WO2021187369A1 - (ハイドロ)ハロカーボンの製造方法 - Google Patents

(ハイドロ)ハロカーボンの製造方法 Download PDF

Info

Publication number
WO2021187369A1
WO2021187369A1 PCT/JP2021/010095 JP2021010095W WO2021187369A1 WO 2021187369 A1 WO2021187369 A1 WO 2021187369A1 JP 2021010095 W JP2021010095 W JP 2021010095W WO 2021187369 A1 WO2021187369 A1 WO 2021187369A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydro
halocarbon
trifluoropropene
cis
dichloro
Prior art date
Application number
PCT/JP2021/010095
Other languages
English (en)
French (fr)
Inventor
吉川 悟
井村 英明
直樹 西中
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP21772318.8A priority Critical patent/EP4108651A4/en
Priority to CN202180008039.6A priority patent/CN114901617A/zh
Priority to JP2022508318A priority patent/JPWO2021187369A1/ja
Publication of WO2021187369A1 publication Critical patent/WO2021187369A1/ja
Priority to US17/946,707 priority patent/US20230063030A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/58Separation; Purification; Stabilisation; Use of additives

Definitions

  • the present invention relates to a method for producing (hydro) halocarbon.
  • Unsaturated chlorofluorocarbons having double bonds in the molecule such as 1-chloro-3,3,3-trifluoropropene (hereinafter, also referred to as HCFO-1233zd, 1233zd), have a low boiling point and a very short atmospheric life. Therefore, both the ozone depletion potential and the global warming potential are low compounds. Therefore, unsaturated chlorofluorocarbons such as HCFO-1233zd are expected as one of the compounds that can be used as detergents and refrigerants.
  • HCFO-1233zd 1-chloro-3,3,3-trifluoropropene
  • Z-1-chloro-3,3,3-trifluoropropene (hereinafter, also referred to as HCFO-1233zd (Z), 1233zd (Z)), which is one of unsaturated chlorofluorocarbons, is 1,1,1.
  • 3,3-Pentachloropropane (hereinafter, also referred to as HCC-240fa, 240fa) can be produced by fluorinating with hydrogen fluoride.
  • HCFC-235da and 235da a reaction product containing unreacted hydrogen fluoride and other by-products such as HCFC-235da and 235da
  • Patent Document 1 a reaction product containing unreacted hydrogen fluoride and other by-products such as HCFC-235da and 235da
  • HCFC-244fa and HCFC-235da form an azeotropic composition with the target substance HCFO-1233zd (Z)
  • the present invention provides a method for obtaining high-purity (hydro) halocarbons from an azeotropic or azeotropic composition containing a (hydro) halocarbon and a compound different from the (hydro) halocarbon. That is one of the issues.
  • an azeotropic or azeotropic composition containing a (hydro) halocarbon and a compound different from the (hydro) halocarbon is distilled under reduced pressure to obtain the (hydro) halocarbon.
  • a method for producing a (hydro) halocarbon, which comprises the step of purifying the halocarbon, is provided.
  • the top pressure of the distillation column may be 50 kPa or less.
  • the top temperature of the distillation column may be 20 ° C. or lower.
  • the standard boiling points of the (hydro) halocarbon and the compound may be 120 ° C. or lower.
  • the standard boiling points of the (hydro) halocarbon and the compound may be 80 ° C. or lower.
  • the (hydro) halocarbons the general formula (1) C m H a F b Cl c (m is an integer of 2 ⁇ 5, a, b, and c is an integer of 0 or more, b + c
  • a compound represented by (satisfying ⁇ 1 and satisfying a + b + c 2m-2, 2m, or 2m + 2).
  • the compound may be at least one selected from hydrogen fluoride and the compound represented by the general formula (1) (excluding the compound selected as the (hydro) halocarbon).
  • the compound may be at least one selected from hydrogen fluoride and the compound represented by the general formula (2) (excluding the compound selected as the (hydro) halocarbon).
  • the (hydro) halocarbon may be cis-1-chloro-3,3,3-trifluoropropene and the compound may be 3-chloro-1,1,1,3-tetrafluoropropane. ..
  • the (hydro) halocarbon is cis-1,2-dichloro-3,3,3-trifluoropropene, and the compound is 1,1-dichloro-3,3,3-trifluoropropene. May be good.
  • the (hydro) halocarbon may be cis-1,2-dichloro-3,3-difluoropropene, and the compound may be trans-1,2-dichloro-3,3-difluoropropene.
  • an azeotropic or azeotropic composition comprising at least one (hydro) halocarbon and a compound different from the (hydro) halocarbon is distilled under reduced pressure.
  • a method for producing a (hydro) halocarbon which comprises a step of purifying the (hydro) halocarbon, wherein the standard boiling point of the (hydro) halocarbon and the compound is 80 ° C. or lower.
  • a saturated hydrohalo containing cis-1-chloro-3,3,3-trifluoropropene and at least 3-chloro-1,1,1,3-tetrafluoropropane A step of recovering a fraction containing cis-1-chloro-3,3,3-trifluoropropene as a main component by distilling an azeotropic or azeotropic composition containing carbon under reduced pressure. The step of purifying cis-1-chloro-3,3,3-trifluoropropene by contacting with a base, and further distilling the fraction under reduced pressure to 3-chloro-1,1,1,3-tetra.
  • High-purity cis-1-chloro-3,3,3-trifluoropropene which comprises the step of obtaining high-purity cis-1-chloro-3,3,3-trifluoropropene having a fluoropropane content of 3% by mass or less. Manufacturing method is provided.
  • the fraction is brought into contact with a base to form cis-1-chloro-. Further may include the step of purifying 3,3,3-trifluoropropene.
  • the step of purifying the 1-chloro-3,3,3-trifluoropropene is a step of dehalogenating hydrogen of 3-chloro-1,1,1,3-tetrafluoropropane contained in the distillate. You may.
  • a highly pure (hydro) halocarbon is obtained from an azeotropic or azeotropic composition containing a (hydro) halocarbon and a compound different from the (hydro) halocarbon. be able to.
  • the boiling point of the liquid composition is fixed under a predetermined pressure
  • the composition of the vapor (gas phase) of the liquid composition in boiling is the composition of the liquid composition (liquid phase) in boiling. It is characterized by being the same as. That is, in the azeotropic composition, fractional distillation of the components of the liquid composition does not occur when the liquid composition is boiled.
  • the azeotropic composition refers to a composition that behaves in the same manner as the azeotropic composition, and the boiling point of the liquid composition is substantially fixed under a predetermined pressure, so that the liquid composition has a liquid composition.
  • a non-azeotropic non-azeotropic composition is characterized in that the composition of the vapor phase of the composition and the composition of the liquid phase of the composition change during evaporation or condensation.
  • (hydro) halocarbon can be selectively produced from an azeotropic or azeotropic composition containing (hydro) halocarbon and impurities.
  • (Hydro) halocarbon is a compound containing at least a carbon atom and a halogen atom in the molecule.
  • the (hydro) halocarbon may further contain a hydrogen atom and / or an oxygen atom.
  • (hydro) halocarbons the general formula (1): a C m H a F b Cl compound represented c.
  • m is an integer of 2 to 5
  • the compound represented by the general formula (1) is, for example, halogenated (for example, fluorination, chlorination) of an industrially produced saturated hydrocarbon compound or unsaturated hydrocarbon compound, or industrially produced. It can be produced by dehalogenating a halogenated saturated hydrocarbon compound or a halogenated unsaturated hydrocarbon compound (for example, defluorinated hydrogen or dechlorinated hydrogen). Further, in another embodiment, (hydro) halocarbons, the general formula (2): a C n H d F e compound represented by Cl f O g.
  • n is an integer of 3 to 5
  • d, e, and f are integers of 0 or more
  • g is an integer of 1 or more
  • e + f ⁇ 1 is satisfied.
  • d + e + f 2n-2, 2n, or 2n + 2.
  • the compound represented by the general formula (2) is, for example, hydroxylation of an industrially produced halogenated saturated hydrocarbon compound or a halogenated unsaturated hydrocarbon compound, or an industrially produced halogenated saturated compound. / Can be produced by alkylation of unsaturated ethers.
  • by-products may be produced together with (hydro) halocarbons.
  • the by-product forms an azeotropic or azeotropic composition with the target (hydro) halocarbon
  • the purity of the target (hydro) halocarbon is reduced.
  • unreacted raw materials for example, hydrogen fluoride used for halogenation
  • This residual hydrogen fluoride is also one of the factors that reduce the purity of the target (hydro) halocarbon.
  • the present inventor has produced a high-purity target product by distilling an azeotropic or azeotropic composition containing the target (hydro) halocarbon and a compound different from the (hydro) halocarbon under reduced pressure.
  • the present invention was completed with the finding that a certain (hydro) halocarbon can be obtained.
  • an azeotropic or azeotropic composition containing a target (hydro) halocarbon and a compound different from the (hydro) halocarbon is distilled under reduced pressure to obtain the target (hydro).
  • the compound different from the (hydro) halocarbon is a compound containing at least a carbon atom and a halogen atom in the molecule, which is not the same compound as the target (hydro) halocarbon.
  • the compound different from the (hydro) halocarbon may further contain a hydrogen atom in the molecule in addition to the carbon atom and the halogen atom.
  • the compound different from the (hydro) halocarbon is at least one selected from hydrogen fluoride and the compound represented by the above general formula (1) (excluding the compound selected as the (hydro) halocarbon). There may be.
  • the compound different from the (hydro) halocarbon is at least one selected from hydrogen fluoride and the compound represented by the above general formula (2) (excluding the compound selected as the (hydro) halocarbon). It may be one.
  • 1233zd can be obtained according to the following scheme by reacting 1,1,1,3,3-tetrachloropropane (240fa) with hydrogen fluoride.
  • cis-1-chloro-3,3,3-trifluoropropene (1233zd (Z)) and trans-1-chloro-3 are usually used, depending on the reaction conditions.
  • 3,3-Trifluoropropene (1233zd (E)) is contained in a predetermined ratio.
  • 1233 zd as a main component but also other halides may be produced as a by-product.
  • 244fa and 235da exhibit azeotropic or azeotropic behavior with 1233zd (Z).
  • the composition obtained by the fluorination reaction of 240fa is purified to obtain the target substance, 1233 zd (Z), with high purity.
