WO2021191957A1 - アレーアンテナの校正装置および校正方法 - Google Patents

アレーアンテナの校正装置および校正方法 Download PDF

Info

Publication number
WO2021191957A1
WO2021191957A1 PCT/JP2020/012666 JP2020012666W WO2021191957A1 WO 2021191957 A1 WO2021191957 A1 WO 2021191957A1 JP 2020012666 W JP2020012666 W JP 2020012666W WO 2021191957 A1 WO2021191957 A1 WO 2021191957A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
calibration
antenna
data signal
impulse response
Prior art date
Application number
PCT/JP2020/012666
Other languages
English (en)
French (fr)
Inventor
紀平 一成
深沢 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021556244A priority Critical patent/JP7012914B1/ja
Priority to PCT/JP2020/012666 priority patent/WO2021191957A1/ja
Publication of WO2021191957A1 publication Critical patent/WO2021191957A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to a calibration device, a calibration device, and a calibration method for an array antenna, particularly an array antenna that performs digital beamforming.
  • Patent Document 1 the passing amplitude phase characteristics of a plurality of elements are measured at the same time by using an OFDM (Orthogonal Frequency Division Multiplexing) signal and assigning different subcarriers to each element antenna to generate a calibration signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DBF digital beam forming
  • the present invention has been made to solve the above problems, and can be applied during system operation.
  • An array antenna calibrator and calibration capable of simultaneously measuring the passage amplitude phase characteristics and the passage delay characteristics between antenna elements.
  • the purpose is to get a method.
  • the purpose is to follow dynamic changes related to the operation of the device, such as environmental changes (temperature, etc.) around the device, changes over time, trigger signals associated with power supply operation, and reset of clock signals.
  • the array antenna calibration device includes a transmission unit that generates a data signal and radiates it from each antenna element of the transmission array antenna, a calibration antenna that receives the data signal radiated from each antenna element, and the calibration. From the detection unit that detects the data signal received by the antenna, the impulse response vector setting unit that estimates the impulse response vector having frequency characteristics similar to the frequency characteristics of the data signal detected by the detection unit, and the impulse response vector.
  • a calibration processing unit is provided to obtain a calibration value for calibrating the time difference between the transmission systems of each antenna element and to calibrate the time difference of each antenna element in the transmission unit based on the calibration value.
  • the present invention it is possible to simultaneously measure the pass amplitude phase characteristic and the pass delay characteristic between antenna elements during system operation.
  • FIG. It is a block diagram which shows the calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the DBF part. It is a hardware block diagram of the DBF part. It is a block diagram which shows an example of the detection part. It is a flowchart which shows the operation of the calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a graph which shows the impulse response vector h, the frequency response which Fourier-transformed the impulse response vector h, and the frequency response of acquired data. It is a graph which shows the calculation example of a two-element model.
  • FIG. It is a block diagram which shows the calibration apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the calibration apparatus which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram showing a calibration device for an array antenna according to the present embodiment. In this embodiment, an example of a digital beamforming antenna for transmission is shown.
  • LO unit Local Oscillator
  • the calibration antenna 80 is connected to the detection unit 70 and the calibration processing unit 60 in this order.
  • the calibration processing unit 60 is further connected to the DBF unit 30.
  • the signal processing unit 40 is connected to the DBF 30 and the calibration processing unit 50.
  • the impulse response vector setting unit 50 is connected between the detection unit 70 and the calibration processing unit 60.
  • the calibration processing unit 60, the detection unit 70, and the calibration antenna 80 constitute the calibration unit.
  • each DA conversion unit to the antenna element constitutes each transmission system.
  • the signal processing unit 40 generates a baseband signal (communication waveform, radar waveform, etc.) which is transmission data, and transmits the baseband signal (communication waveform, radar waveform, etc.) to the DBF unit 30.
  • the signal processing unit 40 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like.
  • FIG. 2 An example of the DBF unit 30 is shown in FIG.
  • the DBF unit 30 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like.
  • FIG. 3 shows a hardware configuration diagram when the DBF unit 30 is composed of a computer.
  • 501 is a memory
  • 502 is a processor
  • 503 is an input interface device
  • 504 is an output interface.
  • the memory 501 is a RAM (Random Access Memory). It is a portable storage medium such as an HDD (Hard Disk Drive), an SD (Secure Digital) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered commercial) disk, or a DVD. It may be a configuration in which some are combined.
  • RAM Random Access Memory
  • the processor 502 is an IC (Integrated Circuit) that performs processing. Specific examples of the processor 502 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • GPU Graphics Processing Unit
  • the input interface device 503 is an interface device including a signal input / output port such as a USB (Universal Serial Bus) port or a serial port, and is connected to the signal processing unit 40 to input a signal output from the signal processing unit 40. do.
  • a signal input / output port such as a USB (Universal Serial Bus) port or a serial port
  • the detection unit 70 After frequency conversion or digitization of the received RF band signal, the signal is input to the calibration processing unit 60 and the impulse response vector setting unit 50.
  • the details of the detection unit 70 are shown in FIG.
  • 301 is a down converter (DC) unit
  • 302 is an A / D conversion unit
  • 304 is a Fourier transform unit
  • 305 is an LO unit.
  • the DC unit 301 frequency-converts the signals extracted in the RF band into a low frequency band or a baseband band, respectively.
  • the A / D conversion unit 302 performs A / D (Analog to Digital) conversion to obtain a digital signal.
  • the Fourier transform unit 304 Fourier transforms them by digital signal processing to obtain a signal sequence y (signal vector y) which is data in the frequency domain.
  • the calibration processing unit 60 estimates the time, amplitude, and phase differences between the signals of each antenna element using frequency-converted or digitized RF band signals, and aligns all these values to predetermined values. Find the calibration value.
  • the impulse response vector h which is information necessary for estimating the time difference between the signals of each antenna element, is obtained by the impulse response vector setting unit 50.
  • the impulse response vector setting unit 50 calculates the impulse response vector h necessary for estimating the time difference between the signals of each antenna element in the calibration processing unit 60.
  • the impulse response vector h is an impulse response corresponding to a frequency response in which the signals of each antenna element included in the signal received from the calibration processing unit 60 are superimposed, and is equivalent to the signal vector y received from the calibration processing unit 60.
  • the impulse response vector is searched for.
  • the impulse response vector h needs to be a vector that can handle the amount of data in time increments with a higher resolution than the amount of data of the frequency-converted or digitized RF band signal output from the detection unit 60.
  • FIG. 5 is a flowchart showing a processing content (calculation value calculation method) of the calibration apparatus according to the first embodiment of the present invention. First, the data signal used for calibration will be described.
  • the signal processing unit 40 transmits a data signal, but this does not have to be a dedicated signal for the present invention such as an operating user signal or a control signal. Basically, any waveform can be used as long as the signal includes the frequency bandwidth to be calibrated. In other words, the transmitted signal itself during system operation may be used.
  • the data signal received by the calibration antenna 80 is sent to the detection unit 70.
  • step S103 the detection unit 70 detects the received data signal. Specifically, the frequency is converted to a lower intermediate frequency band, and A / D (Analog to Digital) conversion is performed to obtain a digital signal in the baseband band. After that, the digital signal is Fourier transformed for a certain time length to obtain a signal vector y which is a signal sequence in the frequency domain.
  • a / D Analog to Digital
  • the impulse response vector setting unit 50 sets the impulse response vector h required for estimating the difference in time, amplitude, and phase between the antenna elements.
