WO2021186777A1 - 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム - Google Patents

容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム Download PDF

Info

Publication number
WO2021186777A1
WO2021186777A1 PCT/JP2020/038503 JP2020038503W WO2021186777A1 WO 2021186777 A1 WO2021186777 A1 WO 2021186777A1 JP 2020038503 W JP2020038503 W JP 2020038503W WO 2021186777 A1 WO2021186777 A1 WO 2021186777A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
negative electrode
electrode
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2020/038503
Other languages
English (en)
French (fr)
Inventor
渉太 伊藤
杉政 昌俊
耕平 本蔵
誠之 廣岡
栄二 關
純 川治
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2021186777A1 publication Critical patent/WO2021186777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a capacity recovery device, a method for manufacturing a secondary battery, a capacity recovery method, and a secondary battery system.
  • Patent Document 1 states, "In the capacity recovery method of a lithium ion battery, it is determined whether or not the cause of deterioration is a decrease in lithium ions, and the amount of decrease in lithium ions is calculated.
  • the lithium ion replenishment electrode is connected to the positive electrode or the negative electrode to release lithium ions corresponding to the reduced amount from the lithium ion replenishment electrode, and the lithium ion battery is replenished with lithium ions to recover the battery capacity.
  • the lithium ion replenishment electrode is connected to the positive electrode or the negative electrode to release lithium ions corresponding to the reduced amount from the lithium ion replenishment electrode, and the lithium ion battery is replenished with lithium ions to recover the battery capacity.
  • a negative electrode 1 is produced using a carbon material capable of doping and dedoping lithium as a negative electrode active material
  • a positive electrode 2 is produced using a lithium transition metal composite oxide as a positive electrode active material.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a capacity recovery device for further increasing the cumulative battery capacity of a secondary battery, a method for manufacturing a secondary battery, a capacity recovery method, and a secondary battery system. And.
  • the capacity recovery device of the present invention has a negative electrode connected to a negative electrode having a positive electrode terminal connected to the positive electrode, a negative electrode facing portion facing the positive electrode, and a non-negative negative electrode facing portion other than the positive electrode.
  • a capacity recovery device for a secondary battery including a terminal and a capacity recovery pole terminal connected to a capacity recovery pole that moves a reaction species to the positive or negative electrode, from the capacity recovery pole to the positive or negative electrode. By moving the reaction species, the capacity recovery processing unit that recovers the capacity of the secondary battery, the battery capacity of the secondary battery, the capacity of the negative negative facing portion, and the life of the secondary battery have been reached.
  • the capacity recovery rate, recovery efficiency, and an electricity amount calculation unit for calculating the energization electricity amount which is the amount of electricity to be energized based on at least one parameter selected from the above.
  • the processing unit passes a current corresponding to the amount of energized electricity from the positive electrode terminal or the negative electrode terminal to the capacity recovery electrode terminal, and moves the reaction type of the secondary battery from the capacity recovery electrode to the positive electrode or the negative electrode. It is characterized by being provided with an electricity amount monitoring unit.
  • the cumulative battery capacity that can be used by the final life of the secondary battery can be further increased.
  • FIG. 5 is a cross-sectional view showing an example of a cell applied to a preferred first embodiment. It is sectional drawing which conceptually shows the power generation element 1 of the cell in FIG. It is a circuit diagram which shows an example of the charge / discharge apparatus applied to this embodiment. It is an example of the graph which shows the transition of the capacity retention rate with respect to a preferable example and a comparative example. It is a figure which shows the positive electrode utilization rate after 50 cycles about an Example and a comparative example. It is an exploded perspective view which shows the main part of the cell in the modification.
  • Lithium-ion batteries are a type of non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and, in recent years, as batteries for electric vehicles. However, it is known that a lithium ion battery deteriorates with use and the battery capacity decreases.
  • a lithium metal oxide is generally used as the active material of the positive electrode
  • a carbon material such as graphite is generally used as the active material of the negative electrode.