  • vacuum distillation is performed to obtain high-purity 1233 zd (Z) from a composition containing an azeotropic composition of 1233 zd (Z) and 244 fa.
  • the distillation column that can be used for vacuum distillation may have the functions required for normal vacuum distillation, but it is preferable to use a rectification column such as a shelf column or a packed column.
  • the theoretical number of distillation columns is usually 10 to 60, preferably 20 to 50, but is not limited to this range.
  • the pressure in the system in the vacuum distillation step may be set to 50 kPa or less, and is preferably set to 1 kPa to 30 kPa from the viewpoint of industrial practicality.
  • the top pressure of the distillation column used is preferably 20 kPa or less, more preferably 10 kPa or less.
  • the temperature of the top liquid in the vacuum distillation step is not particularly limited, but is preferably set to + 20 ° C. or lower, particularly preferably + 10 ° C. or lower, from the viewpoint of industrial practicality. , -20 ° C or higher is preferable. If the temperature of the top liquid is -20 ° C or higher, it is easy to adopt it industrially because it is possible to avoid an increase in equipment cost such as an increase in the size of the cooler. Further, when the temperature of the top liquid is + 20 ° C. or lower, the distillation separation efficiency is good.
  • the column top liquid temperature in the vacuum distillation step is preferably set to ⁇ 20 ° C. or higher and + 20 ° C. or lower, and particularly preferably ⁇ 20 ° C. or higher and + 10 ° C. or lower.
  • vacuum distillation may be performed a plurality of times.
  • the same distillation column may be used a plurality of times, or a plurality of distillation columns may be used.
  • High-purity 1233zd (Z) can be obtained by distilling the composition containing the azeotropic composition of 1233zd (Z) and 244fa twice or more under reduced pressure.
  • the high-purity 1233zd (Z) means that the content of 244fa is 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass, based on the total amount of 1233zd (Z) and 244fa. In particular, it means 1233 zd (Z), which is 0.3% by mass.
  • a dehalogenation hydrogen treatment step can be performed before the next vacuum distillation.
  • a fraction containing 1233 zd (Z) as a main component for example, 30% by weight or more, 50% by weight or more, 70% by weight or more, 80 weight by weight of 1233 zd (Z)).
  • % Or more, 90% by weight or more, or 95% by weight or more of the fraction is recovered, and 244fa and 235da remaining in the distillate are dehydrohalated by adding a base to the recovered fraction.
  • High-purity 1233 zd (Z) can be obtained by re-distilling the fraction after the dehalogenation hydrogen treatment under reduced pressure.
  • a compatibilizer that makes the distillate containing 1233 zd (Z) compatible with the basic aqueous solution.
  • the reaction between the base and 1233 zd (Z) can be suppressed, and 244fa and 235da remaining in the fraction can be decomposed.
  • 244fa is converted to the corresponding fluorine-containing olefin (1234ze) by the dehydrochlorination reaction in the dehalogenation hydrogen treatment step.
  • 235da is converted to the corresponding fluorine-containing olefin (1224xe) by the defluorination hydrogen reaction in the dehalogenation hydrogen treatment step. Since the boiling points of these fluorine-containing olefins produced in the dehalogenation hydrogen treatment step are sufficiently different from the boiling points of 1233 zd (Z), they can be easily separated from 1233 zd (Z) by distillation.
  • the base used in dehydrohalation is not particularly limited, but is an inorganic base such as an alkali metal or alkaline earth metal hydroxide, carbonate, phosphate, alkoxide, oxide, or hydride.
  • an inorganic base such as an alkali metal or alkaline earth metal hydroxide, carbonate, phosphate, alkoxide, oxide, or hydride.
  • Examples of the alkali metal include sodium, potassium, lithium and the like.
  • Examples of the alkaline earth metal include calcium and magnesium.
  • Specific examples of the inorganic base include sodium hydroxide, sodium carbonate, sodium phosphate, sodium oxide, sodium hydride, potassium hydroxide, potassium carbonate, potassium phosphate, potassium oxide, potassium hydride, lithium hydroxide, and the like. Examples include potassium hydroxide, calcium oxide and magnesium hydroxide.
  • sodium hydroxide, sodium carbonate, potassium hydroxide and potassium carbonate are preferable, and easily available sodium hydroxide is most preferable.
  • One of these bases
  • the amount of base in the basic aqueous solution to be added depends on the amount of 244fa and 235da in the fraction. With respect to 1 mol of 235 da and / or 244 fa, an inorganic base amount of 1.5 to 4 molar equivalents (here, "equivalent” represents a chemical equivalent) is preferable, and 2 to 3 molar equivalents are particularly preferable.
  • the compatibilizer assists the compatibilization of 1233 zd (Z) in the distillate with the aqueous solution of the inorganic base.
  • a phase transfer catalyst or a water-soluble organic substance such as an alcohol or a ketone is preferable.
  • Examples of correlated transfer catalysts include quaternary ammonium compounds such as ammonium fluoride, ammonium chloride, ammonium bromide, ammonium iodide, and ammonium hydroxide, crown ethers, calix arrayes, cyclophanes, cyclodextrins, etc. Examples thereof include phosphonium compounds and pyridinium compounds. Specifically, tetrabutylammonium fluoride, benzyldimethylalkylammonium chloride, 1-butyl-1-methylpyrrolidinium chloride, phenyltriethylammonium chloride, 1-butyl-1-methylpiperidinium bromide, trimethyl-3-3.
  • Trifluoromethylphenylammonium bromide trimethyl- ⁇ , ⁇ , ⁇ -trifluoro-m-tolylammonium hydroxide, hexadecyltrimethylammonium hydroxide, trimethylphenylammonium iodide, 2,3-benzo-1,4,7, Examples thereof include 10-tetraoxadodeca-2-ene, 24-crown 8-ether, triphenyl (2-chlorobenzyl) phosphonium chloride, and 4- (dimethylamino) -1- (triphenylmethyl) pyridinium chloride.
  • a compound that completely mixes with water at room temperature can be used.
  • the inorganic base include alcohols, polyalcohols, amides, ketones, ethers, polyethers, and cyclic ethers. Alcohols are preferable as the water-soluble organic matter in consideration of availability and treatment of waste solution.
  • Alcohol as a compatibilizer is not particularly limited, but alcohol having 1 to 4 carbon atoms is preferable. Specifically, a single item or a mixture of general-purpose alcohols such as methanol, ethanol, isopropanol, normal propanol, n-butanol, s-butanol, and t-butanol is preferable, and methanol and ethanol are particularly preferable.
  • the amount of alcohol added is preferably 5 to 40% by mass, particularly preferably 10 to 30% by mass, based on the fraction.
  • 1223xd (Z) can be produced by a dehydrochlorination reaction of 1,1,2-trichloro-3,3,3-trifluoropropane (also referred to as HCFC-233da, 233da).
  • the composition obtained by this reaction usually includes 1223xd (Z) and E-1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (E), 1223xd, depending on the reaction conditions. ) And are included in a predetermined ratio.
  • the composition may also contain 1,1-dichloro-3,3,3-trifluoropropene (also referred to as HCFO-1223za, 1223za).
  • 1223xd (E) and / or 1223za exhibit azeotropic or azeotropic behavior with 1223xd (Z).
  • the composition obtained by the dehydrochlorination reaction of 233da is purified to obtain the target substance 1223xd (Z) with high purity.
  • vacuum distillation is performed to obtain high purity 1223xd (Z) from a composition containing an azeotropic composition of 1223xd (Z) and 1223xd (E) and / or 1223za.
  • the distillation column that can be used for vacuum distillation may have the functions required for normal vacuum distillation, but it is preferable to use a rectification column such as a shelf column or a packed column.
  • the theoretical number of distillation columns is usually 10 to 60, preferably 20 to 50, but is not limited to this range.
  • the pressure in the system in the vacuum distillation step may be set to 50 kPa or less, and is preferably set to 1 kPa to 20 kPa from the viewpoint of industrial practicality.
  • the top pressure of the distillation column used is preferably 10 kPa or less, more preferably 5 kPa or less.
  • the temperature of the top liquid in the vacuum distillation step is not particularly limited, but is preferably set to + 20 ° C. or lower, and more preferably ⁇ 20 ° C. or higher, from the viewpoint of industrial practicality. .. If the temperature of the top liquid is -20 ° C or higher, it is easy to adopt it industrially because it is possible to avoid an increase in equipment cost such as an increase in the size of the cooler. Further, when the temperature of the top liquid is + 20 ° C. or lower, the distillation separation efficiency is good.
  • the column top liquid temperature in the vacuum distillation step is preferably set to ⁇ 20 ° C. or higher and + 20 ° C. or lower.
  • vacuum distillation may be performed a plurality of times in the purification step.
  • the same distillation column may be used a plurality of times, or a plurality of distillation columns may be used.
  • High-purity 1223xd (Z) can be obtained by distilling a composition containing 1223xd (Z) and 1223xd (E) and / or an azeotropic composition of 1223za twice or more under reduced pressure.
  • the high-purity 1223xd (Z) means that the content of 1223xd (E) and / or 1223za is preferably 3% by mass or less based on the total amount of 1223xd (Z) and 1223xd (E) and / or 1223za.
  • the distillation step may be performed continuously, or another step such as a hydrogen halide treatment step for impurities may be sandwiched between the two or more distillation steps. Since the details of the dehalogenation hydrogen treatment step are the same as those in the first embodiment described above, redundant description will be omitted. Further, when performing the dehalogenation hydrogen treatment step, it is preferable to add a compatibilizer that makes the distillate containing 1223xd (Z) compatible with the basic aqueous solution, as in the first embodiment.
  • the base and compatibilizer used in hydrogen dehalogenate are the same as the base and compatibilizer used in hydrogen dehalogenate described in the first embodiment.
  • reaction between the base and 1223xd (Z) can be selectively suppressed, and 1223xd (E) and / or 1223za remaining in the fraction can be decomposed.
  • 1223xd (E) and 1223za are converted to 1-chloro-3,3,3-trifluoropropine and 3,3,3-trifluoropropionic acid.
