WO2021187965A1 - 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지 - Google Patents

전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지 Download PDF

Info

Publication number
WO2021187965A1
WO2021187965A1 PCT/KR2021/095008 KR2021095008W WO2021187965A1 WO 2021187965 A1 WO2021187965 A1 WO 2021187965A1 KR 2021095008 W KR2021095008 W KR 2021095008W WO 2021187965 A1 WO2021187965 A1 WO 2021187965A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
electrode current
lithium
layer
Prior art date
Application number
PCT/KR2021/095008
Other languages
English (en)
French (fr)
Inventor
윤현웅
황순욱
하회진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210002734A external-priority patent/KR20210117915A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21772555.5A priority Critical patent/EP4024600A4/en
Priority to CN202180005776.0A priority patent/CN114503312A/zh
Priority to US17/766,511 priority patent/US20230155134A1/en
Publication of WO2021187965A1 publication Critical patent/WO2021187965A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode current collector having a conductive anti-corrosion layer formed on a tab, a positive electrode including the same, and a lithium secondary battery.
  • a secondary battery is a representative example of an electrochemical device using such electrochemical energy, and its use area is gradually expanding.
  • Such a lithium secondary battery has a structure in which a non-aqueous electrolyte is impregnated in an electrode assembly comprising a positive electrode, a negative electrode, and a porous separator.
  • a positive electrode is generally manufactured by coating a positive electrode mixture including a positive electrode active material on aluminum foil, and a negative electrode is manufactured by coating a negative electrode mixture containing a negative electrode active material on a copper foil.
  • aluminum foil used as a positive electrode current collector may cause a side reaction with a lithium salt of a lithium non-aqueous electrolyte or a non-aqueous solvent, and in particular, an imide-based lithium salt is used as a lithium salt of a lithium non-aqueous electrolyte.
  • an Al salt is formed, the Al salt is dissolved in a non-aqueous solvent, and corrosion of Al occurs.
  • an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • an object of the present invention is to provide a positive electrode current collector capable of preventing corrosion that occurs frequently in a positive electrode current collector tab portion by forming a corrosion prevention layer on the entire tab surface of a positive electrode current collector where corrosion occurs the most.
  • a positive electrode current collector for a lithium secondary battery comprising a tab extending from a positive electrode current collector substrate, from the group consisting of a primer layer, a conductive polymer layer, and a conductive epoxy layer on the entire surface of the tab.
  • a positive electrode current collector in which a corrosion-preventing layer made of one selected type is formed.
  • the positive electrode current collector a corrosion prevention layer consisting of one selected from the group consisting of a primer layer, a conductive polymer layer, and a conductive epoxy layer on a part or all of at least one surface of the positive electrode current collector substrate This may be further formed.
  • the primer layer is natural graphite, artificial graphite, graphene, carbon black, channel black, furnace black, lamp black, summer black, carbon nanotubes, graphite nanofibers, carbon nanofibers, aluminum, nickel, and polyphenyl
  • At least one conductive material selected from the group consisting of lene derivatives, and a binder may be included.
  • the binder is polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, It may be at least one selected from the group consisting of polypropylene, ethylene-propylene-diene ether polymer (EPDM), sulfonated EPDM, styrene butyrene rubber, and fluororubber.
  • EPDM ethylene-propylene-diene ether polymer
  • EPDM sulfonated EPDM
  • styrene butyrene rubber styrene butyrene rubber
  • fluororubber fluorubber
  • the conductive material and the binder may be included in a weight ratio of 1:99 to 99:1.
  • the conductive polymer layer is polyethylenedioxythiophene/polystyrenesulfonate (PEDOT/PSS; poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), polyaniline (PANI; polyaniline), polypyrrole (PPy; polypyrrole), poly It may include one or more conductive polymers selected from the group consisting of thiophene (PT; polythiophene), polyacetylene (PA), and poly para-phenylene vinylene (PPV).
  • PEDOT/PSS polyethylenedioxythiophene/polystyrenesulfonate
  • PANI polyaniline
  • Py polypyrrole
  • PT thiophene
  • PA polyacetylene
  • PV poly para-phenylene vinylene
  • the conductive epoxy layer may include one or more conductive fillers selected from the group consisting of gold, platinum, silver, copper, or nickel metal powder, carbon or carbon fiber, graphite, and composite powder, and a binder.
  • the binder may be at least one selected from the group consisting of acryl-based, epoxy-based, polyurethane-based, silicone-based, polyimide-based, phenol-based, polyester-based polymer material, composite polymer resin, and low-melting-point glass.
  • the conductive filler and the binder may be included in a weight ratio of 1:99 to 99:1.
  • the thickness of the anti-corrosion layer may be 0.1 ⁇ m to 100 ⁇ m.
  • the positive electrode current collector may include Al.
  • a positive electrode having a positive electrode mixture layer formed on at least one surface of the positive electrode current collector, the positive electrode; a negative electrode having a negative electrode mixture layer formed on at least one surface of the negative electrode current collector;
  • a lithium secondary battery having a structure in which an electrode assembly including a separator interposed between the positive electrode and the negative electrode is impregnated in a lithium non-aqueous electrolyte.
  • the lithium non-aqueous electrolyte may include a lithium salt and a non-aqueous solvent. Corrosion of the positive electrode current collector occurs more actively when the lithium salt contains an imide-based lithium salt, and therefore, in this composition, the anti-corrosion layer It is more preferable when formed.
  • the lithium salt in the lithium non-aqueous electrolyte according to the present invention is lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (perfluoroethylsulfonyl) It may include an imide-based salt selected from the group consisting of imide (LiBETI), Lithium (fluorosulfonyl) (nonafluorobutanesulfoyl) imide (LiFNFSI), and Lithium (fluorosulfonyl) (trifluoromethanesulfonyl) imide (LiFTI or LiFTA).
  • imide LiBETI
  • Lithium (fluorosulfonyl) nonafluorobutanesulfoyl) imide
  • LiFTI or LiFTA Lithium (fluorosulfonyl) imide
