WO2021187281A1 - 電気加熱式担体及び排気ガス浄化装置 - Google Patents

電気加熱式担体及び排気ガス浄化装置 Download PDF

Info

Publication number
WO2021187281A1
WO2021187281A1 PCT/JP2021/009652 JP2021009652W WO2021187281A1 WO 2021187281 A1 WO2021187281 A1 WO 2021187281A1 JP 2021009652 W JP2021009652 W JP 2021009652W WO 2021187281 A1 WO2021187281 A1 WO 2021187281A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
honeycomb structure
electrode
layers
electrically heated
Prior art date
Application number
PCT/JP2021/009652
Other languages
English (en)
French (fr)
Inventor
岡本 直樹
井上 崇行
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022508264A priority Critical patent/JP7259133B2/ja
Publication of WO2021187281A1 publication Critical patent/WO2021187281A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor

Definitions

  • the present invention relates to an electrically heated carrier and an exhaust gas purifying device.
  • EHC electric heating catalyst
  • Patent Document 1 describes a honeycomb structure, an electrode layer, and an electrode portion, and is a carrier for an electrically heated catalyst in which the electrode layer and the electrode portion are electrically bonded via a base layer.
  • the base layer is arranged in a spot shape on the pair of electrode layers arranged on the outer peripheral wall. According to such a configuration, when the electrode portions are joined by welding or thermal spraying, cracks due to a temperature difference between the joined base layer and the unbonded base layer are suppressed. It is stated that it can be done.
  • the present invention has been created in view of the above circumstances, and provides an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing the occurrence of cracks at the interface between the electrode layer and the base layer. Make it an issue.
  • the electrically heated carrier according to (1) and A can body holding the electrically heated carrier and Exhaust gas purification device with.
  • an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing the occurrence of cracks at the interface between the electrode layer and the base layer.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the stretching direction of the cell of the electrically heated carrier according to the embodiment of the present invention. It is a schematic appearance figure of the columnar honeycomb structure and the electrode layer in embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, an intermediate layer, a base layer, and a metal electrode according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, an intermediate layer, a base layer, and a metal electrode according to an embodiment of the present invention. It is a top view which shows the arrangement example of the base layer of the electric heating type carrier in embodiment of this invention. It is a schematic diagram of the sample of the laminated body used in the elevating temperature cycle test which concerns on Example.
  • FIG. 1 is a schematic cross-sectional view of the electrically heated carrier 10 according to the embodiment of the present invention, which is perpendicular to the stretching direction of the cell 18.
  • the electrically heated carrier 10 includes a columnar honeycomb structure 11, electrode layers 13a and 13b arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11, and an intermediate layer 20a provided on the electrode layers 13a and 13b. , 20b, base layers 16a and 16b provided on the intermediate layers 20a and 20b, and metal electrodes 14a and 14b provided on the base layers 16a and 16b.
  • FIG. 2 shows a schematic external view of the columnar honeycomb structure 11 and the electrode layers 13a and 13b according to the embodiment of the present invention.
  • the columnar honeycomb structure 11 includes an outer peripheral wall 12 and a partition wall 19 which is arranged inside the outer peripheral wall 12 and which partitions a plurality of cells 18 which penetrate from one end face to the other end face to form a flow path. Have.
  • the outer shape of the columnar honeycomb structure 11 is not particularly limited as long as it is columnar. , Octagon, etc.) can be shaped like a columnar shape. Further, the size of the columnar honeycomb structure 11 is preferably 2000 to 20000 mm 2 and preferably 5000 to 15000 mm for the reason of improving heat resistance (suppressing cracks entering the circumferential direction of the outer peripheral wall). it is more preferably 2.
  • the columnar honeycomb structure 11 is made of ceramics and has conductivity. As long as the conductive columnar honeycomb structure 11 is energized and can generate heat by Joule heat, the electrical resistivity of the ceramic is not particularly limited, but is preferably 0.1 to 200 ⁇ cm, preferably 1 to 200 ⁇ cm. More preferably, it is more preferably 10 to 100 ⁇ cm. In the present invention, the electrical resistivity of the columnar honeycomb structure 11 is a value measured at 25 ° C. by the four-terminal method.
  • the material of the columnar honeycomb structure 11 is not limited, but includes a group consisting of oxide-based ceramics such as alumina, mullite, zirconia and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. You can choose. Further, a silicon carbide-metal silicon composite material, a silicon carbide / graphite composite material, or the like can also be used. Among these, from the viewpoint of achieving both heat resistance and conductivity, the material of the columnar honeycomb structure 11 preferably contains a silicon-silicon carbide composite material or ceramics containing silicon carbide as a main component.
  • the columnar honeycomb structure 11 When the material of the columnar honeycomb structure 11 is mainly composed of a silicon-silicon carbide composite material, the columnar honeycomb structure 11 contains the silicon-silicon carbide composite material (total mass) as a total of 90 masses. It means that it contains more than%.
  • the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for binding the silicon carbide particles, and a plurality of silicon carbide particles are formed between the silicon carbide particles. It is preferably bonded by silicon so as to form pores.
  • the material of the columnar honeycomb structure 11 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 11 contains silicon carbide (total mass) in an amount of 90% by mass or more of the whole. means.
  • the columnar honeycomb structure 11 contains a silicon-silicon carbide composite material, it is contained in the columnar honeycomb structure 11 and the "mass of silicon carbide particles as an aggregate" contained in the columnar honeycomb structure 11.
  • the ratio of the "mass of silicon as a binder" contained in the columnar honeycomb structure 11 to the total of the "mass of silicon as a composite” is preferably 10 to 40% by mass, preferably 15 to 35. It is more preferably mass%. When it is 10% by mass or more, the strength of the columnar honeycomb structure 11 is sufficiently maintained. When it is 40% by mass or less, it becomes easy to maintain the shape at the time of firing.
  • the shape of the cell in the cross section perpendicular to the extending direction of the cell 18 is not limited, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Of these, quadrangles and hexagons are preferable. By making the cell shape in this way, the pressure loss when the exhaust gas is passed through the columnar honeycomb structure 11 is reduced, and the purification performance of the catalyst is excellent. A quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
  • the thickness of the partition wall 19 for partitioning the cell 18 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm.
  • the thickness of the partition wall 19 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the honeycomb structure.
  • the thickness of the partition wall 19 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the honeycomb structure is used as a catalyst carrier and the catalyst is supported.
  • the thickness of the partition wall 19 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 18 that passes through the partition wall 19 in a cross section perpendicular to the extending direction of the cell 18.
  • the columnar honeycomb structure 11 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 18.
  • the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured.
  • the cell density is 150 cells / cm 2 or less, when the columnar honeycomb structure 11 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large.
  • the cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 11 excluding the outer wall 12 portion.
  • the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more.
  • the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less.
  • the thickness of the outer peripheral wall 12 is the normal direction with respect to the tangent line of the outer peripheral wall 12 at the measurement location when the portion of the outer peripheral wall 12 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell 18. Is defined as the thickness of.
  • the partition wall 19 can be made porous.
  • the porosity of the partition wall 19 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, it becomes easier to suppress deformation during firing. When the porosity is 60% or less, the strength of the honeycomb structure is sufficiently maintained. Porosity is a value measured by a mercury porosimeter.
  • the average pore diameter of the partition wall 19 of the columnar honeycomb structure 11 is preferably 2 to 15 ⁇ m, more preferably 4 to 8 ⁇ m. When the average pore diameter is 2 ⁇ m or more, it is suppressed that the electrical resistivity becomes too large. When the average pore diameter is 15 ⁇ m or less, it is suppressed that the electrical resistivity becomes too small.
  • the average pore diameter is a value measured by a mercury porosimeter.
  • Electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11.
  • the electrode layers 13a and 13b may be a pair of electrode layers 13a and 13b arranged so as to face each other with the central axis of the columnar honeycomb structure 11 interposed therebetween.
  • each of the electrode layers 13a and 13b is formed on the outer surface of the outer peripheral wall 12 of the outer peripheral wall 12. It is preferable to extend the cell 18 in a strip shape in the circumferential direction and the extending direction of the cell 18. Specifically, each of the electrode layers 13a and 13b has a length of 80% or more, preferably a length of 90% or more, and more preferably a total length between both bottom surfaces of the columnar honeycomb structure 11. It is desirable that the current extends over the electrode layers 13a and 13b from the viewpoint that the current easily spreads in the axial direction.
  • the thickness of each of the electrode layers 13a and 13b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced.
  • the thickness of each of the electrode layers 13a and 13b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced.
  • the thickness of each of the electrode layers 13a and 13b is a tangent line at the measurement point on the outer surface of each of the electrode layers 13a and 13b when the portion of the electrode layer whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell 18. It is defined as the thickness in the normal direction with respect to.
  • the electrical resistivity of the electrode layers 13a and 13b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 11. Even more preferable. However, if the difference in electrical resistivity between the two becomes too large, the current concentrates between the ends of the opposing electrode layers and the heat generation of the columnar honeycomb structure portion is biased. Therefore, the electrical resistivity of the electrode layers 13a and 13b is determined.
  • the electrical resistivity of the columnar honeycomb structure 11 is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more.
  • the electrical resistivity of the electrode layers 13a and 13b is a value measured at 25 ° C. by the four-terminal method.
  • a composite material (cermet) of metal and conductive ceramics can be used as the material of each of the electrode layers 13a and 13b.
  • the metal include elemental metals of Cr, Fe, Co, Ni, Si and Ti, and alloys containing at least one metal selected from the group consisting of these metals.
  • the conductive ceramics include, but are not limited to, silicon carbide (SiC), and examples thereof include metal compounds such as metal siliceates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2).
  • the composite material (cermet) of metal and conductive ceramics include a composite material of metallic silicon and silicon carbide, a composite material of metal siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further described above. From the viewpoint of reducing thermal expansion, a composite material obtained by adding one or more kinds of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon nitride and aluminum nitride to one or more kinds of metals can be mentioned.