  • 1232xd (Z) can be produced by reacting 1,2,3,3-tetrachloropropene (also referred to as HCO-1230xd, 1230xd) with hydrogen fluoride.
  • the composition obtained by this reaction usually contains 1232xd (Z) and trans-1,2-dichloro-3,3-difluoropropene (hereinafter, HCFO-1232xd (E), 1232xd (E), depending on the reaction conditions. Also called) is included in a predetermined ratio.
  • 1232xd (E) exhibits azeotropic or azeotropic behavior with 1232xd (Z).
  • the composition obtained by the fluorination reaction of HCO-1230xd is purified to obtain the target substance 1232xd (Z) with high purity.
  • vacuum distillation is performed to obtain high-purity 1232xd (Z) from a composition containing an azeotropic composition of 1232xd (Z) and 1232xd (E).
  • the distillation column that can be used for vacuum distillation may have the functions required for normal vacuum distillation, but it is preferable to use a rectification column such as a shelf column or a packed column.
  • the theoretical number of distillation columns is usually 10 to 60, preferably 20 to 50, but is not limited to this range.
  • the pressure in the system in the vacuum distillation step may be set to 50 kPa or less, and is preferably set to 1 kPa to 20 kPa from the viewpoint of industrial practicality.
  • the top pressure of the distillation column used is preferably 10 kPa or less, more preferably 5 kPa or less.
  • the temperature of the top liquid in the vacuum distillation step is not particularly limited, but is preferably set to + 20 ° C. or lower, and more preferably ⁇ 20 ° C. or higher, from the viewpoint of industrial practicality. .. If the temperature of the top liquid is -20 ° C or higher, it is easy to adopt it industrially because it is possible to avoid an increase in equipment cost such as an increase in the size of the cooler. Further, when the temperature of the top liquid is + 20 ° C. or lower, the distillation separation efficiency is good.
  • the column top liquid temperature in the vacuum distillation step is preferably set to ⁇ 20 ° C. or higher and + 20 ° C. or lower.
  • vacuum distillation may be performed a plurality of times in the purification step.
  • the same distillation column may be used a plurality of times, or a plurality of distillation columns may be used.
  • High-purity 1232xd (Z) can be obtained by distilling the composition containing the azeotropic composition of 1232xd (Z) and 1232xd (E) twice or more under reduced pressure.
  • the high-purity 1232xd (Z) means that the content of 1232xd (E) is 3% by mass or less, preferably 1% by mass or less, more preferably 1% by mass or less, based on the total amount of 1232xd (Z) and 1232xd (E). It means 1232xd (Z) which is 0.5% by mass, particularly preferably 0.3% by mass.
  • the distillation step may be performed continuously, or another step such as a hydrogen halide treatment step for impurities may be sandwiched between the two or more distillation steps. Since the details of the dehalogenation hydrogen treatment step are the same as those in the first embodiment described above, redundant description will be omitted.
  • 1,1,1,3,3-pentafluoropropane (also referred to as HFC-245fa, 245fa) can be obtained by fluorinating 1233 zd (E).
  • 1233zd (E) 1,1,1,3,3-pentafluoropropane (245fa) and unreacted 1233zd (E) are contained in a predetermined ratio, depending on the reaction conditions. May be included in. 245fa exhibits azeotropic or azeotropic behavior with 1233 zd (E). If unreacted 1233 zd (E) can be recovered from the obtained composition, the recovered 1233 zd (E) can be reused as a raw material for 245 fa.
  • the composition obtained by the fluorination reaction of 1233zd (E) is purified to obtain 245fa or 1233zd (E) with high purity.
  • vacuum distillation can be performed to obtain high-purity 1233 zd (E) from a composition containing an azeotropic composition of 1233 zd (E) and 245 fa.
  • the distillation column that can be used for vacuum distillation may have the functions required for normal vacuum distillation, but it is preferable to use a rectification column such as a shelf column or a packed column.
  • the theoretical number of distillation columns is usually 10 to 60, preferably 20 to 50, but is not limited to this range.
  • the pressure in the system in the vacuum distillation step may be set to 50 kPa or less, and is preferably set to 1 kPa to 50 kPa from the viewpoint of industrial practicality.
  • the top pressure of the distillation column used is preferably 40 kPa or less, more preferably 30 kPa or less.
  • the temperature of the top liquid in the vacuum distillation step is not particularly limited, but is preferably set to + 20 ° C. or lower, and more preferably ⁇ 20 ° C. or higher, from the viewpoint of industrial practicality. .. If the temperature of the top liquid is -20 ° C or higher, it is easy to adopt it industrially because it is possible to avoid an increase in equipment cost such as an increase in the size of the cooler. Further, when the temperature of the top liquid is + 20 ° C. or lower, the distillation separation efficiency is good.
  • the temperature of the top liquid in the vacuum distillation step is preferably set to ⁇ 20 ° C. or higher and + 20 ° C. or lower.
  • the vacuum distillation may be performed a plurality of times as in the first to third embodiments described above.
  • the vacuum distillation steps may be continuously performed, and another step such as the above-mentioned impurity dehydrohalation hydrogen treatment step is performed between the two or more distillation steps. You may sandwich it.
  • the (hydro) halocarbons contained in the composition and the (hydro) halocarbons contained in the composition from the viewpoint of being separable from each other by vacuum distillation in the production methods and the purification methods which are modifications according to the first to third embodiments described above.
  • All of the impurities contained together with the (hydro) halocarbon preferably have a standard boiling point of 120 ° C. or lower, and more preferably 80 ° C. or lower.
  • the (hydro) halocarbon is distilled under reduced pressure of the composition. Can also be separated from hydrogen fluoride and water.
  • 1223xd (E), 1232xd (E) and 245fa as examples, but (hydro) halocarbons and impurities exhibiting azeotropic or azeotropic behavior with the (hydro) halocarbons are limited to these. Do not mean.
  • the general formula (1) C m H a F b Cl compound represented by c is cited Be done.
  • m is an integer of 2 to 5
  • Tables 1 and 2 below show the (hydro) halocarbons contained in the composition and represented by the general formula (1), and azeotropic or azeotropic behavior at normal pressure with the (hydro) halocarbons. The combination with a compound different from the (hydro) halocarbon is shown. However, the (hydro) halocarbon and compounds different from the (hydro) halocarbon are not limited thereto.
  • the general formula (2) is represented by C n H d F e Cl f O g
  • Compounds include.
  • n is an integer of 3 to 5
  • d, e, and f are integers of 0 or more
  • g is an integer of 1 or more
  • e + f ⁇ 1 is satisfied.
  • the (hydro) halocarbon represented by the general formula (2) showing azeotropic or azeotropic behavior at normal pressure, and the (hydro) halocarbon and azeotropic or azeotropic behavior at normal pressure are shown.
  • Table 3 shows combinations with compounds different from hydro) halocarbons.
  • the (hydro) halocarbon and compounds different from the (hydro) halocarbon are not limited thereto.
  • the embodiment of the present invention is not limited to the following examples.
  • the composition of the organic matter was determined by the area of the chromatogram obtained by gas chromatography equipped with a FID detector, unless otherwise noted.
  • composition having the composition shown in Table 4 below was distilled under the distillation conditions shown in Table 5.
  • a 2 L flask was used as the distillation pot, and the number of theoretical plates of the distillation column was 40.
  • Table 6 The composition of the recovered product after distilling the compositions of Examples 1 to 5 and Comparative Examples 1 to 4 shown in Table 4 under the conditions shown in Table 5 is shown in Table 6 below.
  • Examples 1, 3 and 4 and Comparative Examples 1, 3 and 4 refer to the composition of the recovered product distilled from the top of the distillation column
  • Examples 2 and 5 and Comparative Example 2 refer to the composition. Refers to the composition of the composition of the pot residue.
  • Example 1 comparing Example 1 and Comparative Example 1, 1233 zd (Z) (low boiling point substance) was recovered with higher purity by distillation under reduced pressure than by distillation at normal pressure.
  • Example 4 in which the column top temperature was set lower during distillation and the column top pressure was set lower was 1223 xd (Z) (lower boiling point) than in Example 3. The substance) was obtained with higher purity.
  • 1232xd (Z) (high boiling point substance) is recovered by vacuum distillation with higher purity than that by distillation at normal pressure.
  • Example 5 Purification of high purity 1233 zd by multi-step vacuum distillation
  • the composition having the composition shown in the upper row in Table 7 below (referred to as “preparation composition” in Table 7) is charged into a distillation column having 40 theoretical plates, distilled under reduced pressure at a distillation pressure of 8 to 10 kPa, and in Table 7.
  • the composition having the composition shown in the lower row (indicated as "main distillation” in Table 7) was collected.
  • fraction 1 was recovered by atmospheric distillation at a distillation pressure of 101 kPa, and then vacuum distilled at a distillation pressure of 8 to 9 kPa to recover fractions 2 to 10. From the fraction recovered by vacuum distillation, 829.13 g can be obtained as a high purity 1233 zd (Z) having a 244fa content of 3% or less (fractions 2 to 9) and a high 244fa content of 1% or less.
  • fractions 2 to 10 are fractions in the order of timing taken out from the distillation column.
  • 204.68 g was obtained from the pot leftover as a high-purity 244fa having a 1233 zd (Z) content of 1% or less.
  • each component in the composition is more pure than atmospheric distillation. You can see that it can be obtained with.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一実施形態による(ハイドロ)ハロカーボンの製造方法は、(ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含む。別の一実施形態による(ハイドロ)ハロカーボンの製造方法は、(ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを含む、共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含み、前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも80℃以下である。

