WO2020019257A1 - 多云台的控制方法、装置、无人机、介质及电子设备 - Google Patents
多云台的控制方法、装置、无人机、介质及电子设备 Download PDFInfo
- Publication number
- WO2020019257A1 WO2020019257A1 PCT/CN2018/097263 CN2018097263W WO2020019257A1 WO 2020019257 A1 WO2020019257 A1 WO 2020019257A1 CN 2018097263 W CN2018097263 W CN 2018097263W WO 2020019257 A1 WO2020019257 A1 WO 2020019257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- configuration
- configuration parameter
- ptz
- configuring
- parameter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000001931 thermography Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 9
- 230000009977 dual effect Effects 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/02—Heads
- F16M11/04—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
- F16M11/06—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
- F16M11/12—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/10—Control of position or direction without using feedback
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
- G05D3/20—Control of position or direction using feedback using a digital comparing device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
- H04L67/025—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
- H04L67/125—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
- H04N23/661—Transmitting camera control signals through networks, e.g. control via the Internet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/25—UAVs specially adapted for particular uses or applications for manufacturing or servicing
- B64U2101/26—UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
Definitions
- the present invention relates to the technical field of gimbals, and in particular, to a method, device, unmanned aerial vehicle, medium, and electronic equipment for controlling a multi-cloud platform.
- adjustment parameters or adjustment parameter ranges are configured for each PTZ system.
- each pan / tilt head is adjusted separately to use the multi-cloud head for shooting.
- the shooting method using the control method of the multi-cloud station in the prior art needs to improve the shooting effect.
- the purpose of the embodiments of the present invention is to provide a method, device, drone, medium, and electronic equipment for controlling a multi-cloud station, thereby at least to a certain extent overcoming the control method of the multi-cloud station using the prior art for shooting and the effect needs to be improved.
- the problem is to provide a method, device, drone, medium, and electronic equipment for controlling a multi-cloud station, thereby at least to a certain extent overcoming the control method of the multi-cloud station using the prior art for shooting and the effect needs to be improved.
- a method for controlling a multi-cloud station including: obtaining multiple configuration parameters of each of the multiple cloud stations; and using multiple configuration parameters with consistent configuration parameter identifiers as configuration information. Yes; acquire target configuration parameters of the configuration information pair, and control the multiple PTZs based on the target configuration parameters.
- the multiple pan / tilt heads are dual pan / tilt heads, and acquiring multiple configuration parameters of each of the multiple pan / tilt heads includes: acquiring multiple first heads for configuring a first pan / tilt head. A configuration parameter and a plurality of second configuration parameters for configuring the second PTZ.
- using multiple configuration parameters with the same configuration parameter identifier as the configuration information pair includes: using the first configuration parameter and the second configuration parameter with the same configuration parameter identifier as the configuration information pair.
- acquiring target configuration parameters of the configuration information pair and controlling the multiple PTZs based on the target configuration parameters includes: acquiring target configuration parameters of the configuration information pair, based on the The target configuration parameter controls the first and second gimbals.
- acquiring a plurality of first configuration parameters for configuring a first PTZ and a plurality of second configuration parameters for configuring a second PTZ includes: The system configuration parameter range of the PTZ is to obtain the first configuration parameter, and the system setting parameter range for configuring the second PTZ is obtained to obtain the second configuration parameter.
- acquiring a plurality of first configuration parameters for configuring the first PTZ and a plurality of second configuration parameters for configuring the second PTZ includes: obtaining a user input for configuring The configuration parameter value of the first PTZ is obtained, the first configuration parameter is obtained, and the configuration parameter value input by the user for configuring the second PTZ is obtained, and the second configuration parameter is obtained.
- a configuration parameter value input by a user for configuring the first PTZ is obtained, the first configuration parameter is obtained, and a user input for configuring the second PTZ is obtained.
- the configuration parameter value to obtain the second configuration parameter includes establishing a communication connection with a terminal device.
- the terminal device receives a configuration parameter value input by a user for configuring the first PTZ, and the terminal device further receives a user.
- the input configuration parameter value for configuring the second PTZ receiving the configuration parameter value for configuring the first PTZ sent by the terminal device, obtaining the first configuration parameter, and receiving the terminal A value of a configuration parameter sent by the device for configuring the second gimbal to obtain the second configuration parameter.
- acquiring the target configuration parameter of the configuration information pair includes: for a same configuration information pair, acquiring a configuration parameter value transmitted by the terminal device as a target configuration parameter.
- obtaining the target configuration parameter of the configuration information pair includes: determining whether the configuration parameter of the first configuration parameter and the configuration parameter of the second configuration parameter in the configuration information pair are consistent; if the If the configuration parameters of the first configuration parameter and the configuration parameters of the second configuration parameter in the configuration information pair are not consistent, the smaller configuration parameter is obtained as the target configuration parameter of the configuration information pair.
- the system setting parameter range includes at least one of the following: an Euler angle range, a joint angle range, or a field angle range.
- the configuration parameter value input by the user includes at least one of the following: operation feel setting parameter value, slow start / stop parameter value, following speed value or following acceleration value.
- the first head is used to configure a thermal imaging camera
- the second head is used to configure an ordinary camera
- a control device for a multi-cloud station including: a first acquisition module, the first acquisition module is configured to acquire multiple configuration parameters of each of the multiple gimbals; The first acquisition module is further configured to use multiple configuration parameters with the same configuration parameter identifier as the configuration information pair; the second acquisition module is used to acquire the target configuration parameter of the configuration information pair, based on all The target configuration parameter controls the plurality of gimbals.
- the plurality of gimbals are dual gimbals
- the first obtaining module is specifically configured to obtain a plurality of first configuration parameters for configuring the first gimbal and for configuring a second Multiple second configuration parameters of the PTZ
- the first acquisition module is further configured to use the first configuration parameter and the second configuration parameter with the same configuration parameter identifier as the configuration information pair
- the second acquisition module is specifically configured to acquire The target configuration parameter of the configuration information pair is based on the target configuration parameter to control the first PTZ and the second PTZ.
- an unmanned aerial vehicle including a plurality of pan / tilt heads, the plurality of pan / tilt heads being controlled by the method for controlling a multi-cloud station according to the first aspect in the above embodiment. .
- the plurality of heads are dual heads.
- a computer-readable medium having stored thereon a computer program that, when executed by a processor, implements control of a multi-cloud station as described in the first aspect of the above embodiment. method.
- an electronic device including: one or more processors; a storage device for storing one or more programs, and when the one or more programs are used by the one When executed by one or more processors, the one or more processors are caused to implement the method for controlling a multi-cloud station according to the first aspect in the foregoing embodiment.
- different configuration parameters of the PTZ are set with different identifiers, and configuration parameters with the same configuration parameter identifiers are used as configuration information pairs, thereby obtaining the target of each configuration information pair.
