WO2021189456A1 - 无人机巡检方法、装置及无人机 - Google Patents

无人机巡检方法、装置及无人机 Download PDF

Info

Publication number
WO2021189456A1
WO2021189456A1 PCT/CN2020/081802 CN2020081802W WO2021189456A1 WO 2021189456 A1 WO2021189456 A1 WO 2021189456A1 CN 2020081802 W CN2020081802 W CN 2020081802W WO 2021189456 A1 WO2021189456 A1 WO 2021189456A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspected
preset
camera
focal length
drone
Prior art date
Application number
PCT/CN2020/081802
Other languages
English (en)
French (fr)
Inventor
胡晓翔
杨龙超
朱高
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004231.3A priority Critical patent/CN112585554A/zh
Priority to PCT/CN2020/081802 priority patent/WO2021189456A1/zh
Publication of WO2021189456A1 publication Critical patent/WO2021189456A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle inspection method and device, and an unmanned aerial vehicle.
  • unmanned aerial vehicle With the continuous development of unmanned aerial vehicle technology, the application of unmanned aerial vehicle is becoming more and more extensive, for example, it can be used for power inspection, bridge inspection, and oil and gas pipeline inspection.
  • the automated inspection of drones can be realized in the following ways: First, the drone is manually operated to complete the inspection task, and during the completion of the task, the drone attitude data of the waypoint and the cloud set on the drone are recorded. The posture data of the platform and the camera parameters of the camera set by the PTZ; then, based on these data, an automated inspection task for the automated inspection of the UAV is generated; finally, the UAV can realize an automated inspection based on the automated inspection task.
  • the drone can adjust the attitude of the drone, the attitude of the gimbal, and the attitude of the drone according to the data of the waypoint. Camera parameters, and shoot after the adjustment is complete.
  • the embodiments of the present application provide a drone inspection method, device, and drone, which are used to solve the problem that due to the influence of various factors in the prior art, the equipment to be inspected is not included in the shooting picture, and the inspection fails.
  • the problem due to the influence of various factors in the prior art, the equipment to be inspected is not included in the shooting picture, and the inspection fails. The problem.
  • an embodiment of the present application provides a drone inspection method, where a camera is provided on the drone, and the method includes:
  • the drone flies to a patrol location point and is adjusted to a preset state according to the preset patrol inspection data of the patrol location point, acquiring the current picture collected by the camera;
  • the first target parameter is adjusted to expand the field of view of the camera.
  • an embodiment of the present application provides a drone inspection device, the drone is provided with a camera, and the device includes: a memory and a processor;
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the drone flies to a patrol location point and is adjusted to a preset state according to the preset patrol inspection data of the patrol location point, acquiring the current picture collected by the camera;
  • the first target parameter is adjusted to expand the field of view of the camera, so that the current picture collected by the camera can include the device to be inspected.
  • an embodiment of the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle including a fuselage, a power system provided on the fuselage, a camera, and an inspection device;
  • the power system is used to provide power for the UAV
  • the camera is used for patrolling and shooting during the inspection process of the drone
  • the inspection device includes a memory and a processor
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the drone flies to a patrol location point and is adjusted to a preset state according to the preset patrol inspection data of the patrol location point, acquiring the current picture collected by the camera;
  • the first target parameter is adjusted to expand the field of view of the camera, so that the device to be inspected can be included in the current picture collected by the camera.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes at least one piece of code, the at least one piece of code can be executed by a computer to control the The computer executes the method described in any one of the above-mentioned first aspects.
  • an embodiment of the present application provides a computer program, when the computer program is executed by a computer, it is used to implement the method described in any one of the above-mentioned first aspects.
  • the embodiments of the application provide a drone inspection method, device, and drone.
  • the drone flies to a inspection location and adjusts to a preset state according to the preset inspection data of the inspection location. Next, obtain the current picture collected by the camera, and determine whether the current picture includes the equipment to be inspected. If not, adjust the first target parameter to expand the camera’s field of view.
  • the first target parameter can be adjusted to expand the camera's field of view, thereby improving the camera's acquisition
  • the current picture includes the probability of the equipment to be inspected, which reduces the probability that the equipment to be inspected is not included in the image or video taken at the inspection location, which is beneficial to reduce the probability of the inspection failure.
  • FIG. 1 is a schematic diagram of an application scenario of a focusing method provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a drone inspection method provided by an embodiment of the application
  • FIG. 3 is a schematic flowchart of a drone inspection method provided by another embodiment of this application.
  • 4A and 4B are schematic diagrams of adjusting drone control parameters to expand the field of view of the camera provided by an embodiment of the application;
  • FIG. 5 is a schematic flowchart of a drone inspection method provided by another embodiment of this application.
  • FIG. 6 is a schematic diagram of adjusting the control parameters of the pan/tilt to expand the field of view of the camera according to an embodiment of the application;
  • FIG. 7 is a schematic flowchart of a drone inspection method provided by another embodiment of this application.
  • FIGS. 8A and 8B are schematic diagrams of changing the position of the device to be inspected in the current screen provided by an embodiment of the application;
  • FIG. 9 is a schematic structural diagram of an unmanned aerial vehicle inspection device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a drone provided by an embodiment of the application.
  • the drone inspection method provided by the embodiment of the present application can be applied to the inspection system 10 as shown in FIG. Among them, the camera 11 is used to collect images; the inspection device 12 can obtain the current image collected by the camera 11, and use the drone inspection method provided in the embodiment of the present application to process based on the current image.
  • the drone may include a patrol inspection device 12, or the control terminal may include a patrol inspection device 12.
  • the control terminal is used to control the drone, and the control terminal may be, for example, a smart device. Mobile phones, tablet computers, wearable devices, remote controls with screens, etc.
  • the drone inspection method provided by the embodiment of the present application is obtained by adjusting to a preset state according to the preset inspection data of the inspection location when the drone arrives at a inspection location.
  • the current picture collected by the camera determines whether the device to be inspected is included in the current picture, and if the device to be inspected is not included in the current picture, the first target parameter is adjusted to expand the field of view of the camera Range, realizes that in the drone inspection process, the drone is adjusted to the preset state according to the preset inspection data, if the current picture collected by the camera does not include the equipment to be inspected, the first target parameter can be adjusted To expand the field of view of the camera, thereby increasing the probability that the current picture collected by the camera includes the equipment to be inspected.
  • FIG. 2 is a schematic flowchart of a drone inspection method provided by an embodiment of the application.
  • the execution subject of this embodiment may be the inspection device 12, and specifically may be the processor of the inspection device 12.
  • the method of this embodiment may include:
  • step 201 when the drone flies to a patrol location and adjusts to a preset state according to the preset patrol data of the patrol location, acquire the current picture collected by the camera.
  • the inspection location point refers to the waypoint where the drone is located when the camera set on the drone needs to take images or videos of the equipment to be inspected.
  • the equipment to be inspected can be, for example, electric wires, telephone poles, solar panels of photovoltaic power stations, insulators of electrical towers, anti-off pins, bolts for hanging points, shock-proof hammers, etc. one or more.
  • the device to be inspected may also be other devices, which is not limited in this application.
  • the preset inspection data refers to the pre-set related data used to control the field of view of the camera when the drone arrives at the inspection location.
  • the preset inspection data corresponds to the drone's arrival at the inspection location.
  • the preset field of view of the camera at the time of the inspection position point is described.
  • the preset field of view may theoretically include the equipment to be inspected.
  • the preset inspection data may specifically be any type of data that can affect the field of view of the camera.
  • the preset inspection data may include one of the attitude data of the drone, the attitude data of the pan/tilt, and the camera parameters. Many kinds.
  • the way to obtain the preset inspection data can be flexibly implemented according to requirements.
  • the preset inspection data can be obtained by manually operating the drone to complete the inspection task.
  • the attitude data of the drone, the attitude data of the gimbal set on the drone, and the waypoint can be recorded.
  • the camera parameters of the camera set on the gimbal, the waypoint is the inspection location, and the drone attitude data, gimbal attitude data, and camera parameters of the waypoint are the preset inspection data of the inspection location.
  • the manual operation of the drone to complete a inspection task can be understood as a teaching stage of the automated inspection of the drone.
  • the automated inspection task is generated based on the data recorded in the teaching stage.
  • the drone is based on the automated inspection task.
  • the automatic completion of the inspection task can be understood as the rehearsal phase corresponding to the teaching phase.
  • the current picture collected by the camera will include the equipment to be inspected.
  • the current picture collected by the camera due to the influence of various factors, there is the current picture collected by the camera when it flies to a patrol location and adjusts to the preset state according to the preset patrol data of the patrol location.
  • the situation of the equipment to be inspected is not included in the patrol, which causes the automatic inspection to fail to obtain the scene content of the equipment to be inspected at the inspection location, which causes the inspection to fail.
  • Influencing factors include, but are not limited to: 1. There are positioning errors in the UAV attitude data, PTZ attitude data, camera parameters, etc. stored in the teaching phase; 2. There is a control error in the UAV's arrival at the inspection position; 3. No After the man-machine arrives at the inspection location, there is an attitude error in adjusting the attitude of the gimbal according to the attitude data of the gimbal included in the preset inspection data; 4, due to the interference of external forces (wind, etc.) during the shooting of the drone, There may be shaking; 5. Different types of drones perform the same inspection task, and errors caused by differences in the structure of the drones.
  • Step 202 Determine whether the current screen includes a device to be inspected.
  • this step it can be judged based on the current screen whether a certain condition is met.
  • a certain condition it can indicate that the current screen includes a device to be inspected, and if a certain condition is not satisfied, it can indicate that the current screen does not include a device to be inspected.
  • the specific method for judging whether the current screen includes the equipment to be inspected can be flexibly implemented according to requirements. It can be understood that in a certain scenario, when the current screen only includes the part of the equipment to be inspected, it can be recognized as the current screen Does not include equipment to be inspected.
  • Step 203 If the device to be inspected is not included in the current picture, adjust the first target parameter to expand the field of view of the camera.
  • the first target parameter needs to be adjusted to expand the field of view of the camera.
  • the first target parameter may specifically be any type of parameter that can expand the field of view of the camera.
  • the first target parameter includes one or more of the following: drone control parameters, pan/tilt control parameters Parameters or focal length parameters.
  • the drone control parameters refer to the parameters used to control the drone
  • the pan/tilt control parameters refer to the parameters used to control the pan/tilt
  • the focal length parameters refer to the parameters used to control the focal length of the camera.
  • expanding the field of view of the camera can refer to updating the field of view of the camera from the original field of view A to include the original field of view A and a certain range of field of view B around the original field of view A, because The new field of view B includes not only the original field of view A but also a certain area around it, thereby realizing the expansion of the camera's field of view, and the expanded field of view is the new field of view B.
  • the new field of view B including a certain range around the original field of view A it is possible to expand the field of view to the surroundings of the original field of view A at the same time, which is beneficial to improve the single-time expansion of the camera field of view so that the current picture collected by the camera includes the equipment to be inspected. efficient.
  • expanding the field of view of the camera can also refer to updating the field of view of the camera from the original field of view C to include part of the original field of view C and a certain range of field of view D in a certain direction of the original field of view C.
  • C and the new field of view D are both the camera's observable field of view, and the new field of view D includes a certain range in a certain direction of the original field of view A, thus realizing the expansion of the camera's field of view.
  • the expanded field of view is the original The union of the field of view C and the new field of view D.
  • Since expanding the camera's field of view can increase the content of the screen captured by the camera, and include the content that was not collected in the current screen, it can increase the probability that the current screen captured by the camera includes the equipment to be inspected, and reduce the location of the inspection The image or video taken by the point does not include the probability of the equipment to be inspected, which helps to reduce the probability of inspection failure.
  • the specific parameters adjusted during adjustment can be the same or different.
  • the device to be inspected may be tracked according to it, and after the parameters are adjusted, the device to be inspected may be focused and photographed.
  • the current picture collected by the camera is obtained by obtaining the current picture collected by the camera when the UAV arrives at a patrol position and is adjusted to the preset state according to the preset patrol data of the patrol position to determine whether the current picture is Including the equipment to be inspected, if not included, adjust the first target parameter to expand the field of view of the camera, so that during the drone inspection process, the drone is adjusted to the preset state according to the preset inspection data.
  • the camera’s field of view can be expanded by adjusting the first target parameter, thereby increasing the probability that the current picture collected by the camera includes the equipment to be inspected, and reducing the The probability of the equipment to be inspected is not included in the image or video taken at the location point, which helps to reduce the probability of inspection failure.
  • Fig. 3 is a schematic flow chart of a drone inspection method provided by another embodiment of the application. On the basis of the embodiment shown in Fig. 2, this embodiment mainly describes the possibility of the first target parameter including the drone control parameter. Choose the implementation method. As shown in FIG. 3, the method of this embodiment may include:
  • Step 301 Acquire the current image collected by the camera when the drone flies to a patrol location and adjusts to a preset state according to the preset patrol data of the patrol location.
  • step 301 is similar to step 201, and will not be repeated here.
  • Step 302 Determine whether the current screen includes a device to be inspected.
  • the target characteristic of the device to be inspected may be a feature that can represent the characteristics of the device to be inspected.