  • the impulse response vector h is a vector having a higher resolution than the signal vector y in the frequency domain, that is, a finer and larger vector. For example, when the signal received from each antenna element is 100, that is, when the signal vector y is a vector consisting of 100 data, the impulse response vector h is 10000, which is 100 times the signal vector y, and so on. Set to a vector larger than the series and in fine (1/100) increments.
  • the impulse response vector h needs to be set to a vector length that includes the largest delay amount among all the antenna elements. This is because the fineness between the samples received from each antenna element determines the time resolution, and the vector size of the impulse response vector h determines the amount of delay time that can be estimated at the maximum. In the present embodiment, the case where the initial values of the impulse response vector h are all set to 1 will be described, but the initial values of the impulse response vector h are not limited to this.
  • a Fourier transform matrix A including an operator that transforms the impulse response vector h into a frequency domain is further set. The Fourier transform matrix A is determined in conjunction with the object to which the Fourier transform is to be performed, and in the example of the impulse response vector h described in the present embodiment, it is a matrix of 100 ⁇ 10000.
  • step S105 the calibration processing unit 60 estimates the time, amplitude, and phase difference between the signals of each antenna element.
  • step S104 the details of obtaining the impulse response vector will be described with reference to FIGS. 6 and 7.
  • the signal vector y acquired in step S103 is superposed with signals corresponding to the number of antenna elements having a time difference, it has a frequency response (characteristic) having a certain degree of frequency selectivity as shown in FIG. 6C. ..
  • the impulse response vector h is such that the impulse response of the element #k is superimposed by the number of elements K as shown in FIG. 6A.
  • the time order is random for each system.
  • the frequency response obtained by Fourier transforming FIG. 6A is obtained in FIG. 6B, and if this frequency response is equal to that in FIG. 6C, the impulse response vector h is determined. Determining the impulse response vector h is equivalent to solving the so-called inverse problem. That is, the impulse response vector h that minimizes the difference between the vector y and the vector Ah (the product of the matrix A and the vector h) may be estimated.
  • the dimension (number of elements) M of the observable (known) vector y is smaller than the dimension N of the unknown vector h (this is called an underdetermined system), so that the solution exists infinitely and cannot be obtained. ..
  • the impulse response of each antenna element is one, and the impulse response vector h is a so-called sparse vector in which most of the elements are zero. At this time, it is known that a solution is also required in the underdetermined system, and it is guaranteed that the present invention works effectively.
  • the L1 norm minimization problem of the following equation may be solved.
  • the L1 norm which is the sum of the absolute values of each element, Represents the Euclidean norm.
  • is a constant small enough to determine convergence.
  • the impulse response vector h which is a complex sparse vector, can be obtained, and the position, amplitude, and phase of the non-zero elements in this impulse response vector h are the time of each antenna element, respectively. Represents amplitude and phase.
  • FIG. 7 is a calculation example of a two-element model.
  • the delay amount of the first antenna element is 5.26
  • the delay amount of the second antenna element is 15.23.
  • the sampling interval of the data signal was 2 nsec
  • the step size of the impulse response vector h was 0.02 nsec, which is 1/100.
  • the horizontal axis represents the delay time and the vertical axis represents the relative amplitude.
  • ISTA Intelligent Shrinkage-Thresholding Algorithm
  • step S106 the relative differences in time, amplitude, and phase between the antenna elements are calculated from the obtained impulse response vector h, and a calibration value is obtained so that all of them are aligned with a predetermined value.
  • step S107 based on the calibration value, the correction values of time, amplitude, and phase are applied to the transmitted data, and the calibration process is completed.
  • the time timing adjustment can be easily performed because the digital signal processing can be realized by the sample delay processing.
  • each antenna is used by utilizing the sparseness of the signal between the antenna elements.
  • the calibration flow is such that the time, amplitude, and phase shift with respect to the element can be estimated with high accuracy, and all antenna elements can be extracted at the same time.
  • FIG. 8 shows a configuration diagram of the calibration device according to the present embodiment.
  • 90 is a power synthesis unit.
  • K 1, 2, ..., K)
  • UC unit 4-k (k 1, 2, ..., K)
  • DA conversion unit 5-k (k 1, 2, ..., K)
  • LO unit 10 DBF unit 30 constitute a transmission unit
  • impulse response vector setting unit 50, calibration processing unit 60, detection unit 70, and power synthesis unit 90 constitute a calibration unit.
  • FIG. 9 is a flowchart showing the processing contents of the calibration apparatus according to the present embodiment.
  • the same reference numerals as those in FIG. 5 indicate the same or corresponding portions, and thus the description thereof will be omitted.
  • step S201 and step S202 are not the synthesis of signals for each antenna element using spatial propagation, but the power synthesis unit. Will be achieved by.
  • the second embodiment when a calibration process is performed by extracting a part of the data signal input to each antenna element and synthesizing the power in the RF band. Since the number of signals can be reduced to one, the scale of the device can be reduced, and the number of calibration antennas can be reduced.
  • FIG. 10 shows a configuration diagram of the calibration device according to the present embodiment.
  • 45 is a delay time setting unit.
  • the delay time setting unit 45 intentionally generates different known delay amounts and outputs them to the DBF unit 30 and the calibration processing unit 60.
  • the same reference numerals as those in FIG. 8 represent the same or corresponding portions, and the same operations as those described in FIG. 8 used in the second embodiment are performed except for the delay time setting unit 45.
  • FIG. 12 shows the impulse response of the data signal of each antenna element received by the calibration processing unit 60.
  • FIG. 12A shows an example in which the signal output by the signal processing unit 40 is used as it is for a normal impulse response, and the time difference between the antenna elements is small.
  • FIG. 12B shows an example of an impulse response in which different delay amounts are given to the signals output by the signal processing unit 40.
  • the delay time setting unit 45 causes variations in each impulse response as shown in FIG. 12B, and the calibration processing unit 60 performs all antennas. Make sure that the element can be estimated. By doing so, it becomes easy to correspond the estimation result with each antenna element.
  • K 1, 2, ..., K)
  • UC unit 4-k (k 1, 2, ..., K)
  • DA conversion unit 5-k (k 1, 2, ..., K)
  • LO unit 10 DBF unit 30 constitute a transmission unit
  • delay time setting unit 45, impulse response vector setting unit 50, calibration processing unit 60, detection unit 70, and power synthesis unit 90 constitute a calibration unit.
  • FIG. 11 is a flowchart showing the processing contents of the calibration apparatus according to the present embodiment.
  • the same reference numerals as those in FIG. 9 indicate the same or corresponding portions, and thus the description thereof will be omitted.
  • step S301 the delay time setting unit 45 intentionally generates a different delay amount ⁇ k for each antenna element and outputs it to each antenna element. Further, the delay time setting unit 45 sends information on which antenna element and how much delay amount is generated to the calibration processing unit 60.
  • step S306 as in step S106 of FIG. 9, the relative difference in time, amplitude, and phase between the antenna elements is calculated from the obtained impulse response vector h, and the calibration value is obtained so that all of them are aligned with a predetermined value.
  • the calculation is performed in consideration of the delay amount ⁇ k set by the delay time setting unit 45.
  • 1-1 to 1-K antenna element 1-1 to 2-K Extractor, 3-1 to 3-K amplification unit, 4-1 to 4-K UC Department, 5-1 to 5-K DA converter, 10 LO part, 30 DBF section, 40 Signal processing unit, 45 Delay time setting unit, 50 Impulse response vector setting unit, 60 Calibration processing unit, 70 detector, 80 Calibration antenna 90 Power synthesizer, 200-1 to 200-K delay adjuster, 201-1 to 201-K Amplitude Phase Adjuster, 301 DC section, 302 AD converter, 304 Fourier Transform, 305 LO part, 501 memory, 502 processor, 503 input interface equipment, 504 Output interface equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本発明は、データ信号を生成し送信アレーアンテナの各アンテナ素子1-kから放射させる送信部と、各アンテナ素子1-kから放射されたデータ信号を受信する校正用アンテナ80と、校正用アンテナ80が受信したデータ信号を検波する検波部70と、検波部70が検波したデータ信号の周波数特性と近似する周波数特性を有するインパルス応答ベクトルを推定するインパルス応答ベクトル設定部50と、インパルス応答ベクトルから、各アンテナ素子1-kの送信系間の時間差を校正するための校正値を求め、校正値に基づき送信部における各アンテナ素子1-kの時間差の校正を行う校正処理部60とを備えたアレーアンテナの校正装置を提供する。