- a method for uniformly controlling the configuration parameters of multiple pan / tilt heads is provided to achieve the purpose of controlling multiple pan / tilt heads according to the uniform configuration parameters, which is beneficial to the parallel or coincidence of the optical axes when shooting with a multi-cloud head. As a result, the shooting effect is effectively improved and the user experience is improved.
- FIG. 1 is a schematic flowchart of a method for controlling a multi-cloud station according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a method for controlling a multi-cloud station according to another embodiment of the present invention.
- FIG. 3 is a schematic flowchart of a method for determining a target configuration parameter of a configuration information pair according to an embodiment of the present invention
- FIG. 4 is a schematic structural diagram of a control device for a multi-cloud station according to an embodiment of the present invention.
- FIG. 5 shows a schematic structural diagram of a drone according to an embodiment of the present invention
- FIG. 6 is a schematic structural diagram of a dual-yuntai UAV according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a computer system suitable for implementing an electronic device according to an embodiment of the present invention.
- the shooting scene using the multi-cloud station may be: inspecting various facilities, such as cables, iron towers, bridges, and the like.
- the cloudy platform shooting can observe the details of the inspection object from various angles, and simultaneously shoot different types of pictures for the inspection object through the cloudy platform.
- the cloudy platform is equipped with at least one thermal imaging camera and at least one ordinary imaging camera. Inspection workers quickly reduce the search range and obtain possible dangerous points through the thermal imaging camera, and then carefully observe the possible dangerous points through the ordinary imaging camera. Thus, the efficiency of inspection operations is improved.
- the optical axis of the thermal imaging camera and the optical axis of the ordinary imaging camera are not easy to be parallel or coincide, and there is an angle between the imaging surfaces between the cameras, which results in different cameras shooting.
- the obtained picture pairs cannot be overlapped, resulting in a problem that the obtained thermal imaging and ordinary imaging image shooting effects need to be improved.
- the execution subject may be a server.
- FIG. 1 is a schematic flowchart of a method for controlling a multi-cloud station according to an embodiment of the present invention. At least to a certain extent, it overcomes the problem that the effect of shooting by using the control method of a multi-cloud station in the prior art needs to be improved.
- the control method of the multi-cloud station includes:
- Step S101 Obtain multiple configuration parameters of each of the multiple gimbals
- Step S102 using multiple configuration parameters with the same configuration parameter identifier as the configuration information pair;
- Step S103 Obtain a target configuration parameter of the configuration information pair, and control the multiple PTZs based on the target configuration parameter.
- different configuration parameters of the PTZ are set with different identifiers, and configuration parameters with the same configuration parameter identifiers are used as configuration information pairs, thereby obtaining the target of each configuration information pair.
- a method for uniformly controlling the configuration parameters of the multi-cloud platform is provided, which achieves the purpose of controlling multiple multi-cloud platforms according to the uniform configuration parameters, and is beneficial to the parallel or coincidence of the optical axes when shooting with the multi-cloud platform. Therefore, the shooting effect is effectively improved, and the user experience is improved.
- the multi-cloud station in the embodiment shown in FIG. 1 is used to carry at least two types of cameras.
- one type is a thermal imaging camera
- one type is a general imaging camera.
- the ordinary imaging camera may be a telephoto zoom gimbal camera and the like.
- the multi-cloud station in the embodiment shown in FIG. 1 is a dual-cloud station.
- FIG. 2 provides a schematic flowchart of a control method for the dual-pylon, which is a specific implementation manner of the embodiment shown in FIG. 1.
- the control method of the double pan / tilt head includes:
- Step S201 Obtain multiple first configuration parameters for configuring the first PTZ and multiple second configuration parameters for configuring the second PTZ;
- Step S202 Use the first configuration parameter and the second configuration parameter with the same configuration parameter identifier as the configuration information pair;
- Step S203 Obtain a target configuration parameter of the configuration information pair, and control the first and the second PTZ based on the target configuration parameter.
- the first head is used to configure a thermal imaging camera
- the second head is used to configure an ordinary camera
- the specific implementation manner of obtaining the configuration parameters of the multi-cloud station in step S201 may include:
- Specific implementation manner 1 Obtain a range of system configuration parameters for configuring the first PTZ, obtain the first configuration parameter; obtain a range of system settings parameters for configuring the second PTZ, obtain the second Configuration parameters.
- Specific implementation manner 2 Obtain a configuration parameter value input by a user for configuring the first PTZ, and obtain the first configuration parameter; obtain a configuration parameter value input by the user for configuring the second PTZ, and obtain The second configuration parameter.
- Specific implementation manner 3 Obtain a system configuration parameter range for configuring the first PTZ and a user-entered configuration parameter value for configuring the first PTZ to obtain the first configuration parameter; obtain for the configuration The system setting parameter range of the second PTZ and the value of the configuration parameter input by the user for configuring the second PTZ are obtained to obtain the second configuration parameter.
- the system setting parameter range is a value range of a parameter originally set for the gimbal by the system, and includes at least one of the following: Euler angle range, joint angle range, or field of view angle range.
- the configuration parameter value input by the user includes at least one of the following: operation feel setting parameter value, slow start and stop parameter value, following speed value or following acceleration value.
- the system configuration parameter range includes: an Euler angle range, a joint angle range, or a field angle range.
- the Euler angle range for configuring the first head is [A1 °, A2 °]
- the joint angle range for configuring the first head is [B1 °, B2 °] for configuration.
- the field of view angle range of the first head is [C1 °, C2 °], where the value A1 is less than A2, B1 is less than B2, and C1 is less than C2;
- the Euler angle range used to configure the second head is [A3 °, A4 °], the joint angle range for configuring the second head is [B3 °, B4 °], and the field angle range for configuring the second head is [C3 °, C4 °], where the value A3 is less than A4, B3 is less than B4, and C3 is less than C4.
- step S201 obtaining the configuration parameters of the PTZ includes the following steps: the server establishes a communication connection with the terminal device, the terminal device receives a configuration parameter value input by the user for configuring the first PTZ, and the terminal device further receives the user The input configuration parameter value used to configure the second PTZ; and the server receives the configuration parameter value sent by the terminal device for configuring the first PTZ, obtains the first configuration parameter, and also receives A configuration parameter value sent by the terminal device for configuring the second gimbal to obtain the second configuration parameter.
- the server obtains a configuration parameter value transmitted by the terminal device as a target configuration parameter.
- the server obtains the configuration parameters for multiple PTZs sent by the terminal device, and saves one configuration parameter that meets the preset conditions, and discards others; or the terminal device receives multiple clouds input by the user The configuration parameters of the station, and send a configuration parameter that meets the preset conditions to the server; or the terminal device allows the user to enter only one configuration parameter and send it to the server, and so on.
- a configuration parameter identifier corresponding to a configuration parameter value used to configure a PTZ by a user may be consistent with a configuration parameter identifier corresponding to a system setting parameter range.