  • the lithium secondary battery may be, for example, a lithium ion battery, a lithium polymer battery, a lithium metal battery, or a lithium-free battery.
  • a positive electrode current collector for a lithium secondary battery comprising a tab extending from a positive electrode current collector substrate, a primer layer, a conductive polymer layer, and a conductive epoxy layer on the entire surface of the tab selected from the group consisting of A positive electrode current collector having a corrosion-preventing layer formed of one type is provided.
  • the positive electrode current collector including the positive electrode current collector substrate and the tab is generally manufactured to have a thickness of 3 to 500 ⁇ m, and is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, for example,
  • One selected from stainless steel, aluminum, nickel, copper, tungsten, titanium, and carbon, nickel, titanium, or silver surface-treated on the surface of aluminum or stainless steel can be used, and specifically, aluminum (Al) containing may be used.
  • the thing containing Al may consist of aluminum (it may contain impurities), or an alloy of Al and another metal may be sufficient.
  • the current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface thereof, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, and a nonwoven body are possible.
  • the tab may be attached to the positive electrode current collector substrate by welding, and when the positive electrode is manufactured, a continuous positive electrode sheet coated with the active material of the positive electrode current collector substrate may be integrally formed by notching a continuous positive electrode sheet at a unit electrode interval by a mold. have.
  • a corrosion prevention layer for physical blocking with the electrolyte may be formed on the surface of the positive electrode tab, which is a portion exposed to the outside because the positive electrode mixture layer is not formed in the positive electrode current collector.
  • the corrosion potential is still high in the portion where the anti-corrosion layer is not formed, and, on the contrary, corrosion may be accelerated, which is not preferable.
  • a coating layer such as an insulating layer or a protective layer is formed on a part of the positive electrode tab, but the coating layer is not formed on the end of the positive electrode tab. This is because, when a coating layer is formed on a portion where the positive electrode tab is welded to the positive electrode lead, this coating layer may act as a large resistance layer.
  • an anti-corrosion layer may be formed on the entire surface.
  • an anti-corrosion layer made of one selected from the group consisting of layers may be further formed, and in detail, may be formed on the entire surface of the positive electrode current collector including the tab and the positive electrode current collector substrate.
  • the anti-corrosion layer may be conductive, and specifically, may be made of one selected from the group consisting of a primer layer, a conductive polymer layer, and a conductive epoxy layer. have.
  • the primer layer may include a conductive material and a binder.
  • the conductive material is not limited to the material as long as it is a component capable of maintaining conductivity, and for example, natural graphite, artificial graphite, graphene, carbon black, channel black, furnace black, lamp black, summer black, carbon It may include at least one conductive material selected from the group consisting of nanotubes, graphite nanofibers, carbon nanofibers, aluminum, nickel, and polyphenylene derivatives.
  • the binder is used for bonding between the current collector and the primer layer, and is not limited as long as it has a general binding component, for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydro Roxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber, and fluororubber It may be at least one selected from the group consisting of.
  • a general binding component for example, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydro Roxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpol
  • the conductive material and the binder may be included in a weight ratio of 1:99 to 99:1, specifically, a weight ratio of 3:7 to 7:3.
  • Such a primer layer can use a coating film forming method commonly used in the art, for example, gravure (gravure) coating, slot die (slot die) coating, spin coating, spray coating, bar coating, dip coating and The same wet coating method or a dry coating method such as thermal evaporation, E-beam evaporation, Chemical Vapor Deposition, or sputtering may be used to form it.
  • a coating film forming method commonly used in the art, for example, gravure (gravure) coating, slot die (slot die) coating, spin coating, spray coating, bar coating, dip coating and The same wet coating method or a dry coating method such as thermal evaporation, E-beam evaporation, Chemical Vapor Deposition, or sputtering may be used to form it.
  • polymers commonly known as conductive polymers may be used, for example, polyethylenedioxythiophene/polystyrenesulfonate (PEDOT/PSS; poly(3,4-ethylenedioxythiophene)/poly(4-styrene) sulfonate), polyaniline (PANI; polyaniline), polypyrrole (PPy; polypyrrole), polythiophene (PT; polythiophene), polyacetylene (PA; polyacetylene), polypara-phenylene vinylene (PPV; poly para-phenylene vinylene) It may include one or more conductive polymers selected from the group consisting of.
  • PEDOT/PSS polyethylenedioxythiophene/polystyrenesulfonate
  • PANI polyaniline
  • PPPy polypyrrole
  • PT polythiophene
  • PA polyacetylene
  • PV polypara-phenylene vinylene
  • It may include one or more conductive
  • the conductive polymer layer may be formed by preparing a conductive polymer melt or a mixed solution dissolving them in a solvent, and performing various wet coating methods as described in the primer layer coating method.
  • the solvent may be a polar organic solvent, for example, chloroform, dichloromethane, m-cresol, tetrahydrofuran (THF), and dimethylformamide (DMF). and the like.
  • the same binder as disclosed in the primer layer may be additionally included for stronger binding, and in this case, the content may be included in an amount of 0.1 to 10% by weight based on the total weight of the conductive polymer layer.
  • the conductive epoxy layer may include a conductive filler and a binder.
  • the conductive filler may be at least one selected from the group consisting of metal powder of gold, platinum, silver, copper, or nickel, carbon or carbon fiber, graphite, and composite powder.
  • the binder is a component for binding the conductive filler, but is not limited, for example, acrylic, epoxy, polyurethane, silicone, polyimide, phenolic, polyester polymer material, composite polymer resin, and low melting point It may be at least one selected from the group consisting of glass.