Description

(ハイドロ)ハロカーボンの製造方法
 本発明は、(ハイドロ)ハロカーボンの製造方法に関する。
 1-クロロ-3,3,3-トリフルオロプロペン(以下、HCFO-1233zd、1233zdともいう)など、分子内に二重結合を有する不飽和クロロフルオロカーボンは、沸点が低く、大気寿命が非常に短いため、オゾン層破壊係数と地球温暖化係数とが共に低い化合物である。そのため、HCFO-1233zdなどの不飽和クロロフルオロカーボンは、洗浄剤や冷媒などに利用可能な化合物の一つとして期待されている。
 例えば、不飽和クロロフルオロカーボンの一つであるZ-1-クロロ-3,3,3-トリフルオロプロペン(以下、HCFO-1233zd(Z)、1233zd(Z)ともいう)は、1,1,1,3,3-ペンタクロロプロパン(以下、HCC-240fa、240faともいう)をフッ化水素でフッ素化して製造することができる。HCC-240faのフッ素化では、HCFO-1233zd(Z)とともに、幾何異性体であるE-1-クロロ-3,3,3-トリフルオロプロペン(以下、HCFO-1233zd(E)、1233zd(E)ともいう)や、3-クロロ-1,1,1,3-テトラフルオロプロパン(以下、HCFC-244fa、244faともいう)、2-クロロ-1,1,1,3,3-ペンタフルオロプロパン(以下、HCFC-235da、235daともいう)等の副生物、未反応のフッ化水素を含む反応生成物が得られる(特許文献1)。HCFC-244faやHCFC-235daは、目的物質であるHCFO-1233zd(Z)と共沸様組成を形成するため、反応生成物から高純度のHCFO-1233zd(Z)を精製することが難しい。
特開2013-103890号公報
 本発明は、(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸又は共沸様組成物から、純度の高い(ハイドロ)ハロカーボンを得るための方法を提供することを課題の一つとする。
 本発明の一実施形態によれば、(ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含む、(ハイドロ)ハロカーボンの製造方法が提供される。
 前記減圧蒸留において、蒸留塔の塔頂圧力が50kPa以下であってもよい。
 前記減圧蒸留において、蒸留塔の塔頂温度が20℃以下であってもよい。
 前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも120℃以下であってもよい。
 前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも80℃以下で
あってもよい。
 前記(ハイドロ)ハロカーボンは、一般式(1)CCl(mは2~5のいずれかの整数であり、a、b、及びcは0以上の整数であり、b+c≧1を満たし、かつ、a+b+c=2m-2、2m、又は2m+2を満たす)で表される化合物であり、
 前記化合物は、フッ化水素および前記一般式(1)で表される化合物(ただし、前記(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つであってもよい。
 前記(ハイドロ)ハロカーボンは、一般式(2)CFeCl(nは3~5のいずれかの整数であり、d、e、及びfは0以上の整数であり、gは1以上の整数であり、かつ、e+f≧1を満たし、かつ、d+e+f=2n-2、2n、又は2n+2を満たす)で表される化合物であり、
 前記化合物は、フッ化水素および前記一般式(2)で表される化合物(ただし、前記(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つであってもよい。
 前記(ハイドロ)ハロカーボンは、シス-1-クロロ-3,3,3-トリフルオロプロペンであり、前記化合物は、3-クロロ-1,1,1,3-テトラフルオロプロパンであってもよい。
 前記(ハイドロ)ハロカーボンは、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンであり、前記化合物は、1,1-ジクロロ-3,3,3-トリフルオロプロペンであってもよい。
 前記(ハイドロ)ハロカーボンは、シス-1,2-ジクロロ-3,3-ジフルオロプロペンであり、前記化合物は、トランス-1,2-ジクロロ-3,3-ジフルオロプロペンであってもよい。
 本発明の別の一実施形態によれば、(ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを少なくとも一つ含む、共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含み、前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも80℃以下である、(ハイドロ)ハロカーボンの製造方法が提供される。
 本発明の別の一実施形態によれば、シス-1-クロロ-3,3,3-トリフルオロプロペンと、少なくとも3-クロロ-1,1,1,3-テトラフルオロプロパンを含む飽和ハイドロハロカーボンと、を含む共沸又は共沸様組成物を減圧蒸留して、シス-1-クロロ-3,3,3-トリフルオロプロペンを主成分として含む留分を回収する工程、前記留分を塩基と接触させて、シス-1-クロロ-3,3,3-トリフルオロプロペンを精製する工程、及び前記留分をさらに減圧蒸留して、3-クロロ-1,1,1,3-テトラフルオロプロパン含有量が3質量%以下の高純度シス-1-クロロ-3,3,3-トリフルオロプロペンを得る工程を含む、高純度シス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法が提供される。
 前記留分を回収する工程の後、且つ前記シス-1-クロロ-3,3,3-トリフルオロプロペンを得る工程の前に、前記留分を塩基と接触させて、シス-1-クロロ-3,3,3-トリフルオロプロペンを精製する工程をさらに含んでもよい。
 前記1-クロロ-3,3,3-トリフルオロプロペンを精製する工程は、前記留分に含まれる3-クロロ-1,1,1,3-テトラフルオロプロパンを脱ハロゲン化水素する工程であってもよい。
 本発明の一実施形態によれば、(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸又は共沸様組成物から、純度の高い(ハイドロ)ハロカーボンを得ることができる。
 以下、本発明の各実施形態について説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。また、以下の実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
[共沸様組成物]
 共沸組成物は、所定の圧力下で液体組成物の沸点が固定されており、沸騰中の該液体組成物の蒸気(気相)の組成が沸騰中の液体組成物(液相)の組成と同一であることを特徴とする。即ち、共沸組成物は、液体組成物の沸騰時に該液体組成物の成分の分留が起こらない。これに対して、共沸様組成物は、共沸組成物と同様の挙動をする組成物を指し、所定の圧力下で液体組成物の沸点が実質的に固定されており、液体組成物が揮発する際に、液体の組成と実質的に同一の組成で揮発するため、沸騰中の該液体組成物の蒸気(気相)の組成が沸騰中の液体組成物(液相)の組成に対して無視できる程度にしか変化しないことを特徴とする。即ち、共沸様組成物は、液体組成物の沸騰時に該液体組成物の成分の分留が起こりにくい。一方、共沸様でない非共沸組成物は、蒸発又は凝縮の間に組成物の気相の組成と組成物の液相の組成とが変化することを特徴とする。
 以下、本実施形態に係る、(ハイドロ)ハロカーボンを製造するための方法(以下、本製造方法と記す)について説明する。本製造方法では、(ハイドロ)ハロカーボンと不純物とを含む共沸または共沸様組成物から(ハイドロ)ハロカーボンを選択的に製造することができる。
 (ハイドロ)ハロカーボンは、分子中に炭素原子、ハロゲン原子を少なくとも含む化合物である。(ハイドロ)ハロカーボンは、さらに水素原子および/または酸素原子を含んでもよい。一実施形態において、(ハイドロ)ハロカーボンは、一般式(1):CClで表される化合物である。一般式(1)において、mは2~5のいずれかの整数であり、a、b、及びcは0以上の整数であり、b+c≧1を満たし、かつ、a+b+c=2m-2、2m、又は2m+2を満たす。一般式(1)で表される化合物は、例えば、工業的に製造されている飽和炭化水素化合物や不飽和炭化水素化合物のハロゲン化(例えば、フッ素化、塩素化)や、工業的に製造されているハロゲン化飽和炭化水素化合物やハロゲン化不飽和炭化水素化合物の脱ハロゲン化水素(例えば、脱フッ化水素、脱塩化水素)することにより製造することができる。また、別の一実施形態において、(ハイドロ)ハロカーボンは、一般式(2):CClで表される化合物である。一般式(2)において、nは3~5のいずれかの整数であり、d、e、及び、fは0以上の整数であり、gは1以上の整数であり、e+f≧1を満たし、かつ、d+e+f=2n-2、2n、又は2n+2を満たす。一般式(2)で表される化合物は、例えば、工業的に製造されているハロゲン化飽和炭化水素化合物やハロゲン化不飽和炭化水素化合物のヒドロキシ化や、工業的に製造されているハロゲン化飽和/不飽和エーテルのアルキル化により製造することができる。
 これらの反応において、(ハイドロ)ハロカーボンとともに副生成物が生成されることがある。該副生成物が、目的物である(ハイドロ)ハロカーボンと共沸または共沸様組成物を形成する場合、目的物である(ハイドロ)ハロカーボンの純度が下がってしまう。また、これらの反応において未反応の原料(例えば、ハロゲン化に用いるフッ化水素)が残留することがある。この残留したフッ化水素も目的物である(ハイドロ)ハロカーボンの純度を低下させてしまう要因の一つである。
 本発明者は、目的物である(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸または共沸様組成物を減圧蒸留することにより、高純度の目的物である(ハイドロ)ハロカーボンを得られるという知見を得て、本発明を完成させた。
 以下に、本発明の一実施形態に係る製造方法(以下、本製造方法という)を説明する。本製造方法は、目的物である(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸または共沸様組成物を減圧蒸留して、目的物である(ハイドロ)ハロカーボンを精製する工程を含む。ここで、(ハイドロ)ハロカーボンとは異なる化合物とは、目的物である(ハイドロ)ハロカーボンと同一の化合物でない、分子中に炭素原子とハロゲン原子とを少なくとも含む化合物である。(ハイドロ)ハロカーボンとは異なる化合物は、炭素原子とハロゲン原子とに加え、さらに水素原子を分子中に含んでもよい。(ハイドロ)ハロカーボンとは異なる化合物は、フッ化水素および上記一般式(1)で表される化合物(ただし、(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つであってもよい。また、(ハイドロ)ハロカーボンとは異なる化合物は、フッ化水素および上記一般式(2)で表される化合物(ただし、(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つであってもよい。
[第1実施形態]
[製造方法]
 本製造方法の一例として、シス-1-クロロ-3,3,3-トリフルオロプロペン(1233zd(Z))を製造する方法を説明する。
 1233zdは、1,1,1,3,3-テトラクロロプロパン(240fa)をフッ化水素と反応させることで、以下のスキームに従って得ることができる。
Figure JPOXMLDOC01-appb-C000001