- the Euler angle range set by the system for configuring the first head is [A1 °, A2 °]
- the Euler angle value entered by the user for configuring the first head is a °, where , A belongs to the Euler angle range [A1 °, A2 °].
- step S202 different configuration parameters of each PTZ are set with different identifiers, and the first configuration parameter and the second configuration parameter with the same configuration parameter identifier are used as the configuration information pair.
- the unified management of the same type of parameters of different gimbals through the configuration information is beneficial to the parallel or coincidence of the gimbal optical axes to further obtain a better shooting experience.
- a target configuration parameter of the configuration information pair is acquired, and the first and second PTZs are controlled based on the target configuration parameters.
- the method for determining a target configuration parameter of a configuration information pair includes steps S301 to S303.
- step 301 it is determined whether the first configuration parameter and the second configuration parameter in the configuration information pair are consistent. If the first configuration parameter and the second configuration parameter in the configuration information pair are not consistent, step S302 is performed to obtain a smaller value.
- step S303 is performed to obtain the first configuration parameter or the first configuration parameter.
- the second configuration parameter is used as a target configuration parameter of the configuration information pair.
- a parameter range is set for the system.
- step 301 it is determined whether the range of system setting parameters used to configure the first PTZ in the configuration information pair and the range of system setting parameters used to configure the second PTZ are consistent; if the configuration information pair is used for The system setting parameter range for configuring the first PTZ is inconsistent with the system setting parameter range for configuring the second PTZ, in step S302, a smaller system setting parameter range is obtained as the target configuration of the configuration information pair.
- the configuration information pair is used for The system setting parameter range for configuring the first PTZ or the system setting parameter range for configuring the second PTZ is used as the target configuration parameter of the configuration information pair.
- the Euler angle range used to configure the first head is [A1 °, A2 °]
- the Euler angle range used to configure the second head is [A3 °, A4 °]. The case where the range of the system setting parameters for configuring the first PTZ and the range of the system setting parameters for configuring the second PTZ are inconsistent in the configuration information pair is described.
- a range is configured for a parameter input by a user.
- step 301 it is determined whether the configuration parameter value used to configure the first PTZ in the configuration information pair and the configuration parameter value used to configure the second PTZ are consistent; if the configuration information pair is used to configure the first The configuration parameter value of one PTZ is inconsistent with the configuration parameter value used to configure the second PTZ, in step S302, a smaller configuration parameter value is obtained as the target configuration parameter of the configuration information pair; if the The configuration parameter value used to configure the first PTZ in the configuration information pair is consistent with the value of the configuration parameter used to configure the second PTZ, in step S303, the configuration information pair used to configure the first PTZ is obtained.
- the configuration parameter value or the configuration parameter value used to configure the second PTZ is used as a target configuration parameter of the configuration information pair. For example: if the Euler angle value entered by the user to configure the first gimbal is a1, and the Euler angle value entered by the user to configure the first gimbal is a2, the configuration information pair is used for When the configuration parameter value of the first PTZ is consistent with the configuration parameter value used to configure the second PTZ. Including: Case 1, a1 ⁇ a2, the smaller system setting parameter range is a1; Case 2, a1> a2, the smaller system setting parameter range is a2.
- the following describes the device embodiments of the present invention, which can be used to implement the above-mentioned control method for a multi-cloud station of the present invention.
- FIG. 4 shows a schematic structural diagram of a control device for a multi-cloud station according to an embodiment of the present invention.
- the control device 400 for a multi-cloud station includes a first acquisition module 401 and a second acquisition module 402.
- the first obtaining module 401 is configured to obtain multiple configuration parameters of each of the multiple PTZs.
- the first obtaining module 401 is further configured to use multiple configuration parameters with consistent configuration parameter identifiers as configuration information pairs.
- the second obtaining module 402 is configured to obtain target configuration parameters of the configuration information pair, and control the multiple PTZs based on the target configuration parameters.
- the multiple PTZs are dual PTZs
- the first acquisition module 401 is specifically configured to acquire a plurality of first configuration parameters for configuring the first PTZ and a second Multiple second configuration parameters of the PTZ
- the first acquisition module 401 is further specifically configured to use the first configuration parameter and the second configuration parameter with the same configuration parameter identifier as the configuration information pair
- the second acquisition module 402 is specifically used For obtaining a target configuration parameter of the configuration information pair, controlling the first and the second PTZ based on the target configuration parameter.
- the first obtaining module 401 is specifically configured to obtain a range of system configuration parameters for configuring the first PTZ, obtain the first configuration parameters, and obtain the first configuration parameters for configuring the first
- the system setting parameter range of the two PTZ is to obtain the second configuration parameter.
- the first obtaining module 401 is specifically configured to obtain a value of a configuration parameter input by a user for configuring the first pan / tilt, obtain the first configuration parameter, and obtain a user input. And configuring the value of the configuration parameter of the second PTZ to obtain the second configuration parameter.
- the first obtaining module 401 includes: a communication connection unit and a receiving unit.
- the communication connection unit is configured to establish a communication connection with a terminal device.
- the terminal device receives a configuration parameter value input by a user for configuring the first PTZ, and the terminal device further receives a user input for configuration.
- the receiving unit is configured to receive a configuration parameter value sent by the terminal device for configuring the first PTZ, obtain the first configuration parameter, and receive the first configuration parameter;
- the first obtaining module 401 is specifically configured to obtain a configuration parameter value transmitted by the terminal device for a same configuration information pair, and use the value as a target configuration parameter.
- the second obtaining module 402 includes: a determining unit and an obtaining unit.
- the judging unit is configured to judge whether the first configuration parameter and the second configuration parameter in the configuration information pair are consistent; and the acquiring unit is configured to: if the first configuration parameter and the second configuration parameter in the configuration information pair are inconsistent , A smaller configuration parameter is obtained as a target configuration parameter of the configuration information pair.
- the system setting parameter range includes at least one of the following: an Euler angle range, a joint angle range, or a field angle range.
- the configuration parameter value input by the user includes at least one of the following: an operation feel setting parameter value, a slow start / stop parameter value, a following speed value, or a following acceleration value.
- the first head is used to configure a thermal imaging camera
- the second head is used to configure an ordinary camera
- each functional module of the multi-station control device of the exemplary embodiment of the present invention corresponds to the steps of the above-described exemplary embodiment of the multi-station control method, for details not disclosed in the apparatus embodiment of the present invention, please refer to the above-mentioned of the present invention An embodiment of a method for controlling a cloudy station.
- FIG. 5 shows a schematic structural diagram of a drone according to an embodiment of the present invention.
- the drone 500 includes a plurality of gimbals, a gimbal 501, a gimbal 502,...
- the plurality of cloud platforms are controlled by the control method of the cloud platform as described above.
- the drone includes at least two types of pan / tilt heads, the first type of pan / tilt head is used to configure a thermal imaging camera, and the second type of pan / tilt head is used to configure an ordinary camera.