  • the conductive epoxy layer may be classified into a room temperature drying type, a room temperature curing type, a thermosetting type, a high temperature firing type, a UV curing type, and the like, depending on how it is manufactured.
  • the room temperature drying type can be formed by including a conductive filler in an acrylic binder and a solvent and drying at room temperature. It can be formed by curing the contained solvent.
  • thermosetting type can be formed by applying heat to a solvent containing a conductive filler using mainly an epoxy-based binder, high temperature firing molding is curing by heat treatment at high temperature, and UV curing type is formed by curing by irradiating UV. can do.
  • the conductive filler and the binder may also be included in a weight ratio of 1:99 to 99:1, specifically, a weight ratio of 7:3 to 3:7.
  • the formation thickness of the corrosion prevention layer 0.1 ⁇ m to 100 ⁇ m, specifically, 0.1 to 30 ⁇ m, more specifically, 1 to 20 ⁇ m, and most specifically 5 to 20 ⁇ m may be.
  • the thickness of the anticorrosion layer is too thin, it is difficult to sufficiently suppress corrosion of the tab and the positive electrode current collector, and good conductivity may not be obtained. may not be preferable.
  • a positive electrode having a positive electrode mixture layer formed on at least one surface of the positive electrode current collector.
  • a positive electrode mixture layer including a positive electrode active material, a binder, a conductive material, and the like is formed on a positive electrode current collector.
  • the conductive material is typically added in an amount of 0.1 to 30% by weight, specifically 1 to 10% by weight, and more specifically 1 to 5% by weight based on the total weight of the positive electrode mixture layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is typically 0.1 to 30% by weight, specifically 1 to 10% by weight, more specifically, based on the total weight of the positive electrode mixture layer. is added in an amount of 1 to 5% by weight.
  • binders include polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinyl.
  • pyrrolidone tetrafluoroethylene, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, various copolymers, etc. have.
  • the positive electrode a negative electrode having a negative electrode mixture layer formed on at least one surface of the negative electrode current collector;
  • a lithium secondary battery having a structure in which an electrode assembly including a separator interposed between the positive electrode and the negative electrode is impregnated in a lithium non-aqueous electrolyte.
  • a negative electrode mixture layer including a negative electrode active material, a binder, a conductive material, and the like is formed on the negative electrode current collector.
  • the negative electrode current collector is generally made to have a thickness of 3 to 500 micrometers.
  • a negative current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the bonding force of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven body.
  • the negative electrode active material examples include carbon such as non-graphitizable carbon and graphitic carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; conductive polymers such as polyacetylene; Li-Co-
  • the negative electrode may be made of only lithium metal without a current collector, and in this case, the lithium metal simultaneously functions as a current collector and an active material.
  • a lithium secondary battery including a negative electrode made of lithium metal or a negative electrode including lithium metal as an active material in a current collector is referred to as a lithium metal battery.
  • the negative electrode may be simply made of the current collector as described above.
  • the negative electrode receives lithium from the positive electrode according to charging of the lithium secondary battery and forms lithium metal on the current collector.
  • a lithium secondary battery including a negative electrode of a type consisting only of the current collector is referred to as a lithium-free battery.
  • an insulating thin film having high ion permeability and mechanical strength is used as the separator interposed between the anode and the cathode.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m, and the thickness is generally 5 to 300 ⁇ m.
  • a separation membrane For example, olefin polymers, such as chemical-resistant and hydrophobic polypropylene; A sheet or nonwoven fabric made of glass fiber or polyethylene is used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the separator may be a Safety Reinforced Separator (SRS) separator.
  • SRS separator has a structure in which an organic/inorganic composite porous coating layer is coated on a polyolefin-based separator substrate.
  • the inorganic particles and binder polymer constituting the organic/inorganic composite porous coating layer of the SRS separator are similar to those described above, and the contents disclosed in the applicant's Application No. 10-2009-0018123 are incorporated by reference.
  • the lithium non-aqueous electrolyte generally includes a lithium salt and a non-aqueous solvent.
  • a non-aqueous organic solvent a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used, but are not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma -Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy furan (furan), 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane , acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo
  • An aprotic organic solvent such as a nate derivative, a tetrahydrofuran derivative, an ether, methyl pyropionate, or
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymer containing an ionic dissociation group or the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 and the like may be used.
  • the lithium salt is a material easily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate, already used include deugye salt can
  • the corrosion protection layer according to the present invention is more effective when the imide-based salt is included as a lithium salt. As described above, when the imide-based salt is included as the lithium salt, corrosion of the aluminum current collector is deepened.
  • the lithium salt is lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (perfluoroethylsulfonyl) imide (LiBETI), Lithium (fluorosulfonyl) (nonafluorobutanesulfoyl) imide (LiFNFSI), Lithium (fluorosulfonyl) (trifluoromethanesulfonyl) imide (LiFTI or LiFTA) may include an imide-based salt selected from the group consisting of.
  • nonaqueous electrolyte for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. may be added. have.
  • a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) Carbonate), PRS (Propene Sultone), etc. may be further included.