  • intermediate layers 20a and 20b are provided on the electrode layers 13a and 13b.
  • the coefficient of thermal expansion of the intermediate layers 20a and 20b is lower than the coefficient of thermal expansion of the electrode layers 13a and 13b.
  • a layer having a coefficient of thermal expansion lower than that of the electrode layers 13a and 13b is provided between the electrode layers 13a and 13b and the base layers 16a and 16b. Even if the electrode layers 13a and 13b are heated by heating, the thermal expansion of the intermediate layers 20a and 20b is smaller than the thermal expansion of the electrode layers 13a and 13b.
  • the thermal stress due to the difference in the coefficient of thermal expansion between the electrode layers 13a and 13b and the base layers 16a and 16b is relaxed, and cracks generated at the interface between the electrode layers 13a and 13b and the base layers 16a and 16b are satisfactorily suppressed. can do.
  • the coefficient of thermal expansion of the intermediate layers 20a and 20b is lower than the coefficient of thermal expansion of the electrode layers 13a and 13b, the above effect can be obtained, but in order to obtain a more remarkable effect, the coefficient of thermal expansion of the intermediate layers 20a and 20b However, it is preferably 0.3 to 0.9 times the coefficient of thermal expansion of the electrode layers 13a and 13b. If the coefficient of thermal expansion of the intermediate layers 20a and 20b is 0.3 times or more the coefficient of thermal expansion of the electrode layers 13a and 13b, the difference in the coefficient of thermal expansion between the electrode layers 13a and 13b and the underlying layers 16a and 16b. The thermal stress associated with this can be further relaxed, and cracks are less likely to occur.
  • the intermediate layers 20a and 20b are the electrode layers 13a and 13b and the base layer 16a. It is preferable because the thermal stress due to the difference in the coefficient of thermal expansion from 16b can be further relaxed and the cracks generated at the interface between the electrode layers 13a and 13b and the base layers 16a and 16b can be further reduced.
  • the coefficient of thermal expansion of the intermediate layers 20a and 20b is more preferably 0.3 to 0.7 times, more preferably 0.4 to 0.6 times, the coefficient of thermal expansion of the electrode layers 13a and 13b. Is even more preferable.
  • the coefficient of thermal expansion of the intermediate layers 20a and 20b can be appropriately adjusted as long as it is lower than the coefficient of thermal expansion of the intermediate layers 20a and 20b, and can be, for example, 0.5 to 7.0 ppm / K.
  • the coefficient of thermal expansion of the intermediate layers 20a and 20b is lower than the coefficient of thermal expansion of the underlying layers 16a and 16b. According to such a configuration, the intermediate layers 20a and 20b more play a role of suppressing the occurrence of the above-mentioned cracks, and the coefficient of thermal expansion of the base layers 16a and 16b can be set more freely. As a result, there is an advantage that the selection range of materials is widened.
  • the intermediate layers 20a and 20b between the electrode layers 13a and 13b and the base layers 16a and 16b, in addition to suppressing the occurrence of the above-mentioned cracks, for example, Si in the electrode layers 13a and 13b.
  • the reaction between SiC and the metal components in the base layers 16a and 16b can be suppressed, and the deterioration of the electrode layers 13a and 13b can be satisfactorily suppressed.
  • the porosity of the intermediate layers 20a and 20b is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. More preferred. Porosity is a value measured by a mercury porosimeter.
  • the intermediate layers 20a and 20b form a continuous layer (see FIGS. 1, 3 and 4), but the intermediate layers 20a and 20b do not necessarily have to form a layer independently, as described above. It can be arranged in any form as long as it can fulfill the functions of the intermediate layers 20a and 20b.
  • the intermediate layers 20a and 20b may be formed by laminating, for example, two layers or three or more layers. For example, when the intermediate layers 20a and 20b are two layers, one layer is a layer having a lower coefficient of thermal expansion than the electrode layer, and the other layer is a layer having a porosity of 5% or less to obtain an antireflection effect. The functions may be separated.
  • the intermediate layers 20a and 20b are composed of a plurality of layers in this way, their thermal expansion coefficient does not have to be constant and is continuous or discontinuous as long as it is lower than the thermal expansion coefficient of the electrode layers 13a and 13b. However, it is preferable that the fluctuation is continuous from the viewpoint of relaxation of thermal stress. Further, when the intermediate layers 20a and 20b are composed of a plurality of layers in this way, the coefficient of thermal expansion of each of the plurality of intermediate layers 20a and 20b is lower than the coefficient of thermal expansion of the underlying layers 16a and 16b. This is a more preferable form.
  • the thickness of the intermediate layers 20a and 20b is preferably 3 to 400 ⁇ m. By setting the thickness of the intermediate layers 20a and 20b to 3 ⁇ m or more, the effect can be obtained more remarkably. On the other hand, by setting the thickness of the intermediate layers 20a and 20b to 400 ⁇ m or less, the influence on the current flowing through the columnar honeycomb structure 11 can be suppressed, and the influence on the original function of the electrically heated carrier 10 can be minimized. Can be done. From the above viewpoint, the thickness of the intermediate layers 20a and 20b is more preferably 5 to 200 ⁇ m.
  • the intermediate layers 20a and 20b are preferably oxide ceramics or a metal or a mixture of a metal compound and oxide ceramics.
  • the metal of the intermediate layers 20a and 20b may be either a simple substance metal or an alloy, and for example, silicon, aluminum, iron, stainless steel, titanium, tungsten, Ni—Cr alloy and the like can be preferably used.
  • the metal compound of the intermediate layers 20a and 20b include those other than oxide ceramics, such as metal oxides, metal nitrides, metal carbides, metal siliceates, metal borides, and composite oxides.
  • FeSi. 2 , CrSi 2 and the like can be preferably used.
  • the metal and the metal compound of the intermediate layers 20a and 20b may be used alone or in combination of two or more. Specific examples of the oxide ceramic include glass, cordierite, and mullite.
  • the glass may further contain an oxide consisting of at least one component selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr. Further containing at least one selected from the above group is more preferable in that the strength of the intermediate layers 20a and 20b is further improved.
  • the surface roughness Ra (JIS B 0601-2001; arithmetic mean roughness) of the intermediate layers 20a and 20b is preferably 300 ⁇ m or less.
  • the surface roughness Ra of the intermediate layers 20a and 20b is more preferably 5 to 200 ⁇ m, and even more preferably 5 to 100 ⁇ m.
  • the base layers 16a and 16b are provided on the intermediate layers 20a and 20b.
  • the base layers 16a and 16b are preferably a mixture of a metal or a metal compound and an oxide ceramic.
  • the metal or the metal compound include those similar to the types of the metal or the metal compound used in the intermediate layers 20a and 20b.
  • the oxide ceramic include those similar to the types of metals or metal compounds used in the intermediate layers 20a and 20b.
  • the number and arrangement of the base layers 16a and 16b are not limited, and can be appropriately set within the range necessary for fixing the metal electrodes 14a and 14b. Further, the shapes of the base layers 16a and 16b can be formed into any shape such as a circular shape, an elliptical shape, and a polygonal shape in a plan view. The shapes of the base layers 16a and 16b are preferably circular or rectangular from the viewpoint of productivity and practicality.
  • the projection surfaces of the base layers 16a and 16b are included in the projection surfaces of the intermediate layers 20a and 20b.
  • the intermediate layers 20a and 20b are always interposed between the electrode layers 13a and 13b and the base layers 16a and 16b, so that between the electrode layers 13a and 13b and the base layers 16a and 16b. The thermal stress due to the difference in thermal expansion can be suppressed more reliably.
  • the base layers 16a and 16b may be composed of a single layer, or may be composed of two layers or a plurality of layers of three or more layers.
  • FIG. 3 shows an example in which the base layers 16a and 16b are composed of two layers.
  • the base layers 16a and 16b are provided on the metal electrodes 14a and 14b, the first layer 21 to be joined to the metal electrodes 14a and 14b, and the intermediate layers 20a and 20b.
  • the first layer 21 constituting the base layers 16a and 16b can be used as a welding base layer to be a base for laser welding when joining the metal electrodes 14a and 14b.
  • the second layer 22 has a projection surface wider than the projection surface of the first layer 21 on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11, the metal electrodes 14a and 14b to the first layer 21 are formed.
  • the passing current can be used as a current diffusion layer for diffusing the passing current in the axial direction of the columnar honeycomb structure 11.
  • the first layer 21 and the second layer 22 are not limited to this, and various functions can be appropriately imparted according to various purposes.
  • FIG. 4 shows an example in which the base layers 16a and 16b are composed of three layers.
  • the base layers 16a and 16b are provided on the metal electrodes 14a and 14b, the first layer 21 to be joined to the metal electrodes 14a and 14b, and the intermediate layers 20a and 20b. It has a second layer 22 and a third layer 23 provided between the first layer 21 and the second layer 22.
  • the first layer 21 and the third layer 23 may be used as the welding base layer, and both may be formed of different materials.
  • the first layer 21 forming the welding base layer on the metal electrodes 14a and 14b side may be formed of a material having improved weldability with the metal electrodes 14a and 14b.
  • the third layer 23 forming the welding base layer on the intermediate layers 20a and 20b side with the same material as the second layer 22 forming the current diffusion layer, the third layer 23 and the second layer 23 and the second layer 23 are formed.
  • the bondability with the layer 22 can be improved.
  • the metal electrodes 14a and 14b are provided on the base layers 16a and 16b.
  • the metal electrodes 14a and 14b may be a pair of metal electrodes in which one metal electrode 14a is arranged so as to face the other metal electrode 14b with the central axis of the columnar honeycomb structure 11 interposed therebetween. good.
  • a voltage is applied to the metal electrodes 14a and 14b via the electrode layers 13a and 13b, the metal electrodes 14a and 14b are energized and the columnar honeycomb structure 11 can be heated by Joule heat. Therefore, the electrically heated carrier 10 can be suitably used as a heater.
  • the applied voltage is preferably 12 to 900 V, more preferably 48 to 600 V, but the applied voltage can be changed as appropriate.
  • the material of the metal electrodes 14a and 14b there are no particular restrictions as long as it is a metal, and a single metal, an alloy, or the like can be adopted. , Co, Ni and Ti are preferably used as alloys containing at least one selected from the group, and stainless steel and Fe—Ni alloys are more preferable.
  • the shapes and sizes of the metal electrodes 14a and 14b are not particularly limited, and can be appropriately designed according to the size of the electrically heated carrier 10 and the energization performance.
  • the metal electrodes 14a and 14b may have two or more electrode portions 15. Each electrode portion 15 may be fixed to the outer surface of the base layers 16a and 16b. Here, the electrode portion 15 may be fixed to the base layers 16a and 16b by welding, or may be fixed to the base layers 16a and 16b by a fixing layer formed by thermal spraying.
  • the metal electrodes 14a and 14b each have three comb-shaped electrode portions 15, and the respective electrode portions 15 are fixed to the two base layers 16a and 16b.