Description

アレーアンテナの校正装置および校正方法
 この発明は、アレーアンテナ、特にディジタルビームフォーミングを行うアレーアンテナにおける校正装置および校正装置および校正方法に関する。
 アレーアンテナにおいて、所望の放射指向特性を得るためには各アンテナ素子に繋がる各種デバイスまで含めた通過振幅位相特性を把握し、所定の値に通過振幅位相特性を補正する校正技術が必須となる。
 例えば、下記特許文献1には、OFDM(Orthogonal Frequency Division Multiplexing)信号を利用して、素子アンテナ毎に異なるサブキャリアを割り当てて校正用信号を生成することで同時に複数素子の通過振幅位相特性を測定する技術が示されている。
特許第5725703号
 広帯域信号を扱う場合は、素子毎の遅延時間差(タイミングばらつき)の影響が無視できなくなり、上述した特許文献の技術で測定できる素子毎の通過振幅位相特性だけでは十分な性能が得られない課題があった。
 特にデジタルビーム形成(Digital Beamforming:DBF)をおこなう場合、D/A(Digital to Analog)変換器やA/D(Analog to Digital)変換器を主とした、ディジタル信号処理におけるデータのタイミング同期精度の影響が避けられないため、その調整に多大な時間を要するという課題もある。
 また、校正時には特性を高精度に把握するために好適な専用の信号波形を別途使用する必要があり、システムの運用中の適用は難しい課題もあった。
 この発明は上記のような課題を解決するためになされたもので、システム運用中の適用が可能で、アンテナ素子間の通過振幅位相特性とともに通過遅延特性も同時に測定できるアレーアンテナの校正装置および校正方法を得ることを目的とする。特に装置周辺の環境変動(温度等)や経変変化、電源操作などに伴うトリガ信号、クロック信号のリセットなど、装置の動作に係る動的な変化に追従することを目的とする。
 この発明によるアレーアンテナの校正装置は、データ信号を生成し送信アレーアンテナの各アンテナ素子から放射させる送信部と、前記各アンテナ素子から放射されたデータ信号を受信する校正用アンテナと、前記校正用アンテナが受信したデータ信号を検波する検波部と、前記検波部が検波したデータ信号の周波数特性と近似する周波数特性を有するインパルス応答ベクトルを推定するインパルス応答ベクトル設定部と、前記インパルス応答ベクトルから、前記各アンテナ素子の送信系間の時間差を校正するための校正値を求め、前記校正値に基づき前記送信部における各アンテナ素子の時間差の校正を行う校正処理部とを設けたものである。
 本発明により、アンテナ素子間の通過振幅位相特性および通過遅延特性をシステム運用中に同時に測定することが可能となる。
実施の形態1に係る校正装置を示す構成図である。 DBF部の一例を示す図である。 DBF部のハードウェア構成図である。 検波部の一例を示す構成図である。 実施の形態1に係る校正装置の動作を示すフローチャートである。 インパルス応答ベクトルh及び該インパルス応答ベクトルhをフーリエ変換した周波数応答及び取得データの周波数応答を示すグラフである。 2素子モデルの計算例を示すグラフである。 実施の形態1に係る校正装置を示す構成図である。 実施の形態2に係る校正装置の動作を示すフローチャートである。 実施の形態3に係る校正装置を示す構成図である。 実施の形態3に係る校正装置の動作を示すフローチャートである。 各アンテナ素子のデータ信号のインパルス応答を示す図である。
実施の形態1.
 図1は本実施の形態にかかるアレーアンテナの校正装置を示す構成図である。なお、本実施の形態では、送信用ディジタルビームフォーミングアンテナの例を示している。
 図1において、校正装置は、アレーアンテナを構成する複数の各アンテナ素子1-k(k=1、2、・・・、K)にはそれぞれ、増幅部3-k(k=1、2、・・・、K)、アップコンバータ(Up Converter:UC部)4-k(k=1、2、・・・、K)が順に接続されている。
 各UC部4-k(k=1、2・・・、K)の一方の端子はそれぞれ局部発振器(Local Oscillator:LO部)10に接続され、他方の端子はDA変換部5-k(k=1、2、・・・、K)が接続されている。
 各DA変換部5-k(k=1、2、…、K)はDBF部30に接続されている。一方、校正用アンテナ80には、検波部70、校正処理部60の順に接続されている。校正用アンテナ80の設置場所としては、アレーアンテナが遠方界とみなせる程度の距離で、各アンテナ素子1-k(k=1、2、・・・、K)からの伝搬距離に差異がでないよう、正面方向とするのが望ましい。
 校正処理部60は、さらにDBF部30に接続されている。そして、信号処理部40は、DBF30および校正処理部50に接続されている。また、インパルス応答ベクトル設定部50は、検波部70と校正処理部60の間に接続されている。
 なお、各アンテナ素子1-k(k=1、2、・・・、K)、増幅部3-k(k=1、2、・・・、K)、UC部4-k(k=1、2、・・・、K)、DA変換部5-k(k=1、2、・・・、K)、LO部10、DBF部30が送信部を構成し、インパルス応答ベクトル設定部50、校正処理部60、検波部70、校正用アンテナ80が校正部を構成する。
 なお、送信部のうち、それぞれのDA変換部からアンテナ素子までが、それぞれの送信系を構成する。
 まずデータの送信部の構成及び処理について説明する。信号処理部40は、送信データであるベースバンド信号(通信波形やレーダ波形など)を生成し、DBF部30へ送信する。信号処理部40は、例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている。
 DBF部30は、信号処理部40が生成したベースバンド信号を素子数K個に分配する。分配された各ベースバンド信号は、それぞれ振幅および位相と、遅延量(時間差)を調整されたベースバンド信号をDA部5-k(k=1、2、…、K)へ出力する。
 DA部5-k(k=1、2、…、K)は、ベースバンド信号をディジタル値からアナログ値へD/A(Digital to Analog)変換する。次に、UC部4-k(k=1、2、…、K)は、アナログ値へ変換されたベースバンド信号をRF(Radio Frequency)帯に周波数変換する。その後、増幅部3-kによる電力増幅されたRF帯の送信信号はアンテナ素子1-k(k=1、2、…、K)により、空間に放射される。