  • the lithium secondary battery is a lithium ion battery or a lithium polymer battery containing various materials other than lithium as a negative electrode active material, a lithium metal battery containing lithium metal as a negative electrode active material, or a negative electrode active material. Accordingly, it may be a lithium-free battery that receives and precipitates lithium ions.
  • Such a lithium secondary battery may be used as a power source of a device, and the device is, for example, a notebook computer, a netbook, a tablet PC, a mobile phone, an MP3, a wearable electronic device, a power tool, an electric vehicle (Electric Vehicle) , EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), E-bike, Electric Scooter (E-scooter), Electric Golf It may be an electric golf cart, or a system for storing electric power, but is not limited thereto.
  • a notebook computer a netbook, a tablet PC, a mobile phone, an MP3, a wearable electronic device, a power tool, an electric vehicle (Electric Vehicle) , EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), E-bike, Electric Scooter (E-scooter), Electric Golf It may be an electric golf cart, or a system for storing electric power, but is not limited thereto.
  • CNT carbon nanotube
  • H-NBR dispersant 5 g of PVdF was mixed as a binder to prepare a primer layer precursor solution.
  • a conductive polymer 10 g of polypyrrole was mixed with 100 g of solvent dimethylformamide (DMF) and stirred (40 °C) for 48 hours with a magnetic bar to prepare a conductive polymer layer precursor solution.
  • DMF solvent dimethylformamide
  • An insulating tape (Polyimide film, TAIMIDE, TL-012, thickness: 10 ⁇ m) was prepared.
  • PVdF-CTFE polyvinylidene fluoride-chlorotrifluoroethylene copolymer
  • the BaTiO3 particle diameter of the slurry thus prepared can be controlled depending on the size (particle size) of beads used in the ball mill method and the application time of the ball mill method, but in Example 1, the slurry was prepared by grinding to about 400 nm.
  • the slurry thus prepared was coated on a polyethylene separator (porosity 45%) having a thickness of about 18 ⁇ m using a dip coating method, and the coating thickness was adjusted to about 3.5 ⁇ m. This was dried at 60° C. to form an active layer, and as a result of measurement with a porosimeter, the pore size and porosity in the active layer coated on the polyethylene separator were 0.5 ⁇ m and 58%, respectively.
  • a cathode active material LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) 95 wt%, Super-P (conductive material) 2.5 wt%, and PVDF (binder) 2.5 wt% NMP (N-methyl-2) as a solvent -pyrrolidone was added to prepare a positive electrode slurry, then coated (100 ⁇ m) on an aluminum current collector substrate, and one aluminum tab was welded to one side of the current collector to prepare a positive electrode.
  • the primer layer precursor solution prepared in Preparation Example 1 was applied to the entire surface of the aluminum tab by a spray coating method (thickness: 10 ⁇ m), and dried at 60° C. to form an anti-corrosion layer.
  • Example 1 the conductive polymer layer precursor solution prepared in Preparation Example 2 was applied to the entire surface of the aluminum tab by a bar coating method instead of the primer layer precursor solution of Preparation Example 1 (thickness: 10 ⁇ m), and dried at 60° C. , A positive electrode and a monocell were prepared in the same manner as in Example 1, except that a corrosion prevention layer was formed.
  • Example 1 the conductive epoxy layer precursor solution prepared in Preparation Example 3 was applied instead of the primer layer precursor solution of Preparation Example 1 on the entire surface of the aluminum tab (thickness: 10 ⁇ m), and cured at 65° C. to prevent corrosion.
  • a positive electrode and a monocell were prepared in the same manner as in Example 1, except that .
  • Example 1 a positive electrode current collector was prepared by welding one aluminum tab to one side of the aluminum current collector substrate, and the conductive epoxy layer precursor solution prepared in Preparation Example 3 was applied to the entire surface of these surfaces (thickness: 10 ⁇ m), A positive electrode and a monocell were prepared in the same manner as in Example 1, except that by curing at 65° C., a corrosion prevention layer was formed.
  • a positive electrode and a monocell were manufactured in the same manner as in Example 1, except that no treatment was performed on the surface of the aluminum tab in Example 1.
  • Example 1 the positive electrode and monocell in the same manner as in Example 1, except that the insulating tape prepared in Preparation Example 4 was attached instead of applying the primer layer precursor solution prepared in Preparation Example 1 to the entire surface of the aluminum tab. was prepared.
  • Example 1 the conductive polymer layer precursor solution prepared in Preparation Example 2 was applied to the entire surface of the aluminum current collector substrate by a bar coating method (thickness: 10 ⁇ m), and dried at 60° C. to form a corrosion protection layer, A positive electrode and a monocell were manufactured in the same manner as in Example 1, except that an aluminum tab was welded to one side.
  • a positive electrode was prepared in the same manner as in Example 1 except that no treatment was applied to the surface of the aluminum tab in Example 1, and propylene carbonate (PC) and dimethyl carbonate in a volume ratio of 1:1 in which 1 M LiPF 6 was dissolved.
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • the monocells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were left at 25° C. for 1 day, the lower limit was 3V and the upper voltage was 4.5V, and charging and discharging were performed once at a current of 0.1C. After confirming the initial charge/discharge capacity and initial efficiency, it is shown in Table 1.
  • a conductive anti-corrosion layer is formed on the entire surface of the tab, and even when in contact with a lithium non-aqueous electrolyte, corrosion can be prevented, thereby securing battery safety can do.
  • the corrosion-preventing layer is formed on the entire surface of the tab, the conductive bar does not act as a resistance layer even when the lead is welded to the tab, thereby preventing deterioration of battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 양극 집전 기재로부터 연장된 탭을 포함하는 리튬 이차전지용 양극 집전체로서, 상기 탭의 표면 전부에 프라이머층, 전도성 고분자층, 및 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2020년 03월 19일자 한국 특허 출원 제10-2020-0034072호 및 2021년 01월 08일자 한국 특허 출원 제10-2021-0002734호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전도성의 부식방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서, 높은 충방전 특성과 수명특성을 나타내고 친환경적인 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
이러한 리튬 이차전지는 양극과 음극 및 다공성 분리막으로 이루어진 전극조립체에 비수계 전해액이 함침되어 있는 구조로 이루어져 있다. 양극은 일반적으로 양극 활물질을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 음극은 음극 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.