  • feature matching may be performed on the current screen according to the target feature of the device to be inspected to determine whether there is an area in the current screen that has a similarity with the target feature greater than a certain threshold. If there is no area in the current screen that has a similarity with the target feature greater than a certain threshold, the current screen does not include the device to be inspected; if there is an area in the current screen that is similar to the target feature If the similarity is greater than the threshold, the current screen includes the device to be inspected. It is understandable that the area in the current screen whose similarity with the target feature is greater than a certain threshold can be understood as the area in the current screen where the device to be inspected is located.
  • the target feature can correspond to the inspection task.
  • the equipment that needs to be inspected in the inspection task includes different types of equipment, for example, the equipment that needs to be inspected in the inspection task includes insulators and anti-drop pins, and the target characteristics can correspond to the inspection location points.
  • the target feature can be obtained through the preset inspection data.
  • the preset patrol data may include the target feature.
  • the drone in the process of manually operating a drone for inspection in the teaching phase, when the drone is manually operated to fly to the inspection position, it is adjusted to be able to clearly obtain the preset state of the equipment to be inspected, and the shooting includes the to be inspected.
  • the user can select the target area where the device to be inspected is located in the preset image, and further perform feature extraction for the target area to obtain the target feature, and use the target feature as part of the preset inspection data Make a record.
  • the preset inspection data may include a preset image
  • the preset image includes the device to be inspected
  • the target feature is extracted from the preset image.
  • the preset image can be recorded as part of the preset patrol data. Based on this, before step 302 is executed, feature extraction may be performed on the preset image to obtain the target feature.
  • the preset algorithm can be used to identify the foreground pixels in the preset image, and then the foreground pixels in the preset image Feature extraction is performed on the occupied area to obtain the target feature.
  • Step 303 If the device to be inspected is not included in the current screen, adjust the drone control parameters to control the drone to fly a certain distance in a preset direction until the first stop condition is met.
  • the preset direction is consistent with the opposite direction of the camera view direction.
  • the fact that the preset direction is consistent with the opposite direction of the camera view direction may specifically mean that the included angle between the preset direction and the opposite direction of the camera view direction is smaller than the angle threshold.
  • the angle threshold is greater than or equal to 0°, which can be implemented flexibly according to requirements.
  • the UAV control parameters may specifically be any type of parameters that can control the UAV to fly a certain distance in a preset direction. A certain distance may be, for example, 0.5 meters, 1 meter, etc., which can be implemented flexibly according to requirements.
  • the preset direction is the opposite of the direction of the camera's field of view
  • the distance between the object and the camera can be increased, and since the camera's field of view angle is constant,
  • the camera's field of view can be updated from the original field of view A to include the original field of view A and a certain range of field of view B around the original field of view A.
  • the camera is arranged below the drone, and the preset direction includes a vertical upward direction.
  • the camera is usually used to photograph objects below the drone, that is, the camera's field of view is usually below the drone.
  • the preset direction includes the vertical upward direction to control the vertical direction of the drone. Flying straight up for a certain distance can not only expand the field of view, but also facilitate the control of the drone.
  • the camera's field of view is the range A in Figure 4A
  • the preset direction is opposite to the camera's field of view direction
  • the camera's field of view range is shown in the range B in Figure 4A. It can be seen that the field of view range B is larger than the field of view range A, thus realizing the expansion of the camera's field of view.
  • the camera's field of view direction is the direction O'
  • the camera's field of view is the range A'in Figure 4B
  • the preset direction is the vertical upward direction
  • the camera's field of view is shown in the range B'in Figure 4B. It can be seen that the field of view B'is larger than the field of view A', thus realizing the expansion of the camera's field of view .
  • the first stop condition is used to determine the timing to stop adjusting the control parameters of the drone.
  • the first stop condition can be flexibly implemented according to requirements. When the first stop condition is met, the drone control parameters are no longer adjusted, that is, the drone is no longer controlled.
  • the man-machine flies in the preset direction.
  • the first stop condition may specifically include one or more of the following: the number of times of adjusting the drone control parameter is greater than the threshold of times, the total flying distance in the preset direction is greater than the distance threshold, or the current screen includes waiting Inspection equipment. It should be noted that when the first stopping condition includes multiple conditions, satisfying any one of the multiple conditions may indicate that the first stopping condition is satisfied, that is, the multiple conditions may have a logical OR relationship.
  • the number of times of adjusting drone control parameters is greater than the threshold of times, which is used to limit the maximum number of times to adjust drone control parameters and avoid problems caused by excessive adjustment of drone control parameters, such as excessively long inspection time.
  • adjusting the drone control parameters multiple times to control the drone's flight distance in the preset direction can be the same or different.
  • adjusting the drone control parameters for the first time can control the drone to travel along the preset direction.
  • the total flying distance in the preset direction is greater than the distance threshold to limit the maximum distance that the drone can fly in the preset direction to avoid problems caused by the excessive flying distance in the preset direction, such as excessively deviating from the preset route.
  • the first stop condition that is satisfied is that the current screen includes the device to be inspected, it may indicate that the device to be inspected can be captured by the inspection for the location to be inspected, that is, the inspection for the location to be inspected can be successfully inspected.
  • the first stop condition that is satisfied is that the current screen does not include the device to be inspected, it may indicate that the device to be inspected cannot be captured by the inspection for the location to be inspected, that is, the inspection for the location to be inspected fails.
  • the drone control parameters when the drone control parameters are adjusted for the first time to expand the camera's field of view, the current picture collected by the camera (which can be recorded as the current picture 1) can be obtained, and it can be judged whether the current picture 1 includes the to-be-inspected Equipment, when the current screen 1 includes the equipment to be inspected, you can end the adjustment of the drone control parameters.
  • the current screen 1 does not include the equipment to be inspected and the number of adjustments and/or the flight distance do not meet the stopping conditions, it can be a second time Adjust the drone control parameters to further expand the camera's field of view; in the case of further expanding the camera's field of view, you can obtain the current image collected by the camera after the second expansion of the camera's field of view (can be recorded as current image 2), and determine the current Whether the equipment to be inspected is included in screen 2, the adjustment of drone control parameters can be ended when the equipment to be inspected is included in the current screen 2, and the equipment to be inspected is not included in the current screen 2, and the number of adjustments and/or the flight distance are not When the stopping conditions are met, the drone control parameters can be adjusted for the third time to further expand the camera's field of view; ... and so on until the current screen includes the equipment to be inspected or the number of adjustments or the flight distance meets the stopping conditions.
  • the first stop condition met at the end of the adjustment is that the current screen does not include the device to be inspected, and may also include : Send inspection failure information to the control terminal, where the inspection failure information is used to indicate the inspection failure of the inspection location point.
  • the current picture collected by the camera is obtained by obtaining the current picture collected by the camera when the UAV arrives at a patrol position and is adjusted to the preset state according to the preset patrol data of the patrol position to determine whether the current picture is Including the equipment to be inspected, if not included, adjust the drone control parameters to control the drone to fly a certain distance in the preset direction, thereby expanding the camera's field of view, and realizing that during the drone inspection process,
  • the drone is adjusted to the preset state according to the preset inspection data, if the current picture collected by the camera does not include the equipment to be inspected, the camera's field of view can be expanded by controlling the drone to fly a certain distance in the preset direction Therefore, the probability that the current picture collected by the camera includes the device to be inspected can be increased, and the probability that the device to be inspected is not included in the image or video taken at the inspection position is reduced, which is beneficial to reduce the probability of inspection failure.
  • Fig. 5 is a schematic flow chart of a drone inspection method provided by another embodiment of the application.
  • This embodiment based on the embodiment shown in Fig. 2, mainly describes the optional first target parameter including the pan/tilt control parameter Method to realize.
  • the method of this embodiment may include:
  • Step 501 Under the condition that the drone flies to a patrol location and adjusts to a preset state according to the preset patrol data of the patrol location, acquire the current picture collected by the camera.
  • step 501 is similar to step 201, and will not be repeated here.
  • Step 502 Determine whether the current screen includes a device to be inspected.
  • step 502 is similar to step 202 and step 302, and will not be repeated here.
  • Step 503 If the device to be inspected is not included in the current screen, adjust the pan/tilt control parameters to control the pan/tilt to rotate a certain angle around the preset axis until the second stop condition is met.
  • the camera is set on the drone through the pan/tilt, and the direction of view of the camera can be changed by controlling the pan/tilt.
  • the preset rotation axis may be, for example, one or more of a roll axis, a pitch axis, and a yaw axis.
  • the pan/tilt control parameter may specifically be any type of parameter that can control the pan/tilt to rotate around the preset rotation axis by a certain angle, for example, It can be 5°, 10°, etc., which can be implemented flexibly according to requirements.
  • controlling the gimbal to rotate a certain angle around the preset axis can change the direction of the camera's field of view
  • the camera's field of view can be updated from the original field of view C to include part of the original field of view C And the original field of view C, a certain range of field of view D in a certain direction.
  • the camera's field of view direction is direction O
  • the camera's field of view is shown in the range C in Figure 6A
  • the preset axis is the pitch axis
  • the camera is controlled After rotating a certain angle along the preset rotation axis, the camera's field of view is expanded from only the range C to the union of the range C and the range D, thereby realizing the expansion of the camera's field of view.
  • the second stop condition is used to determine the timing to stop adjusting the pan/tilt control parameters.
  • the second stop condition can be flexibly implemented according to requirements. When the second stop condition is met, the pan/tilt control parameters will not be adjusted, that is, the pan/tilt will no longer be controlled.
  • the rotation axis is preset to rotate.
  • the second stop condition may specifically include one or more of the following: the number of times the PTZ control parameter is adjusted is greater than the number threshold, the sum of the rotation angles around the preset axis is greater than the angle threshold, or the current screen includes waiting Inspection equipment. It should be noted that, when the second stopping condition includes multiple conditions, satisfying any one of the multiple conditions may indicate that the second stopping condition is satisfied, that is, the multiple conditions may have a logical OR relationship.
  • the number of times of adjusting the pan/tilt control parameters is less than the threshold of times, which is used to limit the maximum number of times to adjust the pan/tilt control parameters, and avoid problems caused by excessive adjustment of the pan/tilt control parameters, such as excessively long inspection time.
  • the preset rotation axis around which the PTZ control parameters are adjusted multiple times to control the rotation of the PTZ can be the same or different, and the angle of rotation around the preset rotation axis by adjusting the PTZ control parameters can be the same or different.
  • the rotation direction of the PTZ parameters to be adjusted multiple times to control the rotation of the PTZ around the preset axis can be the same or different.
  • the sum of the rotation angles around the preset rotation axis is greater than the angle threshold to limit the maximum angle of the adjustment pan/tilt rotation along the preset rotation axis, and avoid problems caused by excessive rotation along the preset rotation axis, such as deviating too far from the correct direction.
  • the current picture collected by the camera (which can be recorded as the current picture 1) can be obtained, and it can be judged whether the current picture 1 includes the equipment to be inspected .
  • the current screen 1 includes the equipment to be inspected, you can end the adjustment of the PTZ control parameters.
  • the current screen 1 does not include the device to be inspected and the number of adjustments and/or the rotation angle do not meet the stop conditions, you can adjust the cloud for the second time.
  • Control parameters to further expand the camera's field of view in the case of further expanding the camera's field of view, the current picture collected by the camera (which can be recorded as current picture 2) can be obtained, and it can be judged whether the current picture 2 includes the equipment to be inspected.
  • the current screen 2 includes the device to be inspected, you can end the adjustment of the PTZ control parameters. If the current screen 2 does not include the device to be inspected and the number of adjustments and/or the rotation angle do not meet the stop conditions, you can adjust the PTZ control for the third time Parameter to further expand the camera's field of view; ... and so on until the current screen includes the equipment to be inspected or the number of adjustments or the rotation angle meets the stop condition.
  • the second stop condition satisfied by the end adjustment is not that the current screen includes the equipment to be inspected, it may also include: sending inspection failure information to the control terminal, where the inspection failure information is used to indicate the inspection The inspection of the location point failed.
  • the current picture collected by the camera is obtained by obtaining the current picture collected by the camera when the UAV arrives at a patrol position and is adjusted to the preset state according to the preset patrol data of the patrol position to determine whether the current picture is Including the equipment to be inspected, if not included, adjust the control parameters of the pan/tilt to control the pan/tilt to rotate a certain angle around the preset axis, thereby expanding the field of view of the camera, and realizing that the drone inspection process is unmanned.
  • the camera When the camera is adjusted to the preset state according to the preset inspection data, if the current picture collected by the camera does not include the equipment to be inspected, the camera’s field of view can be expanded by controlling the pan/tilt to rotate a certain angle around the preset axis of rotation. The probability that the current picture collected by the camera includes the equipment to be inspected is increased, and the probability that the equipment to be inspected is not included in the image or video taken at the inspection location is reduced, which is beneficial to reduce the probability of inspection failure.
  • FIG. 7 is a schematic flow chart of a drone inspection method provided by another embodiment of the application.
  • This embodiment based on the embodiment shown in FIG. 2, mainly describes an optional implementation method for the first target parameter including the focal length parameter .
  • the method of this embodiment may include:
  • step 701 when the drone flies to a patrol location and adjusts to a preset state according to the preset patrol data of the patrol location, acquire the current picture collected by the camera.
  • step 701 is similar to step 201, and will not be repeated here.
  • Step 702 Determine whether the current screen includes a device to be inspected.