- the drone 500 includes a dual gimbal.
- FIG. 6 shows a schematic structural diagram of a dual-yuntai UAV according to an embodiment of the present invention.
- the dual-yuntai UAV 600 includes a first PTZ 601 and a second PTZ 602.
- the first gimbal 601 and the second gimbal 602 are located below the fuselage 603, that is, a lower dual gimbal.
- the first PTZ 601 is configured to configure a thermal imaging camera
- the second PTZ 602 is configured to configure a common camera.
- FIG. 7 shows a schematic structural diagram of a computer system 700 suitable for implementing an electronic device according to an embodiment of the present invention.
- the computer system 700 of the electronic device shown in FIG. 7 is only an example, and should not impose any limitation on the functions and scope of use of the embodiment of the present invention.
- the computer system 700 includes a central processing unit (CPU) 701, which can be loaded into a random access memory (RAM) 703 from a program stored in a read-only memory (ROM) 702 or from a storage section 708. Instead, perform various appropriate actions and processes. In the RAM 703, various programs and data required for system operation are also stored.
- the CPU 701, ROM 702, and RAM 703 are connected to each other through a bus 704.
- An input / output (I / O) interface 705 is also connected to the bus 704.
- the following components are connected to the I / O interface 705: an input portion 707 including a keyboard, a mouse, and the like; an output portion 707 including a cathode ray tube (CRT), a liquid crystal display (LCD), and the speaker; a storage portion 708 including a hard disk and the like; a communication section 709 including a network interface card such as a LAN card, a modem, and the like.
- the communication section 709 performs communication processing via a network such as the Internet.
- the driver 710 is also connected to the I / O interface 705 as needed.
- a removable medium 711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 710 as needed, so that a computer program read out therefrom is installed into the storage section 708 as needed.
- the process described above with reference to the flowchart may be implemented as a computer software program.
- embodiments of the present invention include a computer program product including a computer program carried on a computer-readable medium, the computer program containing program code for performing the method shown in the flowchart.
- the computer program may be downloaded and installed from a network through the communication section 709, and / or installed from a removable medium 711.
- this computer program is executed by a central processing unit (CPU) 701
- CPU central processing unit
- the computer-readable medium shown in the present invention may be a computer-readable signal medium or a computer-readable storage medium or any combination of the foregoing.
- the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programming read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
- a computer-readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
- the computer-readable signal medium may include a data signal transmitted in baseband or transmitted as a part of a carrier wave, in which a computer-readable program code is carried. Such a propagated data signal may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
- the computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
- Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
- each block in the flowchart or block diagram may represent a module, a program segment, or a part of code, which contains one or more of the logic functions used to implement the specified logic.
- Executable instructions may also occur in a different order than those marked in the drawings. For example, two successively represented boxes may actually be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending on the functions involved.
- each block in the block diagram or flowchart, and combinations of blocks in the block diagram or flowchart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with A combination of dedicated hardware and computer instructions.
- the units described in the embodiments of the present invention may be implemented by software or hardware.
- the described units may also be provided in a processor.
- the names of these units do not, in some cases, define the unit itself.
- the present application also provides a computer-readable medium, which may be included in the electronic device described in the foregoing embodiments; or may exist alone without being assembled into the electronic device in.