그러나, 일반적으로, 양극 집전체로 사용되는 알루미늄 호일은 리튬 비수계 전해질의 리튬염, 또는 비수계 용매 등과 부반응을 일으킬 수 있고, 특히, 리튬 비수계 전해질의 리튬염으로서 이미드계 리튬염을 사용하게 되면, 알루미늄 호일이 이미드염과 반응하면서, Al염이 생기고, 이러한 Al염이 비수계 용매에 녹으며, Al의 부식이 발생한다.
따라서, 리튬 비수계 전해질에 직접적으로 노출되는 알루미늄 호일 부분에서 이러한 Al 부식이 더욱 심해진다.
따라서, 상기의 문제점을 해결하여 효율적으로 양극 집전체인 Al 호일의 부식을 방지할 수 있는 기술에 대한 필요성이 높은 실정이다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명은 부식이 가장 많이 발생하는 양극 집전체의 탭 표면 전체에 부식방지층을 형성함으로써, 양극 집전체 탭 부분에서 빈번히 발생하는 부식을 방지할 수 있는 양극 집전체를 제공하는 것이다.
따라서, 본 발명의 일 구현예에 있어서, 양극 집전 기재로부터 연장된 탭을 포함하는 리튬 이차전지용 양극 집전체로서, 상기 탭의 표면 전부에 프라이머층, 전도성 고분자층, 및 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 형성되어 있는 양극 집전체가 제공된다.
또한, 또 다른 일 구현예에 있어서, 상기 양극 집전체는, 상기 양극 집전 기재의 적어도 일면의 일부 또는 전부에 프라이머층, 전도성 고분자층, 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 더 형성되어 있을 수 있다.
여기서, 상기 프라이머층은 천연 흑연, 인조 흑연, 그래핀, 카본 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소나노튜브, 그라파이트 나노파이버, 카본 나노파이버, 알루미늄, 니켈, 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택되는 1종 이상의 전도성 물질, 및 결착재를 포함할 수 있다.
여기서, 상기 결착재는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 및 불소 고무로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 전도성 물질 및 결착재는 1:99 내지 99:1의 중량비로 포함될 수 있다.
상기 전도성 고분자층은 폴리에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS; poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), 폴리아닐린(PANI; polyaniline), 폴리피롤(PPy; polypyrrole), 폴리티오펜(PT; polythiophene), 폴리아세틸렌(PA; polyacetylene), 폴리파라-페닐렌비닐렌(PPV; poly para-phenylene vinylene)로 이루어진 군에서 선택되는 1종 이상의 전도성 고분자를 포함할 수 있다.
상기 전도성 에폭시층은 금, 백금, 은, 구리, 또는 니켈의 금속분말, 카본 또는 카본 섬유, 흑연 및 복합 분말로 이루어진 군에서 선택되는 1종 이상의 전도성 충전제, 및 바인더를 포함할 수 있다.
여기서, 상기 바인더는 아크릴계, 에폭시계, 폴리우레탄계, 실리콘계, 폴리이미드계, 페놀계, 폴리에스테르계 고분자 재료, 복합 고분자 수지 및 저융점 유리로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 전도성 충전제와 바인더는 1:99 내지 99:1의 중량비로 포함될 수 있다.
이러한 상기 부식방지층의 형성 두께는 0.1 ㎛ 내지 100 ㎛일 수 있다.
한편, 상기 양극 집전체는 Al을 포함할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 양극 집전체의 적어도 일면에 양극 합제층이 형성되어 있는 양극이 제공되며, 상기 양극; 음극 집전체의 적어도 일면에 음극 합제층이 형성되어 있는 음극; 상기 양극과 음극 사이에 개재되어 있는 분리막을 포함하는 전극 조립체가 리튬 비수계 전해질에 함침되어 있는 구조의 리튬 이차전지가 제공된다.
상기 리튬 비수계 전해질은 리튬염, 및 비수계 용매를 포함할 수 있는데, 상기 양극 집전체의 부식은 리튬염이 이미드계 리튬염을 포함할 때 더욱 활발히 발생하고, 따라서, 이러한 조성에서 부식방지층이 형성되면 더욱 바람직하다. 따라서, 본 발명에 따른 리튬 비수계 전해질에서의 리튬염은 리튬비스(플루오로술포닐)이미드(LiFSI), 리튬비스(트리플루오로메탄술포닐)이미드(LiTFSI), Lithium bis(perfluoroethylsulfonyl)imide(LiBETI), Lithium (fluorosulfonyl)(nonafluorobutanesulfoyl)imide(LiFNFSI), Lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (LiFTI or LiFTA) 로 이루어진 군에서 선택되는 이미드계 염을 포함할 수 있다.
한편, 상기 리튬 이차전지는, 예를 들어, 리튬 이온 전지, 리튬 폴리머 전지, 리튬 금속 전지, 리튬 프리(free) 전지일 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 구현예에 따르면, 양극 집전 기재로부터 연장된 탭을 포함하는 리튬 이차전지용 양극 집전체로서, 상기 탭의 표면 전부에 프라이머층, 전도성 고분자층, 및 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 형성되어 있는 양극 집전체가 제공된다.
상기 양극 집전 기재와 탭을 포함하는 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 구리, 텅스텐, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄(Al)을 포함하는 것이 사용될 수 있다. Al을 포함하는 것이란, 알루미늄으로 이루어지는 것일 수도 있고(불순물을 포함할 수도 있음), Al과 다른 금속의 합금일 수도 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 탭은 양극 집전 기재에 용접으로 부착되어 있을 수도 있고, 양극이 제조될 때, 양극 집전 기재의 활물질이 코팅되어 있는 연속적인 양극 시트를 단위 전극 간격으로 금형들에 의해 노칭함으로써 일체로 형성될 수도 있다.
이러한 양극 집전체는, 상기에서 설명한 바와 같이, 이후, 리튬 이차전지의 제조과정 중에 리튬 비수계 전해질이 충진되면서, 이들의 반응에 의해 부반응이 발생될 수 있다.
특히, 상기 양극 집전체로서 Al을 포함하는 양극 집전체가 사용되고, 리튬 비수계 전해질이 이미드계 염을 포함하는 경우에는, 양극 집전체의 부식이 가속화되므로, 단락을 유발하고, 이차전지의 안전성이 문제될 수 있다.
이에, 본 발명에서는 이러한 문제를 해결하기 위하여, 양극 집전체에서 양극 합제층이 형성되지 않아 외부로 노출되는 부위인 양극 탭의 표면에 전해액과의 물리적 차단을 위한 부식방지층을 형성할 수 있다.
이때, 상기 부식방지층이 양극 탭의 일부에만 형성되는 경우에는 부식방지층이 형성되지 않은 부위에서는 여전히 부식 가능성이 높고, 오히려, 부식이 가속화될 수 있어, 바람직하지 않다.
그러나, 종래에는 양극 탭의 일부에 절연층 또는 보호층 등의 코팅층을 형성할 뿐, 양극 탭의 단부는 상기 코팅층을 형성하지 못하였다. 이는, 이후 양극 탭이 양극 리드와 용접되는 부분에 코팅층을 형성하면, 이러한 코팅층이 큰 저항층으로 작용할 수 있기 때문이다.
반면, 본 발명에 따르면, 탭의 표면 전체에 코팅하더라도, 이후 양극 리드와의 용접 과정에서 용접으로 인한 저항 증가가 최소화될 수 있는 바, 양극 집전체의 부식을 더욱 효과적으로 방지하기 위해 양극 탭의 표면 전체에 부식방지층을 형성할 수 있다.
더 나아가, 본 발명의 또 다른 일 구현예에 따르면 전해질과의 접촉에 대해 양극 집전체를 더욱 보호하기 위해, 상기 양극 집전 기재의 적어도 일면의 일부 또는 전부에도, 프라이머층, 전도성 고분자층, 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 더 형성될 수 있으며, 상세하게는 탭과 양극 집전 기재를 포함하는 양극 집전체의 전체 표면에 형성될 수 있다.
상기와 같이 탭 또는 양극 집전체 전체적으로 형성되기 위해서, 상기 부식방지층은, 전도성을 띌 수 있고, 상세하게는, 프라이머층, 전도성 고분자층, 및 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어질 수 있다.
구체적으로, 상기 프라이머층은, 전도성 물질, 및 결착재를 포함할 수 있다.
여기서, 상기 전도성 물질은 도전성을 유지할 수 있는 성분이라면 상기 물질에 한정되지 아니하고, 예를 들어, 천연 흑연, 인조 흑연, 그래핀, 카본 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소나노튜브, 그라파이트 나노파이버, 카본 나노파이버, 알루미늄, 니켈, 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택되는 1종 이상의 전도성 물질을 포함할 수 있다.
상기 결착재는 집전체와 프라이머층 간 결합을 위해 사용되며, 일반적인 결착 성분을 가진 것이라면 한정되지 아니하고, 예를 들어, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 및 불소 고무로 이루어진 군에서 선택되는 1종 이상일 수 있다.
이때, 상기 전도성 물질과 결착재는 1:99 내지 99:1의 중량비, 상세하게는 3:7 내지 7:3의 중량비로 포함될 수 있다.
상기 범위를 벗어나, 전도성 물질의 함량이 작은 경우에는, 내부 저항의 증가에 따라 작동 특성이 저하되고, 반대로 결착재의 함량이 너무 적은 경우에는 프라이머층의 충분한 결착력을 얻을 수 없는 바, 바람직하지 않다.
이러한 프라이머층은, 당업계에서 통상적으로 사용되는 코팅막 형성방법을 이용할 수 있고, 예를 들어, 그라비아(gravure) 코팅, 슬롯 다이(slot die) 코팅, 스핀 코팅, 스프레이 코팅, 바 코팅, 딥 코팅과 같은 습식 코팅법, 또는 열 증착(thermal evaporation), 전자 빔 증착(E-beam evaporation), 화학기상 증착(Chemical Vapor Deposition), 스퍼터링(sputtering)과 같은 건식 코팅법을 사용하여 형성할 수 있다.
상기 전도성 고분자층은, 전도성 고분자로 통상적으로 알려진 고분자들이 이용될 수 있으며, 예를 들어, 폴리에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS; poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), 폴리아닐린(PANI; polyaniline), 폴리피롤(PPy; polypyrrole), 폴리티오펜(PT; polythiophene), 폴리아세틸렌(PA; polyacetylene), 폴리파라-페닐렌비닐렌(PPV; poly para-phenylene vinylene)로 이루어진 군에서 선택되는 1종 이상의 전도성 고분자를 포함할 수 있다.
상기 전도성 고분자층은 전도성 고분자 용융액 또는 이들을 용매에 용해한 혼합 용액을 제조하고, 상기 프라이머층의 코팅 방법에서 설명한 것과 같은 다양한 습식 코팅법을 통해 형성할 수 있다. 이때, 상기 전도성 고분자를 용매에 혼합하는 경우, 상기 용매는 극성의 유기 용매일 수 있으며, 예를 들어, 클로로포름, 디클로로메탄, m-크레졸, 테트라하이드로퓨란(THF), 및 디메틸포름아미드(DMF) 등을 들 수 있다.
한편, 상기 전도성 고분자는 고분자 자체가 결착력을 발휘하므로, 별도의 결착재 등이 필요하지 않다.
다만, 보다 견고한 결착을 위해 상기 프라이머층에 개시한 것과 같은 결착재를 추가로 포함할 수 있으며, 이때, 그 함량은 전도성 고분자층 전체 중량을 기준으로 0.1 내지 10중량%로 포함될 수 있다.
상기 전도성 에폭시층은 전도성 충전제, 및 바인더를 포함할 수 있다.
여기서 상기 전도성 충전제는, 금, 백금, 은, 구리, 또는 니켈의 금속분말, 카본 또는 카본 섬유, 흑연 및 복합 분말로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 바인더는, 전도성 충전제를 결착시키는 성분으로서, 한정되지 아니하나, 예를 들어, 아크릴계, 에폭시계, 폴리우레탄계, 실리콘계, 폴리이미드계, 페놀계, 폴리에스테르계 고분자 재료, 복합 고분자 수지 및 저융점 유리로 이루어진 군에서 선택되는 1종 이상일 수 있다.
한편, 상기 전도성 에폭시층은, 어떻게 제조되느냐에 따라, 상온 건조형, 상온 경화형, 열경화형, 고온 소성형, UV 경화형 등으로 구분될 수 있다.
상기 상온 건조형은, 아크릴계 등의 바인더와 용제에 전도성 충전제를 포함시켜, 상온에서 건조시킴으로써 형성할 수 있고, 상온 경화형은, 2액형으로 반응성이 높은 경화제를 추가로 포함하여, 전도성 충전제와 바인더가 포함되어 있는 용제를 경화시켜 형성할 수 있다.
또한, 열 경화형은 에폭시계의 바인더를 주로 사용하여 전도성 충전제를 포함하는 용제에 열을 가함으로써 형성할 수 있으며, 고온 소성형은 고온으로 열처리해서 경화시키고, UV 경화형은 UV를 조사함으로써 경화시켜 형성할 수 있다.
이때, 상기 전도성 충전제와 바인더 역시, 1:99 내지 99:1의 중량비, 상세하게는 7:3 내지 3:7의 중량비로 포함될 수 있다.
상기 범위를 벗어나, 전도성 충전제가 너무 적게 포함되면, 전도성이 저하되어 저항이 증가하고, 바인더가 너무 적게 포함되면, 전도성 충전제의 결착력을 얻을 수 없어 바람직하지 않다.
한편, 상기 부식방지층의 형성 두께는, 0.1 ㎛ 내지 100 ㎛, 상세하게는, 0.1 내지 30㎛, 더욱 상세하게는, 1 내지 20㎛, 가장 상세하게는 5 내지 20㎛일 수 있다.