 240faのフッ素化反応によって得られる組成物中には、反応条件によるが、通常、シス-1-クロロ-3,3,3-トリフルオロプロペン(1233zd(Z))とトランス-1-クロロ-3,3,3-トリフルオロプロペン(1233zd(E))とが所定の割合で含まれている。また、この反応では、主成分としての1233zdだけでなく、他のハロゲン化物が副生することがある。反応条件にも依存するが、例えば、3-クロロ-1,1,1,3-テトラフルオロプロパン(244fa)、2-クロロ-1,1,1,3,3-ペンタフルオロプロパン(235da)などがハロゲン化物として副生する。244fa及び235daは、1233zd(Z)と共沸、若しくは共沸様挙動を示す。
[精製工程]
 240faのフッ素化反応により得られた組成物を精製して、目的物質である1233zd(Z)を高純度で得る。本製造方法では、減圧蒸留を行って、1233zd(Z)と244faの共沸様組成物を含む組成物から高純度の1233zd(Z)を得る。
 減圧蒸留に使用できる蒸留塔としては、通常の減圧蒸留に必要な機能を備えていればよいが、棚段塔、充填塔等の精留塔を使用することが好ましい。蒸留塔の理論段数は、通常10~60段、好ましくは20~50段であるが、この範囲に限定されるものではない。
 減圧蒸留工程における系内の圧力は、50kPa以下に設定してもよく、工業的な実用性の観点から1kPa~30kPaに設定することが好ましい。特に、減圧蒸留時において、使用する蒸留塔の塔頂圧力は好ましくは20kPa以下、より好ましくは10kPa以下である。
 減圧蒸留工程における塔頂液温は、特に限定されるものではないが、工業的な実用性の観点から、+20℃以下に設定することが好ましく、+10℃以下に設定することが特に好ましく、また、-20℃以上に設定することが好ましい。塔頂液温が-20℃以上であれば、冷却器の大型化などの設備コストの増大を避けられるため、工業的に採用しやすい。また、塔頂液温が+20℃以下であれば、蒸留分離効率が良好である。一実施形態において、減圧蒸留工程における塔頂液温は、-20℃以上+20℃以下に設定することが好ましく、-20℃以上+10℃以下に設定することが特に好ましい。
 尚、精製工程において、減圧蒸留は、複数回行ってもよい。減圧蒸留を2回以上行う場合、同一の蒸留塔を複数回使用してもよく、複数個の蒸留塔を使用してもよい。
 1233zd(Z)と244faの共沸様組成物を含む組成物を2回以上減圧蒸留することにより、高純度の1233zd(Z)を得ることができる。ここで、高純度の1233zd(Z)とは、1233zd(Z)と244faの総量に対して、244faの含有量が3質量%以下、好ましくは1質量%以下、さらに好ましくは0.5質量%、特に好ましくは0.3質量%である1233zd(Z)を意味する。
 減圧蒸留を2回以上行う場合、蒸留工程は連続して行ってもよく、2回以上の蒸留工程の間に別の工程を挟んでもよい。例えば、少なくとも1回の減圧蒸留した後、次の減圧蒸留を行う前に、脱ハロゲン化水素処理工程を行うことができる。具体的には、少なくとも1回の減圧蒸留した後、1233zd(Z)を主成分として含む留分(例えば、1233zd(Z)を30重量%以上、50重量%以上、70重量%以上、80重量%以上、90重量%以上、あるいは、95重量%以上含む留分)を回収し、回収した留分に塩基を加えることにより、留分中に残存する244fa及び235daを脱ハロゲン化水素する。脱ハロゲン化水素処理後の留分を再度減圧蒸留することにより、高純度の1233zd(Z)を得ることができる。
 脱ハロゲン化水素処理工程を行う際には、1233zd(Z)を含む留分と塩基性水溶液とを相溶させる相溶化剤を添加することが好ましい。相溶化剤を共存させることにより、塩基と1233zd(Z)との反応を抑制し、且つ留分中に残存する244fa及び235daを分解することができる。244faは、脱ハロゲン化水素処理工程における脱塩化水素反応によって、対応する含フッ素オレフィン(1234ze)に変換される。235daは、脱ハロゲン化水素処理工程における脱フッ化水素反応によって、対応する含フッ素オレフィン(1224xe)に変換される。脱ハロゲン化水素処理工程において生成したこれらの含フッ素オレフィンの沸点は、1233zd(Z)の沸点と十分に差があるため、蒸留により容易に1233zd(Z)と分離することができる。
 脱ハロゲン化水素で用いられる塩基としては、特に限定されるわけではないが、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、アルコキシド、酸化物、水素化物などの無機塩基が挙げられる。アルカリ金属としては、例えば、ナトリウム、カリウム、リチウムなどが挙げられる。アルカリ土類金属としては、例えば、カルシウム、マグネシウムなどが挙げられる。無機塩基としては、具体的には、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウム、酸化ナトリウム、水素化ナトリウム、水酸化カリウム、炭酸カリウム、リン酸カリウム、酸化カリウム、水素化カリウム、水酸化リチウム、水酸化カルシウム、酸化カルシウム、水酸化マグネシウムが挙げられる。無機塩基としては、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸カリウムが好ましく、入手性の良い水酸化ナトリウムが最も好ましい。これらの塩基は一種を単独でも用いてもよいし、二種以上を併用してもよい。
 添加する塩基性水溶液中の塩基量は、留分中の244fa及び235daの量に依存する。1モルの235da及び/又は244faに対して、1.5~4モル当量(ここで、「当量」とは化学当量を表す。)の無機塩基量が好ましく、特に2~3モル当量が好ましい。
 相溶化剤は、留分中の1233zd(Z)と無機塩基水溶液の相溶を補助する。相溶化剤としては、相関移動触媒、またはアルコール、ケトン等の水溶性有機物が好ましい。
 相関移動触媒の例としては、アンモニウムフルオリド、アンモニウムクロリド、アンモニウムブロミド、アンモニウムヨージド、アンモニウムヒドロキシド等の第四級アンモニウム化合物類、クラウンエーテル類、カリックスアレーン類、シクロファン類、シクロデキストリン類、ホスホニウム化合物類、ピリジニウム化合物類が挙げられる。具体的には、テトラブチルアンモニウムフルオリド、ベンジルジメチルアルキルアンモニウムクロリド、1-ブチル-1-メチルピロリジニウムクロリド、フェニルトリエチルアンモニウムクロリド、1-ブチル-1-メチルピペリジニウムブロミド、トリメチル-3-トリフルオロメチルフェニルアンモニウムブロミド、トリメチル-α,α,α-トリフルオロ-m-トリルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヨージド、2,3-ベンゾ-1,4,7,10-テトラオキサドデカ-2-エン、24-クラウン8-エーテル、トリフェニル(2-クロロベンジル)ホスホニウムクロリド、4-(ジメチルアミノ)-1-(トリフェニルメチル)ピリジニウムクロリドが挙げられる。
 水溶性有機物としては、常温で水と完全混合する化合物が使用可能である。無機塩基としては、例えば、アルコール類、ポリアルコール類、アミド類、ケトン類、エーテル類、ポリエーテル類、環状エーテルが挙げられる。入手性および、廃溶液の処理等を考慮すると、水溶性有機物としては、アルコール類が好ましい。
 相溶化剤としてのアルコールは特に限定されないが、炭素数1~4のアルコールが好ましい。具体的には、メタノール、エタノール、イソプロパノール、ノルマルプロパノール、n-ブタノール、s-ブタノール、t-ブタノール等の汎用アルコールの単品もしくは混合物が好ましく、特にメタノール、エタノールが好ましい。アルコールの添加量は留分に対して、5~40質量%が好ましく、特に10~30質量%が好ましい。
[第2実施形態]
[製造方法]
 本製造方法の一例として、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z)、1223xd(Z)ともいう)を製造する方法を説明する。
 1223xd(Z)は、1,1,2-トリクロロ-3,3,3-トリフルオロプロパン(HCFC-233da、233daともいう)の脱塩化水素反応により製造することができる。この反応によって得られる組成物中には、反応条件によるが、通常1223xd(Z)とE-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E)、1223xdともいう)とが所定の割合で含まれている。また、この組成物は、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za、1223zaともいう)を含むことがある。1223xd(E)および/または1223zaは、1223xd(Z)と共沸、若しくは共沸様挙動を示す。
[精製工程]
 233daの脱塩化水素反応により得られた組成物を精製して、目的物質である1223xd(Z)を高純度で得る。本製造方法では、減圧蒸留を行って、1223xd(Z)と1223xd(E)および/または1223zaの共沸様組成物を含む組成物から高純度の1223xd(Z)を得る。
 減圧蒸留に使用できる蒸留塔としては、通常の減圧蒸留に必要な機能を備えていればよいが、棚段塔、充填塔等の精留塔を使用することが好ましい。蒸留塔の理論段数は、通常10~60段、好ましくは20~50段であるが、この範囲に限定されるものではない。
 減圧蒸留工程における系内の圧力は、50kPa以下に設定してもよく、工業的な実用性の観点から1kPa~20kPaに設定することが好ましい。特に、減圧蒸留時において、使用する蒸留塔の塔頂圧力は好ましくは10kPa以下、より好ましくは5kPa以下である。