- the computer-readable medium carries one or more programs, and when the one or more programs are executed by one of the electronic devices, the electronic device implements the method for controlling a multi-cloud station as described in the foregoing embodiment.
- the electronic device may implement, as shown in FIG. 1: step S101, obtaining a plurality of configuration parameters of each of the multiple gimbals; step S102, using a plurality of configuration parameters with consistent configuration parameter identifiers as configuration Information pair; step S103, acquiring target configuration parameters of the configuration information pair, and controlling the plurality of PTZs based on the target configuration parameters.
- the electronic device can implement each step shown in FIG. 2.
- modules or units of the device for action execution are mentioned in the detailed description above, this division is not mandatory.
- the features and functions of the two or more modules or units described above may be embodied in one module or unit.
- the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.
- the technical solution according to the embodiment of the present invention may be embodied in the form of a software product, and the software product may be stored in a non-volatile storage medium (which may be a CD-ROM, a U disk, a mobile hard disk, etc.) or on a network. It includes several instructions to enable a computing device (which may be a personal computer, a server, a touch terminal, or a network device, etc.) to execute the method according to the embodiment of the present invention.
- a computing device which may be a personal computer, a server, a touch terminal, or a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Studio Devices (AREA)
Abstract
本发明实施例提供了一种多云台的控制方法、多云台的控制装置、无人机、计算机可读介质及电子设备,该多云台的控制方法包括:获取多个云台中每个云台的多个配置参数;将配置参数标识一致的多个配置参数作为配置信息对;获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。本发明实施例的技术方案提供了一种统一控制多个云台的配置参数的方法,达到多个云台根据统一的配置参数进行控制的目的,有利于使用多云台进行拍摄时光轴的平行或重合。从而,有效地提高了拍摄效果,提升了用户体验。
Description
本发明涉及云台技术领域,具体而言,涉及一种多云台的控制方法、装置、无人机、介质及电子设备。
随着各行业对拍摄需求的不断提高,利用多云台进行拍摄的模式应运而生。例如:人们利用设置有多个云台的无人机进行拍摄,可以根据实际需求,在多个云台设置不同类型的相机,从而,可以获取对拍摄点不同类型的图像。
现有技术中,对于每个云台系统为其配置调节参数或调节参数范围。用户使用时,根据系统为各个云台配置的调节参数或调节参数范围,分别对各个云台进行调节,从而利用多云台进行拍摄。
然而,利用现有技术的多云台的控制方法进行拍摄,其拍摄效果有待提高。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明实施例的目的在于提供一种多云台的控制方法、装置、无人机、介质及电子设备,进而至少在一定程度上克服利用现有技术的多云台的控制方法进行拍摄拍摄效果有待提高的问题。
本发明的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本发明的实践而习得。
根据本发明实施例的第一方面,提供了一种多云台的控制方法,包括:获取多个云台中每个云台的多个配置参数;将配置参数标识一致的多个配置参数作为配置信息对;获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
在本发明的一些实施例中,所述多个云台为双云台,获取多个云台中每个云台的多个配置参数,包括:获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数。
在本发明的一些实施例中,将配置参数标识一致的多个配置参数作为配置信息对,包括:将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对。
在本发明的一些实施例中,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台,包括:获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。
在本发明的一些实施例中,获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数,包括:获取用于配置所述第一云台的系统配置参数范围,得到所述第一配置参数,并获取用于配置所述第二云台的系统设置参数范围,得到所述第二配置参数。
在本发明的一些实施例中,获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数,包括:获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数,并获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在本发明的一些实施例中,获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数,并获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数,包括:与终端设备建立通讯连接,所述终端设备接收用户输入的用于配置所述第一云台的配置参数值,所述终端设备还接收用户输入的用于配置所述第二云台的配置参数值;接收所述终端设备发送的用于配置所述第一云台的配置参数值,得到所述第一配置参数,还接收所述终端设备发送的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在本发明的一些实施例中,获取所述配置信息对的目标配置参数,包括:对于同一配置信息对,获取所述终端设备传送的一个配置参数值并作为目标配置参数。
在本发明的一些实施例中,获取所述配置信息对的目标配置参数,包括:判断所述配置信息对中第一配置参数的配置参数和第二配置参数的配置参数是否一致;若所述配置信息对中第一配置参数的配置参数和第二配置参数的配置参数不一致,则获取较小的配置参数,以作为所述配置信息对的目标配置参数。
在本发明的一些实施例中,所述系统设置参数范围包括如下至少一种:欧拉角范围、关节角范围或视场角范围。
在本发明的一些实施例中,所述用户输入的配置参数值包括如下至少一种:操作手感设置参数值、缓启停参数值、跟随速度值或跟随加速度值。
在本发明的一些实施例中,所述第一云台用于配置热成像相机,所述第二云台用于配置普通相机。
根据本发明实施例的第二方面,提供了一种多云台的控制装置,包括:第一获取模块,所述第一获取模块用于获取多个云台中每个云台的多个配置参数;所述第一获取模块还用于将配置参数标识一致的多个配置参数作为配置信息对;第二获取模块,所述第二获取模块用于获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
在本发明的一些实施例中,所述多个云台为双云台,所述第一获取模块具体用于获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数;所述第一获取模块具体还用于将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对;所述第二获取模块具体用于获取所述配置信息对的目标配置参数,基于所述目标配 置参数控制所述第一云台和所述第二云台。
根据本发明实施例的第三方面,提供了一种无人机,包括多个云台,所述多个云台是通过如上述实施例中第一方面所述的多云台的控制方法控制的。
在本发明的一些实施例中,所述多个云台为双云台。
根据本发明实施例的第四方面,提供了一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现如上述实施例中第一方面所述的多云台的控制方法。
根据本发明实施例的第五方面,提供了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上述实施例中第一方面所述的多云台的控制方法。
本发明实施例提供的技术方案可以包括以下有益效果:
在本发明的一些实施例所提供的技术方案中,通过将云台的不同的配置参数设置不同的标识,将配置参数标识一致的配置参数作为配置信息对,进而获取每个配置信息对的目标配置参数,并基于所述目标配置参数控制所述配置信息对对应的多个云台。进而,提供了一种统一控制多个云台的配置参数的方法,达到多个云台根据统一的配置参数进行控制的目的,有利于使用多云台进行拍摄时光轴的平行或重合。从而,有效地提高了拍摄效果,提升了用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了根据本发明的一实施例的多云台的控制方法的流程示意图;