  • the electrical connection between the comb-shaped electrode portion 15 and the electrode layers 13a and 13b may be realized by two or more base layers 16a and 16b separated from each other.
  • the electrode portion 15 is formed in a comb shape in FIG. 5, the electrode portions 13a and 13b are fixed to the base layers 16a and 16b and can be electrically connected to the electrode layers 13a and 13b, or by thermal spraying. Any shape can be adopted as long as it can be fixed to.
  • the electroheating carrier 10 By supporting the catalyst on the electroheating carrier 10, the electroheating carrier 10 can be used as a catalyst carrier.
  • a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 18.
  • the catalyst include noble metal-based catalysts and catalysts other than these.
  • a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali.
  • An example is a NO x storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NO x).
  • LNT catalyst NO x storage reduction catalyst
  • catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used.
  • the method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure.
  • the method for producing the electroheating carrier 10 of the present invention is, in one embodiment, a step A1 for obtaining an unfired honeycomb structure portion with an electrode layer forming paste and a columnar honeycomb structure by firing the unfired honeycomb structure portion with an electrode layer forming paste.
  • the step A4 of welding a metal electrode to the base layer of the columnar honeycomb structure is included.
  • Step A1 is a step of producing a honeycomb molded body which is a precursor of the honeycomb structure portion, applying an electrode layer forming paste to the side surface of the honeycomb molded portion, and obtaining an unfired honeycomb structure portion with the electrode layer forming paste.
  • the honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure portion. For example, first, a metal silicon powder (metal silicon), a binder, a surfactant, a pore-forming material, water, or the like is added to silicon carbide powder (silicon carbide) to prepare a molding raw material.
  • the mass of the metallic silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metallic silicon.
  • the average particle size of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 ⁇ m, more preferably 3 to 40 ⁇ m.
  • the average particle size of metallic silicon (metallic silicon powder) is preferably 2 to 35 ⁇ m.
  • the average particle diameter of silicon carbide particles and metallic silicon (metal silicon particles) refers to the arithmetic average diameter based on the volume when the frequency distribution of particle size is measured by the laser diffraction method.
  • the silicon carbide particles are fine particles of silicon carbide constituting the silicon carbide powder, and the metallic silicon particles are fine particles of metallic silicon constituting the metallic silicon powder. This is a blending of molding raw materials when the material of the honeycomb structure is silicon-silicon carbide-based composite material, and when the material of the honeycomb structure is silicon carbide, metallic silicon is not added.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel.
  • the content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the average particle size of the pore-forming material is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be sufficiently formed. If it is larger than 30 ⁇ m, it may clog the base during molding.
  • the average particle size of the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the average particle size of the pore-forming material is the average particle size after water absorption.
  • the clay is extruded to produce a honeycomb molded body.
  • a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used.
  • both bottom portions of the honeycomb molded body can be cut to obtain the desired length.
  • the dried honeycomb molded body is called a honeycomb dried body.
  • the electrode layer forming paste for forming the electrode layer is prepared.
  • the electrode layer forming paste can be formed by appropriately adding various additives to the raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer and kneading.
  • the average particle size of the metal powder in the paste for the second electrode layer is made larger than the average particle size of the metal powder in the paste for the first electrode layer.
  • the bonding strength between the intermediate layer and the electrode layer tends to improve.
  • the average particle size of the metal powder refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the obtained electrode layer forming paste is applied to the side surface of the honeycomb molded body (typically, the dried honeycomb body) to obtain an unfired honeycomb structure portion with the electrode layer forming paste.
  • the method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure, but the electrode layer is compared with the honeycomb structure portion. In order to obtain a low electrical resistance, the metal content ratio can be increased or the particle size of the metal particles can be reduced as compared with the honeycomb structure portion.
  • the honeycomb molded body may be fired once before applying the electrode layer forming paste. That is, in this modified example, the honeycomb molded body is fired to produce a honeycomb fired body, and the electrode layer forming paste is applied to the honeycomb fired body.
  • the unfired honeycomb structure portion with the electrode layer forming paste is fired to obtain a columnar honeycomb structure.
  • the unfired honeycomb structure with the electrode layer forming paste may be dried.
  • degreasing may be performed in order to remove the binder and the like.
  • the firing conditions it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon.
  • an oxidation treatment at 1200 to 1350 ° C. for 1 to 10 hours in order to improve durability.
  • the method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
  • step A3 a paste of a material for forming an intermediate layer (material for forming an intermediate layer) is applied to the surface of the electrode layer on the columnar honeycomb structure, and a conductive material for forming an underlying layer is further applied thereto. Apply the paste of the sex material.
  • the paste thus prepared is applied with a curved surface printing machine or the like so as to have a predetermined arrangement, dried, and then fired to form an intermediate layer and a base layer.
  • the paste of the material for forming the intermediate layer for example, a glass material and a metal powder such as stainless steel are used.
  • An intermediate layer forming paste can be prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water to the glass material and a metal powder such as stainless steel. Further, the intermediate layer may be formed by spraying a material for forming an intermediate layer so as to have a predetermined arrangement and shape.
  • the paste of the conductive material for forming the base layer for example, metal powder (NiCr-based material, metal powder such as stainless steel) is mixed with the glass material.
  • a ceramic raw material can be prepared by mixing a metal ratio of 20 to 85% by volume and a glass material at a volume ratio of 15 to 80% by volume.
  • a base layer forming paste can be prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water with respect to this ceramic raw material.
  • the base layer may be formed by spraying a conductive material so as to have a predetermined arrangement and shape.
  • step A4 the metal electrode is fixed on the base layer of the columnar honeycomb structure with the intermediate layer and the base layer obtained in step A3 by laser welding or ultrasonic welding. In this way, the electrically heated carrier 10 according to the embodiment of the present invention is obtained.
  • the electrically heated carrier according to the embodiment of the present invention described above can be used in an exhaust gas purification device.
  • the exhaust gas purifying device has an electrically heated carrier and a can body that holds the electrically heated carrier.
  • the electrically heated carrier is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine.
  • a metal tubular member or the like accommodating an electrically heated carrier can be used.
  • Example 1 (1. Preparation of columnar clay) Silicon carbide (SiC) powder and metallic silicon (Si) powder were mixed at a mass ratio of 80:20 to prepare a ceramic raw material. Then, hydroxypropyl methylcellulose as a binder and a water-absorbent resin as a pore-forming material were added to the ceramic raw material, and water was added to prepare a molding raw material. Then, the molding raw material was kneaded with a vacuum clay kneader to prepare a columnar clay. The binder content was 7 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the content of the pore-forming material was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the water content was 42 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the average particle size of the silicon carbide powder was 20 ⁇ m, and the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the pore-forming material was 20 ⁇ m.
  • the average particle size of the silicon carbide powder, the metallic silicon powder, and the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • Electrode layer forming paste Metallic silicon (Si) powder, silicon carbide (SiC) powder, methyl cellulose, glycerin, and water were mixed with a rotating and revolving stirrer to prepare an electrode layer forming paste.
  • the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the silicon carbide powder was 35 ⁇ m.
  • this electrode layer forming paste is applied to the honeycomb dried body with an appropriate area and film thickness by a curved surface printing machine, further dried at 120 ° C. for 30 minutes with a hot air dryer, and then Ar atmosphere together with the honeycomb dried body. Was fired at 1400 ° C. for 3 hours to obtain a columnar honeycomb structure.
  • the metal powder of SUS430 was mixed with the glass material so as to have a metal ratio of 40% by volume to prepare a ceramic raw material.
  • a binder was added in an amount of 1% by mass
  • a surfactant was added in an amount of 1% by mass
  • water was added in an amount of 20 to 40% by mass with respect to the ceramic raw material to prepare a paste raw material for forming a second layer (underlayer).
  • the metal powder of SUS430 was mixed with the glass material so as to have a metal ratio of 40% by volume to prepare a ceramic raw material.
  • a binder was added in an amount of 1% by mass, a surfactant was added in an amount of 1% by mass, and water was added in an amount of 20 to 40% by mass with respect to the ceramic raw material to prepare a paste raw material for forming the first layer (base layer).
  • the average particle size of the metal powder measured by the laser diffraction method was 10 ⁇ m, respectively.
  • the bottom surface of the honeycomb structure was circular with a diameter of 100 mm, and the height (length in the flow path direction of the cell) was 100 mm.
  • the cell density was 93 cells / cm 2
  • the thickness of the partition was 101.6 ⁇ m
  • the porosity of the partition was 45%
  • the average pore diameter of the partition was 8.6 ⁇ m.
  • the thickness of the electrode layer was 0.2 mm
  • the thickness of the intermediate layer was 0.2 mm
  • the thickness of the base layer was 0.2 mm.
  • the electrical resistivity at 25 ° C. was measured by the four-terminal method using a test piece made of the same material as the honeycomb structure, the electrode layer, the intermediate layer, the base layer (second layer) and the base layer (first layer).
  • the porosities of the honeycomb structure, the electrode layer, the intermediate layer, the base layer (second layer) and the base layer (first layer) were measured by a mercury porosimeter. Further, the coefficient of thermal expansion of the honeycomb structure, the electrode layer, the intermediate layer, the base layer (second layer) and the base layer (first layer) was measured by the TMA method (thermomechanical analysis). The results of these evaluations are shown in Table 1.
  • a metal electrode was placed on the honeycomb structure on which the base layer was formed, and the portion where the metal electrode and the base layer overlapped was laser welded with a diameter of ⁇ 0.5 mm.
  • Example 6 a sample was prepared in the same manner as in Example 1 except that the intermediate layer was composed only of glass.
  • a sample was prepared in the same manner.
  • a sample was prepared in the same manner.
  • Comparative Example 1 a sample was prepared in the same manner as in Example 1 except that the intermediate layer was not provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