 減圧蒸留工程における塔頂液温は、特に限定されるものではないが、工業的な実用性の観点から、+20℃以下に設定することが好ましく、また、-20℃以上に設定することが好ましい。塔頂液温が-20℃以上であれば、冷却器の大型化などの設備コストの増大を避けられるため、工業的に採用しやすい。また、塔頂液温が+20℃以下であれば、蒸留分離効率が良好である。一実施形態において、減圧蒸留工程における塔頂液温は、-20℃以上+20℃以下に設定することが好ましい。
 本実施形態においても、精製工程において、減圧蒸留は複数回行ってもよい。減圧蒸留を2回以上行う場合、同一の蒸留塔を複数回使用してもよく、複数個の蒸留塔を使用してもよい。
 1223xd(Z)と1223xd(E)および/または1223zaの共沸様組成物を含む組成物を2回以上減圧蒸留することにより、高純度の1223xd(Z)を得ることができる。ここで、高純度の1223xd(Z)とは、1223xd(Z)と1223xd(E)および/または1223zaの総量に対して、1223xd(E)および/または1223zaの含有量が3質量%以下、好ましくは1質量%以下、さらに好ましくは0.5質量%、特に好ましくは0.3質量%である1223xd(Z)を意味する。
 また、減圧蒸留を2回以上行う場合、蒸留工程は連続して行ってもよく、2回以上の蒸留工程の間に、不純物の脱ハロゲン化水素処理工程等の別の工程を挟んでもよい。脱ハロゲン化水素処理工程の詳細は、上述した第1実施形態と同様であるため、重複する説明は省略する。また、脱ハロゲン化水素処理工程を行う際には、第1実施形態と同様に、1223xd(Z)を含む留分と塩基性水溶液とを相溶させる相溶化剤を添加することが好ましい。脱ハロゲン化水素で用いられる塩基及び相溶化剤としては、第1実施形態において述べた、脱ハロゲン化水素で用いられる塩基及び相溶化剤と同様である。これにより、塩基と1223xd(Z)との反応を選択的に抑制し、且つ留分中に残存する1223xd(E)および/または1223zaを分解することができる。例えば、1223xd(E)や1223zaは1-クロロ-3,3,3-トリフルオロプロピンや3,3,3-トリフルオロプロピオン酸に変換される。
[第3実施形態]
[製造方法]
 本製造方法の一例として、シス-1,2-ジクロロ-3,3-ジフルオロプロペン(以下、HCFO-1232xd(Z)、1232xd(Z)ともいう)を製造する方法を説明する。
 1232xd(Z)は、1,2,3,3-テトラクロロプロペン(HCO-1230xd、1230xdともいう)をフッ化水素と反応させることで製造することができる。この反応によって得られる組成物中には、反応条件によるが、通常1232xd(Z)とトランス-1,2-ジクロロ-3,3-ジフルオロプロペン(以下、HCFO-1232xd(E)、1232xd(E)ともいう)とが所定の割合で含まれている。1232xd(E)は、1232xd(Z)と共沸、若しくは共沸様挙動を示す。
[精製工程]
 HCO-1230xdのフッ素化反応により得られた組成物を精製して、目的物質である1232xd(Z)を高純度で得る。本製造方法では、減圧蒸留を行って、1232xd(Z)と1232xd(E)の共沸様組成物を含む組成物から高純度の1232xd(Z)を得る。
 減圧蒸留に使用できる蒸留塔としては、通常の減圧蒸留に必要な機能を備えていればよいが、棚段塔、充填塔等の精留塔を使用することが好ましい。蒸留塔の理論段数は、通常10~60段、好ましくは20~50段であるが、この範囲に限定されるものではない。
 減圧蒸留工程における系内の圧力は、50kPa以下に設定してもよく、工業的な実用性の観点から1kPa~20kPaに設定することが好ましい。特に、減圧蒸留時において、使用する蒸留塔の塔頂圧力は好ましくは10kPa以下、より好ましくは5kPa以下である。
 減圧蒸留工程における塔頂液温は、特に限定されるものではないが、工業的な実用性の観点から、+20℃以下に設定することが好ましく、また、-20℃以上に設定することが好ましい。塔頂液温が-20℃以上であれば、冷却器の大型化などの設備コストの増大を避けられるため、工業的に採用しやすい。また、塔頂液温が+20℃以下であれば、蒸留分離効率が良好である。一実施形態において、減圧蒸留工程における塔頂液温は、-20℃以上+20℃以下に設定することが好ましい。
 本実施形態においても、精製工程において、減圧蒸留は複数回行ってもよい。減圧蒸留を2回以上行う場合、同一の蒸留塔を複数回使用してもよく、複数個の蒸留塔を使用してもよい。
 1232xd(Z)と1232xd(E)の共沸様組成物を含む組成物を2回以上減圧蒸留することにより、高純度の1232xd(Z)を得ることができる。ここで、高純度の1232xd(Z)とは、1232xd(Z)と1232xd(E)の総量に対して、1232xd(E)含有量が3質量%以下、好ましくは1質量%以下、さらに好ましくは0.5質量%、特に好ましくは0.3質量%である1232xd(Z)を意味する。
 また、減圧蒸留を2回以上行う場合、蒸留工程は連続して行ってもよく、2回以上の蒸留工程の間に、不純物の脱ハロゲン化水素処理工程等の別の工程を挟んでもよい。脱ハロゲン化水素処理工程の詳細は、上述した第1実施形態と同様であるため、重複する説明は省略する。
[変形例]
 本製造方法の変形例として、トランス-1-クロロ-3,3,3-トリフルオロプロペン(1233zd(E))を回収する方法を説明する。
 1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa、245faともいう)は、1233zd(E)をフッ素化することにより得られる。1233zd(E)のフッ素化によって得られる組成物中には、反応条件によるが、1,1,1,3,3-ペンタフルオロプロパン(245fa)と未反応の1233zd(E)とが所定の割合で含まれることがある。245faは、1233zd(E)と共沸、若しくは共沸様挙動を示す。得られた組成物から未反応の1233zd(E)を回収することができれば、回収された1233zd(E)を245faの原料として再度使用することができる。
[精製工程]
 1233zd(E)のフッ素化反応により得られた組成物を精製して、245faあるいは、1233zd(E)を高純度で得る。本精製方法では、減圧蒸留を行って、1233zd(E)と245faの共沸様組成物を含む組成物から高純度の1233zd(E)を得ることができる。
 減圧蒸留に使用できる蒸留塔としては、通常の減圧蒸留に必要な機能を備えていればよいが、棚段塔、充填塔等の精留塔を使用することが好ましい。蒸留塔の理論段数は、通常10~60段、好ましくは20~50段であるが、この範囲に限定されるものではない。
 減圧蒸留工程における系内の圧力は、50kPa以下に設定してもよく、工業的な実用性の観点から1kPa~50kPaに設定することが好ましい。特に、減圧蒸留時において、使用する蒸留塔の塔頂圧力は好ましくは40kPa以下、より好ましくは30kPa以下である。
 減圧蒸留工程における塔頂液温は、特に限定されるものではないが、工業的な実用性の観点から、+20℃以下に設定することが好ましく、また、-20℃以上に設定することが好ましい。塔頂液温が-20℃以上であれば、冷却器の大型化などの設備コストの増大を避けられるため、工業的に採用しやすい。また、塔頂液温が+20℃以下であれば、蒸留分離効率が良好である。減圧蒸留工程における塔頂液温は、-20℃以上+20℃以下に設定することが好ましい。
 精製工程において、上述した第1実施形態~第3実施形態と同様に、減圧蒸留は、複数回行ってもよい。また、減圧蒸留を2回以上行う場合、蒸留工程は連続して行ってもよく、2回以上の蒸留工程の間に、上述のような不純物の脱ハロゲン化水素処理工程等の別の工程を挟んでもよい。
 以上に説明した第1実施形態~第3実施形態に係る製造方法及び変形例である精製方法において、減圧蒸留によって互いに分離可能であるという観点から、組成物に含まれる(ハイドロ)ハロカーボン、及び該(ハイドロ)ハロカーボンとともに含まれる不純物は、いずれも120℃以下の標準沸点を有していることが好ましく、80℃以下の標準沸点を有していることがさらに好ましい。
 以上に説明した第1実施形態~第3実施形態に係る製造方法によれば、組成物の中にフッ化水素や水が残留している場合、組成物の減圧蒸留によって、(ハイドロ)ハロカーボンはフッ化水素や水からも分離することができる。
 以上では、(ハイドロ)ハロカーボンとして1233zd(Z)、1223xd(z)、1232xd(Z)及び1233zd(E)、これらの(ハイドロ)ハロカーボンと共沸様組成物を構成する不純物として244fa、1223za、1223xd(E)、1232xd(E)及び245faを例に挙げて説明したが、(ハイドロ)ハロカーボン及び該(ハイドロ)ハロカーボンと共沸又は共沸様挙動を示す不純物はこれらに限定されるわけではない。
 一実施形態において、組成物に含まれ、減圧蒸留によって該組成物から分離可能な(ハイドロ)ハロカーボンとしては、一般式(1):CClで表される化合物が挙げられる。一般式(1)において、mは2~5のいずれかの整数であり、a、b、及びcは0以上の整数であり、b+c≧1を満たし、かつ、a+b+c=2m-2、2m、又は2m+2を満たす。
 以下の表1及び表2には、組成物に含まれ、一般式(1)で表される(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンと常圧で共沸又は共沸様挙動を示し、該(ハイドロ)ハロカーボンとは異なる化合物との組み合わせを示す。しかしながら、該(ハイドロ)ハロカーボン、及び該(ハイドロ)ハロカーボンとは異なる化合物はこれらに限定されない。
Figure JPOXMLDOC01-appb-T000002