图2示出了根据本发明的另一实施例的多云台的控制方法的流程示意图;
图3示出了根据本发明的实施例的确定配置信息对的目标配置参数的方法的流程示意图;
图4示出了根据本发明的实施例的多云台的控制装置的结构示意图;
图5示出了根据本发明的实施例的无人机的结构示意图;
图6示出了根据本发明的实施例的双云台无人机的结构示意图;
图7示出了适于用来实现本发明实施例的电子设备的计算机系统的结构示意图。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实 施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本发明将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
在本发明的各个实施例中,使用多云台进行拍摄的场景可以是:巡检各种设施,例如电缆、铁塔、桥梁等。多云台拍摄可以各个角度观测巡检对象的细节,以及通过多云台对于巡检对象同时拍摄不同类型的画面,例如,利用多云台搭载至少一种热成像相机和至少一种普通成像相机。巡检工作者通过热成像相机快速的缩减搜索范围并获取可能的危险点,然后通过普通成像相机对可能的危险点进行细致观察。从而,提高巡检作业效率。
然而,利用现有技术中提供的对多云台的控制方法,热成像相机的光轴和普通成像相机的光轴不易平行或重合,相机间的成像面之间存在夹角,进而导致不同相机拍摄到的画面对不能重合,从而导致获取到的热成像和普通成像的图像拍摄拍摄效果有待提高的问题。
本发明提供的多云台的控制方法实施例中,执行主体可以是服务器。
图1示出了根据本发明的一实施例的多云台的控制方法的流程示意图。至少在一定程度上克服利用现有技术的多云台的控制方法进行拍摄拍摄效果有待提高的问题。参考图1,多云台的控制方法包括:
步骤S101,获取多个云台中每个云台的多个配置参数;
步骤S102,将配置参数标识一致的多个配置参数作为配置信息对;
步骤S103,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
在本发明的一些实施例所提供的技术方案中,通过将云台的不同的配置参数设置不同的标识,将配置参数标识一致的配置参数作为配置信息对,进而获取每个配置信息对的目标配置参数,并基于所述目标配置参数控制所述配置信息对对应的多个云台。进而,提供了一种统一控制多云台的配置参数的方法,达到多个云台根据统一的配置参数进行控制的目的,有利于使用多云台进行拍摄时光轴的平行或重合。从而,有效地提高了拍摄效果, 提升了用户体验。
在示例性的实施例中,图1所示实施例中的所述多云台用于搭载至少两种类型的相机。示例性的,一种类型为热成像相机,一种类型为普通成像相机。其中,普通成像相机可以是远摄变焦云台相机等。
在示例性的实施例中,图1所示实施例中的所述多云台为双云台。图2提供了对于双云台的控制方法的流程示意图,是图1所示实施例的一种具体实现方式。参考图2,双云台的控制方法,包括:
步骤S201,获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数;
步骤S202,将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对;
步骤S203,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。
以下对图2所示实施例的各个步骤的具体实现方式进行详细阐述:
在示例性的实施例中,所述第一云台用于配置热成像相机,所述第二云台用于配置普通相机。
在示例性的实施例中,在步骤S201中获取多云台的配置参数的具体实现方式可以包括:
具体实现方式一:获取用于配置所述第一云台的系统配置参数范围,得到所述第一配置参数;获取用于配置所述第二云台的系统设置参数范围,得到所述第二配置参数。
具体实现方式二:获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数;获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
具体实现方式三:获取用于配置所述第一云台的系统配置参数范围和用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数;获取用于配置所述第二云台的系统设置参数范围和用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在示例性的实施例中,所述系统设置参数范围为系统本来为云台设置的参数的取值范围,包括如下至少一种:欧拉角范围、关节角范围或视场角范围。所述用户输入的配置参数值包括如下至少一种:操作手感设置参数值、缓启停参数值、跟随速度值或跟随加速度值。
在示例性的实施例中,在具体实现方式一中,系统配置参数范围包括:欧拉角范围、关节角范围或视场角范围等。例如,用于配置所述第一云台的欧拉角范围为[A1°,A2°],用于配置所述第一云台的关节角范围为[B1°,B2°],用于配置所述第一云台的视场角范围为[C1°,C2°],其中,数值A1小于A2、B1小于B2、C1小于C2;用于配置所述第二云台的欧拉角范围为[A3°,A4°],用于配置所述第二云台的关节角范围为[B3°, B4°],用于配置所述第二云台的视场角范围为[C3°,C4°],其中,数值A3小于A4、B3小于B4、C3小于C4。
在示例性的实施例中,在具体实现方式二中,用户可以通过终端设备,例如安装在终端设备上的app设置云台的配置参数。则步骤S201获取云台的配置参数包括以下步骤:服务器与终端设备建立通讯连接,所述终端设备接收用户输入的用于配置所述第一云台的配置参数值,所述终端设备还接收用户输入的用于配置所述第二云台的配置参数值;以及,服务器接收所述终端设备发送的用于配置所述第一云台的配置参数值,得到所述第一配置参数,还接收所述终端设备发送的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在示例性的实施例中,对于同一配置信息对,服务器获取上述终端设备传送的一个配置参数值并作为目标配置参数。例如,对于同一配置信息对:服务器获取终端设备发送的对多个云台的配置参数,并且将其中符合预设条件的一个配置参数保存,其他舍弃;或者,终端设备接收用户输入的多个云台的配置参数,并且将其中符合预设条件的一个配置参数向服务器发送;或者,终端设备仅允许用户输入一个配置参数,并将其发送至服务器,等等。
在示例性的实施例中,在具体实现方式三中,用户输入的用于配置云台的配置参数值对应的配置参数标识,可以与系统设置参数范围对应的配置参数标识一致。例如:系统设置的用于配置所述第一云台的欧拉角范围为[A1°,A2°],用户输入的用于配置所述第一云台的欧拉角数值为a°,其中,a属于欧拉角范围为[A1°,A2°]。
在示例性的实施例中,在步骤S202中,将各个云台的不同配置参数设置不同的标识,并将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对。通过配置信息对实现对不同云台的相同类型的参数进行统一管理,有利于云台光轴的平行或重合,以进一步得到较佳的拍摄体验。
在示例性的实施例中,在步骤S203中,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。其具体实现方式可以参考图3,确定配置信息对的目标配置参数的方法包括步骤S301-步骤S303。在步骤301中,判断所述配置信息对中第一配置参数和第二配置参数是否一致;若所述配置信息对中第一配置参数和第二配置参数不一致,则执行步骤S302,获取较小的配置参数,以作为所述配置信息对的目标配置参数;若所述配置信息对中第一配置参数和第二配置参数一致,则执行步骤S303,获取所述第一配置参数或所述第二配置参数,以作为所述配置信息对的目标配置参数。
在示例性的实施例中,对于系统设置参数范围。上述在步骤301中,判断所述配置信息对中用于配置第一云台的系统设置参数范围和用于配置第二云台的系统设置参数范围是否一致;若所述配置信息对中用于配置第一云台的系统设置参数范围和用于配置第二云台的系统设置参数范围不一致,则在步骤S302中,获取较小的系统设置参数范围,以作 为所述配置信息对的目标配置参数;若所述配置信息对中用于配置第一云台的系统设置参数范围和用于配置第二云台的系统设置参数范围一致,则在步骤S303中,获取所述配置信息对中用于配置第一云台的系统设置参数范围或用于配置第二云台的系统设置参数范围,以作为所述配置信息对的目标配置参数。例如:用于配置所述第一云台的欧拉角范围为[A1°,A2°],用于配置所述第二云台的欧拉角范围为[A3°,A4°],则所述配置信息对中用于配置第一云台的系统设置参数范围和用于配置第二云台的系统设置参数范围不一致的情况。包括:情况一,A1<A3<A4<A2,则所述较小的系统设置参数范围为[A3°,A4°];情况二,A1<A3<A2<A4,则所述较小的系统设置参数范围为[A3°,A2°];情况三,A1<A2<A3<A4,则所述较小的系统设置参数范围为[A1°,A2°]。
在示例性的实施例中,对于用户输入的参数配置范围。上述在步骤301中,判断所述配置信息对中用于配置第一云台的配置参数值和用于配置第二云台的配置参数值是否一致;若所述配置信息对中用于配置第一云台的配置参数值和用于配置第二云台的配置参数值不一致,则在步骤S302中,获取较小的配置参数值,以作为所述配置信息对的目标配置参数;若所述配置信息对中用于配置第一云台的配置参数值和用于配置第二云台的配置参数值一致,则在步骤S303中,获取所述配置信息对中用于配置第一云台的配置参数值或用于配置第二云台的配置参数值,以作为所述配置信息对的目标配置参数。例如:用户输入的用于配置所述第一云台的欧拉角值为a1,用户输入的用于配置所述第云台的欧拉角值为a2,则所述配置信息对中用于配置第一云台的配置参数值和用于配置第二云台的配置参数值一致的情况。包括:情况一,a1<a2,则所述较小的系统设置参数范围为a1;情况二,a1>a2,则所述较小的系统设置参数范围为a2。
以下介绍本发明的装置实施例,可以用于执行本发明上述的多云台的控制方法。
图4示出了根据本发明的实施例的多云台的控制装置的结构示意图,参考图4,多云台的控制装置400,包括:第一获取模块401和第二获取模块402。
其中,第一获取模块401用于获取多个云台中每个云台的多个配置参数;所述第一获取模块401还用于将配置参数标识一致的多个配置参数作为配置信息对;第二获取模块402用于获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
在示例性的实施例中,所述多个云台为双云台,所述第一获取模块401具体用于获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数;所述第一获取模块401具体还用于将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对;所述第二获取模块402具体用于获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。