  • step 702 is similar to step 202 and step 302, and will not be repeated here.
  • Step 703 If the device to be inspected is not included in the current picture, adjust the focal length parameter to adjust the focal length of the camera toward the focal length reduction direction by a certain value until the third stop condition is satisfied.
  • the focal length refers to the change range of the focal length of the zoom lens.
  • the focal length of the lens is inversely proportional to the angle of view. The longer the focal length, the smaller the angle of view, and the shorter the focal length, the larger the angle of view. Therefore, the camera's field of view can be expanded by reducing the focal length of the camera.
  • the certain value can be, for example, 5 millimeters (mm), 10 mm, etc., which can be implemented flexibly according to requirements. Since the shorter the focal length, the larger the viewing angle, and the larger the viewing angle, the larger the camera's field of view, and the camera's field of view is expanded to the surroundings with the original field of view as the center.
  • the field of view is updated from the original field of view A to a field of view B including the original field of view A and a certain range around the original field of view A.
  • the third stop condition is used to determine the timing to stop adjusting the focal length parameters.
  • the third stop condition can be flexibly realized according to requirements.
  • the focal length parameters are no longer adjusted, that is, the focal length parameters are no longer controlled to adjust to the focal length reduction direction.
  • the third stopping condition may specifically include one or more of the following: the current focal length is the minimum focal length or the current picture includes the equipment to be inspected. It should be noted that, when the third stopping condition includes multiple conditions, satisfying any one of the multiple conditions may indicate that the third stopping condition is satisfied, that is, the multiple conditions may have a logical OR relationship.
  • the minimum focal length may be the theoretical minimum focal length of the camera, or may be a preset focal length, and the current focal length is the minimum focal length, which is used to limit the adjustment of the minimum focal length of the captured image of the camera.
  • the value of adjusting the focal length parameters for multiple times to adjust the focal length of the camera to the focal length reduction direction can be the same or different.
  • adjusting the focal length parameter for the first time can control the focal length of the camera to be adjusted from 135mm to 200mm to 100mm.
  • the second adjustment of the focal length parameters can control the camera's focal length from 100mm to 135mm to 35mm-100mm.
  • the focal length parameters when the focal length parameters are adjusted for the first time to expand the field of view of the camera, the current picture collected by the camera (which can be recorded as the current picture 1) can be obtained, and it can be judged whether the current picture 1 includes the equipment to be inspected.
  • the current screen 1 includes the device to be inspected, you can end the adjustment of the focal length parameters.
  • the current screen 1 does not include the device to be inspected and the current focal length is not the minimum focal length
  • you can obtain the current picture collected by the camera (which can be recorded as current picture 2), and determine whether the current picture 2 includes the equipment to be inspected, and when the current picture 2 includes the equipment to be inspected Finish adjusting the focal length parameters.
  • the third stop condition satisfied by the end adjustment is not that the current screen includes the equipment to be inspected, it may also include: sending inspection failure information to the control terminal, where the inspection failure information is used to indicate the inspection The inspection of the location point failed.
  • the preset inspection parameters may include a preset focal length.
  • the preset focal length refers to a parameter that is preset to control the focal length of the camera when the drone flies to the inspection position point.
  • the focal length parameters used when shooting at the inspection point.
  • the parameter is adjusted to the preset focal length.
  • the process of adjusting the focal length parameter to the preset focal length needs to ensure that the device to be inspected is in the current screen, and avoids that the device to be inspected is separated from the current screen due to the adjustment of the focal length parameter to the preset focal length.
  • the focal length parameter after finding the device to be inspected on the screen, adjust the focal length parameter so that it is the same as the focal length parameter in the teaching stage before focusing and shooting.
  • the current picture collected by the camera is obtained by obtaining the current picture collected by the camera when the UAV arrives at a patrol position and is adjusted to the preset state according to the preset patrol data of the patrol position to determine whether the current picture is Including the equipment to be inspected, if not included, adjust the focal length parameters to adjust the focal length of the camera to a certain value in the focal length reduction direction, thereby expanding the field of view of the camera, and realizing that during the drone inspection process, the drone can be adjusted according to the forecast If the inspection data is adjusted to the preset state, if the current picture collected by the camera does not include the equipment to be inspected, the camera's focal length can be adjusted to a certain value by controlling the focal length of the camera to reduce the focal length to expand the camera's field of view, thereby improving
  • the current picture collected by the camera includes the probability that the device to be inspected is included, which reduces the probability that the device to be inspected is not included in the image or video taken at the inspection location, which is beneficial to reduce the probability of the inspection
  • the adjustment process can be, for example: in the case of adjusting the focal length parameters for the first time to expand the camera's field of view, the current picture collected by the camera (can be recorded as the current picture 1) can be obtained, and the current picture 1 can be judged If the device to be inspected is included in the current screen 1, you can end the adjustment of the focal length parameter when the device to be inspected is included in the current screen 1, and the focal length can be adjusted for the second time when the device to be inspected is not included in the current screen 1 and the current focal length is not the minimum focal length Parameters to further expand the camera's field of view; in the case of further expanding the camera's field of view, the current picture collected by the camera (which can be recorded as current picture 2) can be obtained
  • the current picture collected by the camera includes the device to be inspected
  • it may further include: adjusting a second target parameter to change the device to be inspected in the current picture.
  • the equipment to be inspected can be located at the preset position in the current screen.
  • the position of the device to be inspected in the current screen can be adjusted by adjusting the second target parameter, so that the device to be inspected in the image or video taken by the drone automatic inspection can be in the desired specific position, which is beneficial to improve the shooting effect .
  • the second target parameter may specifically be any type of parameter that can adjust the position of the device to be inspected in the current screen.
  • the second target parameter includes drone attitude parameters and/or pan/tilt control parameters .
  • UAV attitude parameters refer to the parameters used to adjust the attitude of the UAV, such as the parameters for controlling the pitch angle of the UAV, or the parameters for controlling the roll angle of the UAV.
  • PTZ control parameters refer to parameters used to control the pan/tilt, for example, parameters for controlling the rotation of the pan/tilt around the pitch axis, or parameters for controlling the rotation of the pan/tilt around the yaw axis.
  • the preset position may be flexibly implemented according to requirements.
  • the preset position may include a central position.
  • the second parameter By adjusting the second parameter so that the device to be inspected can be located in the center of the current screen, the device to be inspected in the images or videos taken by the drone's automatic inspection can be located in the center, which is conducive to highlighting the device to be inspected in the screen.
  • Check equipment Taking the device to be inspected as a solar panel as an example, before adjusting the second target parameter, the position of the device to be inspected in the current screen can be as shown in Figure 8A. Refer to Figure 8A before adjusting the second target parameter. The left position in the current screen. After the second target parameter is adjusted, the position of the device to be inspected in the current screen may be as shown in FIG. 8B, and the central position of the device to be inspected in the current screen after the second target parameter is adjusted with reference to FIG. 8B.
  • the focal length parameter can be further adjusted to the preset Focal length. Based on this, the process of adjusting the focal length parameter to the preset focal length can ensure that the device to be inspected is in the current screen without further processing, which is beneficial to simplify the implementation.
  • the adjusting the second target parameter may specifically include: adjusting the second target parameter according to the preset position and the current position of the device to be inspected in the current screen when the adjustment of the first target parameter is completed. Based on this, a single adjustment of the second target parameter can be realized so that the device to be inspected is located at the preset position in the current screen, which is beneficial to simplify the implementation.
  • the adjusting the second target parameter may specifically include: adjusting the current position of the device to be inspected in the current screen based on the preset position and target tracking of the device to be inspected.
  • the second target parameter until the device to be inspected is located at the preset position in the current screen.
  • the target tracking is used to continuously determine the current position of the device to be inspected in the current screen during the process of adjusting the second target parameter, so as to realize the continuous and dynamic adjustment of the adjustment amount of the second target parameter based on the target tracking. Based on this, it is possible to adjust the second target parameter multiple times so that the position to be inspected is located at the preset position in the current screen, which is beneficial to improve the adjustment accuracy.
  • the method may further include: determining the proportion of the area of the device to be inspected in the current image Whether a certain proportion condition is met; and, if the proportion of the area of the device to be inspected in the current frame does not satisfy the proportion condition, adjust the focal length parameters of the camera to change the The focal length parameter is adjusted in the direction of increasing the focal length until the proportion of the area occupied by the device to be inspected in the current screen satisfies the proportion condition.
  • satisfying a certain proportion condition may specifically mean that the proportion is greater than or equal to the proportion threshold.
  • the ratio threshold can be flexibly implemented according to requirements. The larger the ratio threshold, the larger the area occupied by the device to be inspected in the current screen, and the smaller the ratio threshold, the smaller the area occupied by the device to be inspected in the current screen. .
  • the image or video of the device to be inspected can be captured in the image or video taken during the automatic inspection of the drone.
  • the size can meet certain requirements and avoid the problems caused by the small area occupied by the equipment to be inspected in the captured image or video, such as the inability to clearly know the detailed information of the equipment to be inspected.
  • the method may further include: taking a picture of the current picture collected by the camera.
  • the shooting may specifically be image shooting or video shooting.
  • an image or video including the equipment to be inspected can be finally obtained, and the inspection of the inspection location point can be completed.
  • the images or videos obtained by shooting can be stored in the camera and/or can be sent to the control terminal in real time so that the control terminal can store them.
  • the current screen can be compared with the shooting screen in the teaching phase, and the position of the device to be inspected in the screen can be compared according to the two.
  • Size and angle adjust the parameters of the drone, pan/tilt or camera, so that the position, size and angle of the device to be inspected in the current screen and the position of the shooting screen in the teaching stage , The size and the angle are the same.
  • the first average position of the device to be inspected in the current picture and the second average position of the device to be inspected in the shooting picture in the teaching phase are obtained respectively, and generated according to the pixel difference between the first average position and the second average position Control instructions, adjust the position of the pan/tilt or drone according to the control instructions to adjust the position of the equipment to be inspected in the current screen.
  • the first pixel number occupied by the device to be inspected in the current screen and the second pixel number occupied by the device to be inspected in the shooting screen of the teaching stage are obtained respectively, according to the first pixel number and the second pixel number.
  • the pixel difference of two pixels generates a control instruction, and adjusts the pose of the pan/tilt, the drone or the focal length of the camera according to the control instruction to adjust the size of the equipment to be inspected in the current picture.
  • the first angle of the device to be inspected in the current screen with respect to the preset reference axis can be obtained according to the preset reference axis of the device to be inspected, and the first angle of the device to be inspected in the shooting screen of the teaching phase.
  • the second angle of the preset reference axis generates a control instruction according to the difference between the first angle and the second angle, and adjusts the pose of the pan/tilt or drone according to the control instruction to adjust the angle of the device to be inspected in the current screen.
  • the reference axis can also be determined in real time according to the shape of the device to be inspected.
  • the straight line segment in the foreground pixel is detected as the reference axis; and when the device to be inspected is symmetrical
  • the center axis of the detected symmetrical shape is used as the reference axis.
  • the three adjustments can be adjusted in the order of position, size, and angle to improve the accuracy of the adjustment and ensure that the pictures taken in the automated inspection stage are consistent with the pictures taken in the teaching stage. Conducive to the reliability of the inspection results, and provide a reference for the subsequent judgment of whether the equipment to be inspected is malfunctioning.
  • FIG. 9 is a schematic structural diagram of a drone inspection device provided by an embodiment of the application.
  • the drone is provided with a camera.
  • the device 900 may include a processor 901 and a memory 902.
  • the memory 902 is used to store program codes
  • the processor 901 calls the program code, and when the program code is executed, is used to perform the following operations:
  • the drone flies to a patrol location point and is adjusted to a preset state according to the preset patrol inspection data of the patrol location point, acquiring the current picture collected by the camera;
  • the first target parameter is adjusted to expand the field of view of the camera, so that the current picture collected by the camera can include the device to be inspected.
  • the drone inspection device provided in this embodiment can be used to implement the technical solutions of the foregoing method embodiments, and its implementation principles and technical effects are similar to those of the method embodiments, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the application.
  • the unmanned aerial vehicle 100 may include: a fuselage 101, a power system 102 provided on the fuselage 101, and a camera 103 And inspection device 104;
  • the power system 102 is used to provide power for the drone
  • the camera 103 is used to perform inspection and shooting during the inspection process of the drone;
  • the inspection device 104 includes a memory and a processor
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the drone flies to a patrol location point and is adjusted to a preset state according to the preset patrol inspection data of the patrol location point, acquiring the current picture collected by the camera;
  • the first target parameter is adjusted to expand the field of view of the camera, so that the current picture collected by the camera can include the device to be inspected.
  • the drone 100 may further include a pan/tilt 105, and the camera 102 may be set on the fuselage 101 through the pan/tilt 105.
  • the drone can also include other components or devices, which are not listed here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机巡检方法、装置及无人机,该方法包括:在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面;判断当前画面中是否包括待巡检设备;若当前画面中不包括待巡检设备,则调整第一目标参数,以扩大相机的视野范围。该方法减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。