 DBF部30の一例を図2に示す。図2において、200-k(k=1、2、・・・、K)は遅延調整器、201-k(k=1、2、・・・、K)は振幅位相調整器である。振幅位相調整器201-k(k=1、2、・・・、K)と遅延調整器200-k(k=1、2、・・・、K)からなる構成とすることができる。DBF部30は、例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている。
 振幅位相調整器201-k(k=1、2、・・・、K)は、文字どおり入力された信号の振幅および位相を調整し、アレーアンテナとして所定の方向にビームを形成する。また遅延調整器200-k(k=1、2、・・・、K)は、アンテナ素子間のデータ信号のタイミング誤差などを調整して、所定の方向に同一タイミングで放射されるように時間差調整をおこなう。この実時間遅延の調整により、位相調整単独に比べて広帯域なビーム形成が可能となる。また、D/A変換などに安価なデバイスを用いた場合の同期ずれ、サンプルタイミングばらつきなどの精度劣化にも対応できる。
 図1の例では、信号処理部40やDBF部30の構成要素である振幅位相調整器201-k(k=1、2、・・・、K)と遅延調整器200-k(k=1、2、・・・、K)のそれぞれが専用のハードウェアで構成されているものを想定しているが、コンピュータで構成されていてもよい。
 DBF部30がコンピュータで構成される場合のハードウェア構成図を図3に示す。図3において、501はメモリ、502はプロセッサ、503は入力インタフェース機器、504は出力インタフェースである。
 メモリ501は、具体例としては、RAM(Random Access Memory)である。なお、HDD(Hard Disk Drive)やSD(Secure Digital)メモリカード、CF(Compact Flash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商業)ディスク、DVDといった可搬記憶媒体であってもよいし、幾つかを組み合わせた構成であってもよい。
 プロセッサ502は、プロセッシングを行うIC(Integrated Circuit)である。プロセッサ502は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 入力インタフェース機器503は、例えばUSB(Universal Serial Bus)ポートやシリアルポートなどの信号入出力ポートを備えるインタフェース機器であり、信号処理部40と接続されて、信号処理部40から出力された信号を入力する。
 出力インタフェース機器504は、例えばUSBポートやシリアルポートなどの信号入出力ポートを備えるインタフェース機器であり、DA変換部5-k(k=1、2、・・・、K)と接続されて、信号を出力する。
 DBF部30がコンピュータで構成される場合、振幅位相調整器201-k(k=1、2、・・・、K)と遅延調整器200-k(k=1、2、・・・、K)の処理内容を記述しているプログラムをコンピュータのメモリ501に格納し、当該コンピュータのプロセッサ502がメモリ501に格納されているプログラムを実行するようにすればよい。
 次に、校正部の構成と処理について説明する。
 校正用アンテナ80は、アンテナ素子1-k(k=1、2、…、K)から放射されたRF帯の信号を受信し、校正対象であるアレーアンテナ送信系の出力データを得る。
 検波部70では、受信したRF帯の信号を周波数変換やディジタル化したのち、校正処理部60及びインパルス応答ベクトル設定部50に入力する。検波部70の詳細を図4に示す。図4において、301はダウンコンバーター(Down Converter:DC)部、302はA/D変換部、304はフーリエ変換部、305はLO部である。
 DC部301は、RF帯で抽出した信号をそれぞれ低周波数帯あるいはベースバンド帯に周波数変換する。
 A/D変換部302は、A/D(Analog to Digital)変換してディジタル信号にする。それらをフーリエ変換部304は、ディジタル信号処理でフーリエ変換して周波数領域のデータである信号列y(信号ベクトルy)を得る。
 校正処理部60では、周波数変換やディジタル化したRF帯の信号を用いて、各アンテナ素子の信号間の時間、振幅、位相の差を推定し、これら全ての値を所定の値に揃えるような校正値を求める。なお、各アンテナ素子の信号間の時間差を推定するのに必要な情報であるインパルス応答ベクトルhは、インパルス応答ベクトル設定部50で求める。
 インパルス応答ベクトル設定部50は、校正処理部60で、各アンテナ素子の信号間の時間差を推定するのに必要なインパルス応答ベクトルhの計算を行う。インパルス応答ベクトルhは、校正処理部60から受け取った信号に含まれる各アンテナ素子の信号が重畳された周波数応答に対応するインパルス応答であり、校正処理部60から受け取った信号ベクトルyに等価となるようなインパルス応答ベクトルの探索を行う。
 なお、インパルス応答ベクトルhは、検波部60から出力される周波数変換やディジタル化したRF帯の信号のデータ量よりも、さらに分解能の高い時間刻みのデータ量を扱3えるベクトルが必要である。
 校正処理部60は、この校正値をもとに、DBF部30の遅延調整期200-k(k=1、2、…、K)及び振幅位相調整器201-k(k=1、2、…、K)の調整を行う。
 本実施の形態に係校正装置は、以上のような構成をしているため、アンテナ素子まで含めた送信系全体の校正が可能である。
 次に動作について説明する。図5は、この発明の実施の形態1による校正装置の処理内容(校正値の算出方法)を示すフローチャートである。
 まず、校正に用いるデータ信号について説明する。
 図5のステップS101では信号処理部40がデータ信号を送信するが、これは運用中のユーザ信号や制御信号など本発明のための専用信号である必要はない。校正対象とする周波数帯域幅を包含する信号であれば、基本的にどのような波形でもかまわない。つまりはシステム運用中の送信信号そのもので構わない。
 ステップS102では、校正用アンテナ80が、各アンテナ素子1-k(k=1、2、・・・、K)から放射されたデータ信号を受信する。校正用アンテナ80で受信したデータ信号は、検波部70へ送られる。
 ステップS103では、検波部70が、受信したデータ信号を検波する。具体的には、より低い中間周波数帯に周波数変換し、A/D(Analog to Digital)変換することでベースバンド帯のディジタル信号とする。その後、一定の時間長でディジタル信号をフーリエ変換して、周波数領域の信号列である信号ベクトルyを得る。