外周壁と、外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、柱状ハニカム構造体の外周壁の表面に配設された電極層と、電極層上に設けられた中間層と、中間層上に設けられた下地層と、下地層上に設けられた金属電極とを備え、中間層の熱膨張率が、電極層の熱膨張率より低い電気加熱式担体。

Description

電気加熱式担体及び排気ガス浄化装置
 本発明は、電気加熱式担体及び排気ガス浄化装置に関する。
 近年、エンジン始動直後の排気ガス浄化性能の低下を改善するため、電気加熱触媒(EHC)が提案されている。EHCは、例えば、導電性セラミックスからなる柱状のハニカム構造体に金属電極を接続し、通電によりハニカム構造体自体を発熱させることで、エンジン始動前に触媒の活性温度まで昇温できるようにしたものである。EHCに電流を流すためには、外部配線に接続された金属電極をEHCに接合させる必要がある。
 特許文献1には、ハニカム構造体、電極層及び電極部を有し、当該電極層及び当該電極部が下地層を介して電気的に接合される電気加熱型触媒用担体において、ハニカム構造体の外周壁に配設された一対の電極層上にスポット状に下地層を配置している。そして、このような構成によれば、電極部を溶接または溶射することで接合する際に、接合されている下地層と接合されていない下地層との間の温度差によるクラックの発生を抑制することができると記載されている。
特開2019-171345号公報
 しかしながら、特許文献1に記載の構成では、電極層上に配置する下地層の熱膨張率が、電極層の熱膨張率より高い場合、ハニカム構造体の昇温に伴う熱膨張差による熱応力が発生する。その結果、下地層と電極層との界面にクラックが発生する問題が生じるおそれがある。
 本発明は上記事情に鑑みて創作されたものであり、電極層と下地層との界面におけるクラックの発生を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することを課題とする。
 上記課題は、以下の本発明によって解決されるものであり、本発明は以下のように特定される。
 (1)外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
 前記柱状ハニカム構造体の外周壁の表面に配設された電極層と、
 前記電極層上に設けられた中間層と、
 前記中間層上に設けられた下地層と、
 前記下地層上に設けられた金属電極と、
を備え、
 前記中間層の熱膨張率が、前記電極層の熱膨張率より低い電気加熱式担体。
 (2)(1)に記載の電気加熱式担体と、
 前記電気加熱式担体を保持する缶体と、
を有する排気ガス浄化装置。
 本発明によれば、電極層と下地層との界面におけるクラックの発生を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することができる。
本発明の実施形態における電気加熱式担体のセルの延伸方向に垂直な断面模式図である。 本発明の実施形態における柱状ハニカム構造体及び電極層の外観模式図である。 本発明の実施形態における柱状ハニカム構造体、電極層、中間層、下地層、及び金属電極の断面模式図である。 本発明の実施形態における柱状ハニカム構造体、電極層、中間層、下地層、及び金属電極の断面模式図である。 本発明の実施形態における電気加熱式担体の下地層の配置例を示す平面模式図である。 実施例に係る昇降温サイクル試験で用いた積層体のサンプルの模式図である。
 次に本発明を実施するための形態を、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(1.電気加熱式担体)
 図1は、本発明の実施形態における電気加熱式担体10のセル18の延伸方向に垂直な断面模式図である。電気加熱式担体10は、柱状ハニカム構造体11と、柱状ハニカム構造体11の外周壁12の表面に配設された電極層13a、13bと、電極層13a、13b上に設けられた中間層20a、20bと、中間層20a、20b上に設けられた下地層16a、16bと、下地層16a、16b上に設けられた金属電極14a、14bとを備えている。
(1-1.柱状ハニカム構造体)
 図2は本発明の実施形態における柱状ハニカム構造体11及び電極層13a、13bの外観模式図を示すものである。柱状ハニカム構造体11は、外周壁12と、外周壁12の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセル18を区画形成する隔壁19とを有する。
 柱状ハニカム構造体11の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、柱状ハニカム構造体11の大きさは、耐熱性を高める(外周壁の周方向に入るクラックを抑制する)という理由により、底面の面積が2000~20000mm2であることが好ましく、5000~15000mm2であることが更に好ましい。
 柱状ハニカム構造体11は、セラミックス製であり、導電性を有する。導電性の柱状ハニカム構造体11が通電してジュール熱により発熱可能である限り、当該セラミックスの電気抵抗率については特に制限はないが、0.1~200Ωcmであることが好ましく、1~200Ωcmであることより好ましく、10~100Ωcmであることが更に好ましい。本発明において、柱状ハニカム構造体11の電気抵抗率は、四端子法により25℃で測定した値とする。
 柱状ハニカム構造体11の材質としては、限定的ではないが、アルミナ、ムライト、ジルコニア及びコージェライト等の酸化物系セラミックス、炭化珪素、窒化珪素及び窒化アルミ等の非酸化物系セラミックスからなる群から選択することができる。また、炭化珪素-金属珪素複合材や炭化珪素/グラファイト複合材等を用いることもできる。これらの中でも、耐熱性と導電性の両立の観点から、柱状ハニカム構造体11の材質は、珪素-炭化珪素複合材又は炭化珪素を主成分とするセラミックスを含有していることが好ましい。柱状ハニカム構造体11の材質が、珪素-炭化珪素複合材を主成分とするものであるというときは、柱状ハニカム構造体11が、珪素-炭化珪素複合材(合計質量)を、全体の90質量%以上含有していることを意味する。ここで、珪素-炭化珪素複合材は、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものであり、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されていることが好ましい。柱状ハニカム構造体11の材質が、炭化珪素を主成分とするものであるというときは、柱状ハニカム構造体11が、炭化珪素(合計質量)を、全体の90質量%以上含有していることを意味する。
 柱状ハニカム構造体11が、珪素-炭化珪素複合材を含んでいる場合、柱状ハニカム構造体11に含有される「骨材としての炭化珪素粒子の質量」と、柱状ハニカム構造体11に含有される「結合材としての珪素の質量」との合計に対する、柱状ハニカム構造体11に含有される「結合材としての珪素の質量」の比率が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。10質量%以上であると、柱状ハニカム構造体11の強度が十分に維持される。40質量%以下であると、焼成時に形状を保持しやすくなる。
 セル18の延伸方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これらのなかでも、四角形及び六角形が好ましい。セル形状をこのようにすることにより、柱状ハニカム構造体11に排気ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。構造強度及び加熱均一性を両立させやすいという観点からは、四角形が特に好ましい。
 セル18を区画形成する隔壁19の厚みは、0.1~0.3mmであることが好ましく、0.15~0.25mmであることがより好ましい。隔壁19の厚みが0.1mm以上であることで、ハニカム構造体の強度が低下するのを抑制可能である。隔壁19の厚みが0.3mm以下であることで、ハニカム構造体を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなるのを抑制できる。本発明において、隔壁19の厚みは、セル18の延伸方向に垂直な断面において、隣接するセル18の重心同士を結ぶ線分のうち、隔壁19を通過する部分の長さとして定義される。
 柱状ハニカム構造体11は、セル18の流路方向に垂直な断面において、セル密度が40~150セル/cm2であることが好ましく、70~100セル/cm2であることが更に好ましい。セル密度をこのような範囲にすることにより、排気ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cm2以上であると、触媒担持面積が十分に確保される。セル密度が150セル/cm2以下であると柱状ハニカム構造体11を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなりすぎることが抑制される。セル密度は、外側壁12部分を除く柱状ハニカム構造体11の一つの底面部分の面積でセル数を除して得られる値である。
 柱状ハニカム構造体11の外周壁12を設けることは、柱状ハニカム構造体11の構造強度を確保し、また、セル18を流れる流体が外周壁12から漏洩するのを抑制する観点で有用である。具体的には、外周壁12の厚みは好ましくは0.1mm以上であり、より好ましくは0.15mm以上、更により好ましくは0.2mm以上である。但し、外周壁12を厚くしすぎると高強度になりすぎてしまい、隔壁19との強度バランスが崩れて耐熱衝撃性が低下することから、外周壁12の厚みは好ましくは1.0mm以下であり、より好ましくは0.7mm以下であり、更により好ましくは0.5mm以下である。ここで、外周壁12の厚みは、厚みを測定しようとする外周壁12の箇所をセル18の延伸方向に垂直な断面で観察したときに、当該測定箇所における外周壁12の接線に対する法線方向の厚みとして定義される。
 隔壁19は多孔質とすることができる。隔壁19の気孔率は、35~60%であることが好ましく、35~45%であることが更に好ましい。気孔率が35%以上であると、焼成時の変形をより抑制しやすくなる。気孔率が60%以下であるとハニカム構造体の強度が十分に維持される。気孔率は、水銀ポロシメータにより測定した値である。