Description

无人机巡检方法、装置及无人机 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机巡检方法、装置及无人机。
背景技术
随着无人机技术的不断发展,无人机的应用越来越广泛,例如可以应用于电力巡检,桥梁巡检,输油气管道巡检等。
目前,可以通过如下方式实现无人机的自动化巡检:首先,由人工操作无人机完成巡检任务,并在完成任务过程中记录航点的无人机姿态数据、无人机上所设置云台的姿态数据以及云台所设置相机的相机参数;然后,根据这些数据生成用于无人机自动化巡检的自动化巡检任务;最后,无人机可以基于自动化巡检任务实现自动化巡检。在无人机基于自动化巡检任务进行自动化巡检的过程中,具体的,无人机可以在飞行至单个航点之后,根据该航点的数据调整无人机的姿态、云台的姿态以及相机的参数,并在调整完成之后进行拍摄。
然而,由于各种因素的影响,例如控制云台姿态的控制误差、控制无人机姿态的控制误差、外力干扰导致无人机存在晃动等,导致拍摄画面中未包括待巡检设备,从而导致巡检失败的问题。
发明内容
本申请实施例提供一种无人机巡检方法、装置及无人机,用以解决现有技术中由于各种因素的影响,导致拍摄画面中未包括待巡检设备,从而导致巡检失败的问题。
第一方面,本申请实施例提供一种无人机巡检方法,所述无人机上设置有相机,所述方法包括:
在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
判断所述当前画面中是否包括待巡检设备;
若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围。
第二方面,本申请实施例提供一种无人机巡检装置,所述无人机上设置有相机,所述装置包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
判断所述当前画面中是否包括待巡检设备;
若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待巡检设备。
第三方面,本申请实施例提供一种无人机,所述无人机包括机身、设置于所述机身上的动力系统、相机和巡检装置;
所述动力系统,用于为所述无人机提供动力;
所述相机,用于在所述无人机进行巡检的过程中进行巡检拍摄;
所述巡检装置包括存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
判断所述当前画面中是否包括待巡检设备;
若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待 巡检设备。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行上述第一方面任一项所述的方法。
第五方面,本申请实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现上述第一方面任一项所述的方法。
本申请实施例提供一种无人机巡检方法、装置及无人机,通过在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面,判断当前画面中是否包括待巡检设备,若不包括则调整第一目标参数以扩大相机的视野范围,实现了在无人机巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够通过调整第一目标参数来扩大相机的视野范围,从而能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的对焦方法的应用场景示意图;
图2为本申请一实施例提供的无人机巡检方法的流程示意图;
图3为本申请另一实施例提供的无人机巡检方法的流程示意图;
图4A和图4B为本申请实施例提供的调整无人机控制参数以扩大相机视野范围的示意图;
图5为本申请又一实施例提供的无人机巡检方法的流程示意图;
图6为本申请实施例提供的调整云台控制参数以扩大相机视野范围的示意图;
图7为本申请又一实施例提供的无人机巡检方法的流程示意图;
图8A和图8B为本申请实施例提供的改变待巡检设备在当前画面中位置的示意图;
图9为本申请一实施例提供的无人机巡检装置的结构示意图;
图10为本申请一实施例提供的无人机的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的无人机巡检方法可以应用于如图1所示的巡检系统10,巡检系统10可以包括相机11和巡检装置12,相机11设置于无人机上。其中,相机11用于采集画面;巡检装置12可以获得相机11采集到的当前画面,并基于当前画面采用本申请实施例提供的无人机巡检方法进行处理。
可选的,所述无人机可以包括巡检装置12,或者,控制终端可以包括巡检装置12,所述控制终端用于对所述无人机进行控制,所述控制终端例如可以为智能手机、平板电脑、可穿戴设备、带屏遥控器等。
本申请实施例提供的无人机巡检方法,通过在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面,判断所述当前画面中是否包括待巡检设备,若所述当前画面中不包括所述待巡检设备,则调整第一目标参数以扩大所述相机的视野范围,实现了在无人机巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够调整第一目标参数来扩大相机的视野范围,从而提高相机采集到的当前画面包括待巡检设备的概率。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图2为本申请一实施例提供的无人机巡检方法的流程示意图,本实施例的 执行主体可以为巡检装置12,具体可以为巡检装置12的处理器。如图2所示,本实施例的方法可以包括:
步骤201,在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面。
本步骤中,所述巡检位置点是指无人机上设置的相机需要对待巡检设备进行图像或视频拍摄时无人机所处的航点。以待巡检设备的类别为电力设备为例,待巡检设备例如可以为电线、电线杆、光伏发电站的太阳电池板、电塔的绝缘子、防脱销钉、挂点螺栓、防震锤等中一个或多个。当然,在其他实施例中,待巡检设备具体还可以为其他设备,本申请对此不做限定。
所述预设巡检数据是指预先设置好的用于在无人机飞抵所述巡检位置点时,控制相机视野范围的相关数据,预设巡检数据对应了无人机飞抵所述巡检位置点时相机的预设视野范围,该预设视野范围中理论上可以包括待巡检设备。预设巡检数据具体可以为能够影响相机的视野范围的任意类型数据,示例性的,预设巡检数据可以包括无人机的姿态数据、云台的姿态数据以及相机参数中的一种或多种。
需要说明的是,预设巡检数据的获得方式可以根据需求灵活实现。可选的,所述预设巡检数据可以通过人工操作无人机完成巡检任务获得。例如,在人工操作无人机完成巡检任务的过程中,针对需要进行图像或视频拍摄的航点,可以记录该航点的无人机姿态数据、无人机上所设置云台的姿态数据以及云台上所设置相机的相机参数,该航点即为巡检位置点,该航点的无人机姿态数据、云台姿态数据以及相机参数即为巡检位置点的预设巡检数据。
其中,人工操作无人机完成一巡检任务可以理解为无人机自动化巡检的一示教阶段,基于该示教阶段所记录的数据生成自动化巡检任务,无人机基于自动化巡检任务自动完成该巡检任务可以理解为该示教阶段对应的复演阶段。
理论上,在根据所述巡检位置点的预设巡检数据调整至预设状态的情况下,相机采集到的当前画面中会包括待巡检设备。但是,在实际应用中,由于各种因素的影响,存在飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,相机采集到的当前画面中未包括待巡检设备的情形,导致自动化巡检无法获得针对该巡检位置点下待巡检设备的场景内容,从而导致巡检失败。
影响因素包括但不限于:1,示教阶段存储的无人机姿态数据、云台姿态数据、相机参数等存在定位误差;2,无人机飞抵巡检位置点存在控制误差;3,无人机在飞抵巡检位置点之后,根据预设巡检数据包括的云台姿态数据调整云台的姿态存在姿态误差;4,无人机在拍摄过程中由于外力(风等)的干扰,可能存在晃动;5,不同型号无人机执行相同的巡检任务,由于无人机结构等的差异导致的误差。
步骤202,判断所述当前画面中是否包括待巡检设备。
本步骤中,可以基于当前画面判断是否满足一定条件,在满足一定条件下可以表示当前画面包括待巡检设备,在不满足一定条件下,可以表示当前画面不包括待巡检设备。对于判断当前画面中是否包括待巡检设备的具体方式,可以根据需求灵活实现,可以理解的是,在某种场景下,在当前画面仅包括待巡检设备的部分时,可以识别为当前画面中不包括待巡检设备。
步骤203,若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围。
本步骤中,针对当前画面中不包括所述待巡检设备的情况,需要调整第一目标参数,以扩大相机的视野范围。其中,第一目标参数具体可以为能够扩大相机的视野范围的任意类型参数,示例性的,所述第一目标参数包括下述中的一种或多种:无人机控制参数、云台控制参数或焦段参数。其中,无人机控制参数是指用于控制无人机的参数,云台控制参数是指用于控制云台的参数,焦段参数是指用于控制相机焦段的参数。
需要说明的是,在实际应用中,扩大相机的视野范围可以是指将相机的视野范围由原视野范围A,更新为包括原视野范围A以及原视野范围A周围一定范围的视野范围B,由于新视野范围B不仅包括了原视野范围A还包括了其周围一定范围,从而实现了扩大相机的视野范围,扩大后的视野范围即为新视野范围B。并且,通过新视野范围B包括原视野范围A周围的一定范围,能够实现同时向原视野范围A的四周扩大视野,有利于提高单次扩大相机视野使得相机采集到的当前画面包括待巡检设备的效率。
进一步的,扩大相机的视野范围还可以是指将相机的视野范围由原视野范围C,更新为包括部分原视野范围C以及原视野范围C某一方向一定范围的视野范围D,由于原视野范围C和新视野范围D均为相机能够观察到视野范围,且新视野范围D包括了原视野范围A某一方向的一定范围,从而实现了扩大相 机的视野范围,扩大后的视野范围即为原视野范围C和新视野范围D的并集。
由于扩大相机的视野范围能够增加相机采集的画面内容,将原本未采集到的内容包含在当前画面中,因此能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,从而有利于减少巡检失败的概率。
可选的,可以进行单次扩大相机视野范围的调整,在进行单次调整之后,可以直接对相机采集到的当前画面进行拍摄;或者,可以进行多次扩大相机视野范围的调整,进行多次调整时所调节的具体参数可以相同也可以不同。
可选的,在画面找到所述待巡检设备后,可以根据对所述待巡检设备进行跟踪,并在调整参数后,对所述待巡检设备进行对焦拍摄。
本实施例中,通过在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面,判断当前画面中是否包括待巡检设备,若不包括则调整第一目标参数以扩大相机的视野范围,实现了在无人机巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够通过调整第一目标参数来扩大相机的视野范围,从而能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。
图3为本申请另一实施例提供的无人机巡检方法的流程示意图,本实施例在图2所示实施例的基础上,主要描述了第一目标参数包括无人机控制参数的可选实现方式。如图3所示,本实施例的方法可以包括:
步骤301,在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面。
需要说明的是,步骤301与步骤201类似,在此不再赘述。
步骤302,判断所述当前画面中是否包括待巡检设备。
本步骤中,可以根据待巡检设备的目标特征确定当前画面中是否包括待巡检设备,其中,待巡检设备的目标特征可以是能够表示待巡检设备特点的特征。
示例性的,可以根据待巡检设备的目标特征对所述当前画面进行特征匹配,以确定所述当前画面中是否存在与所述目标特征的相似度大于一定阈值的区域。若所述当前画面中不存在与所述目标特征的相似度大于一定阈值的 区域,则所述当前画面中不包括所述待巡检设备;若所述当前画面中存在与所述目标特征的相似度大于该阈值的区域,则所述当前画面中包括所述待巡检设备。可以理解的是,当前画面中与所述目标特征的相似度大于一定阈值的区域可以理解为当前画面中待巡检设备所在的区域。