Figure JPOXMLDOC01-appb-T000003

 また、一実施形態において、組成物に含まれ、減圧蒸留によって該組成物から分離可能な(ハイドロ)ハロカーボンとしては、一般式(2):CClで表される化合物が挙げられる。一般式(2)において、nは3~5のいずれかの整数であり、d、e、及び、fは0以上の整数であり、gは1以上の整数であり、e+f≧1を満たし、かつ、d+e+f=2n-2、2n、又は2n+2を満たす。
 常圧で共沸又は共沸様挙動を示す一般式(2)で表される(ハイドロ)ハロカーボンと、該(ハイドロ)ハロカーボンと常圧で共沸又は共沸様挙動を示し、該(ハイドロ)ハロカーボンとは異なる化合物との組み合わせを表3に示す。しかしながら、該(ハイドロ)ハロカーボン、及び該(ハイドロ)ハロカーボンとは異なる化合物は、これらに限定されない。
Figure JPOXMLDOC01-appb-T000004


 以下、上述した実施形態に従った実施例を説明する。ただし、本発明の実施態様は以下の実施例によって限定されることは無い。以下の実施例において、有機物の組成は、別途注釈のない限り、FID検出器を備えたガスクロマトグラフィーによって得られるクロマトグラムの面積によって決定した。
 以下の表4に示す組成を有する組成物を、表5に示した蒸留条件によって蒸留した。尚、蒸留では、蒸留釜として2Lフラスコを用い、蒸留塔の理論段数は40段とした。
Figure JPOXMLDOC01-appb-T000005


Figure JPOXMLDOC01-appb-T000006


 表4に示した実施例1~5及び比較例1~4の組成物を表5に示した条件により、蒸留した後の回収物の組成を以下の表6に示す。尚、以下の表6において、実施例1,3,4及び比較例1,3,4は蒸留塔の塔頂から留出した回収物の組成を指し、実施例2,5及び比較例2は釜残の組成物の組成を指す。
Figure JPOXMLDOC01-appb-T000007


 表6を参照すると、実施例1と比較例1とを比較すると、減圧蒸留することにより、常圧での蒸留よりも1233zd(Z)(低沸点物質)が高純度で回収されている。実施例2と比較例2とを比較すると、減圧蒸留によって、常圧での蒸留よりも1233zd(E)(高沸点物質)が高純度で回収されている。実施例3,4と比較例3とを比較すると、減圧蒸留することにより、常圧での蒸留よりも1223xd(Z)が高純度で回収されている。また、実施例3と実施例4とを参照すると、蒸留時に塔頂温度をより低くし、さらに塔頂圧力をより低く設定した実施例4のほうが実施例3よりも1223xd(Z)(低沸点物質)がより高純度で得られた。また、実施例5と比較例4とを比較すると、減圧蒸留によって、常圧での蒸留よりも1232xd(Z)(高沸点物質)が高純度で回収されている。
(実施例5:多段階減圧蒸留による高純度1233zdの精製)
 以下の表7において上段に示す組成を有する組成物(表7中、「仕込組成」と記す)を、理論段数40段の蒸留塔に仕込み、蒸留圧力8~10kPaで減圧蒸留し、表7において下段に示す組成を有する組成物(表7中、「主留」と記す)を回収した。
 上記主留1208.23gを理論段数40段の蒸留塔に仕込み、蒸留を行った。表8に示すように、蒸留圧力101kPaで常圧蒸留してフラクション1を回収した後、蒸留圧力8~9kPaで減圧蒸留し、フラクション2~10を回収した。減圧蒸留にて回収したフラクションから、244fa含有量が3%以下である高純度1233zd(Z)として、829.13g得ることができ(フラクション2~9)、244fa含有量が1%以下である高純度1233zd(Z)として、749.95g得ることができ(フラクション2~7)、244fa含有量が0.5%以下である高純度1233zd(Z)として、639.06g得ることができ(フラクション2~6)、244fa含有量が0.3%以下である高純度1233zd(Z)として、129.44g得ることができた(フラクション4)。ここで、フラクション2~10は、蒸留塔から取り出すタイミング順の留分である。
 また、釜残物から、1233zd(Z)含有量が1%以下である高純度244faとして、204.68g得た。
Figure JPOXMLDOC01-appb-T000008



Figure JPOXMLDOC01-appb-T000009


 以上の実施例及び比較例から、組成物中で互いに共沸又は共沸様挙動を示す化合物を、減圧蒸留によって精製することにより、常圧蒸留よりも該組成物中の各成分をより高純度で得られることが分かる。

Claims (19)