 ステップS104では、インパルス応答ベクトル設定部50が、各アンテナ素子間の時間、振幅、位相の差異を推定するために必要となるインパルス応答ベクトルhの設定を行う。インパルス応答ベクトルhは、具体的には、前記周波数領域の信号ベクトルyよりも、さらに分解能の高い時間刻み、つまりより細かく大きなベクトルとする。
 例えば、各アンテナ素子から受信する信号が100の場合、つまり信号ベクトルyが100個のデータからなるベクトルである場合、インパルス応答ベクトルhは信号ベクトルyの100倍の10000個といったように元の信号系列よりも大きく、細かい(1/100の)刻みのベクトルに設定する。
 また、インパルス応答ベクトルhは、すべてのアンテナ素子のなかで最も大きな遅延量を包含するようなベクトル長にも設定する必要がある。これは、各アンテナ素子から受信するサンプル間の細かさが時間分解能を決定し、インパルス応答ベクトルhのベクトルサイズが最大推定可能な遅延時間量を決定するためである。
 なお、本実施の形態では、インパルス応答ベクトルhの初期値をすべて1とした場合について述べるが、インパルス応答ベクトルhの初期値はこれに限定されるものではない。ステップS104では、さらに、このインパルス応答ベクトルhを周波数領域に変換する演算子からなるフーリエ変換行列Aを設定する。フーリエ変換行列Aは、フーリエ変換を行いたい対象が決まれば、連動して決まるもので、本実施の形態で説明しているインパルス応答ベクトルhの例だと、100×10000の行列となる。
 ステップS105では、校正処理部60が、各アンテナ素子の信号間の時間、振幅、位相の差を推定する。
 次に、ステップS104で、インパルス応答ベクトルを求める詳細について図6及び図7を用いて説明する。まず、ステップS103で取得した信号ベクトルyは、時間差のあるアンテナ素子数分の信号が重畳されているため、図6(c)のようなある程度の周波数選択性のある周波数応答(特性)を有する。
 ここで、校正装置内での各アンテナ素子の主たる遅延時間は原則一つであるので、そのインパルス応答ベクトルhは、図6(a)のように素子#kのインパルス応答が素子数K分重畳されたものとなり、その時間順は各系によりランダムである。
 このとき、図6(a)をフーリエ変換した周波数応答は図6(b)となり、この周波数応答が図6(c)と等しくなれば、インパルス応答ベクトルhが定まる。
 インパルス応答ベクトルhを定めることは、いわゆる逆問題を解くことに等しい。つまり、ベクトルyとベクトルAh(行列Aとベクトルhとの積)との差分が最小となるようなインパルス応答ベクトルhを推定すればよい。
 一般に、観測できる(既知)ベクトルyの次元(要素数)Mは、未知であるベクトルhの次元Nよりも小さいため(これを劣決定系という)、解が無限に存在し、求めることができない。ただし、上記のように各アンテナ素子のインパルス応答は一つであり、インパルス応答ベクトルhはほとんどの要素がゼロとなる、いわゆるスパースベクトルである。このとき、劣決定系においても解が求められることが知られており、本発明が有効に動作することが保証される。
 より具体的な評価関数として、次式のL1ノルム最小化問題を解けばよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、
Figure JPOXMLDOC01-appb-I000002
各要素の絶対値の和であるL1ノルム、
Figure JPOXMLDOC01-appb-I000003
ユークリッドノルムを表す。εは、収束を判定するための十分小さな定数である。
 信号ベクトルyに対し、上式を用いることにより複素数のスパースベクトルであるインパルス応答ベクトルhが求まり、このインパルス応答ベクトルh内のゼロでない要素の位置と振幅と位相が、それぞれ各アンテナ素子の時間、振幅、位相を表す。
 たとえば、図7は2素子モデルの計算例である。図7の例では、第1のアンテナ素子の遅延量は5.26、第2のアンテナ素子の遅延量は15.23の場合のサンプルとしている。なお、データ信号のサンプリング間隔は2nsecであり、インパルス応答ベクトルhの刻み幅は1/100の0.02nsecとした。
 図7のグラフでは、横軸に遅延時間、縦軸に相対振幅としている。
 L1ノルムの最小化問題を解くための最適化アルゴリズムには、もっとも単純なISTA(Iterative Shrinkage-Thresholding Algorithmを使用している。
 図7のように、サンプリング間隔の1/100の時間分解能で推定できており、高精度であることがわかる。
 ステップS106では、求めたインパルス応答ベクトルhから、アンテナ素子間の時間、振幅、位相の相対差を算出し、すべてを所定の値にそろえるような校正値を求める。
 最後に、ステップS107では校正値をもとに、送信データに対して時間、振幅、位相の補正値を適用し、校正処理を終了する。
 このように、時間タイミングの調整は、ディジタル信号処理ではサンプルの遅延処理で実現できるため簡易にできる。この一連の校正処理を定期的に実施することで、アレーアンテナ装置の健全性を運用中でも担保することが可能となる。
 以上で明らかなように、本実施の形態によれば、アンテナ素子間の特性ばらつきである、振幅位相差および遅延差(タイミング誤差)について、アンテナ素子間信号のスパース性を利用することで各アンテナ素子に対する時間、振幅、位相のずれを高精度に推定し、全アンテナ素子で同時に抽出できるような校正フローとなっている。
 このような構成としたことにより、高い分解能を得るために広帯域な校正用信号を別途用意せずとも、運用中のデータ信号の利用のみで実行することが可能となり、装置コストの増大を防ぐことができる。したがって、出荷前調整だけでなく、設置後でもシステムの運用中に柔軟に適用することができ、信頼性の高いシステムが常時得られる効果がある。
実施の形態2.
 実施の形態1では、空間に放射された各アンテナ素子1-k(k=1、2、・・・、K)のデータ信号を校正用のアンテナ素子80で受信する例を示したが、本実施の形態では、送信系内でデータ信号を抽出してRF帯(アナログ段)で合成処理を適用した場合について述べる。
 本実施の形態における校正装置の構成図を図8に示す。図8おいて、2-k(k=1、2、…、K)は抽出部、90は電力合成部である。抽出部2-k(k=1、2、…、K)は、各アンテナ素子1-k(k=1、2、・・・、K)と増幅部3-k(k=1、2、…、K)との間に配置され、増幅部3-k(k=1、2、…、K)から入力されるRF帯の送信信号の一部を抽出し、電力合成部90へ出力する。残りの送信信号は、各アンテナ素子1-k(k=1、2、・・・、K)により、空間に放射される。
 なお、抽出部2-k(k=1、2、…、K)は、RF帯のアナログ信号となっているため、例えば、方向性結合器(カップラ)やスイッチなどのハードウェアによって実現してもよい。