在巡检任务中需要巡检的设备为同一类型设备情况下,例如巡检任务中需要巡检的设备均为电线杆情况下,目标特征可以与巡检任务对应。在巡检任务中需要巡检的设备包括不同类型设备情况下,例如巡检任务需要巡检的设备包括绝缘子和防脱销钉,目标特征可以与巡检位置点对应。
示例性的,目标特征可以通过所述预设巡检数据获得。可选的,所述预设巡检数据中可以包括所述目标特征。例如,示教阶段人工操作无人机进行巡检的过程中,在人工操作无人机飞抵巡检位置点,调整至能够清晰获得待巡检设备的预设状态并拍摄得到包括待巡检设备的预设图像的情况下,用户可以在预设图像中选择出待巡检设备所在的目标区域,进一步针对目标区域进行特征提取得到目标特征,并将目标特征作为预设巡检数据的一部分进行记录。
或者,所述预设巡检数据中可以包括预设图像,所述预设图像中包括所述待巡检设备,所述目标特征从所述预设图像中提取得到。例如,示教阶段人工操作无人机进行巡检的过程中,在人工操作无人机飞抵巡检位置点,调整至能够清晰获得待巡检设备的预设状态并拍摄得到包括待巡检设备的预设图像的情况下,可以将预设图像作为预设巡检数据的一部分进行记录。基于此,在执行步骤302之前,还可以对预设图像进行特征提取以得到目标特征。考虑到在人工操作时待巡检设备通常会作为图像的前景物体,为了提高目标特征的准确性,可以先采用预设的算法识别预设图像中的前景像素,然后针对预设图像中前景像素所占的区域进行特征提取以得到目标特征。
步骤303,若所述当前画面中不包括所述待巡检设备,则调整无人机控制参数,以控制所述无人机沿预设方向飞行一段距离,直至满足第一停止条件。
本步骤中,所述预设方向与所述相机视野方向的反方向一致。预设方向与相机视野方向的反方向一致具体可以是指预设方向与相机视野方向的反方向的夹角小于角度阈值。其中,角度阈值大于或等于0°,具体可以根据需求灵活实现。所述无人机控制参数具体可以能够控制无人机沿预设方向飞行一段距离的任意类型参数,一段距离例如可以为0.5米、1米等,具体可以根据需 求灵活实现。
由于预设方向是与相机视野方向的反方向一致,通过控制无人机沿预设方向飞行一段距离,可以增大物体与相机之间的距离,且由于相机的视场角是一定的,因此通过控制无人机沿预设方向飞行一段距离能够将相机的视野范围由原视野范围A,更新为包括原视野范围A以及原视野范围A周围一定范围的视野范围B。在一个实施例中,相机设置于所述无人机的下方,所述预设方向包括竖直向上方向。在相机设置于无人机的下方情况下,相机通常用于拍摄无人机下方的物体即相机的视野方向通常为无人机下方,通过预设方向包括竖直向上方向即控制无人机竖直向上飞行一段距离,既能够扩大视野范围,又能够便于无人机控制。
如图4A所示,假设相机的视野方向为方向O,控制无人机沿预设方向飞行一段距离之前,相机的视野范围如图4A中的范围A,预设方向与相机视野方向的反方向相同,则控制无人机沿预设方向飞行一段距离之后,相机的视野范围如图4A中的范围B,可以看出视野范围B较视野范围A大,从而实现了扩大相机的视野范围。
如图4B所示,假设相机的视野方向为方向O’,控制无人机沿预设方向飞行一段距离之前,相机的视野范围如图4B中的范围A’,预设方向为竖直向上方向,则控制无人机沿预设方向飞行一段距离之后,相机的视野范围如图4B中的范围B’,可以看出视野范围B’较视野范围A’大,从而实现了扩大相机的视野范围。
所述第一停止条件用于决定停止调整无人机控制参数的时机,第一停止条件可以根据需求灵活实现,在满足第一停止条件时不再调整无人机控制参数,即不再控制无人机沿预设方向飞行。示例性的,所述第一停止条件具体可以包括下述中的一种或多种:调整无人机控制参数次数大于次数阈值、沿预设方向飞行距离总和大于距离阈值或当前画面中包括待巡检设备。需要说明的是,在第一停止条件包括多个条件情况下,满足多个条件中的任意一个条件可以表征满足第一停止条件,即该多个条件之间可以为逻辑“或”关系。
其中,调整无人机控制参数次数大于次数阈值,用于限制调整无人机控制参数的最大次数,避免调整无人机控制参数过大所带来的问题,例如巡检耗时过长。需要说明的是,多次调整无人机控制参数以控制无人机沿预设方向飞行的距离可以相同,也可以不同,例如,第一次调整无人机控制参数可 以控制无人机沿预设方向飞行0.5米,第二次调整无人机控制参数可以控制无人机沿预设方向飞行1米。沿预设方向飞行距离总和大于距离阈值用于限制调整无人机沿预设方向飞行的最大距离,避免沿预设方向飞行距离过大所带来的问题,例如偏移预设航线过远。
在满足的第一停止条件为当前画面包括待巡检设备,可以表示针对所述待巡检位置的巡检能够拍摄到待巡检设备,即针对所述待巡检位置能够巡检成功。在满足的第一停止条件为当前画面不包括待巡检设备,可以表示针对所述待巡检位置的巡检不能拍摄到待巡检设备,即针对所述待巡检位置巡检失败。
示例性的,在第一次调整无人机控制参数以扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面1),并判断当前画面1中是否包括待巡检设备,在当前画面1中包括待巡检设备时可以结束调整无人机控制参数,在当前画面1中未包括待巡检设备且调整次数和/或飞行距离不满足停止条件时可以第二次调整无人机控制参数以进一步扩大相机视野范围;在进一步扩大相机视野范围情况下,可以获取第二次扩大相机视野范围后相机采集到的当前画面(可以记为当前画面2),并判断当前画面2中是否包括待巡检设备,在当前画面2中包括待巡检设备时可以结束调整无人机控制参数,在当前画面2中未包括待巡检设备且调整次数和/或飞行距离不满足停止条件时可以第三次调整无人机控制参数以再进一步扩大相机视野范围;……,依次类推直至当前画面中包括待巡检设备或者调整次数或飞行距离满足停止条件。
需要说明的是,关于判断当前画面1、当前画面2等中是否包括待巡检设备的具体方式与前述步骤202、步骤302的方式类似,在此不再赘述。
可选的,对于针对待巡检位置巡检失败的情况,为了便于用户能够获知巡检事变的相关信息,在结束调整满足的第一停止条件为当前画面不包括待巡检设备,还可以包括:向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
本实施例中,通过在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面,判断当前画面中是否包括待巡检设备,若不包括则调整无人机控制参数,以控制所述无人机沿预设方向飞行一段距离,从而扩大相机的视野范围,实现了在无人机 巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够通过控制无人机沿预设方向飞行一段距离来扩大相机的视野范围,从而能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。
图5为本申请又一实施例提供的无人机巡检方法的流程示意图,本实施例在图2所示实施例的基础上,主要描述了第一目标参数包括云台控制参数的可选实现方式。如图5所示,本实施例的方法可以包括:
步骤501,在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面。
需要说明的是,步骤501与步骤201类似,在此不再赘述。
步骤502,判断所述当前画面中是否包括待巡检设备。
需要说明的是,步骤502与步骤202、步骤302类似,在此不再赘述。
步骤503,若所述当前画面中不包括所述待巡检设备,则调整云台控制参数,以控制云台绕预设转轴旋转一定角度,直至满足第二停止条件。
本步骤中,所述相机是通过所述云台设置在所述无人机上,通过控制所述云台能够改变所述相机的视野方向。预设转轴例如可以为横滚轴、俯仰轴、航向轴中的一个或多个,所述云台控制参数具体可以为能够控制云台绕预设转轴旋转一定角度的任意类型参数,一定角度例如可以为5°、10°等,具体可以根据需求灵活实现。由于控制云台绕预设转轴旋转一定角度能够改变相机的视野方向,因此通过控制云台绕预设转轴旋转一定角度能够将相机的视野范围由原视野范围C,更新为包括部分原视野范围C以及原视野范围C某一方向一定范围的视野范围D。
如图6所示,假设相机的视野方向为方向O,控制云台绕预设转轴旋转一定角度之前,相机的视野范围如图6A中的范围C,预设转轴为俯仰轴,则控制云台沿预设转轴转动一定角度之后,相机的视野范围由仅为范围C扩大到范围C与范围D的并集,从而实现了扩大相机的视野范围。
所述第二停止条件用于决定停止调整云台控制参数的时机,第二停止条件可以根据需求灵活实现,在满足第二停止条件时不再调整云台控制参数,即不再控制云台绕预设转轴旋转。示例性的,所述第二停止条件具体可以包括下述中的一种或多种:调整云台控制参数次数大于次数阈值、绕预设转轴 旋转角度之和大于角度阈值或当前画面中包括待巡检设备。需要说明的是,在第二停止条件包括多个条件情况下,满足多个条件中的任意一个条件可以表征满足第二停止条件,即该多个条件之间可以为逻辑“或”关系。
其中,调整云台控制参数次数小于次数阈值,用于限制调整云台控制参数的最大次数,避免调整云台控制参数过大所带来的问题,例如巡检耗时过长。需要说明的是,多次调整云台控制参数以控制云台旋转所绕的预设转轴可以相同也可以不同,多次调整云台控制参数以控制绕预设转轴所旋转的角度可以相同也可以不同,多次调整云台参数以控制云台绕预设转轴旋转的旋转方向可以相同也可以不同。绕预设转轴旋转角度之和大于角度阈值用于限制调整云台沿预设转轴旋转的最大角度,避免沿预设转轴旋转角度过大所带来的问题,例如偏离正确方向过远。
示例性的,在第一次调整云台控制参数以扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面1),并判断当前画面1中是否包括待巡检设备,在当前画面1中包括待巡检设备时可以结束调整云台控制参数,在当前画面1中未包括待巡检设备且调整次数和/或旋转角度不满足停止条件时可以第二次调整云台控制参数以进一步扩大相机视野范围;在进一步扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面2),并判断当前画面2中是否包括待巡检设备,在当前画面2中包括待巡检设备时可以结束调整云台控制参数,在当前画面2中未包括待巡检设备且调整次数和/或旋转角度不满足停止条件时可以第三次调整云台控制参数以再进一步扩大相机视野范围;……,依次类推直至当前画面中包括待巡检设备或者调整次数或旋转角度满足停止条件。
类似的,在结束调整满足的第二停止条件不为当前画面包括待巡检设备情况下,还可以包括:向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
本实施例中,通过在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面,判断当前画面中是否包括待巡检设备,若不包括则调整云台控制参数,以控制所述云台绕预设转轴旋转一定角度,从而扩大相机的视野范围,实现了在无人机巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够通过控制云台绕预设转轴旋转一定角度 来扩大相机的视野范围,从而能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。
图7为本申请又一实施例提供的无人机巡检方法的流程示意图,本实施例在图2所示实施例的基础上,主要描述了第一目标参数包括焦段参数的可选实现方式。如图7所示,本实施例的方法可以包括:
步骤701,在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面。
需要说明的是,步骤701与步骤201类似,在此不再赘述。
步骤702,判断所述当前画面中是否包括待巡检设备。
需要说明的是,步骤702与步骤202、步骤302类似,在此不再赘述。
步骤703,若所述当前画面中不包括所述待巡检设备,则调整焦段参数,以将所述相机的焦段向焦段缩小方向调整一定值,直至满足第三停止条件。
本步骤中,焦段是指变焦镜头焦距的变化范围,镜头焦距长短与视角大小成反比,焦距越长视角越小,焦距越短视角越大,因此通过缩小相机的焦段可以扩大相机的视野范围。一定值例如可以为5毫米(mm)、10mm等,具体可以根据需求灵活实现。由于焦距越短视角越大,视角越大相机的视野范围越大,且相机的视野范围是以原视野范围为中心向周围扩大,因此通过控制相机的焦段向焦段参数缩小方向调整能够将相机的视野范围由原视野范围A,更新为包括原视野范围A以及原视野范围A周围一定范围的视野范围B。