  • the positive electrode and the negative electrode of a lithium ion battery are formed by adding a binder, a conductive agent, or the like to a group of minute active material particles to form a slurry, and then applying the mixture to a metal foil.
  • the lithium ions released from the active material of the positive electrode are occluded in the active material of the negative electrode, and at the time of discharging, the lithium ions stored in the active material of the negative electrode are occluded and stored in the active material of the positive electrode. In this way, lithium ions move between the electrodes, causing a current to flow between the electrodes.
  • the capacity is reduced by (1) electrical isolation of the positive electrode active material, (2) electrical isolation of the negative electrode active material, and (3) immobilization of lithium ions moving back and forth between the electrodes. do.
  • a lithium ion battery having a third electrode containing lithium inside is manufactured, and lithium ions are replenished from the third electrode to the positive electrode or the negative electrode.
  • lithium ions are replenished from the third electrode to the positive electrode or the negative electrode.
  • the negative electrode capacity is usually designed to be larger than the positive electrode capacity, if excessive lithium ions are added to the facing surfaces of the positive electrode and the negative electrode, the over-discharge region of the positive electrode is used even during high current density discharge. This will accelerate the deterioration of the positive electrode material.
  • Patent Document 1 By applying the technique of Patent Document 1 described above, it is possible to replenish an appropriate amount of lithium ions that suppress the formation of lithium dendrites and restore the capacity of the lithium ion battery. That is, a positive electrode containing a first active material and a second active material having a lower electrode potential than the first active material, a negative electrode, an electrolyte solution, and a lithium ion replenishing electrode (third electrode) that emits lithium ions.
  • the lithium ion battery is equipped with, and the length of the first plateau region, which is the region where the voltage at the time of charging / discharging holds the electrode potential corresponding to the first active material, is measured, and the voltage at the time of charging / discharging is the second active material.
  • the length of the second plateau region which is the region that holds the electrode potential corresponding to the substance, is measured, and when the lengths of the first plateau region and the second plateau region are in a predetermined state, the cause of deterioration is a decrease in lithium ions. It can be determined that there is, and an appropriate amount of lithium ions from the third electrode can be supplied.
  • Patent Document 2 it is possible to realize a method for manufacturing a non-aqueous electrolyte secondary battery in which the utilization efficiency of the positive electrode active material is high and the battery capacity corresponding to the amount of the positive electrode active material used can be obtained. That is, a negative electrode is manufactured using a carbon material capable of doping and dedoping lithium as a negative electrode active material, a positive electrode is manufactured using a lithium transition metal composite oxide as a positive electrode active material, and these negative electrodes and positive electrodes are assembled into a battery to form a battery. In manufacturing, it is advisable to dope the negative electrode with lithium equivalent to the irreversible capacity in advance before assembling the battery.
  • the battery system to which the technique of Patent Document 1 is applied relates to a method of determining the timing of capacity recovery and recovering the capacity, and continues to use a battery having a reduced capacity until it is determined that the capacity recovery is necessary. Become. For example, there is room for improvement in terms of the cumulative battery capacity that can be used by the user before the final battery life, including capacity recovery.
  • the negative electrode is doped with lithium ions corresponding to the irreversible capacity before assembling the secondary battery, so that the cumulative battery capacity can be improved. ..
  • the capacity decrease due to the immobilization of lithium ions due to the use of the battery after the battery is shipped cannot be recovered, and the cumulative battery capacity is pointed out. There is room for further improvement.
  • the over-discharged region of the positive electrode is used even when discharging at a high current density, and there is room for improvement from the viewpoint of deterioration of the positive electrode material. Furthermore, since the negative electrode needs to be precharged in the electrolytic solution during the manufacture of the secondary battery, the number of battery manufacturing processes increases, and the charged negative electrode has high reactivity with moisture, so that humidity control becomes stricter. There is room for improvement in terms of manufacturing costs.