 電力合成部90は、抽出部2-k(k=1、2、…、K)と分波部70の間に配置され、各アンテナ素子1-k(k=1、2、…、K)へ送られるRF帯の送信信号の一部を抽出部2-k(k=1、2、…、K)から受け取り、RF帯で電力合成して1つの受信信号に変換し、分波部70へ出力する。
 図8おいて、図1と同一符号は同一または相当部分を示しており、抽出部2-k(k=1、2、…、K)と電力合成部90以外については、実施の形態1で記載したものと同じ動作をする。
 なお、本実施の形態では、各アンテナ素子1-k(k=1、2、・・・、K)、抽出部2-k(k=1、2、…、K)、増幅部3-k(k=1、2、・・・、K)、UC部4-k(k=1、2、・・・、K)、DA変換部5-k(k=1、2、・・・、K)、LO部10、DBF部30が送信部を構成し、インパルス応答ベクトル設定部50、校正処理部60、検波部70、電力合成部90が校正部を構成する。
 本実施の形態では、例えば図8の抽出部2-k(k=1、2、…、K)および電力合成部90に示すように、各アンテナ素子入力端に抽出部2-k(k=1、2、…、K)を設け、抽出した後、RF帯で電力合成して1つの受信信号を得る。こうすることで離れた場所に置く校正用アンテナ80が不要となる。
 次に動作について説明する。図9は、本実施の形態による校正装置の処理内容を示すフローチャートである。なお、図9において図5と同一の符号は、同一または相当部分を示すので説明を省略する。
 ステップS201では、各アンテナ素子1-k(k=1、2、・・・、K)に対応する抽出部2-k(k=1、2、…、K)が、増幅部3-k(k=1、2、…、K)から入力されるRF帯の送信信号の一部を抽出し、電力合成部90へ出力する。
 ステップS202では、電力合成部90が、各抽出部2-k(k=1、2、…、K)で抽出されたRF帯の送信信号の一部を合成し、検波部70へ出力する。
 ほとんどが実施の形態1と同じであり、ステップS201のデータ信号の抽出と、ステップS202のアナログ段での合成というステップが、空間伝搬を利用したアンテナ素子毎の信号の合成ではなく、電力合成部により達成することになる。
 以上で明らかなように、この実施の形態2によれば、各アンテナ素子へ入力されるデータ信号の一部を抽出し、それらをRF帯で電力合成することにより、校正処理を実施する際の信号数を1つに削減できるため装置規模を削減できる効果とともに、校正用アンテナを削減できる効果を奏する。
実施の形態3.
 実施の形態1および実施の形態2では、各アンテナ素子1-k(k=1、2、…、K)のデータ信号をそのまま利用する例を示した。本実施の形態では、各アンテナ素子1-k(k=1、2、…、K)のデータ信号の解が重複しないように異なる遅延時間量(遅延量)を与えた場合について説明する。
 本実施の形態における校正装置の構成図を図10に示す。図10において、45は遅延時間設定部である。遅延時間設定部45は、意図的に既知の異なる遅延量を生成し、DBF部30及び校正処理部60へ出力する。図10において、図8と同一の符号は、同一または相当する部分を表しており、遅延時間設定部45以外については、実施の形態2で用いた図8で記載したものと同じ動作をする。
 校正処理部60で受け取った各アンテナ素子のデータ信号のインパルス応答を図12に示す。図12(a)は信号処理部40が出力する信号をそのまま用いた通常のインパルス応答であり、アンテナ素子間の時間差が小さい例を示す。図12(b)は、信号処理部40が出力する信号に、異なる遅延量を与えたインパルス応答の例を示す。
 図12(a)に示す通常のインパルス応答は、インパルス応答が近接してしまっているため、近接した値を推定する必要がありインパルス応答ベクトルを収束さえるための時間がかかる可能性がある。また、同一の遅延であるアンテナ素子が複数あった場合、解が重複してしまい、分離することが難しい。
 遅延時間設定部45は、各アンテナ素子に異なる遅延量Δkを加算することにより、図12(b)に示すように各インパルス応答にばらつきが生じるようになり、校正処理部60が、すべてのアンテナ素子の推定が確実に行えるようにする。こうすることで、推定結果と各アンテナ素子との対応が簡単になる。
 なお、本実施の形態では、各アンテナ素子1-k(k=1、2、・・・、K)、抽出部2-k(k=1、2、…、K)、増幅部3-k(k=1、2、・・・、K)、UC部4-k(k=1、2、・・・、K)、DA変換部5-k(k=1、2、・・・、K)、LO部10、DBF部30が送信部を構成し、遅延時間設定部45、インパルス応答ベクトル設定部50、校正処理部60、検波部70、電力合成部90が校正部を構成する。
 次に動作について説明する。図11は、本実施の形態による校正装置の処理内容を示すフローチャートである。なお、図11において図9と同一の符号は、同一または相当部分を示すので説明を省略する。
 ステップS301では、遅延時間設定部45が、意図的に各アンテナ素子に異なる遅延量Δkを生成し、各アンテナ素子へ出力する。また、遅延時間設定部45は、どのアンテナ素子に対し、どれくらいの遅延量を生成したかの情報を校正処理部60へ送る。
 ステップS306では、図9のステップS106と同じく、求めたインパルス応答ベクトルhから、アンテナ素子間の時間、振幅、位相の相対差を算出し、すべてを所定の値にそろえるような校正値を求めるが、各アンテナ素子間の時間の相対差を算出する際には、遅延時間設定部45で設定した遅延量Δkを考慮して計算を行う。
 以上で明らかなように、本実施の形態によれば、各アンテナ素子のデータ信号に対し、異なる遅延量を与えることにより、アンテナ素子間の誤差による時間差が小さい場合でも推定結果が得られやすくなる効果を奏する。
 なお、上記では送信系の説明をおこなったが、受信系においても各アンテナ素子の信号を合成した信号に対して同様の原理を適用することで実現は可能である。
1-1~1-K アンテナ素子、
2-1~2-K 抽出部、
3-1~3-K 増幅部、
4-1~4-K UC部、
5-1~5-K DA変換部、
10 LO部、
30 DBF部、
40 信号処理部、
45 遅延時間設定部、
50 インパルス応答ベクトル設定部、
60 校正処理部、
70 検波部、
80 校正用アンテナ
90 電力合成部、
200-1~200-K 遅延調整器、
201-1~201-K 振幅位相調整器、
301 DC部、
302 AD変換部、
304 フーリエ変換部、
305 LO部、
501 メモリ、
502 プロセッサ、
503 入力インタフェース機器、
504 出力インタフェース機器。