所述第三停止条件用于决定停止调整焦段参数的时机,第三停止条件可以根据需求灵活实现,在满足第三停止条件时不再调整焦段参数,即不再控制焦段参数向焦段缩小方向调整。示例性的,所述第三停止条件具体可以包括下述中的一种或多种:当前焦段为最小焦段或当前画面中包括待巡检设备。需要说明的是,在第三停止条件包括多个条件情况下,满足多个条件中的任意一个条件可以表征满足第三停止条件,即该多个条件之间可以为逻辑“或”关系。
其中,最小焦段可以为相机理论上的最小焦段,或者可以为预先设置的一个焦段,当前焦段为最小焦段,用于限制调整相机采集画面的最小焦段。需要说明的是,多次调整焦段参数以将相机的焦段向焦段缩小方向调整的值可以相同,也可以不同,例如,第一次调整焦段参数可以控制将相机的焦段 由135mm到200mm调整为100mm到135mm,第二次调整焦段参数可以控制将相机的焦段由100mm到135mm调整为35mm-100mm。
示例性的,在第一次调整焦段参数以扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面1),并判断当前画面1中是否包括待巡检设备,在当前画面1中包括待巡检设备时可以结束调整焦段参数,在当前画面1中未包括待巡检设备且当前焦段不为最小焦段时可以第二次调整焦段参数以进一步扩大相机视野范围;在进一步扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面2),并判断当前画面2中是否包括待巡检设备,在当前画面2中包括待巡检设备时可以结束调整焦段参数,在当前画面2中未包括待巡检设备且当前焦段不为最小焦段时可以第三次调整云台控制参数以再进一步扩大相机视野范围;……,依次类推直至当前画面中包括待巡检设备或者当前焦段为最小焦段。
类似的,在结束调整满足的第三停止条件不为当前画面包括待巡检设备情况下,还可以包括:向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
可选的,所述预设巡检参数可以包括预设焦段。所述预设焦段是指预先设置好的用于在无人机飞抵所述巡检位置点时,控制相机的焦段的参数,例如所述预设焦段可以是指示教模式下在所述巡检位置点进行拍摄时所使用的焦段参数。为了使得在无人机自动巡检过程中所拍摄的图像或视频中待巡检设备的大小与预先设置一致,在相机的当前画面包括所述待巡检设备情况下,还可以包括:将焦段参数调整为所述预设焦段。可以理解的是,将焦段参数调整为预设焦段的过程需要确保待巡检设备在当前画面中,避免由于将焦段参数调整为预设焦段导致待巡检设备脱离当前画面。
可选的,在画面中找到所述待巡检设备后,调整焦段参数以使其与示教阶段的焦段参数相同再进行对焦拍摄。
本实施例中,通过在无人机飞抵一巡检位置点并根据巡检位置点的预设巡检数据调整至预设状态情况下,获取相机采集到的当前画面,判断当前画面中是否包括待巡检设备,若不包括则调整焦段参数,以将相机的焦段向焦段缩小方向调整一定值,从而扩大相机的视野范围,实现了在无人机巡检过程中,无人机根据预设巡检数据调整至预设状态情况下,如果相机采集到的当前画面不包括待巡检设备,能够通过控制将相机的焦段向焦段缩小方向调 整一定值来扩大相机的视野范围,从而能够提高相机采集到的当前画面包括待巡检设备的概率,减少了在巡检位置点所拍摄的图像或视频中未包括待巡检设备的概率,有利于减少巡检失败的概率。
需要说明的是,图3、图5、图7所示的调整第一目标参数的方式可以单独使用,也可以结合使用。
以图3和图7结合为例,假设第一停止条件包括调整无人机控制参数次数大于次数阈值和当前画面中包括待巡检设备,第三停止条件包括当前焦段为最小焦段和当前画面中包括待巡检设备,则调整过程例如可以为:在第一次调整焦段参数以扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面1),并判断当前画面1中是否包括待巡检设备,在当前画面1中包括待巡检设备时可以结束调整焦段参数,在当前画面1中未包括待巡检设备且当前焦段不为最小焦段时可以第二次调整焦段参数以进一步扩大相机视野范围;在进一步扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面2),并判断当前画面2中是否包括待巡检设备;进一步假设当前画面2中不包括待巡检设备且当前焦段为最小焦段,则可以第一次调整无人机控制参数以扩大相机视野范围,时可以第三次调整云台控制参数以再进一步扩大相机视野范围;在再进一步扩大相机视野范围情况下,可以获取相机采集到的当前画面(可以记为当前画面3),并判断当前画面3中是否包括待巡检设备……,依次类推直至当前画面中包括待巡检设备或者调整无人机控制参数次数大于次数阈值。
需要说明的是,以上图3和图7结合的结合方式仅为举例,关于具体的结合方式,可以根据需求灵活实现。
上述实施例的基础上,在所述相机采集到的当前画面包括所述待巡检设备情况下,进一步的还可以包括:调整第二目标参数,以改变所述待巡检设备在当前画面中的位置,以便待巡检设备能够位于当前画面中的预设位置。通过调整第二目标参数能够调整待巡检设备在当前画面中的位置,使得无人机自动巡检所拍摄的图像或视频中待巡检设备能够处于期望的特定位置,有利于提高施拍摄效果。
其中,所述第二目标参数具体可以为能够调整待巡检设备在当前画面中位置的任意类型参数,示例性的,所述第二目标参数包括无人机姿态参数和/或云台控制参数。无人机姿态参数是指用于调整无人机的姿态的参数,例如 控制无人机俯仰角的参数、又例如控制无人机横滚角的参数。云台控制参数是指用于控制云台的参数,例如控制云台绕俯仰轴转动的参数,又例如控制云台绕航向轴转转动的参数。
所述预设位置可以根据需求灵活实现,在一个实施例中,所述预设位置可以包括中央位置。通过调整第二参数以便待巡检设备能够位于当前画面中的中央位置,使得无人机自动巡检所拍摄的图像或视频中待巡检设备能够处于中央位置,有利于在画面中凸显待巡检设备。以待巡检设备为太阳能电池板为例,调整第二目标参数之前,待巡检设备在当前画面中的位置可以如图8A所示,参考图8A调整第二目标参数之前待巡检设备在当前画面中的左边位置。在调整第二目标参数之后,待巡检设备在当前画面中的位置可以如图8B所示,参考图8B调整第二目标参数之后待巡检设备在当前画面中的中央位置。
需要说明的是,针对前述的调整将焦段参数调整为所述预设焦段,可以在调整第二目标参数以使待巡检设备位于当前画面中的中央位置之后,进一步将焦段参数调整为预设焦段。基于此,在将焦段参数调整为预设焦段的过程无需进一步处理即可确保待巡检设备在当前画面中,有利于简化实现。
可选的,所述调整第二目标参数具体可以包括:根据所述预设位置以及第一目标参数调整完成情况下所述待巡检设备在当前画面中的当前位置,调整第二目标参数。基于此,能够实现通过单次调整第二目标参数,以便待巡检设备位于当前画面中的预设位置,有利于简化实现。
或者,所述调整第二目标参数具体可以包括:根据所述预设位置以及针对所述待巡检设备进行目标追踪所确定的所述待巡检设备在当前画面中的当前位置,调整所述第二目标参数,直至所述待巡检设备位于当前画面中的预设位置。其中,所述目标追踪是用于在调整第二目标参数的过程中不断确定待巡检设备在当前画面中的当前位置,实现基于目标追踪不断动态调整第二目标参数的调整量。基于此,能够实现通过多次调整第二目标参数,以便待巡检位置位于当前画面中的预设位置,有利于提高调整精度。
上述方法实施例的基础上,在所述相机采集到的当前画面包括所述待巡检设备情况下,进一步的还可以包括:判断所述待巡检设备在所述当前画面中的区域占比是否满足一定的占比条件;以及,若所述待巡检设备在所述当前画面中的区域占比不满足所述占比条件,则调整所述相机的焦段参数,以将所述相机的焦段参数向焦段增大方向调整,直至所述待巡检设备在当前画 面中的区域占比满足所述占比条件。
其中,满足一定的占比条件具体可以是指占比大于或等于比例阈值。其中,比例阈值可以根据需求灵活实现,比例阈值越大则待巡检设备在当前画面中的所占的区域越大,比例阈值越小则待巡检设备在当前画面中所占的区域越小。通过在待巡检设备在当前画面中的区域占比不满足占比条件情况下,调整相机的焦段参数,能够使得无人机自动巡检过程中所拍摄的图像或视频中待巡检设备的大小能够满足一定要求,避免待巡检设备在所拍摄的图像或视频中所占区域过小所带来的问题,例如无法清楚获知待巡检设备的细节信息。
在上述实施例的基础上,所述调整第一目标参数之后,还可以包括:对所述相机采集到的当前画面进行拍摄。其中,拍摄具体可以是图像拍摄或者视频拍摄,通过对相机采集到的当前画面进行拍摄,能够最终得到包括待巡检设备的图像或视频,完成针对巡检位置点的巡检。对于拍摄获得的图像或视频,可以存储相机中,和/或可以实时发送至控制终端,以便控制终端可以对其进行存储。
在上述实施例的基础上,在画面中找到所述待巡检设备后,可以将当前画面和示教阶段的拍摄画面进行比对,根据两者中所述待巡检设备在画面中的位置、大小和角度,调整无人机、云台或者拍摄装置的参数,以使所述待巡检设备在所述当前画面中的位置、大小和角度和在所述示教阶段的拍摄画面的位置、大小和角度相一致。
对于调整位置,分别获取当前画面中待巡检设备的第一平均位置和示教阶段的拍摄画面中待巡检设备的第二平均位置,根据第一平均位置和第二平均位置的像素差生成控制指令,根据控制指令调整云台或者无人机的位姿,以调整当前画面中待巡检设备的位置。
对于调整大小,分别获取当前画面中待巡检设备所占的第一像素个数和示教阶段的拍摄画面中待巡检设备所占的第二像素个数,根据第一像素个数和第二像素个数的像素差生成控制指令,根据控制指令调整云台、无人机的位姿或者拍摄装置的焦段,以调整当前画面中待巡检设备的大小。
对于调整角度,可以根据所述待巡检设备的预设参考轴线,分别获取当前画面中待巡检设备关于该预设参考轴线的第一角度和示教阶段的拍摄画面中待巡检设备关于该预设参考轴线的第二角度,根据第一角度和第二角度的 差生成控制指令,根据控制指令调整云台或无人机的位姿,以调整当前画面中待巡检设备的角度。需要说明的是,参考轴线也可以根据待巡检设备的形状实时确定,例如当待巡检设备为电线时,以检测到前景像素中的直线段作为参考轴线;而当待巡检设备为对称形状时,以检测到对称形状的中轴线作为参考轴线。
在一实施例中,三者的调整可以按照位置、大小和角度的顺序依次调整,以提高调整的准确度,保证在自动化巡检阶段拍摄得到的画面和示教阶段的拍摄画面相一致,有利于巡检结果的可靠性,为后续判断待巡检设备是否发生故障提供参考。
图9为本申请一实施例提供的无人机巡检装置的结构示意图,所述无人机上设置有相机,如图9所示,该装置900可以包括:处理器901和存储器902。
所述存储器902,用于存储程序代码;
所述处理器901,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
判断所述当前画面中是否包括待巡检设备;
若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待巡检设备。
本实施例提供的无人机巡检装置,可以用于执行前述方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。
图10为本申请一实施例提供的无人机的结构示意图,如图10所示,该无人机100可以包括:机身101、设置于所述机身101上的动力系统102、相机103和巡检装置104;
所述动力系统102,用于为所述无人机提供动力;
所述相机103,用于在所述无人机进行巡检的过程中进行巡检拍摄;
所述巡检装置104包括存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
判断所述当前画面中是否包括待巡检设备;
若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待巡检设备。
可选的,无人机100还可以包括云台105,相机102可以通过云台105设置在机身101上。当然,无人机除上述列出装置外,还可以包括其他元件或装置,这里不一一例举。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (59)