상기 범위를 벗어나, 부식방지층의 두께가 너무 얇으면 탭 및 양극 집전체의 부식을 충분히 억제하는 것이 어렵고, 양호한 전도성을 얻을 수 없을 수 있으며, 너무 두꺼우면 전극 두께보다 더 두꺼워지면서 셀조립이 어려워질 수 있어 바람직하지 않다.
본 발명의 또 다른 일 구현예에 따르면, 상기 양극 집전체의 적어도 일면에 양극 합제층이 형성되어 있는 양극이 제공된다.
상기 양극은, 일반적으로, 양극 활물질, 바인더, 도전재 등을 포함하는 양극 합제층이 양극 집전체 상에 형성된다.
상기 양극 활물질은, 예를 들어, 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiV 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 등으로 구성될 수 있으며, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 합제층 전체 중량을 기준으로 0.1 내지 30 중량%, 상세하게는 1 내지 10 중량%, 더욱 상세하게는 1 내지 5 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제층 전체 중량을 기준으로 0.1 내지 30 중량%, 상세하게는 1 내지 10 중량%, 더욱 상세하게는 1 내지 5 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리불화비닐리덴-헥사플루오로프로필렌, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 양극; 음극 집전체의 적어도 일면에 음극 합제층이 형성되어 있는 음극; 상기 양극과 음극 사이에 개재되어 있는 분리막을 포함하는 전극 조립체가 리튬 비수계 전해질에 함침되어 있는 구조의 리튬 이차전지가 제공된다.
상기 음극은, 일반적으로 음극 활물질, 바인더, 도전재 등을 포함하는 음극 합제층이 음극 집전체 상에 형성된다.
상기 음극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe’ yO z (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, 및 Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
또한, 상기 음극은, 집전체 없이 리튬 금속으로만 이루어질 수 있으며, 이때, 상기 리튬 금속이 집전체, 활물질의 역할을 동시에 수행한다.
이와 같이 리튬 금속으로 이루어진 음극, 또는 집전체에 리튬 금속을 활물질로서 포함하는 음극을 포함하는 리튬 이차전지를 리튬 금속 전지라 칭한다.
또는, 상기 음극은 단순히 상기에서 설명한 바와 같은 집전체로만 이루어질 수도 있다.
이러한 음극은 리튬 이차전지의 충전에 따라 양극으로부터 리튬을 전달 받아 집전체 상에 리튬 금속을 형성하게 된다. 이와 같이 상기 집전체로만 이루어진 형태의 음극을 포함하는 리튬 이차전지를 리튬 프리(free) 전지라 칭한다.
한편, 상기 양극과 음극 사이에 개재되는 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
더 나아가, 상기 분리막은 SRS(Safety Reinforced Separator) 분리막일 수 있다. SRS 분리막은, 유/무기 복합 다공성 코팅층이 폴리올레핀 계열 분리막 기재 상에 코팅된 구조이다.
이러한 SRS 분리막의 유/무기 복합 다공성 코팅층을 이루는 무기물 입자와 바인더 고분자는 상기에서 설명한 것과 유사하며, 본 출원인의 출원 번호 제10-2009-0018123호에 개시된 내용이 참조로서 합체된다.
상기 리튬 비수계 전해질은, 일반적으로 리튬염, 및 비수계 용매를 포함한다. 비수계 용매로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 푸란(furan), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li 3N, LiI, Li 5NI 2, Li 3N-LiI-LiOH, LiSiO 4, LiSiO 4-LiI-LiOH, Li 2SiS 3, Li 4SiO 4, Li 4SiO 4-LiI-LiOH, Li 3PO 4-Li 2S-SiS 2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiCF 3SO 3, LiCF 3CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3SO 3Li, CF 3SO 3Li, (CF 3SO 2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드계 염 등이 사용될 수 있다.
이때, 본 발명에 따른 부식방지층은 이미드계 염이 리튬염으로서 포함되는 경우에 더욱 효과적이다. 상기에서 설명한 바와 같이, 리튬염으로서 이미드계 염이 포함되는 경우, 알루미늄 집전체의 부식이 심화되기 때문이다.
따라서, 상세하게는, 상기 리튬염은 리튬비스(플루오로술포닐)이미드(LiFSI), 리튬비스(트리플루오로메탄술포닐)이미드(LiTFSI), Lithium bis(perfluoroethylsulfonyl)imide(LiBETI), Lithium (fluorosulfonyl)(nonafluorobutanesulfoyl)imide(LiFNFSI), Lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (LiFTI or LiFTA) 로 이루어진 군에서 선택되는 이미드계 염을 포함할 수 있다. 또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
상기 리튬 이차전지는, 음극 활물질로서 리튬을 제외한 다양한 물질을 포함하는 리튬 이온 전지 또는 리튬 폴리머 전지, 음극 활물질로서 리튬 금속을 포함하는 리튬 금속 전지, 또는 음극 활물질을 별도로 포함하지 않고, 양극으로부터 방전에 따라 리튬 이온을 받아 석출하는 리튬 프리(free) 전지일 수 있다.
이러한 리튬 이차전지는, 디바이스의 전원으로 사용될 수 있으며, 상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
이하에서는, 본 발명의 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<제조예 1>(프라이머층 전구체 용액)
전도성 물질로서, CNT(탄소나노튜브)10g을 NMP용매 200g에 투입 후 H-NBR 분산제를 적용해 분산시키고 바인더로서 PVdF 5g을 혼합하여 프라이머층 전구체 용액을 제조하였다.
<제조예 2>(전도성 고분자층 전구체 용액)
전도성 고분자로서, 폴리피롤 10g을 용매 디메틸포름아미드(DMF) 100g에 혼합하여 마그네틱바로 48시간 동안 교반(40°C)하여 전도성 고분자층 전구체 용액을 제조하였다.
<제조예 3>(전도성 에폭시층 전구체 용액)
MG chemicals사로부터 8331S 제품(은이 함유된 2액형 전기전도성 에폭시 접착제)를 사용하였다.
<제조예 4>
절연성 테이프(Polyimide film, TAIMIDE사, TL-012, 두께: 10㎛)를 준비하였다.
<제조예 5>(SRS 분리막의 제조)
폴리비닐리덴플로라이드-클로로트리플로로에틸렌 공중합체 (PVdF-CTFE) 고분자를 아세톤에 약 5 중량% 첨가한 후, 50℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 이 고분자 용액에 BaTiO3 분말을 BaTiO3/PVdFCTFE = 90/10 (중량% 비)가 되도록 첨가하여 12 시간 이상 볼밀(ball mill)법을 이용하여 BaTiO3 분말을 파쇄 및 분쇄하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 BaTiO3 입경은 볼밀법에 사용되는 비드의 사이즈(입도) 및 볼밀법의 적용 시간에 따라 제어될 수 있으나 본 실시예 1에서는 약 400 nm로 분쇄하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 딥(dip) 코팅법을 이용하여 두께 18 ㎛ 정도의 폴리에틸렌 분리막(기공도 45%)에 코팅하였으며, 코팅 두께는 약 3.5 ㎛ 정도로 조절하였다. 이를 60℃에서 건조하여 활성층을 형성하였고, 기공율 측정 장치(porosimeter)로 측정한 결과, 폴리에틸렌 분리막에 코팅된 활성층 내의 기공 크기 및 기공도는 각각 0.5 ㎛ 및 58% 이었다.
<실시예 1>
양극 활물질(LiNi 0.6Co 0.2Mn 0.2O 2) 95 중량%, Super-P(도전재) 2.5 중량%, 및 PVDF(결착제) 2.5 중량% 조성의 양극 합제를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 슬러리를 제조한 후, 알루미늄 집전 기재 상에 코팅(100 ㎛)하고, 집전체의 일측에 알루미늄 탭을 하나 용접하여 양극을 제조하였다.
이때, 상기 알루미늄 탭 표면 전체에 상기 제조예 1에서 제조된 프라이머층 전구체 용액을 스프레이 코팅법으로 도포(두께: 10㎛)하고, 60℃에서 건조하여, 부식방지층을 형성하였다.
또한, 리튬 금속을 음극으로 하고, 상기 제조된 양극과 상기 리튬 금속 음극 사이에 제조예 5에서 얻은 SRS 분리막을 개재하여 전극조립체를 제조하고, 상기 전극조립체를 파우치형 케이스에 넣고 상기 탭에 전극리드를 연결한 후, 1 M의 LiFSI가 녹아있는 부피비 1:1의 프로필렌카보네이트(PC)와 다이메틸카보네이트(DMC) 용액을 전해질로 주입한 다음, 밀봉하여 모노셀들을 조립후 60℃에서 1시간동안 저장하여 전해액 함침을 진행하여, 모노셀을 제조하였다.
<실시예 2>
상기 실시예 1에서 알루미늄 탭 표면 전체에 상기 제조예 1의 프라이머층 전구체 용액 대신 제조예 2에서 제조된 전도성 고분자층 전구체 용액을 바 코팅법으로 도포(두께: 10㎛)하고, 60℃에서 건조하여, 부식방지층을 형성한 것을 제외하고는 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<실시예 3>
상기 실시예 1에서 알루미늄 탭 표면 전체에 상기 제조예 1의 프라이머층 전구체 용액 대신 상기 제조예 3에서 제조된 전도성 에폭시층 전구체 용액을 도포(두께: 10㎛)하고, 65℃에서 경화하여, 부식방지층을 형성한 것을 제외하고는 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<실시예 4>
상기 실시예 1에서, 알루미늄 집전 기재의 일측에 알루미늄 탭을 하나 용접하여 양극 집전체를 준비하고 이들 표면 전체에 상기 제조예 3에서 제조된 전도성 에폭시층 전구체 용액을 도포(두께: 10㎛)하고, 65℃에서 경화시켜, 부식방지층을 형성한 것을 제외하고는 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<비교예 1>
상기 실시예 1에서 알루미늄 탭 표면에 어떠한 처리도 하지 않은 것을 제외하고는 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<비교예 2>
상기 실시예 1에서 알루미늄 탭 표면 전체에 상기 제조예 1에서 제조된 프라이머층 전구체 용액을 도포하는 대신 상기 제조예 4에서 준비한 절연성 테이프를 부착한 것을 제외하고는 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<비교예 3>
상기 실시예 1에서 알루미늄 집전 기재의 표면 전체에 상기 제조예 2에서 제조한 전도성 고분자층 전구체 용액을 바 코팅법으로 도포(두께: 10㎛)하고, 60℃에서 건조하여, 부식방지층을 형성하고, 일측에 알루미늄 탭을 용접한 것을 제외하고 실시예 1과 동일하게 양극 및 모노셀을 제조하였다.
<비교예 4>
상기 실시예 1에서 알루미늄 탭 표면에 어떠한 처리도 하지 않은 것을 제외하고 실시예 1과 동일하게 양극을 제조하였고, 1 M의 LiPF 6가 녹아있는 부피비 1:1의 프로필렌카보네이트(PC)와 다이메틸카보네이트(DMC) 용액을 전해질을 사용한 것을 제외하고는 실시예 1과 동일하게 모노셀을 제조하였다.
<실험예 1>
상기 실시예 1 내지 4, 비교예 1 내지 4에서 제조된 모노셀들을 25℃에서 1일동안 방치하고, 하한 전합을 3V 상한 전압을 4.5V로 하고, 0.1C의 전류로 충방전을 1회 진행 후에 초기 충방전 용량 및 초기 효율을 확인하여 표 1에 나타내었다.
초기 충전 용량 (mAh/g) 초기 방전 용량 (mAh/g) 초기 효율
(%)
실시예 1 231 201 87.0
실시예 2 230 200 87.0
실시예 3 225 203 90.2
실시예 4 227 202 90.0
비교예 1 400 125 31.3
비교예 2 249 199 79.9
비교예 3 278 190 68.4
비교예 4 229 198 86.5
상기 표 1를 참조하면, 실시예 1 내지 4의 경우 초기효율이 비교예들에 비해 향상된 것을 확인할 수 있다.또한, 본 발명에 따른 부식방지층의 경우에는 전도성을 띄는 바, 기 언급한 바와 같이 탭과 리드를 연결할 때 전도성층의 코팅 영역과 웰딩 영역이 겹쳐도 저항이 증가하지 않아 더욱 바람직할 것으로 사료된다. 반면 비교예 1 내지 3의 경우에는 충전 중에 Al corrosion이 발생하면서 충전용량이 급격하게 증가하는 현상이 확인되었고 비교예 3을 보면서 Al corrosion은 탭 부분에서 두드러짐을 짐작할 수 있었다.
한편, 비교예4(이미드계 염을 사용하지 않은 경우)의 경우를 검토하면, 이미드계 염이 전해질에 적용된 전지의 경우 특히 탭 부분에 부식방지층을 필요함을 알 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상의 설명과 같이, 본 발명에 따른 양극 집전체는, 탭의 표면 전부에 전도성의 부식방지층이 형성되어 있는 바, 리튬 비수계 전해질과 접촉하여도, 부식이 방지될 수 있는 바, 전지 안전성을 확보할 수 있다.
또한, 상기 부식방지층이 탭의 표면 전부에 형성되어도 전도성을 띄는 바, 탭에 리드를 용접하여도 저항층으로 작용하지 않아, 전지성능의 저하를 방지할 수 있다.