在示例性的实施例中,所述第一获取模块401具体用于获取用于配置所述第一云台的系统配置参数范围,得到所述第一配置参数,并获取用于配置所述第二云台的系统设置参数范围,得到所述第二配置参数。
在示例性的实施例中,所述第一获取模块401具体用于获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数,并获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在示例性的实施例中,所述第一获取模块401包括:通讯连接单元和接收单元。
其中,所述通讯连接单元用于与终端设备建立通讯连接,所述终端设备接收用户输入的用于配置所述第一云台的配置参数值,所述终端设备还接收用户输入的用于配置所述第二云台的配置参数值;所述接收单元用于接收所述终端设备发送的用于配置所述第一云台的配置参数值,得到所述第一配置参数,还接收所述终端设备发送的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
在示例性的实施例中,所述第一获取模块401具体用于对于同一配置信息对,获取所述终端设备传送的一个配置参数值并作为目标配置参数。
在示例性的实施例中,所述第二获取模块402包括:判断单元和获取单元。
其中,所述判断单元用于判断所述配置信息对中第一配置参数和第二配置参数是否一致;所述获取单元用于若所述配置信息对中第一配置参数和第二配置参数不一致,则获取较小的配置参数,以作为所述配置信息对的目标配置参数。
在示例性的实施例中,所述系统设置参数范围包括如下至少一种:欧拉角范围、关节角范围或视场角范围。
在示例性的实施例中,所述用户输入的配置参数值包括如下至少一种:操作手感设置参数值、缓启停参数值、跟随速度值或跟随加速度值。
在示例性的实施例中,所述第一云台用于配置热成像相机,所述第二云台用于配置普通相机。
由于本发明的示例实施例的多云台的控制装置的各个功能模块与上述多云台的控制方法的示例实施例的步骤对应,因此对于本发明装置实施例中未披露的细节,请参照本发明上述的多云台的控制方法的实施例。
图5示出了根据本发明的实施例的无人机的结构示意图,参考图5,无人机500包括多个云台,云台501,云台502,…,云台N。其中,所述多个云台是通过如上所述多云台的控制方法控制的。
在示例性的实施例中,所述无人机至少包括两种类型的云台,第一种类型的云台用于配置热成像相机,第二种类型的云台用于配置普通相机。
在示例性的实施例中,所述无人机500包括双云台。
图6示出了根据本发明的实施例的双云台无人机的结构示意图,参考图6,双云台无人机600,包括第一云台601和第二云台602。在示例性的实施例中,第一云台601和第二云台602位于机身603下方,即为下置式双云台。在示例性的实施例中,所述第一云台601用于配置热成像相机,所述第二云台602用于配置普通相机。
下面参考图7,其示出了适于用来实现本发明实施例的电子设备的计算机系统700的 结构示意图。图7示出的电子设备的计算机系统700仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图7所示,计算机系统700包括中央处理单元(CPU)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储部分708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM 703中,还存储有系统操作所需的各种程序和数据。CPU 701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
以下部件连接至I/O接口705:包括键盘、鼠标等的输入部分707;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分707;包括硬盘等的存储部分708;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分709。通信部分709经由诸如因特网的网络执行通信处理。驱动器710也根据需要连接至I/O接口705。可拆卸介质711,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器710上,以便于从其上读出的计算机程序根据需要被安装入存储部分708。
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分709从网络上被下载和安装,和/或从可拆卸介质711被安装。在该计算机程序被中央处理单元(CPU)701执行时,执行本申请的系统中限定的上述功能。
需要说明的是,本发明所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产 品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该电子设备执行时,使得该电子设备实现如上述实施例中所述的多云台的控制方法。
例如,所述的电子设备可以实现如图1中所示的:步骤S101,获取多个云台中每个云台的多个配置参数;步骤S102,将配置参数标识一致的多个配置参数作为配置信息对;步骤S103,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
又如,所述的电子设备可以实现如图2所示的各个步骤。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本发明实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、触控终端、或者网络设备等)执行根据本发明实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由所附的权利要求指出。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离申请的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
Claims (18)
- 一种多云台的控制方法,其特征在于,包括:获取多个云台中每个云台的多个配置参数;将配置参数标识一致的多个配置参数作为配置信息对;获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
- 根据权利要求1所述的方法,其特征在于,所述多个云台为双云台,获取多个云台中每个云台的多个配置参数,包括:获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数。
- 根据权利要求2所述的方法,其特征在于,将配置参数标识一致的多个配置参数作为配置信息对,包括:将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对。
- 根据权利要求3所述的方法,其特征在于,获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台,包括:获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。
- 根据权利要求4所述的方法,其特征在于,获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数,包括:获取用于配置所述第一云台的系统配置参数范围,得到所述第一配置参数,并获取用于配置所述第二云台的系统设置参数范围,得到所述第二配置参数。
- 根据权利要求4或5所述的方法,其特征在于,获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数,包括:获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数,并获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
- 根据权利要求6所述的方法,其特征在于,获取用户输入的用于配置所述第一云台的配置参数值,得到所述第一配置参数,并获取用户输入的用于配置所述第二云台的配置参数值,得到所述第二配置参数,包括:与终端设备建立通讯连接,所述终端设备接收用户输入的用于配置所述第一云台的配 置参数值,所述终端设备还接收用户输入的用于配置所述第二云台的配置参数值;接收所述终端设备发送的用于配置所述第一云台的配置参数值,得到所述第一配置参数,还接收所述终端设备发送的用于配置所述第二云台的配置参数值,得到所述第二配置参数。
- 根据权利要求7所述的方法,其特征在于,获取所述配置信息对的目标配置参数,包括:对于同一配置信息对,获取所述终端设备传送的一个配置参数值并作为目标配置参数。
- 根据权利要求2至5任一项、权利要求7或8所述的方法,其特征在于,获取所述配置信息对的目标配置参数,包括:判断所述配置信息对中第一配置参数和第二配置参数是否一致;若所述配置信息对中第一配置参数和第二配置参数不一致,则获取较小的配置参数,以作为所述配置信息对的目标配置参数。
- 根据权利要求9所述的方法,其特征在于,所述系统设置参数范围包括如下至少一种:欧拉角范围、关节角范围或视场角范围。
- 根据权利要求10所述的方法,其特征在于,所述用户输入的配置参数值包括如下至少一种:操作手感设置参数值、缓启停参数值、跟随速度值或跟随加速度值。
- 根据权利要求9所述的方法,其特征在于,所述第一云台用于配置热成像相机,所述第二云台用于配置普通相机。
- 一种多云台的控制装置,其特征在于,包括:第一获取模块,所述第一获取模块用于获取多个云台中每个云台的多个配置参数;所述第一获取模块还用于将配置参数标识一致的多个配置参数作为配置信息对;第二获取模块,所述第二获取模块用于获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述多个云台。
- 根据权利要求13所述的装置,其特征在于,所述多个云台为双云台,所述第一获取模块具体用于获取用于配置第一云台的多个第一配置参数和用于配置第二云台的多个第二配置参数;所述第一获取模块具体还用于将配置参数标识一致的第一配置参数和第二配置参数作为配置信息对;所述第二获取模块具体用于获取所述配置信息对的目标配置参数,基于所述目标配置参数控制所述第一云台和所述第二云台。
- 一种无人机,其特征在于,包括多个云台,所述多个云台是通过如权利要求1至12任一项所述方法控制的。
- 根据权利要求15所述的无人机,其特征在于,所述多个云台为双云台。
- 一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1至12中任一项所述的多云台的控制方法。
- 一种电子设备,其特征在于,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至12中任一项所述的多云台的控制方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/097263 WO2020019257A1 (zh) | 2018-07-26 | 2018-07-26 | 多云台的控制方法、装置、无人机、介质及电子设备 |