  1.  (ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを含む共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含む、(ハイドロ)ハロカーボンの製造方法。
  2.  前記減圧蒸留において、蒸留塔の塔頂圧力が50kPa以下である、請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  3.  前記減圧蒸留において、蒸留塔の塔頂温度が20℃以下である、請求項1又は2に記載の(ハイドロ)ハロカーボンの製造方法。
  4.  前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも120℃以下である、請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  5.  前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも80℃以下である、請求項4に記載の(ハイドロ)ハロカーボンの製造方法。
  6.  前記(ハイドロ)ハロカーボンは、一般式(1)CCl(mは2~5のいずれかの整数であり、a、b、及びcは0以上の整数であり、b+c≧1を満たし、かつ、a+b+c=2m-2、2m、又は2m+2を満たす)で表される化合物であり、
     前記化合物は、フッ化水素および前記一般式(1)で表される化合物(ただし、前記(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つである、
     請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  7.  前記(ハイドロ)ハロカーボンは、一般式(2)CCl(nは3~5のいずれかの整数であり、d、e、及びfは0以上の整数であり、gは1以上の整数であり、e+f≧1を満たし、かつ、d+e+f=2n-2、2n、又は2n+2を満たす)で表される化合物であり、
     前記化合物は、フッ化水素および前記一般式(2)で表される化合物(ただし、前記(ハイドロ)ハロカーボンとして選択された化合物を除く)から選択される少なくとも一つである、
     請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  8.  前記(ハイドロ)ハロカーボンは、シス-1-クロロ-3,3,3-トリフルオロプロペンであり、
     前記化合物は、3-クロロ-1,1,1,3-テトラフルオロプロパンである、
     請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  9.  前記(ハイドロ)ハロカーボンは、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンであり、
     前記化合物は、1,1-ジクロロ-3,3,3-トリフルオロプロペンである、
     請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  10.  前記(ハイドロ)ハロカーボンは、シス-1,2-ジクロロ-3,3-ジフルオロプロペンであり、
     前記化合物は、トランス-1,2-ジクロロ-3,3-ジフルオロプロペンである、
     請求項1に記載の(ハイドロ)ハロカーボンの製造方法。
  11.  (ハイドロ)ハロカーボンと、前記(ハイドロ)ハロカーボンとは異なる化合物とを含む、共沸又は共沸様組成物を減圧蒸留して、前記(ハイドロ)ハロカーボンを精製する工程を含み、
     前記(ハイドロ)ハロカーボン、及び前記化合物の標準沸点は、いずれも80℃以下である、(ハイドロ)ハロカーボンの製造方法。
  12.  シス-1-クロロ-3,3,3-トリフルオロプロペンと、少なくとも3-クロロ-1,1,1,3-テトラフルオロプロパンを含む飽和ハイドロハロカーボンと、を含む共沸又は共沸様組成物を減圧蒸留して、シス-1-クロロ-3,3,3-トリフルオロプロペンを主成分として含む留分を回収する工程、及び
     前記留分をさらに減圧蒸留して、3-クロロ-1,1,1,3-テトラフルオロプロパン含有量が3質量%以下のシス-1-クロロ-3,3,3-トリフルオロプロペンを得る工程
    を含む、シス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
  13.  前記留分を回収する工程の後、且つ前記シス-1-クロロ-3,3,3-トリフルオロプロペンを得る工程の前に、前記留分を塩基と接触させて、シス-1-クロロ-3,3,3-トリフルオロプロペンを精製する工程をさらに含む、請求項12に記載のシス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
  14.  前記1-クロロ-3,3,3-トリフルオロプロペンを精製する工程は、前記留分に含まれる3-クロロ-1,1,1,3-テトラフルオロプロパンを脱ハロゲン化水素する工程である、請求項13に記載のシス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
  15.  前記塩基は、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、アルコキシド、酸化物、及び水素化物のうちから選択される少なくとも一種である、請求項13に記載のシス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法。
  16.  シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンと、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン及び1,1-ジクロロ-3,3,3-トリフルオロプロペンのうちの少なくとも一つと、を含む共沸又は共沸様組成物を減圧蒸留して、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを主成分として含む留分を回収する工程、及び
     前記留分をさらに減圧蒸留して、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン及び1,1-ジクロロ-3,3,3-トリフルオロプロペンのうちの少なくとも一つの含有量が3質量%以下のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを得る工程
    を含む、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
  17.  前記留分を回収する工程の後、且つ前記シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを得る工程の前に、前記留分を塩基と接触させて、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを精製する工程をさらに含む、請求項16に記載のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
  18.  前記シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを精製する工程は、前記留分に含まれるトランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン及び1,1-ジクロロ-3,3,3-トリフルオロプロペンのうちの少なくとも一つを脱ハロゲン化水素する工程である、請求項17に記載のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
  19.  前記塩基は、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、アルコキシド、酸化物、及び水素化物のうちから選択される少なくとも一種である、請求項17に記載のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
PCT/JP2021/010095 2020-03-19 2021-03-12 (ハイドロ)ハロカーボンの製造方法 WO2021187369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21772318.8A EP4108651A4 (en) 2020-03-19 2021-03-12 PROCESS FOR PRODUCING A (HYDRO)HALOCARBON
CN202180008039.6A CN114901617A (zh) 2020-03-19 2021-03-12 (氢)卤烃的制备方法
JP2022508318A JPWO2021187369A1 (ja) 2020-03-19 2021-03-12
US17/946,707 US20230063030A1 (en) 2020-03-19 2022-09-16 Method for Producing (Hydro)Halocarbon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020049264 2020-03-19
JP2020-049264 2020-03-19
JP2020-173710 2020-10-15
JP2020173710 2020-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,707 Continuation US20230063030A1 (en) 2020-03-19 2022-09-16 Method for Producing (Hydro)Halocarbon

Publications (1)

Publication Number Publication Date
WO2021187369A1 true WO2021187369A1 (ja) 2021-09-23

Family

ID=77772086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010095 WO2021187369A1 (ja) 2020-03-19 2021-03-12 (ハイドロ)ハロカーボンの製造方法

Country Status (5)

Country Link
US (1) US20230063030A1 (ja)
EP (1) EP4108651A4 (ja)
JP (1) JPWO2021187369A1 (ja)
CN (1) CN114901617A (ja)
WO (1) WO2021187369A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524461A (ja) * 1997-11-20 2001-12-04 アライドシグナル・インコーポレイテッド フルオロカーボンからフッ化水素を分離するプロセス
JP2003530323A (ja) * 2000-03-16 2003-10-14 ヘイロウカーボン プロダクツ コーポレイション フルオロメチル2,2,2−トリフルオロ−1−(トリフルオロメチル)エチルエーテルの生産
JP2007520561A (ja) * 2004-02-04 2007-07-26 ヘイロウカーボン プロダクツ コーポレイション 1,1,1,3,3,3−ヘキサフルオロイソプロパノールの精製
JP2013509409A (ja) * 2009-10-30 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フッ化水素−HFC−254eb共沸物およびその使用
JP2013103890A (ja) 2011-11-11 2013-05-30 Central Glass Co Ltd (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
WO2013187489A1 (ja) * 2012-06-13 2013-12-19 セントラル硝子株式会社 1-クロロ-3,3,3-トリフルオロ-1-プロペン及び1,3,3,3-テトラフルオロプロペンの製造方法
WO2014046251A1 (ja) * 2012-09-21 2014-03-27 セントラル硝子株式会社 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075797B2 (en) * 2009-01-29 2011-12-13 Honeywell International Inc. Azeotrope-like compositions of pentafluoropropane, chlorotrifluoropropene, and hydrogen fluoride
AR082161A1 (es) * 2010-07-13 2012-11-14 Du Pont Composiciones azeotropicas y similares a azeotropos de 2-cloro-3,3,3-trifluoropropeno
WO2016052562A1 (ja) * 2014-10-02 2016-04-07 セントラル硝子株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペン及び1-クロロ-3,3,3-トリフルオロプロペンを含有する共沸様組成物
CN105566074A (zh) * 2014-10-08 2016-05-11 浙江化工院科技有限公司 一种纯化六氟异丙基甲醚的方法
KR20190098149A (ko) * 2016-12-21 2019-08-21 알케마 인코포레이티드 정제된 형태의 R1233zd를 회수하기 위한 방법 및 시스템
JPWO2020022474A1 (ja) * 2018-07-27 2021-08-12 セントラル硝子株式会社 共沸(様)組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524461A (ja) * 1997-11-20 2001-12-04 アライドシグナル・インコーポレイテッド フルオロカーボンからフッ化水素を分離するプロセス
JP2003530323A (ja) * 2000-03-16 2003-10-14 ヘイロウカーボン プロダクツ コーポレイション フルオロメチル2,2,2−トリフルオロ−1−(トリフルオロメチル)エチルエーテルの生産
JP2007520561A (ja) * 2004-02-04 2007-07-26 ヘイロウカーボン プロダクツ コーポレイション 1,1,1,3,3,3−ヘキサフルオロイソプロパノールの精製
JP2013509409A (ja) * 2009-10-30 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フッ化水素−HFC−254eb共沸物およびその使用
JP2013103890A (ja) 2011-11-11 2013-05-30 Central Glass Co Ltd (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
WO2013187489A1 (ja) * 2012-06-13 2013-12-19 セントラル硝子株式会社 1-クロロ-3,3,3-トリフルオロ-1-プロペン及び1,3,3,3-テトラフルオロプロペンの製造方法
WO2014046251A1 (ja) * 2012-09-21 2014-03-27 セントラル硝子株式会社 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108651A4

Also Published As

Publication number Publication date
JPWO2021187369A1 (ja) 2021-09-23
EP4108651A1 (en) 2022-12-28
US20230063030A1 (en) 2023-03-02
CN114901617A (zh) 2022-08-12
EP4108651A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP5576586B2 (ja) 統合hfcトランス−1234ze製造方法
KR101721503B1 (ko) 2,3,3,3-테트라플루오로프로펜 제조방법
KR101702450B1 (ko) 1,1,3,3-테트라플루오로프로펜의 이성질체화
EP1678106B1 (en) Process for producing fluoropropenes
JP6084168B2 (ja) トランス−1−クロロ−3,3,3−トリフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペン、及び1,1,1,3,3−ペンタフルオロプロパンを共に製造するための統合方法
JP5788380B2 (ja) フッ化水素からのr−1233の分離
US8754272B2 (en) Process for cis-1-chloro-3,3,3-trifluoropropene
CN107082739B (zh) 用于生产卤代烯烃的共沸物和类共沸物组合物
JP6367410B2 (ja) フッ素化オレフィンを製造するための統合プロセス
JPWO2018012511A1 (ja) 1−クロロ−1,2−ジフルオロエチレンの製造方法
JP5805812B2 (ja) 統合hfcトランス−1234ze製造方法
JP5713015B2 (ja) 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
TWI606028B (zh) 藉由萃取蒸餾從氫氯氟烯烴中去除污染物之方法
WO2021187369A1 (ja) (ハイドロ)ハロカーボンの製造方法
JP2010090045A (ja) フッ化水素の分離方法
JPWO2021187369A5 (ja)
WO2015166847A1 (ja) トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
WO2016111227A1 (ja) (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
JP2010215622A (ja) 1,1,1,3,3−ペンタフルオロプロパンを含む含フッ素化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508318

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021772318

Country of ref document: EP

Effective date: 20220922

NENP Non-entry into the national phase

Ref country code: DE