 柱状ハニカム構造体11の隔壁19の平均細孔径は、2~15μmであることが好ましく、4~8μmであることが更に好ましい。平均細孔径が2μm以上であると、電気抵抗率が大きくなりすぎることが抑制される。平均細孔径が15μm以下であると、電気抵抗率が小さくなりすぎることが抑制される。平均細孔径は、水銀ポロシメータにより測定した値である。
(1-2.電極層)
 柱状ハニカム構造体11の外周壁12の表面に、電極層13a、13bが配設されている。電極層13a、13bは、柱状ハニカム構造体11の中心軸を挟んで対向するように配設された一対の電極層13a、13bであってもよい。
 電極層13a、13bの形成領域に特段の制約はないが、柱状ハニカム構造体11の均一発熱性を高めるという観点からは、各電極層13a、13bは外周壁12の外面上で外周壁12の周方向及びセル18の延伸方向に帯状に延設することが好ましい。具体的には、各電極層13a、13bは、柱状ハニカム構造体11の両底面間の80%以上の長さに亘って、好ましくは90%以上の長さに亘って、より好ましくは全長に亘って延びていることが、電極層13a、13bの軸方向へ電流が広がりやすいという観点から望ましい。
 各電極層13a、13bの厚みは、0.01~5mmであることが好ましく、0.01~3mmであることが更に好ましい。このような範囲とすることにより均一発熱性を高めることができる。各電極層13a、13bの厚みが0.01mm以上であると、電気抵抗が適切に制御され、より均一に発熱することができる。5mm以下であると、キャニング時に破損する恐れが低減される。各電極層13a、13bの厚みは、厚みを測定しようとする電極層の箇所をセル18の延伸方向に垂直な断面で観察したときに、各電極層13a、13bの外面の当該測定箇所における接線に対する法線方向の厚みとして定義される。
 各電極層13a、13bの電気抵抗率を柱状ハニカム構造体11の電気抵抗率より低くすることにより、電極層に優先的に電気が流れやすくなり、通電時に電気がセル18の流路方向及び周方向に広がりやすくなる。電極層13a、13bの電気抵抗率は、柱状ハニカム構造体11の電気抵抗率の1/10以下であることが好ましく、1/20以下であることがより好ましく、1/30以下であることが更により好ましい。但し、両者の電気抵抗率の差が大きくなりすぎると対向する電極層の端部間に電流が集中して柱状ハニカム構造部の発熱が偏ることから、電極層13a、13bの電気抵抗率は、柱状ハニカム構造体11の電気抵抗率の1/200以上であることが好ましく、1/150以上であることがより好ましく、1/100以上であることが更により好ましい。本発明において、電極層13a、13bの電気抵抗率は、四端子法により25℃で測定した値とする。
 各電極層13a、13bの材質は、金属及び導電性セラミックスとの複合材(サーメット)を使用することができる。金属としては、例えばCr、Fe、Co、Ni、Si又はTiの単体金属又はこれらの金属よりなる群から選択される少なくとも一種の金属を含有する合金が挙げられる。導電性セラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられる。金属及び導電性セラミックスとの複合材(サーメット)の具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。
(1-3.中間層)
 本発明の実施形態における電気加熱式担体10は、電極層13a、13b上に中間層20a、20bが設けられている。中間層20a、20bの熱膨張率は、電極層13a、13bの熱膨張率より低い。このような構成によれば、電極層13a、13bと、下地層16a、16bとの間に、電極層13a、13bよりも熱膨張率が低い層を設けているため、電気加熱式担体10の加熱によって電極層13a、13bが昇温しても、中間層20a、20bの熱膨張が電極層13a、13bの熱膨張より小さくなる。このため、電極層13a、13bと下地層16a、16bとの熱膨張率差に伴う熱応力を緩和し、電極層13a、13bと下地層16a、16bとの界面に発生するクラックを良好に抑制することができる。
 中間層20a、20bの熱膨張率が電極層13a、13bの熱膨張率より低ければ、上記効果を得ることができるが、より顕著な効果を得るには、中間層20a、20bの熱膨張率が、電極層13a、13bの熱膨張率に対して、0.3~0.9倍であるのが好ましい。中間層20a、20bの熱膨張率が、電極層13a、13bの熱膨張率に対して、0.3倍以上であれば、電極層13a、13bと下地層16a、16bとの熱膨張率差に伴う熱応力をより緩和することができ、クラックは更に発生しにくくなる。中間層20a、20bの熱膨張率が、電極層13a、13bの熱膨張率に対して、0.9倍以下であると、中間層20a、20bが、電極層13a、13bと下地層16a、16bとの熱膨張率差に伴う熱応力をより緩和し、電極層13a、13bと下地層16a、16bとの界面に発生するクラックをより低減可能である点から好ましい。中間層20a、20bの熱膨張率は、電極層13a、13bの熱膨張率に対して、0.3~0.7倍であることがより好ましく、0.4~0.6倍であることが更により好ましい。中間層20a、20bの熱膨張率は、中間層20a、20bの熱膨張率より低い限り、適宜調整することができ、例えば、0.5~7.0ppm/Kとすることができる。
 中間層20a、20bの熱膨張率が、下地層16a、16bの熱膨張率より低いことが好ましい。このような構成によれば、中間層20a、20bが前述のクラックの発生を抑制する役割を果たすことがより高まるほか、下地層16a、16bの熱膨張率をより自由に設定することができ、ひいては材料の選択範囲が広がるという利点がある。
 中間層20a、20bを、電極層13a、13bと、下地層16a、16bとの間に設けることによって、前述のクラックの発生を抑制することの他に、電極層13a、13b中の、例えばSiまたはSiCと、下地層16a、16b中の金属成分との反応を抑制することができ、電極層13a、13bの劣化を良好に抑制することができる。このような反応防止層としての機能を有するために、中間層20a、20bの気孔率は5%以下であるのが好ましく、3%以下であるのがより好ましく、1%以下であるのが更により好ましい。気孔率は、水銀ポロシメータにより測定した値である。
 また、図示では中間層20a、20bが連続した層を形成しているが(図1、図3、図4参照)、中間層20a、20bは、必ずしも単独で層を形成する必要はなく、前述の中間層20a、20bの機能を果たすことができる限り、任意の形態で配置することができる。中間層20a、20bは、例えば、2層または3層以上が積層して形成されていてもよい。例えば、中間層20a、20bを2層とする場合、一方の層が電極層より熱膨張率が低い層とし、他方の層が気孔率5%以下の層にして反射防止効果を得る構成として、機能分離させてもよい。中間層20a、20bがこのように複数の層で構成されている場合、それらの熱膨張率が一定である必要はなく、電極層13a、13bの熱膨張率より低い限り、連続的又は非連続的に変動してもよいが、熱応力の緩和の観点から、連続的に変動することが好ましい。また、中間層20a、20bがこのように複数の層で構成されている場合、複数の中間層20a、20bのそれぞれの熱膨張率が、下地層16a、16bの熱膨張率より低いことが、より好ましい形態である。
 中間層20a、20bの厚みは、3~400μmであることが好ましい。中間層20a、20bの厚みを3μm以上とすることにより、その効果をより顕著に得ることができる。一方、中間層20a、20bの厚みを400μm以下とすることにより、柱状ハニカム構造体11に流れる電流に対する影響を抑えることができ、電気加熱式担体10の本来の機能に対する影響を最小限にすることができる。以上の観点から、中間層20a、20bの厚みは5~200μmであることが更に好ましい。
 中間層20a、20bの熱膨張率が、電極層13a、13bの熱膨張率より低い限り、本発明の課題を解決できるが、良好な接合強度を保ち、接合部分の電気抵抗の変化率及び接合部分の接触熱抵抗を低く保つ観点から、中間層20a、20bは、酸化物セラミック、又は金属若しくは金属化合物と酸化物セラミックとの混合物であることが好ましい。
 中間層20a、20bの金属としては、単体金属又は合金のいずれでもよく、例えばシリコン、アルミニウム、鉄、ステンレス、チタン、タングステン、Ni-Cr合金などを好適に用いることができる。中間層20a、20bの金属化合物としては、酸化物セラミック以外の物であって、金属酸化物、金属窒化物、金属炭化物、金属珪化物、金属ホウ化物、複合酸化物等が挙げられ、例えばFeSi2、CrSi2などを好適に用いることができる。中間層20a、20bの金属及び金属化合物は、いずれも、単独一種でもよく、二種以上を併用してもよい。酸化物セラミックとしては、具体的には、ガラス、コージェライト、ムライトなどがある。ガラスは、B、Mg、Al、Si、P、Ti及びZrからなる群から選択される少なくとも1種の成分からなる酸化物を更に含んでも良い。上記群より選択される少なくとも1種を更に含んでいると、中間層20a、20bの強度がより向上する点で更に好ましい。
 中間層20a、20bの表面粗さRa(JIS B 0601-2001;算術平均粗さ)は、300μm以下であるのが好ましい。中間層20a、20bの表面粗さRaが300μm以下であると、中間層20a、20bと下地層16a、16bとの接合強度が向上するという効果が得られる。中間層20a、20bの表面粗さRaは、5~200μmであるのがより好ましく、5~100μmであるのが更により好ましい。
(1-4.下地層)
 本発明の実施形態における電気加熱式担体10は、中間層20a、20b上に、下地層16a、16bが設けられている。下地層16a、16bは、金属若しくは金属化合物と、酸化物セラミックとの混合物であることが好ましい。金属若しくは金属化合物としては、上記中間層20a、20bで用いられる金属若しくは金属化合物の種類と同様のものが例示される。また、酸化物セラミックとしては、上記中間層20a、20bで用いられる金属若しくは金属化合物の種類と同様のものが例示される。