  1. 一种无人机巡检方法,其特征在于,所述无人机上设置有相机,所述方法包括:
    在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
    判断所述当前画面中是否包括待巡检设备;
    若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围。
  2. 根据权利要求1所述的方法,其特征在于,所述第一目标参数包括下述中的一种或多种:
    无人机控制参数、云台控制参数或焦段参数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一目标参数包括无人机控制参数;
    所述调整第一目标参数,包括:调整无人机控制参数,以控制所述无人机沿预设方向飞行一段距离,直至满足第一停止条件,所述预设方向与所述相机视野方向的反方向一致。
  4. 根据权利要求3所述的方法,其特征在于,所述第一停止条件包括下述中的一种或多种:
    调整无人机控制参数次数大于次数阈值、沿预设方向飞行距离总和大于距离阈值或当前画面中包括待巡检设备。
  5. 根据权利要求3所述的方法,其特征在于,所述相机设置于所述无人机的下方,所述预设方向包括竖直向上方向。
  6. 根据权利要求2所述的方法,其特征在于,所述相机通过云台设置在所述无人机上,所述第一目标参数包括云台控制参数;
    所述调整第一目标参数,包括:调整云台控制参数,以控制所述云台绕预设转轴旋转一定角度,直至满足第二停止条件。
  7. 根据权利要求6所述的方法,其特征在于,所述第二停止条件包括下述中的一种或多种:
    调整云台控制参数次数大于次数阈值、绕预设转轴旋转角度之和大于角度阈值或当前画面中包括待巡检设备。
  8. 根据权利要求2所述的方法,其特征在于,所述第一目标参数包括焦 段参数;
    所述调整第一目标参数,包括:调整焦段参数,以将所述相机的焦段向焦段缩小方向调整一定值,直至满足第三停止条件。
  9. 根据权利要求8所述的方法,其特征在于,所述第三停止条件包括下述中的一种或多种:
    当前焦段为最小焦段或当前画面中包括待巡检设备。
  10. 根据权利要求8所述的方法,其特征在于,所述预设巡检参数包括预设焦段;在相机的当前画面包括所述待巡检设备情况下,所述方法还包括:
    将焦段参数调整为所述预设焦段。
  11. 根据权利要求4、7、9任一项所述的方法,其特征在于,在结束调整满足的停止条件不为当前画面包括待巡检设备情况下,所述方法还包括:
    向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
  12. 根据权利要求1所述的方法,其特征在于,所述判断所述当前画面中是否包括待巡检设备,包括:
    根据待巡检设备的目标特征对所述当前画面进行特征匹配,以确定所述当前画面中是否存在与所述目标特征的相似度大于一定阈值的区域;
    若所述当前画面中不存在与所述目标特征的相似度大于一定阈值的区域,则所述当前画面中不包括所述待巡检设备。
  13. 根据权利要求12所述的方法,其特征在于,所述预设巡检数据包括所述目标特征;或者,所述预设巡检数据包括预设图像,所述预设图像中包括所述待巡检设备,所述目标特征从所述预设图像中提取得到。
  14. 根据权利要求1所述的方法,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述方法还包括:
    调整第二目标参数,以改变所述待巡检设备在当前画面中的位置,以便待巡检设备能够位于当前画面中的预设位置。
  15. 根据权利要求14所述的方法,其特征在于,所述第二目标参数包括无人机姿态参数和/或云台控制参数。
  16. 根据权利要求14所述的方法,其特征在于,所述预设位置包括中央位置。
  17. 根据权利要求14所述的方法,其特征在于,所述调整第二目标参数, 包括:
    根据所述预设位置以及针对所述待巡检设备进行目标追踪所确定的所述待巡检设备在当前画面中的当前位置,调整所述第二目标参数,直至所述待巡检设备位于当前画面中的预设位置。
  18. 根据权利要求1所述的方法,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述方法还包括:
    判断所述待巡检设备在所述当前画面中的区域占比是否满足一定的占比条件;
    若所述待巡检设备在所述当前画面中的区域占比不满足所述占比条件,则调整所述相机的焦段参数,以将所述相机的焦段参数向焦段增大方向调整,直至所述待巡检设备在当前画面中的区域占比满足所述占比条件。
  19. 根据权利要求1所述的方法,其特征在于,所述调整第一目标参数之后,所述方法还包括:
    对所述相机采集到的当前画面进行拍摄。
  20. 一种无人机巡检装置,其特征在于,所述无人机上设置有相机,所述装置包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
    判断所述当前画面中是否包括待巡检设备;
    若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待巡检设备。
  21. 根据权利要求20所述的装置,其特征在于,所述第一目标参数包括下述中的一种或多种:
    无人机控制参数、云台控制参数或焦段参数。
  22. 根据权利要求21所述的装置,其特征在于,所述第一目标参数包括无人机控制参数;
    所述处理器用于调整第一目标参数,具体包括:调整无人机控制参数, 以控制所述无人机沿预设方向飞行一段距离,直至满足第一停止条件,所述预设方向与所述相机视野方向的反方向一致。
  23. 根据权利要求22所述的装置,其特征在于,所述第一停止条件包括:
    调整无人机控制参数次数大于次数阈值、沿预设方向飞行距离总和大于距离阈值或当前画面中包括待巡检设备。
  24. 根据权利要求23所述的装置,其特征在于,所述相机设置于所述无人机的下方,所述预设方向包括竖直向上方向。
  25. 根据权利要求21所述的装置,其特征在于,所述相机通过云台设置在所述无人机上,所述第一目标参数包括云台控制参数;
    所述处理器用于调整第一目标参数,具体包括:调整云台控制参数,以控制所述云台绕预设转轴旋转一定角度,直至满足第二停止条件。
  26. 根据权利要求25所述的装置,其特征在于,所述第二停止条件包括:
    调整云台控制参数次数大于次数阈值、绕预设转轴旋转角度之和大于角度阈值或当前画面中包括待巡检设备。
  27. 根据权利要求21所述的装置,其特征在于,所述第一目标参数包括焦段参数;
    所述处理器用于调整第一目标参数,具体包括:调整焦段参数,以将所述相机的焦段向焦段缩小方向调整一定值,直至满足第三停止条件。
  28. 根据权利要求27所述的装置,其特征在于,所述第三停止条件包括:
    当前焦段为最小焦段或当前画面中包括待巡检设备。
  29. 根据权利要求27所述的装置,其特征在于,所述预设巡检参数包括预设焦段;在相机的当前画面包括所述待巡检设备情况下,所述方法还包括:
    将焦段参数调整为所述预设焦段。
  30. 根据权利要求23、26、28任一项所述的装置,其特征在于,在结束调整满足的停止条件不为当前画面包括待巡检设备情况下,所述处理器还用于:
    向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
  31. 根据权利要求20所述的装置,其特征在于,所述处理器用于判断所述当前画面中是否包括待巡检设备,具体包括:
    根据待巡检设备的目标特征对所述当前画面进行特征匹配,以确定所述 当前画面中是否存在与所述目标特征的相似度大于一定阈值的区域;
    若所述当前画面中不存在与所述目标特征的相似度大于一定阈值的区域,则所述当前画面中不包括所述待巡检设备。
  32. 根据权利要求31所述的装置,其特征在于,所述预设巡检数据包括所述目标特征;或者,所述预设巡检数据包括预设图像,所述预设图像中包括所述待巡检设备,所述目标特征从所述预设图像中提取得到。
  33. 根据权利要求20所述的装置,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述处理器还用于:
    调整第二目标参数,以改变所述待巡检设备在当前画面中的位置,以便待巡检设备能够位于当前画面中的预设位置。
  34. 根据权利要求33所述的装置,其特征在于,所述第二目标参数包括无人机姿态参数和/或云台控制参数。
  35. 根据权利要求33所述的装置,其特征在于,所述预设位置包括中央位置。
  36. 根据权利要求33所述的装置,其特征在于,所述处理器用于调整第二目标参数,具体包括:
    根据所述预设位置以及针对所述待巡检设备进行目标追踪所确定的所述待巡检设备在当前画面中的当前位置,调整所述第二目标参数,直至所述待巡检设备位于当前画面中的预设位置。
  37. 根据权利要求20所述的装置,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述处理器还用于:
    判断所述待巡检设备在所述当前画面中的区域占比是否满足一定的占比条件;
    若所述待巡检设备在所述当前画面中的区域占比不满足所述占比条件,则调整所述相机的焦段参数,以将所述相机的焦段参数向焦段增大方向调整,直至所述待巡检设备在当前画面中的区域占比满足所述占比条件。
  38. 根据权利要求20所述的装置,其特征在于,所述处理器还用于在调整所述第一目标参数之后,对所述相机采集到的当前画面进行拍摄。
  39. 一种无人机,其特征在于,所述无人机包括机身、设置于所述机身上的动力系统、相机和巡检装置;
    所述动力系统,用于为所述无人机提供动力;
    所述相机,用于在所述无人机进行巡检的过程中进行巡检拍摄;
    所述巡检装置包括存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在所述无人机飞抵一巡检位置点并根据所述巡检位置点的预设巡检数据调整至预设状态情况下,获取所述相机采集到的当前画面;
    判断所述当前画面中是否包括待巡检设备;
    若所述当前画面中不包括所述待巡检设备,则调整第一目标参数,以扩大所述相机的视野范围,以便所述相机采集到的当前画面中能够包括所述待巡检设备。
  40. 根据权利要求39所述的无人机,其特征在于,所述第一目标参数包括下述中的一种或多种:
    无人机控制参数、云台控制参数或焦段参数。
  41. 根据权利要求40所述的无人机,其特征在于,所述第一目标参数包括无人机控制参数;
    所述处理器用于调整第一目标参数,具体包括:调整无人机控制参数,以控制所述无人机沿预设方向飞行一段距离,直至满足第一停止条件,所述预设方向与所述相机视野方向的反方向一致。
  42. 根据权利要求41所述的无人机,其特征在于,所述第一停止条件包括:
    调整无人机控制参数次数大于次数阈值、沿预设方向飞行距离总和大于距离阈值或当前画面中包括待巡检设备。
  43. 根据权利要求42所述的无人机,其特征在于,所述相机设置于所述无人机的下方,所述预设方向包括竖直向上方向。
  44. 根据权利要求40所述的无人机,其特征在于,所述相机通过云台设置在所述无人机上,所述第一目标参数包括云台控制参数;
    所述处理器用于调整第一目标参数,具体包括:调整云台控制参数,以控制所述云台绕预设转轴旋转一定角度,直至满足第二停止条件。
  45. 根据权利要求44所述的无人机,其特征在于,所述第二停止条件包括:
    调整云台控制参数次数大于次数阈值、绕预设转轴旋转角度之和大于角度阈值或当前画面中包括待巡检设备。
  46. 根据权利要求40所述的无人机,其特征在于,所述第一目标参数包括焦段参数;
    所述处理器用于调整第一目标参数,具体包括:调整焦段参数,以将所述相机的焦段向焦段缩小方向调整一定值,直至满足第三停止条件。
  47. 根据权利要求46所述的无人机,其特征在于,所述第三停止条件包括:
    当前焦段为最小焦段或当前画面中包括待巡检设备。
  48. 根据权利要求46所述的无人机,其特征在于,所述预设巡检参数包括预设焦段;在相机的当前画面包括所述待巡检设备情况下,所述方法还包括:
    将焦段参数调整为所述预设焦段。
  49. 根据权利要求42、45、47任一项所述的无人机,其特征在于,在结束调整满足的停止条件不为当前画面包括待巡检设备情况下,所述处理器还用于:
    向控制终端发送巡检失败信息,所述巡检失败信息用于指示所述巡检位置点的巡检失败。
  50. 根据权利要求39所述的无人机,其特征在于,所述处理器用于判断所述当前画面中是否包括待巡检设备,具体包括:
    根据待巡检设备的目标特征对所述当前画面进行特征匹配,以确定所述当前画面中是否存在与所述目标特征的相似度大于一定阈值的区域;
    若所述当前画面中不存在与所述目标特征的相似度大于一定阈值的区域,则所述当前画面中不包括所述待巡检设备。
  51. 根据权利要求40所述的无人机,其特征在于,所述预设巡检数据包括所述目标特征;或者,所述预设巡检数据包括预设图像,所述预设图像中包括所述待巡检设备,所述目标特征从所述预设图像中提取得到。
  52. 根据权利要求39所述的无人机,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述处理器还用于:
    调整第二目标参数,以改变所述待巡检设备在当前画面中的位置,以便待巡检设备能够位于当前画面中的预设位置。
  53. 根据权利要求42所述的无人机,其特征在于,所述第二目标参数包括无人机姿态参数和/或云台控制参数。
  54. 根据权利要求42所述的无人机,其特征在于,所述预设位置包括中央位置。
  55. 根据权利要求42所述的无人机,其特征在于,所述处理器用于调整第二目标参数,具体包括:
    根据所述预设位置以及针对所述待巡检设备进行目标追踪所确定的所述待巡检设备在当前画面中的当前位置,调整所述第二目标参数,直至所述待巡检设备位于当前画面中的预设位置。
  56. 根据权利要求39所述的无人机,其特征在于,在所述相机采集到的当前画面包括所述待巡检设备情况下,所述处理器还用于:
    判断所述待巡检设备在所述当前画面中的区域占比是否满足一定的占比条件;
    若所述待巡检设备在所述当前画面中的区域占比不满足所述占比条件,则调整所述相机的焦段参数,以将所述相机的焦段参数向焦段增大方向调整,直至所述待巡检设备在当前画面中的区域占比满足所述占比条件。
  57. 根据权利要求39所述的无人机,其特征在于,所述处理器还用于在调整所述第一目标参数之后,对所述相机采集到的当前画面进行拍摄。
  58. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行如权利要求1-19任一项所述的方法。
  59. 一种计算机程序,其特征在于,当所述计算机程序被计算机执行时,用于实现如权利要求1-19任一项所述的方法。
PCT/CN2020/081802 2020-03-27 2020-03-27 无人机巡检方法、装置及无人机 WO2021189456A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004231.3A CN112585554A (zh) 2020-03-27 2020-03-27 无人机巡检方法、装置及无人机
PCT/CN2020/081802 WO2021189456A1 (zh) 2020-03-27 2020-03-27 无人机巡检方法、装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081802 WO2021189456A1 (zh) 2020-03-27 2020-03-27 无人机巡检方法、装置及无人机