Claims (15)

  1. 양극 집전 기재로부터 연장된 탭을 포함하는 리튬 이차전지용 양극 집전체로서,
    상기 탭의 표면 전부에 프라이머층, 전도성 고분자층, 및 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 형성되어 있는 양극 집전체.
  2. 제1항에 있어서, 상기 양극 집전체는, 상기 양극 집전 기재의 적어도 일면의 일부 또는 전부에 프라이머층, 전도성 고분자층, 전도성 에폭시층으로 이루어진 군에서 선택되는 1종으로 이루어진 부식방지층이 더 형성되어 있는 양극 집전체.
  3. 제1항에 있어서, 상기 프라이머층은 천연 흑연, 인조 흑연, 그래핀, 카본 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소나노튜브, 그라파이트 나노파이버, 카본 나노파이버, 알루미늄, 니켈, 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택되는 1종 이상의 전도성 물질, 및 결착재를 포함하는 양극 집전체.
  4. 제3항에 있어서, 상기 결착재는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 및 불소 고무로 이루어진 군에서 선택되는 1종 이상인 양극 집전체.
  5. 제3항에 있어서, 상기 전도성 물질 및 결착재는 1:99 내지 99:1의 중량비로 포함되는 양극 집전체.
  6. 제1항에 있어서, 상기 전도성 고분자층은 폴리에틸렌디옥시티오펜/폴리스티렌설포네이트(PEDOT/PSS; poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate), 폴리아닐린(PANI; polyaniline), 폴리피롤(PPy; polypyrrole), 폴리티오펜(PT; polythiophene), 폴리아세틸렌(PA; polyacetylene), 폴리파라-페닐렌비닐렌(PPV; poly para-phenylene vinylene)로 이루어진 군에서 선택되는 1종 이상의 전도성 고분자를 포함하는 양극 집전체.
  7. 제1항에 있어서, 상기 전도성 에폭시층은 금, 백금, 은, 구리, 또는 니켈의 금속분말, 카본 또는 카본 섬유, 흑연, 및 복합 분말로 이루어진 군에서 선택되는 1종 이상의 전도성 충전제, 및 바인더를 포함하는 양극 집전체.
  8. 제7항에 있어서, 상기 바인더는 아크릴계, 에폭시계, 폴리우레탄계, 실리콘계, 폴리이미드계, 페놀계, 폴리에스테르계 고분자 재료, 복합 고분자 수지 및 저융점 유리로 이루어진 군에서 선택되는 1종 이상인 양극 집전체.
  9. 제7항에 있어서, 상기 전도성 충전제와 바인더는 1:99 내지 99:1의 중량비로 포함되는 양극 집전체.
  10. 제1항 또는 제2항에 있어서, 상기 부식방지층의 형성 두께는, 0.1 ㎛ 내지 100 ㎛인, 양극 집전체.
  11. 제 1 항에 있어서, 상기 양극 집전체는 Al을 포함하는 양극 집전체.
  12. 제 1 항에 따른 양극 집전체의 적어도 일면에 양극 합제층이 형성되어 있는 양극.
  13. 제12항에 따른 양극;
    음극 집전체의 적어도 일면에 음극 합제층이 형성되어 있는 음극;
    상기 양극과 음극 사이에 개재되어 있는 분리막;
    을 포함하는 전극 조립체가 리튬 비수계 전해질에 함침되어 있는 구조의 리튬 이차전지.
  14. 제13항에 있어서, 상기 리튬 비수계 전해질은 리튬염, 및 비수계 용매를 포함하고, 리튬염은 리튬비스(플루오로술포닐)이미드(LiFSI), 리튬비스(트리플루오로메탄술포닐)이미드(LiTFSI), Lithium bis(perfluoroethylsulfonyl)imide(LiBETI), Lithium (fluorosulfonyl)(nonafluorobutanesulfoyl)imide(LiFNFSI), Lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (LiFTI or LiFTA) 로 이루어진 군에서 선택되는 이미드계 염을 포함하는 리튬 이차전지.
  15. 제13항에 있어서, 상기 리튬 이차전지는, 리튬 이온 전지, 리튬 폴리머 전지, 리튬 금속 전지, 리튬 프리(free) 전지인 리튬 이차전지.
PCT/KR2021/095008 2020-03-19 2021-01-20 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지 WO2021187965A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21772555.5A EP4024600A4 (en) 2020-03-19 2021-01-20 POSITIVE ELECTRODE CURRENT COLLECTOR HAVING A CONDUCTIVE ANTI-CORROSION LAYER FORMED ON A TAB, POSITIVE ELECTRODE COMPRISING THE SAME, AND LITHIUM SECONDARY BATTERY
CN202180005776.0A CN114503312A (zh) 2020-03-19 2021-01-20 具有形成在接片上的导电防腐层的正极集电器、包括其的正极、和锂二次电池
US17/766,511 US20230155134A1 (en) 2020-03-19 2021-01-20 Positive electrode current collector having conductive anti-corrosion layer formed on the tab, positive electrode comprising the same, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200034072 2020-03-19
KR10-2020-0034072 2020-03-19
KR10-2021-0002734 2021-01-08
KR1020210002734A KR20210117915A (ko) 2020-03-19 2021-01-08 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2021187965A1 true WO2021187965A1 (ko) 2021-09-23