 下地層16a、16bの数及び配置の仕方は制限されず、金属電極14a、14bを固定するのに必要な範囲内で適宜設定できる。また、下地層16a、16bの形状は、平面視で円形状、楕円形状、多角形状など、任意の形状に形成することができる。なお、下地層16a、16bの形状は、生産性及び実用性の観点から、円形又は矩形であることが好ましい。
 柱状ハニカム構造体11の外周壁12の表面において、下地層16a、16bの投影面が中間層20a、20bの投影面に含まれることが好ましい。このような構成によれば、電極層13a、13bと、下地層16a、16bとの間に中間層20a、20bが常に介在するため、電極層13a、13bと、下地層16a、16bとの間の熱膨張差による熱応力をより確実に抑制することができる。
 下地層16a、16bは、単層で構成されていてもよく、2層または3層以上の複数の層を積層することで構成されていてもよい。図3に、下地層16a、16bが2層で構成されている例を示す。図3に示す実施形態では、下地層16a、16bが、金属電極14a、14b側に設けられ、金属電極14a、14bと接合する第1の層21と、中間層20a、20b側に設けられ、柱状ハニカム構造体11の外周壁12の表面において、第1の層21の投影面より広い投影面を有する第2の層22とを有している。このとき、下地層16a、16bを構成する第1の層21を、金属電極14a、14bと接合する際のレーザー溶接の下地となる溶接下地層とすることができる。また、第2の層22は、柱状ハニカム構造体11の外周壁12の表面において、第1の層21の投影面より広い投影面を有するため、金属電極14a、14bから第1の層21を通って来る電流を、柱状ハニカム構造体11の軸方向へ拡散するための電流拡散層とすることができる。また、第1の層21及び第2の層22は、これに限らず、種々の目的に応じて、適宜、種々の機能を付与することができる。
 図4に、下地層16a、16bが3層で構成されている例を示す。図4に示す実施形態では、下地層16a、16bが、金属電極14a、14b側に設けられ、金属電極14a、14bと接合する第1の層21と、中間層20a、20b側に設けられた第2の層22と、第1の層21と第2の層22との間に設けられた第3の層23とを有している。このとき、第1の層21及び第3の層23を溶接下地層とし、さらに、両者を別材料で形成してもよい。例えば、金属電極14a、14b側の溶接下地層を構成する第1の層21を、金属電極14a、14bとの溶接性を向上させた材料で形成してもよい。また、中間層20a、20b側の溶接下地層を構成する第3の層23を、電流拡散層を構成する第2の層22と同材料で形成することで、第3の層23と第2の層22との接合性を向上させることができる。
(1-5.金属電極)
 金属電極14a、14bは、下地層16a、16b上に設けられている。金属電極14a、14bは、一方の金属電極14aが、他方の金属電極14bに対して、柱状ハニカム構造体11の中心軸を挟んで対向するように配設される一対の金属電極であってもよい。金属電極14a、14bは、電極層13a、13bを介して電圧を印加すると通電してジュール熱により柱状ハニカム構造体11を発熱させることが可能である。このため、電気加熱式担体10はヒーターとしても好適に用いることができる。印加する電圧は12~900Vが好ましく、48~600Vが更に好ましいが、印加する電圧は適宜変更可能である。
 金属電極14a、14bの材質としては、金属であれば特段の制約はなく、単体金属及び合金等を採用することもできるが、耐食性、電気抵抗率及び線膨張率の観点から例えば、Cr、Fe、Co、Ni及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金がより好ましい。金属電極14a、14bの形状及び大きさは、特に限定されず、電気加熱式担体10の大きさや通電性能等に応じて、適宜設計することができる。
 金属電極14a、14bは2つ以上の電極部15を有していてもよい。各電極部15は、下地層16a、16bの外表面に固定されてもよい。ここで、電極部15は、溶接により下地層16a、16bに固定されてもよく、溶射により形成される固定層で下地層16a、16bに固定されてもよい。
 図5に示される実施形態では、金属電極14a、14bはそれぞれ3つの櫛状電極部15を有し、それぞれの電極部15は2つの下地層16a、16bに固定されている。このように、櫛状電極部15と電極層13a、13bとの電気的接続は、互いに離間した2つ以上の下地層16a、16bにより実現されていてもよい。
 なお、電極部15は、図5では櫛状に成形されているが、下地層16a、16bに固定され電極層13a、13bと電気的に接続し得る限り、または、溶射により電極層13a、13bに固定され得る限り、いかなる形状も採用できる。
(1-6.触媒担体)
 電気加熱式担体10に触媒を担持することにより、電気加熱式担体10を触媒担体として使用することができる。複数のセル18の流路には、例えば、自動車排気ガス等の流体を流すことができる。触媒としては、例えば、貴金属系触媒又はこれら以外の触媒が挙げられる。貴金属系触媒としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)といった貴金属をアルミナ細孔表面に担持し、セリア、ジルコニア等の助触媒を含む三元触媒や酸化触媒、又は、アルカリ土類金属と白金を窒素酸化物(NOx)の吸蔵成分として含むNOx吸蔵還元触媒(LNT触媒)が例示される。貴金属を用いない触媒として、銅置換又は鉄置換ゼオライトを含むNOx選択還元触媒(SCR触媒)等が例示される。また、これらの触媒からなる群から選択される2種以上の触媒を用いてもよい。なお、触媒の担持方法についても特に制限はなく、従来、ハニカム構造体に触媒を担持する担持方法に準じて行うことができる。
(2.電気加熱式担体の製造方法)
 次に、本発明の実施形態に係る電気加熱式担体10を製造する方法について例示的に説明する。本発明の電気加熱式担体10の製造方法は一実施形態において、電極層形成ペースト付き未焼成ハニカム構造部を得る工程A1と、電極層形成ペースト付き未焼成ハニカム構造部を焼成して柱状ハニカム構造体を得る工程A2と、柱状ハニカム構造体の電極層上に、中間層形成ペースト及び下地層形成ペーストを設けた後、焼成して中間層及び下地層付き柱状ハニカム構造体を得る工程A3と、柱状ハニカム構造体の下地層に金属電極を溶接する工程A4とを含む。
 工程A1は、ハニカム構造部の前駆体であるハニカム成形体を作製し、ハニカム成形部の側面に電極層形成ペーストを塗布して、電極層形成ペースト付き未焼成ハニカム構造部を得る工程である。ハニカム成形体の作製は、公知のハニカム構造部の製造方法におけるハニカム成形体の作製方法に準じて行うことができる。例えば、まず、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~50μmが好ましく、3~40μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~35μmであることが好ましい。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。なお、これは、ハニカム構造部の材質を、珪素-炭化珪素系複合材とする場合の成形原料の配合であり、ハニカム構造部の材質を炭化珪素とする場合には、金属珪素は添加しない。
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。造孔材が吸水性樹脂の場合には、造孔材の平均粒子径は吸水後の平均粒子径のことである。
 次に、得られた成形原料を混練して坏土を形成した後、坏土を押出成形してハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。次に、得られたハニカム成形体について、乾燥を行うことが好ましい。ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、ハニカム成形体の両底部を切断して所望の長さとすることができる。乾燥後のハニカム成形体をハニカム乾燥体と呼ぶ。
 次に、電極層を形成するための電極層形成ペーストを調合する。電極層形成ペーストは、電極層の要求特性に応じて配合した原料粉(金属粉末、及び、セラミックス粉末等)に各種添加剤を適宜添加して混練することで形成することができる。電極層を積層構造とする場合、第一の電極層用のペースト中の金属粉末の平均粒子径に比べて、第二の電極層用のペースト中の金属粉末の平均粒子径を大きくすることにより、中間層と電極層の接合強度が向上する傾向にある。金属粉末の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
 次に、得られた電極層形成ペーストを、ハニカム成形体(典型的にはハニカム乾燥体)の側面に塗布し、電極層形成ペースト付き未焼成ハニカム構造部を得る。電極層形成ペーストを調合する方法、及び電極層形成ペーストをハニカム成形体に塗布する方法については、公知のハニカム構造体の製造方法に準じて行うことができるが、電極層をハニカム構造部に比べて低い電気抵抗率にするために、ハニカム構造部よりも金属の含有比率を高めたり、金属粒子の粒径を小さくしたりすることができる。
 柱状ハニカム構造体の製造方法の変更例として、工程A1において、電極層形成ペーストを塗布する前に、ハニカム成形体を一旦焼成してもよい。すなわち、この変更例では、ハニカム成形体を焼成してハニカム焼成体を作製し、当該ハニカム焼成体に、電極層形成ペーストを塗布する。
 工程A2では、電極層形成ペースト付き未焼成ハニカム構造部を焼成して、柱状ハニカム構造体を得る。焼成を行う前に、電極層形成ペースト付き未焼成ハニカム構造部を乾燥してもよい。また、焼成の前に、バインダ等を除去するため、脱脂を行ってもよい。焼成条件としては、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸化処理を行うことが好ましい。脱脂及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。
 工程A3では、柱状ハニカム構造体上の電極層の表面に、中間層を形成するための材料(中間層形成用材料)のペーストを塗布し、更にその上に、下地層を形成するための導電性材料のペーストを塗布する。このように調製したペーストを曲面印刷機などで所定の配置となるように塗布し、これを乾燥した後、焼成することで、中間層及び下地層を形成する。