CN201880028208.0A CN110603504A (zh) | 2018-07-26 | 2018-07-26 | 多云台的控制方法、装置、无人机、介质及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/097263 WO2020019257A1 (zh) | 2018-07-26 | 2018-07-26 | 多云台的控制方法、装置、无人机、介质及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020019257A1 true WO2020019257A1 (zh) | 2020-01-30 |
Family
ID=68849321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/097263 WO2020019257A1 (zh) | 2018-07-26 | 2018-07-26 | 多云台的控制方法、装置、无人机、介质及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110603504A (zh) |
WO (1) | WO2020019257A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021146908A1 (zh) * | 2020-01-21 | 2021-07-29 | 深圳市大疆创新科技有限公司 | 云台及其控制方法 |
CN113632037B (zh) * | 2020-02-28 | 2024-09-17 | 深圳市大疆创新科技有限公司 | 可移动平台的控制方法和设备 |
CN112640423A (zh) * | 2020-04-28 | 2021-04-09 | 深圳市大疆创新科技有限公司 | 控制方法、控制装置和可移动平台 |
CN111703584B (zh) * | 2020-08-17 | 2020-12-08 | 北京远度互联科技有限公司 | 一种回中方法、光电吊舱、无人机及存储介质 |
WO2022061772A1 (zh) * | 2020-09-25 | 2022-03-31 | 深圳市大疆创新科技有限公司 | 云台控制方法、装置、可移动平台和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916119A (zh) * | 2010-07-28 | 2010-12-15 | 山东神戎电子股份有限公司 | 分体式云台的自动跟随控制系统及方法 |
CN201957175U (zh) * | 2011-01-27 | 2011-08-31 | 杭州华三通信技术有限公司 | 一种监视器 |
CN105830129A (zh) * | 2015-04-29 | 2016-08-03 | 深圳市大疆创新科技有限公司 | 云台控制方法、装置及系统 |
EP3118508A1 (en) * | 2014-03-14 | 2017-01-18 | SZ DJI Technology Co., Ltd. | Control method for pan tilt and control system of pan tilt |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100531373C (zh) * | 2007-06-05 | 2009-08-19 | 西安理工大学 | 基于双摄像头联动结构的视频运动目标特写跟踪监视方法 |
CN101198030B (zh) * | 2007-12-18 | 2010-06-23 | 北京中星微电子有限公司 | 一种视频监控系统的摄像机定位方法及定位装置 |
CN101631260B (zh) * | 2009-08-06 | 2011-06-08 | 杭州华三通信技术有限公司 | 云台检测方法和检测装置 |
CN102121824B (zh) * | 2010-12-08 | 2013-12-04 | 中国电信股份有限公司 | 远程测距终端、方法和系统 |
CN104483983B (zh) * | 2014-11-24 | 2016-12-07 | 成都新舟锐视科技有限公司 | 一种多摄像头实时联动的双云台控制方法 |
CN107409051B (zh) * | 2015-03-31 | 2021-02-26 | 深圳市大疆创新科技有限公司 | 用于生成飞行管制的认证系统和方法 |
CN206575503U (zh) * | 2016-11-16 | 2017-10-20 | 贵州斯凯威科技有限公司 | 一种vr拍摄无人机 |
CN206313877U (zh) * | 2016-12-27 | 2017-07-07 | 湖南子午天地科技文化发展有限公司 | 一种云台摄像机和云台摄像平台 |
CN206501137U (zh) * | 2016-12-27 | 2017-09-19 | 杨南 | 一种高压线路巡检除冰特种机器人 |
CN206569281U (zh) * | 2017-03-10 | 2017-10-20 | 普宙飞行器科技(深圳)有限公司 | 无人飞行器 |
CN106892086A (zh) * | 2017-03-28 | 2017-06-27 | 卢旭升 | 一种多旋翼无人机 |
CN207638745U (zh) * | 2017-10-31 | 2018-07-20 | 深圳市大疆创新科技有限公司 | 一种云台相机、云台装置及无人飞行器 |
-
2018
- 2018-07-26 CN CN201880028208.0A patent/CN110603504A/zh active Pending
- 2018-07-26 WO PCT/CN2018/097263 patent/WO2020019257A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916119A (zh) * | 2010-07-28 | 2010-12-15 | 山东神戎电子股份有限公司 | 分体式云台的自动跟随控制系统及方法 |
CN201957175U (zh) * | 2011-01-27 | 2011-08-31 | 杭州华三通信技术有限公司 | 一种监视器 |
EP3118508A1 (en) * | 2014-03-14 | 2017-01-18 | SZ DJI Technology Co., Ltd. | Control method for pan tilt and control system of pan tilt |
CN105830129A (zh) * | 2015-04-29 | 2016-08-03 | 深圳市大疆创新科技有限公司 | 云台控制方法、装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110603504A (zh) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020019257A1 (zh) | 多云台的控制方法、装置、无人机、介质及电子设备 | |
WO2021189456A1 (zh) | 无人机巡检方法、装置及无人机 | |
US11789467B2 (en) | Method, apparatus, terminal, and storage medium for elevation surrounding flight control | |
US20190253617A1 (en) | Method and system for recommending optimum position of photography | |
CN112733820B (zh) | 障碍物信息生成方法、装置、电子设备和计算机可读介质 | |
US11683583B2 (en) | Picture focusing method, apparatus, terminal, and corresponding storage medium | |
US20240291938A1 (en) | Video fusion method, apparatus, electronic device and storage medium | |
WO2021037286A1 (zh) | 一种图像处理方法、装置、设备及存储介质 | |
WO2018076217A1 (zh) | 云台 | |
CN113255619B (zh) | 车道线识别及定位方法、电子设备和计算机可读介质 | |
WO2018209575A1 (zh) | 数据传输方法、设备、机器可读存储介质以及系统 | |
WO2021212445A1 (zh) | 拍摄方法、可移动平台、控制设备和存储介质 | |
CN114022662B (zh) | 图像识别方法、装置、设备及介质 | |
EP3304884A1 (en) | Method and system to assist a user to capture an image or video | |
WO2020098431A1 (zh) | 一种构建地图模型的方法及装置 | |
WO2024114376A1 (zh) | 无人机云台自动跟踪目标的方法、装置、设备及存储介质 | |
GB2528058A (en) | Peer to peer camera communication | |
WO2017181930A1 (zh) | 一种飞行方向显示方法、装置及其无人机 | |
WO2024174728A1 (zh) | 基于虚拟相机的多视角鸟瞰图障碍物检测方法及检测系统 | |
WO2024152797A1 (zh) | 视频补全方法、装置、介质和电子设备 | |
EP4113446A1 (en) | Sticker processing method and apparatus | |
WO2024131503A1 (zh) | 特效图的生成方法、装置、设备及存储介质 | |
WO2022104528A1 (zh) | 用于定点数的非线性计算的方法、装置、图像处理设备、可移动平台及存储介质 | |
CN113791640A (zh) | 一种图像获取方法、装置、飞行器和存储介质 | |
WO2018219274A1 (zh) | 降噪处理方法、装置、存储介质及终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927574 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927574 Country of ref document: EP Kind code of ref document: A1 |