Claims (4)

  1.  データ信号を生成し送信アレーアンテナの各アンテナ素子から放射させる送信部と、
     前記各アンテナ素子から放射されたデータ信号を受信する校正用アンテナと、
     前記校正用アンテナが受信したデータ信号を検波する検波部と、
     前記検波部が検波したデータ信号の周波数特性と近似する周波数特性を有するインパルス応答ベクトルを推定するインパルス応答ベクトル設定部と、
     前記インパルス応答ベクトルから、前記各アンテナ素子の送信系間の時間差を校正するための校正値を求め、前記校正値に基づき前記送信部における各アンテナ素子の時間差の校正を行う校正処理部と
    を備えたアレーアンテナの校正装置。
  2.  データ信号を生成し送信アレーアンテナの各アンテナ素子から放射させる送信部と、
     前記各アンテナ素子に送られるデータ信号の一部を抽出する複数の抽出部と、
     前記複数の抽出部で抽出されたデータ信号を合成する電力合成部と、
     前記電力合成部で合成したデータ信号を検波する検波部と、
     前記検波部が検波したデータ信号の周波数特性と近似する周波数特性を有するインパルス応答ベクトルを推定するインパルス応答ベクトル設定部と、
     前記インパルス応答ベクトルから、前記各アンテナ素子の送信系間の時間差を校正するための校正値を求め、前記校正値に基づき前記送信部における各アンテナ素子の時間差の校正を行う校正処理部と
    を備えたアレーアンテナの校正装置。
  3.  前記各アンテナ素子に異なる遅延時間量を設定する遅延時間設定手段を備え、
     前記送信部は、前記遅前記各アンテナ素子に対し、それぞれ異なる遅延時間量を与えたデータ信号を生成する請求項1または請求項2に記載のアレーアンテナの校正装置。
  4.  データ信号を生成し送信アレーアンテナの各アンテナ素子から放射させるステップと、
     前記各アンテナ素子からデータ信号を受信するステップと、
     前記受信したデータ信号を検波するステップと、
     前記検波したデータ信号の周波数特性と近似する周波数特性を有するインパルス応答ベクトルを推定するステップと、
     前記インパルス応答ベクトルから、前記各アンテナ素子の送信系間の時間差を校正するするステップと
    を備えたアレーアンテナの校正方法。
PCT/JP2020/012666 2020-03-23 2020-03-23 アレーアンテナの校正装置および校正方法 WO2021191957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021556244A JP7012914B1 (ja) 2020-03-23 2020-03-23 アレーアンテナの校正装置および校正方法
PCT/JP2020/012666 WO2021191957A1 (ja) 2020-03-23 2020-03-23 アレーアンテナの校正装置および校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012666 WO2021191957A1 (ja) 2020-03-23 2020-03-23 アレーアンテナの校正装置および校正方法