 中間層形成用材料のペーストとしては、例えば、ガラス材料及びステンレスなどの金属粉を用いて調製する。このガラス材料及びステンレスなどの金属粉に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えることにより、中間層形成ペーストを調製することができる。また、中間層は、中間層形成用材料を溶射によって、所定の配置、形状となるように形成してもよい。
 下地層を形成するための導電性材料のペーストとしては、例えば、金属粉(NiCr系材料、ステンレス等の金属粉)をガラス材料に混合する。このとき、体積割合で金属比率20~85体積%、ガラス材料を15~80体積%で混合し、セラミック原料を調製することができる。次いで、このセラミック原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えることにより、下地層形成ペーストを調製することができる。また、下地層は、導電性材料を溶射によって、所定の配置、形状となるように形成してもよい。
 工程A4では、工程A3によって得られた中間層及び下地層付き柱状ハニカム構造体の下地層上に、金属電極をレーザー溶接または超音波溶接により固定する。このようにして、本発明の実施形態に係る電気加熱式担体10が得られる。
(3.排気ガス浄化装置)
 上述した本発明の実施形態に係る電気加熱式担体は、排気ガス浄化装置に用いることができる。当該排気ガス浄化装置は、電気加熱式担体と、当該電気加熱式担体を保持する缶体とを有する。排気ガス浄化装置において、電気加熱式担体は、エンジンからの排気ガスを流すための排気ガス流路の途中に設置される。缶体としては、電気加熱式担体を収容する金属製の筒状部材等を用いることができる。
 以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。
<実施例1>
(1.円柱状の坏土の作製)
 炭化珪素(SiC)粉末と金属珪素(Si)粉末とを80:20の質量割合で混合してセラミックス原料を調製した。そして、セラミックス原料に、バインダとしてヒドロキシプロピルメチルセルロース、造孔材として吸水性樹脂を添加すると共に、水を添加して成形原料とした。そして、成形原料を真空土練機により混練し、円柱状の坏土を作製した。バインダの含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに7質量部とした。造孔材の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに3質量部とした。水の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに42質量部とした。炭化珪素粉末の平均粒子径は20μmであり、金属珪素粉末の平均粒子径は6μmであった。また、造孔材の平均粒子径は20μmであった。炭化珪素粉末、金属珪素粉末及び造孔材の平均粒子径は、レーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
(2.ハニカム乾燥体の作製)
 得られた円柱状の坏土を碁盤目状の口金構造を有する押出成形機を用いて成形し、セルの流路方向に垂直な断面における各セル形状が正方形である円柱状ハニカム成形体を得た。このハニカム成形体を高周波誘電加熱乾燥した後、熱風乾燥機を用いて120℃で2時間乾燥し、両底面を所定量切断して、ハニカム乾燥体を作製した。
(3.電極層形成ペーストの調製)
 金属珪素(Si)粉末、炭化珪素(SiC)粉末、メチルセルロース、グリセリン、及び水を、自転公転攪拌機で混合して、電極層形成ペーストを調製した。Si粉末、及びSiC粉末は体積比で、Si粉末:SiC粉末=40:60となるように配合した。また、Si粉末、及びSiC粉末の合計を100質量部としたときに、メチルセルロースは0.5質量部であり、グリセリンは10質量部であり、水は38質量部であった。金属珪素粉末の平均粒子径は6μmであった。炭化珪素粉末の平均粒子径は35μmであった。これらの平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
(4.電極層形成ペーストの塗布及び焼成)
 次に、この電極層形成ペーストを曲面印刷機によって、ハニカム乾燥体に対して適切な面積及び膜厚で塗布し、さらに熱風乾燥機で120℃、30分乾燥した後、ハニカム乾燥体と共にAr雰囲気にて1400℃で3時間焼成し、柱状ハニカム構造体とした。
(5.中間層形成ペーストの調製)
 SUS430:ガラス=20体積%:80体積%の割合で混合した原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えてペースト原料を作製した。
(6.下地層形成ペーストの調製)
 SUS430の金属粉を、体積割合で金属比率40%となるように、ガラス材料に混合し、セラミック原料を作製した。このセラミック原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えて、第2の層(下地層)を形成するためのペースト原料を作製した。また、SUS430の金属粉を、体積割合で金属比率40%となるように、ガラス材料に混合し、セラミック原料を作製した。このセラミック原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えて、第1の層(下地層)を形成するためのペースト原料を作製した。第1の層及び第2の層を形成するためのペースト原料において、それぞれレーザー回折法で測定した金属粉の平均粒子径は10μmであった。
(7.中間層形成ペースト及び下地層形成ペーストの塗布及び焼成)
 曲面印刷機によって、柱状ハニカム構造体の電極層に対して、上記の中間層形成ペースト、下地層(第2の層)形成ペーストを平膜状に、及び、下地層(第1の層)形成ペーストをスポット状に、それぞれこの順で塗布した。続いて、熱風乾燥機で120℃、30分乾燥した後、Ar雰囲気にて1100℃で1時間焼成した。
 ハニカム構造体は、底面が直径100mmの円形であり、高さ(セルの流路方向における長さ)が100mmであった。セル密度は93セル/cm2であり、隔壁の厚みは101.6μmであり、隔壁の気孔率は45%であり、隔壁の平均細孔径は8.6μmであった。電極層の厚みは0.2mmであり、中間層の厚みは0.2mmであり、下地層の厚みは0.2mmであった。ハニカム構造体、電極層、中間層、下地層(第2の層)及び下地層(第1の層)と同一材質の試験片を用いて25℃における電気抵抗率を四端子法により測定した。また、ハニカム構造体、電極層、中間層、下地層(第2の層)及び下地層(第1の層)の気孔率を、水銀ポロシメータにより測定した。また、ハニカム構造体、電極層、中間層、下地層(第2の層)及び下地層(第1の層)の熱膨張率をTMA法(熱機械分析)によって測定した。これらの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(8.電極の固定)
 下地層が形成されたハニカム構造体上に金属電極を配置し、金属電極と下地層が重なった部分について、φ0.5mmの径でレーザー溶接した。
<実施例2>
 実施例2は、中間層を、FeSi2:ガラス=10体積%:90体積%で構成した以外は、実施例1と同様にサンプルを作製した。
<実施例3>
 実施例3は、中間層を、SUS430:ガラス=10体積%:90体積%で構成した以外は、実施例1と同様にサンプルを作製した。
<実施例4>
 実施例4は、中間層を、SUS304:ガラス=6体積%:94体積%で構成した以外は、実施例1と同様にサンプルを作製した。
<実施例5>
 実施例5は、中間層を、CrSi2:ガラス=10体積%:90体積%で構成した以外は、実施例1と同様にサンプルを作製した。
<実施例6>
 実施例6は、中間層を、ガラスのみで構成した以外は、実施例1と同様にサンプルを作製した。
<実施例7>
 実施例7は、中間層を、SUS430:ガラス=10体積%:90体積%で構成し、造孔材(吸水性樹脂)を添加して気孔率を10%とした以外は、実施例1と同様にサンプルを作製した。
<実施例8>
 実施例8は、中間層を、SUS430:ガラス=10体積%:90体積%で構成し、造孔材(吸水性樹脂)を添加して気孔率を20%とした以外は、実施例1と同様にサンプルを作製した。
<比較例1>
 比較例1は、中間層を設けなかった以外は、実施例1と同様にサンプルを作製した。
<比較例2>
 比較例2は、中間層を、SUS304:ガラス=20体積%:80体積%で構成した以外は、実施例1と同様にサンプルを作製した。
(9.冷熱耐久性評価試験)
 このようにして作製した、金属電極、下地層(第1の層)、下地層(第2の層)、中間層、電極層及び基材からなる積層体を加熱して、50℃から950℃まで昇温させ、続いて、冷却して950℃から50℃まで降温させた。この操作を1サイクルとして、合計50サイクルを連続実施した(昇降温サイクル試験)。
 次に、昇降温サイクル試験実施後の積層体から、基材のセル方向の長さが15~20mmとなるようにサンプルを切り出し、図6(A)に示すように、ハニカム構造体の軸方向に沿って、スポット状の下地層(第1の層)の中央部分で切断した。当該切断は、積層体のサンプルを樹脂で固めた状態で行った。積層体のサンプルの切断面の模式図を図6(B)に示す。
 次に、切断面をSEM(電子走査型顕微鏡)によって観察し、下地層界面のクラックの有無を確認した。
 上述の試験条件及び評価結果を表2に示す。表2において、「CTE」は「熱膨張率」を示す。
Figure JPOXMLDOC01-appb-T000002
(10.考察)
 実施例1~8では、下地層界面におけるクラック発生数が、20測定箇所のうち、0~16箇所以下であり、昇降温サイクルによる下地層界面でのクラックの発生を抑制することができた。
 比較例1は、中間層を設けておらず、下地層界面におけるクラックが、20測定箇所全てにおいて確認された。
 比較例2は、中間層の熱膨張率が、電極層の熱膨張率より高いため、下地層界面におけるクラックが、20測定箇所全てにおいて確認された。
10 電気加熱式担体
11 柱状ハニカム構造体
12 外周壁
13a、13b 電極層
14a、14b 金属電極
15 電極部
16a、16b 下地層
18 セル
19 隔壁
20a、20b 中間層
21 第1の層
22 第2の層
23 第3の層

