 2023-09-06
US20220336833A1 (en) 2022-10-20
JPWO2021192163A1 (ja) 2021-09-30
EP4131524A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
EP1908144B1 (en) Fuel cell system with electrochemical anode exhaust recycling
Acres et al. Electrocatalysts for fuel cells
Laosiripojana et al. Reviews on solid oxide fuel cell technology
US7691507B2 (en) Combination fuel cell and ion pump, and methods and infrastructure systems employing same
US20230231172A1 (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
WO2013048705A1 (en) Integrated natural gas powered sofc system
US20200087801A1 (en) Hydrogen processing device
US6753107B2 (en) Integrated fuel cell system
US20140178794A1 (en) Fuel electrode catalyst for fuel cell, electrode/membrane assembly, and fuel cell and fuel cell system provided with the electrode/membrane assembly
JP2013514873A (ja) 水素又は酸素の電気化学的ポンピング触媒膜リアクタ及びその利用
WO2021192163A1 (ja) 燃料電池発電システム
JPH0536427A (ja) 溶融炭酸塩型燃料電池発電装置
Basu Fuel cell systems
JP6556440B2 (ja) 燃料電池システム
EP4071867A2 (en) Hydrogen pumping proton exchange membrane electrochemical cell with carbon monoxide tolerant anode and method of making thereof
KR100818488B1 (ko) 연료 개질 방법과 개질기
KR100560442B1 (ko) 연료 전지 시스템
Mustafa et al. Conceptual Reduced Cost PEM Fuel Cell Design for Domestic Applications
KR100570685B1 (ko) 연료전지용 일산화탄소 정화기, 및 이를 포함하는연료전지 시스템
JP2009245630A (ja) 改質器及びそれを用いた平板型の固体酸化物形燃料電池
Litzelman et al. Fuel Cells Operating at 200 to 500 Celsius: Lessons Learned from the ARPA-E REBELS Program
CN117895003A (zh) 一种原位制氢-发电一体化高温甲酸燃料电池
CN113851682A (zh) 一种泛燃料供应的固体酸燃料电池的制备方法
JP2019220365A (ja) 燃料電池モジュール及びその運転方法
YILDIZ et al. Department of Chemistry Hacettepe University Ankara 06532 Turkey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927780

Country of ref document: EP

Effective date: 20221026