Publications (1)

Publication Number Publication Date
WO2021191957A1 true WO2021191957A1 (ja) 2021-09-30

Family

ID=77889933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012666 WO2021191957A1 (ja) 2020-03-23 2020-03-23 アレーアンテナの校正装置および校正方法

Country Status (2)

Country Link
JP (1) JP7012914B1 (ja)
WO (1) WO2021191957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614837A (zh) * 2022-02-15 2022-06-10 中国电子科技集团公司第十研究所 基于多信道抗干扰天线信号处理的装置、系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208001A (ja) * 2008-03-04 2009-09-17 Hitachi Plant Technologies Ltd 除湿機、除湿機の制御方法、及び空調システム
JP2011100858A (ja) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp 絶縁膜の形成方法
US20160191177A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Apparatus and method for calibrating transmission path
US20160211870A1 (en) * 2015-01-21 2016-07-21 Mediatek Inc. Detection Path Design for Communication Systems
US20170214477A1 (en) * 2016-01-25 2017-07-27 Innowireless Co., Ltd. Method of calibrating power for mimo-ofdm transmitter
JP2018019374A (ja) * 2016-07-29 2018-02-01 富士通株式会社 基地局およびアンテナキャリブレーション方法
WO2020021028A1 (en) * 2018-07-27 2020-01-30 Administración General De La Comunidad Autónoma De Euskadi Biomarkers for the diagnosis and/or prognosis of frailty

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176555C (zh) * 2002-12-25 2004-11-17 大唐移动通信设备有限公司 一种对智能天线阵系统进行实时校准的方法
JP4074553B2 (ja) * 2003-05-29 2008-04-09 京セラ株式会社 通信装置及びそれにおける検査方法
WO2008156389A1 (en) * 2007-06-21 2008-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive antenna transmission and antenna calibration
JP5056568B2 (ja) * 2008-04-30 2012-10-24 日本電気株式会社 アレイアンテナの校正装置及び校正方法
JP5725703B2 (ja) * 2009-11-13 2015-05-27 三菱電機株式会社 アレーアンテナの校正装置および校正方法
WO2013004887A1 (en) * 2011-07-06 2013-01-10 Elektrobit System Test Oy Over-the-air test
CN103037402B (zh) * 2011-09-29 2015-07-15 鼎桥通信技术有限公司 天线校准链路的时延检测方法及装置
WO2020021628A1 (ja) * 2018-07-24 2020-01-30 三菱電機株式会社 アレーアンテナの校正装置及び校正方法、アレーアンテナ、並びにプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208001A (ja) * 2008-03-04 2009-09-17 Hitachi Plant Technologies Ltd 除湿機、除湿機の制御方法、及び空調システム
JP2011100858A (ja) * 2009-11-06 2011-05-19 Asahi Kasei E-Materials Corp 絶縁膜の形成方法
US20160191177A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Apparatus and method for calibrating transmission path
US20160211870A1 (en) * 2015-01-21 2016-07-21 Mediatek Inc. Detection Path Design for Communication Systems
US20170214477A1 (en) * 2016-01-25 2017-07-27 Innowireless Co., Ltd. Method of calibrating power for mimo-ofdm transmitter
JP2018019374A (ja) * 2016-07-29 2018-02-01 富士通株式会社 基地局およびアンテナキャリブレーション方法
WO2020021028A1 (en) * 2018-07-27 2020-01-30 Administración General De La Comunidad Autónoma De Euskadi Biomarkers for the diagnosis and/or prognosis of frailty

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614837A (zh) * 2022-02-15 2022-06-10 中国电子科技集团公司第十研究所 基于多信道抗干扰天线信号处理的装置、系统及方法

Also Published As

Publication number Publication date
JP7012914B1 (ja) 2022-01-28
JPWO2021191957A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US9791552B1 (en) On-site calibration of array antenna systems
JP5659472B2 (ja) 到来方向推定装置及び方法
JP5675285B2 (ja) レーダ装置
JP2011237257A (ja) レーダ装置及び目標探知方法
JP2009162688A (ja) 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
US11630185B2 (en) Cascaded radar system calibration of baseband imbalances
US6446025B1 (en) Multiple propagation wave parameter measuring method and apparatus and machine-readable recording medium recording multiple propagation wave parameter measuring program
WO2021191957A1 (ja) アレーアンテナの校正装置および校正方法
WO2017141352A1 (ja) 物体検出装置及びセンサ装置
JP6246338B2 (ja) 測角装置及び測角方法
KR102169873B1 (ko) 차량용 레이더의 고유값의 상대 비교를 통한 신호 개수 추정 방법 및 이를 이용한 차량용 레이더
CN113671495B (zh) 基于Zynq平台的太赫兹雷达探测系统以及方法
Figueroa et al. Automatic delay and phase mismatch calibration in FMCW MIMO radar
JP6350242B2 (ja) レーダ装置およびレーダ出力調整システム
CA2948539A1 (en) Calibration device
JP2013044642A (ja) パッシブレーダ装置
KR101324172B1 (ko) 다채널 디지털 수신장치의 신호도착시간(toa) 보정방법 및 장치
JP2005195532A (ja) 電子機器から漏洩する電波の波源位置の推定装置
US11585892B1 (en) Calibration for multi-channel imaging systems
JP6415392B2 (ja) 信号処理装置
Zhang et al. Implementation of DOA Estimation System Based on HackRF One
KR102507882B1 (ko) 광대역 빔 패턴을 결정하는 근접전계 측정 시스템 및 근접전계 측정 방법
KR102591192B1 (ko) 시스템 성능 안정화를 위한 신호 보상 피드백 회로 및 알고리즘이 적용된 rf 시스템 및 그 동작 방법
JP5955140B2 (ja) 測角装置及び測角方法
Zhang et al. MT‐BCS‐Based DoA and Bandwidth Estimation of Unknown Signals through Multiple Snapshots Data

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021556244

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927334

Country of ref document: EP

Kind code of ref document: A1