Claims (12)

  1.  外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
     前記柱状ハニカム構造体の外周壁の表面に配設された電極層と、
     前記電極層上に設けられた中間層と、
     前記中間層上に設けられた下地層と、
     前記下地層上に設けられた金属電極と、
    を備え、
     前記中間層の熱膨張率が、前記電極層の熱膨張率より低い電気加熱式担体。
  2.  前記中間層の熱膨張率が、前記電極層の熱膨張率に対して、0.3~0.9倍である請求項1に記載の電気加熱式担体。
  3.  前記中間層の熱膨張率が、0.5~7.0ppm/Kである請求項1または2に記載の電気加熱式担体。
  4.  前記中間層の気孔率が、5%以下である請求項1~3のいずれか一項に記載の電気加熱式担体。
  5.  前記中間層の厚みが、3~400μmである請求項1~4のいずれか一項に記載の電気加熱式担体。
  6.  前記中間層の熱膨張率が、前記下地層の熱膨張率より低い請求項1~5のいずれか一項に記載の電気加熱式担体。
  7.  前記中間層の材質が、酸化物セラミック、又は金属若しくは金属化合物と酸化物セラミックとの混合物である請求項1~6のいずれか一項に記載の電気加熱式担体。
  8.  前記柱状ハニカム構造体の外周壁の表面において、前記下地層の投影面が前記中間層の投影面に含まれる請求項1~7のいずれか一項に記載の電気加熱式担体。
  9.  前記下地層が、
     前記金属電極側に設けられ、前記金属電極と接合する第1の層と、
     前記中間層側に設けられ、前記柱状ハニカム構造体の外周壁の表面において、前記第1の層の投影面より広い投影面を有する第2の層と、
    を有する請求項1~8のいずれか一項に記載の電気加熱式担体。
  10.  前記下地層が、前記第1の層と、前記第2の層との間に、第3の層を更に有する請求項9に記載の電気加熱式担体。
  11.  前記柱状ハニカム構造体の外周壁の表面に配設された電極層が、前記柱状ハニカム構造体の外周壁の表面に、前記柱状ハニカム構造体の中心軸を挟んで対向するように配設された一対の電極層である請求項1~10のいずれか一項に記載の電気加熱式担体。
  12.  請求項1~11のいずれか一項に記載の電気加熱式担体と、
     前記電気加熱式担体を保持する缶体と、
    を有する排気ガス浄化装置。
PCT/JP2021/009652 2020-03-18 2021-03-10 電気加熱式担体及び排気ガス浄化装置 WO2021187281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508264A JP7259133B2 (ja) 2020-03-18 2021-03-10 電気加熱式担体及び排気ガス浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048166 2020-03-18
JP2020-048166 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187281A1 true WO2021187281A1 (ja) 2021-09-23

Family

ID=77771837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009652 WO2021187281A1 (ja) 2020-03-18 2021-03-10 電気加熱式担体及び排気ガス浄化装置

Country Status (2)

Country Link
JP (1) JP7259133B2 (ja)
WO (1) WO2021187281A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241753A (ja) * 1997-02-24 1998-09-11 Ngk Spark Plug Co Ltd セラミックスと金属端子との接合構造
JP2018172258A (ja) * 2017-03-31 2018-11-08 日本碍子株式会社 導電性ハニカム構造体
JP2019209245A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 電気加熱式触媒装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241753A (ja) * 1997-02-24 1998-09-11 Ngk Spark Plug Co Ltd セラミックスと金属端子との接合構造
JP2018172258A (ja) * 2017-03-31 2018-11-08 日本碍子株式会社 導電性ハニカム構造体
JP2019209245A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 電気加熱式触媒装置

Also Published As

Publication number Publication date
JP7259133B2 (ja) 2023-04-17
JPWO2021187281A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6626524B2 (ja) 電気加熱型触媒用担体
JP7186643B2 (ja) 電気加熱型担体、排気ガス浄化装置、電気加熱型担体の製造方法、接合体及び接合体の製造方法
US10655526B1 (en) Support for electric heating type catalyst and exhaust gas purifying device
CN112627944B (zh) 电加热式载体及废气净化装置
JP7155054B2 (ja) 電気加熱式担体及び排気ガス浄化装置
JP7448632B2 (ja) 電気加熱式コンバータ及び電気加熱式担体
WO2021176928A1 (ja) 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
WO2021166309A1 (ja) 電気加熱式担体及び排気ガス浄化装置
JP7335836B2 (ja) 電気加熱型担体、排気ガス浄化装置及び電気加熱型担体の製造方法
WO2021187281A1 (ja) 電気加熱式担体及び排気ガス浄化装置
CN112443377B (zh) 电加热式载体、废气净化装置以及废气净化装置的制造方法
WO2021065059A1 (ja) 電気加熱式担体、排気ガス浄化装置及びセラミックス-金属接合体
WO2021106261A1 (ja) 電気加熱式担体及び排気ガス浄化装置
WO2021192383A1 (ja) 電気加熱式担体及び排気ガス浄化装置
WO2021176785A1 (ja) 電気加熱式担体、排気ガス浄化装置及び金属電極
US11725557B2 (en) Electric heating type carrier and exhaust gas purification device
US20230313721A1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
JP2022111744A (ja) ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
US20230304429A1 (en) Honeycomb structure, electrically heating support, and exhaust gas purification device
JP2024075359A (ja) 電気加熱式触媒コンバータ
JP2021156185A (ja) 排気ガス浄化装置及び導電体付き電気加熱式担体
JP2022158927A (ja) 電気加熱型担体及び排ガス浄化装置
JP2022144219A (ja) ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
JP2023128057A (ja) ハニカム構造体、電気加熱式触媒担体及び排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770649

Country of ref document: EP

Kind code of ref document: A1