Publications (1)

Publication Number Publication Date
WO2021189456A1 true WO2021189456A1 (zh) 2021-09-30

Family

ID=75145407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081802 WO2021189456A1 (zh) 2020-03-27 2020-03-27 无人机巡检方法、装置及无人机

Country Status (2)

Country Link
CN (1) CN112585554A (zh)
WO (1) WO2021189456A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113987246A (zh) * 2021-10-08 2022-01-28 佛山中科云图智能科技有限公司 无人机巡检的图片自动命名方法、装置、介质和电子设备
CN114302115A (zh) * 2022-01-06 2022-04-08 重庆紫光华山智安科技有限公司 视频播放方法、装置、设备及介质
CN114355969A (zh) * 2021-12-03 2022-04-15 武汉捷成电力科技有限公司 一种利用无人机巡检的智能供热管网检漏方法和系统
CN114489102A (zh) * 2022-01-19 2022-05-13 上海复亚智能科技有限公司 一种电力杆塔自巡检方法、装置、无人机及存储介质
CN114553748A (zh) * 2022-04-27 2022-05-27 高伟达软件股份有限公司 一种产品巡检方法、装置及计算机程序
CN115390578A (zh) * 2022-04-26 2022-11-25 成都纵横自动化技术股份有限公司 一种现场勘察方法、装置、设备及存储介质
CN116817929A (zh) * 2023-08-28 2023-09-29 中国兵器装备集团兵器装备研究所 一种无人机对地平面多目标同时定位方法及系统
CN117372960A (zh) * 2023-10-24 2024-01-09 宁夏隆合科技有限公司 一种结合场景关系的无人机巡检目标属性自动提取方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113657308A (zh) * 2021-08-20 2021-11-16 北京市商汤科技开发有限公司 一种数据标注方法、装置、计算机设备及存储介质
CN114035614B (zh) * 2022-01-10 2022-05-17 成都奥伦达科技有限公司 基于先验信息的无人机自主巡检方法、系统及存储介质
CN115442532B (zh) * 2022-09-29 2023-12-29 上海扩博智能技术有限公司 风机不停机巡检的方法、系统、设备及存储介质
CN117528255B (zh) * 2024-01-08 2024-03-26 洲际联合超伦科技(北京)有限公司 一种无人机路面跟随拍摄方法及装置
CN117968705A (zh) * 2024-04-02 2024-05-03 广东电网有限责任公司佛山供电局 电缆线路的巡检方法、装置、可读存储介质和处理器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739512A (zh) * 2016-02-01 2016-07-06 成都通甲优博科技有限责任公司 无人机自动巡检系统及方法
US20170017240A1 (en) * 2015-07-18 2017-01-19 Tata Consultancy Services Limited Methods and systems for landing of unmanned aerial vehicle
CN106485711A (zh) * 2016-10-21 2017-03-08 中国航空工业集团公司洛阳电光设备研究所 一种基于视频图像的高压线检测及跟踪方法
CN107729808A (zh) * 2017-09-08 2018-02-23 国网山东省电力公司电力科学研究院 一种用于输电线路无人机巡检的图像智能采集系统及方法
CN108803661A (zh) * 2018-06-29 2018-11-13 广东容祺智能科技有限公司 一种无人机快速巡检系统及方法
CN109669474A (zh) * 2018-12-21 2019-04-23 国网安徽省电力有限公司淮南供电公司 基于先验知识的多旋翼无人机自适应悬停位置优化算法
CN109885097A (zh) * 2019-04-11 2019-06-14 株洲时代电子技术有限公司 一种桥梁外沿面巡检航线规划方法
CN110716576A (zh) * 2019-11-07 2020-01-21 浙江中光新能源科技有限公司 一种基于无人机的定日镜场巡检系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459613A (zh) * 2017-02-21 2018-08-28 成都弥新科技有限公司 一种高压线路巡检无人机系统
CN106774436B (zh) * 2017-02-27 2023-04-25 南京航空航天大学 基于视觉的旋翼无人机稳定跟踪目标的控制系统及方法
CN107042511A (zh) * 2017-03-27 2017-08-15 国机智能科技有限公司 基于视觉反馈的巡视机器人云台调整方法
CN209247007U (zh) * 2019-01-14 2019-08-13 武汉博感空间科技有限公司 基于无人机的生态环境辅助监管系统
CN110850872A (zh) * 2019-10-31 2020-02-28 深圳市优必选科技股份有限公司 机器人巡检方法、装置、计算机可读存储介质及机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170017240A1 (en) * 2015-07-18 2017-01-19 Tata Consultancy Services Limited Methods and systems for landing of unmanned aerial vehicle
CN105739512A (zh) * 2016-02-01 2016-07-06 成都通甲优博科技有限责任公司 无人机自动巡检系统及方法
CN106485711A (zh) * 2016-10-21 2017-03-08 中国航空工业集团公司洛阳电光设备研究所 一种基于视频图像的高压线检测及跟踪方法
CN107729808A (zh) * 2017-09-08 2018-02-23 国网山东省电力公司电力科学研究院 一种用于输电线路无人机巡检的图像智能采集系统及方法
CN108803661A (zh) * 2018-06-29 2018-11-13 广东容祺智能科技有限公司 一种无人机快速巡检系统及方法
CN109669474A (zh) * 2018-12-21 2019-04-23 国网安徽省电力有限公司淮南供电公司 基于先验知识的多旋翼无人机自适应悬停位置优化算法
CN109885097A (zh) * 2019-04-11 2019-06-14 株洲时代电子技术有限公司 一种桥梁外沿面巡检航线规划方法
CN110716576A (zh) * 2019-11-07 2020-01-21 浙江中光新能源科技有限公司 一种基于无人机的定日镜场巡检系统和方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113987246A (zh) * 2021-10-08 2022-01-28 佛山中科云图智能科技有限公司 无人机巡检的图片自动命名方法、装置、介质和电子设备
CN114355969A (zh) * 2021-12-03 2022-04-15 武汉捷成电力科技有限公司 一种利用无人机巡检的智能供热管网检漏方法和系统
CN114355969B (zh) * 2021-12-03 2024-04-30 武汉捷成电力科技有限公司 一种利用无人机巡检的智能供热管网检漏方法和系统
CN114302115A (zh) * 2022-01-06 2022-04-08 重庆紫光华山智安科技有限公司 视频播放方法、装置、设备及介质
CN114302115B (zh) * 2022-01-06 2024-04-19 重庆紫光华山智安科技有限公司 视频播放方法、装置、设备及介质
CN114489102A (zh) * 2022-01-19 2022-05-13 上海复亚智能科技有限公司 一种电力杆塔自巡检方法、装置、无人机及存储介质
CN115390578A (zh) * 2022-04-26 2022-11-25 成都纵横自动化技术股份有限公司 一种现场勘察方法、装置、设备及存储介质
CN114553748A (zh) * 2022-04-27 2022-05-27 高伟达软件股份有限公司 一种产品巡检方法、装置及计算机程序
CN114553748B (zh) * 2022-04-27 2022-08-23 高伟达软件股份有限公司 一种产品巡检方法、装置及计算机程序
CN116817929A (zh) * 2023-08-28 2023-09-29 中国兵器装备集团兵器装备研究所 一种无人机对地平面多目标同时定位方法及系统
CN116817929B (zh) * 2023-08-28 2023-11-10 中国兵器装备集团兵器装备研究所 一种无人机对地平面多目标同时定位方法及系统
CN117372960A (zh) * 2023-10-24 2024-01-09 宁夏隆合科技有限公司 一种结合场景关系的无人机巡检目标属性自动提取方法

Also Published As

Publication number Publication date
CN112585554A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021189456A1 (zh) 无人机巡检方法、装置及无人机
CN111272148B (zh) 输电线路无人机自主巡检自适应成像质量优化方法
US11070725B2 (en) Image processing method, and unmanned aerial vehicle and system
WO2021227359A1 (zh) 一种无人机投影方法、装置、设备及存储介质
WO2019104641A1 (zh) 无人机、其控制方法以及记录介质
CN109387186B (zh) 测绘信息获取方法、装置、电子设备及存储介质
US10497160B2 (en) Information processing apparatus and information processing method
WO2019113966A1 (zh) 一种避障方法、装置和无人机
CN111583116A (zh) 基于多摄像机交叉摄影的视频全景拼接融合方法及系统
CN108803668A (zh) 一种静态目标监测的智能巡检无人机吊舱系统
WO2020211813A1 (zh) 立面环绕飞行的控制方法、装置、终端及存储介质
CN113747071B (zh) 一种无人机拍摄方法、装置、无人机及存储介质
WO2021212445A1 (zh) 拍摄方法、可移动平台、控制设备和存储介质
CN115311346A (zh) 一种电力巡检机器人定位图像构建方法、装置、电子设备及存储介质
WO2020019257A1 (zh) 多云台的控制方法、装置、无人机、介质及电子设备
WO2019023914A1 (zh) 一种图像处理方法、无人机、地面控制台及其图像处理系统
CN110602376B (zh) 抓拍方法及装置、摄像机
CN112399084A (zh) 无人机航拍方法、装置、电子设备及可读存储介质
CN116661477A (zh) 一种变电站无人机巡检方法、装置、设备及存储介质
CN113805607A (zh) 一种无人机拍摄方法、装置、无人机及存储介质
CN114428510B (zh) 环绕航线修正方法及系统
CN115578662A (zh) 无人机前端图像处理方法、系统、存储介质及设备
WO2021168707A1 (zh) 对焦方法、装置及设备
WO2021217403A1 (zh) 可移动平台的控制方法、装置、设备及存储介质
CN111414012A (zh) 一种巡检机器人区域检索与云台校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926875

Country of ref document: EP

Kind code of ref document: A1