Family

ID=77771463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095008 WO2021187965A1 (ko) 2020-03-19 2021-01-20 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지

Country Status (4)

Country Link
US (1) US20230155134A1 (ko)
EP (1) EP4024600A4 (ko)
CN (1) CN114503312A (ko)
WO (1) WO2021187965A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214965A1 (de) 2021-12-22 2023-06-22 Volkswagen Aktiengesellschaft Stromableiter für eine Kathode einer Lithium-Ionen-Batteriezelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117894993A (zh) * 2022-10-08 2024-04-16 珠海冠宇电池股份有限公司 一种高电压电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074083A (ja) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
DE102009001812A1 (de) 2009-03-24 2010-09-30 Bernhard Mey Vorrichtung zum Stanzen von Federn für Pfeile oder dergleichen
JP2012178326A (ja) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd 積層式電池およびその製造方法
KR20160038361A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 이차전지용 전극조립체, 그 제조방법 및 이를 이용한 이차전지
KR20160051001A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차 전지
KR20180058333A (ko) * 2016-11-24 2018-06-01 주식회사 엘지화학 전극 보호층을 포함하는 이차전지용 전극

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139852A (ja) * 1988-11-18 1990-05-29 Komatsu Ltd プラスチック電池の電極及びその製造方法
JP2002203562A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 非水電解質二次電池
TW201015595A (en) * 2008-09-22 2010-04-16 Sanyo Electric Co Winding-type electrolytic capacitor and method of manufacturing the same
JPWO2011037124A1 (ja) * 2009-09-25 2013-02-21 ダイキン工業株式会社 リチウム二次電池の正極集電積層体
KR20120031606A (ko) * 2010-09-27 2012-04-04 주식회사 엘지화학 부식방지용 보호층이 선택적으로 형성된 전극리드, 및 이를 포함하는 이차전지
JP5957913B2 (ja) * 2012-01-31 2016-07-27 凸版印刷株式会社 二次電池用電極端子
PL3043405T3 (pl) * 2013-10-29 2020-05-18 Lg Chem, Ltd. Żelowy elektrolit polimerowy i akumulator litowy go zawierający
KR101737217B1 (ko) * 2014-09-26 2017-05-18 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
CN107482155A (zh) * 2017-07-20 2017-12-15 湖南秒冲新能源科技有限责任公司 一种适应大功率工作的石墨烯涂层电池极耳结构及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074083A (ja) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
DE102009001812A1 (de) 2009-03-24 2010-09-30 Bernhard Mey Vorrichtung zum Stanzen von Federn für Pfeile oder dergleichen
JP2012178326A (ja) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd 積層式電池およびその製造方法
KR20160038361A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 이차전지용 전극조립체, 그 제조방법 및 이를 이용한 이차전지
KR20160051001A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 전극 조립체 및 이를 포함하는 이차 전지
KR20180058333A (ko) * 2016-11-24 2018-06-01 주식회사 엘지화학 전극 보호층을 포함하는 이차전지용 전극

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024600A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214965A1 (de) 2021-12-22 2023-06-22 Volkswagen Aktiengesellschaft Stromableiter für eine Kathode einer Lithium-Ionen-Batteriezelle
DE102021214965B4 (de) 2021-12-22 2024-05-29 Volkswagen Aktiengesellschaft Stromableiter für eine Kathode einer Lithium-Ionen-Batteriezelle sowie Verfahren zur Herstellung eines solchen Stromableiters

Also Published As

Publication number Publication date
US20230155134A1 (en) 2023-05-18
EP4024600A4 (en) 2024-05-01
EP4024600A1 (en) 2022-07-06
CN114503312A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2016126046A1 (ko) 고용량 음극을 포함하는 이차전지 및 그 제조 방법
WO2015065102A1 (ko) 리튬 이차전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2017217646A1 (ko) 수명 특성이 향상된 전지시스템 및 전지시스템의 가동 방법
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2016053040A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2021187965A1 (ko) 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지
WO2019022541A2 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019147082A1 (ko) 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2021020853A1 (ko) 집전체의 양면에 서로 다른 조성의 활물질을 포함하는 음극 합제들이 형성되어 있는 음극을 포함하는 젤리-롤형 전극조립체, 이를 포함하는 이차전지, 및 이차전지를 포함하는 디바이스
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2016140453A1 (ko) 전극 리드를 통한 전기 연결 구조를 효율적으로 구성할 수 있는 비정형 구조의 전지셀
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2017146357A1 (ko) 리튬 이차전지용 전극 조립체, 이를 포함하는 리튬 이차전지 및 전지모듈
KR20210117915A (ko) 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지
WO2021033904A1 (ko) 열처리에 의한 리튬 전지셀 회복방법 및 이를 포함하는 리튬 전지셀의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021772555

Country of ref document: EP

Effective date: 20220328

NENP Non-entry into the national phase

Ref country code: DE