  • deterioration of the positive electrode material is performed in a secondary battery that recovers the reduced battery capacity due to deterioration caused by immobilization of reaction species due to side reactions that occur with repeated charging and discharging. While suppressing it, it improves the cumulative battery capacity that can be used until the final life of the secondary battery.
  • FIG. 1 is a cross-sectional view showing an example of a cell 100 applied to a preferred first embodiment.
  • the cell 100 is a cell of a lithium ion battery, and includes a power generation element 1, a positive electrode terminal 2, a negative electrode terminal 3, a capacity recovery electrode terminal 4, and an exterior material 6.
  • the power generation element 1 includes a separator 5.
  • the exterior material 6 is a laminated film or the like.
  • FIG. 2 is a cross-sectional view conceptually showing the power generation element 1 of the cell in FIG.
  • the power generation element 1 includes a plurality of separators 5, a plurality of positive electrodes 12, a plurality of negative electrodes 13, and a pair of capacitance recovery electrodes 14 (capacity adjusting electrodes).
  • the positive electrode 12 is applied to the positive electrode current collector 22, the negative electrode 13 is applied to the negative electrode current collector 23, and the capacity recovery electrode 14 is applied to the capacity recovery electrode current collector 24.
  • the portion facing the positive electrode 12 with the separator 5 interposed therebetween is referred to as the negative electrode facing portion 13A.
  • the portion that does not face the positive electrode 12 with the separator 5 interposed therebetween is referred to as the negative electrode non-opposing portion 13B.
  • the negative electrode non-opposing portion 13B faces the capacitance recovery electrode 14 with the separator 5 interposed therebetween.
  • the capacitance recovery electrode 14 is arranged on the outermost side as an electrode.
  • a separator 5 is also arranged outside the capacitance recovery electrode 14.
  • the separator 5 is not particularly limited, but polypropylene or the like is used, for example. In addition to polypropylene, a microporous film made of polyolefin such as polyethylene, a non-woven fabric, or the like can be used as the separator 5.
  • the positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14 are each obtained by using a mixture of an appropriate electrode active material, a conductive agent, a binder, and the like, as well as the positive electrode current collector 22, the negative electrode current collector 23, and the capacity recovery electrode current collector. It was produced by applying it to 24.
  • the capacity recovery electrode 14 may be a reaction type metal, for example, a lithium metal, or a reaction type metal alloy, for example, a lithium metal alloy.
  • the electrode active material of the positive electrode 12 and the capacity recovery electrode 14 preferably contains a reaction species inside.
  • the reactive species of lithium-ion batteries is lithium-ion.
  • the lithium ion battery contains a lithium-containing compound capable of reversibly inserting and removing lithium ions.
  • the type of electrode active material of the positive electrode 12 and the capacity recovery electrode 14 is not particularly limited, but for example, phosphoric acid transitions such as lithium cobalt oxide, manganese-substituted lithium cobalt oxide, lithium manganate, lithium nickel oxide, and olivine-type lithium iron phosphate.
  • metallic lithium (wherein, w, x, y, z is 0 or a positive value) Li w Ni x Co y Mn z O 2 and the like.
  • the above materials may be contained alone or in combination of two or more. Further, the same configuration may be applied to the positive electrode 12 and the capacity recovery electrode 14. As described above, by applying the same configuration to the positive electrode 12 and the capacity recovery electrode 14, the manufacturing cost can be reduced.
  • the positive electrode current collector 22 and the capacity recovery electrode current collector 24 are provided with an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, expanded metal, and foamed metal.
  • a current collecting foil such as a plate is used.
  • As the material of the current collector foil stainless steel, titanium and the like can be applied in addition to aluminum.
  • the material, shape, manufacturing method, etc. of the current collector foil are not particularly limited, and any current collector can be used.
  • the electrode active material of the negative electrode 13 contains a substance capable of reversibly inserting and removing lithium ions.
  • the type of the electrode active material of the negative electrode 13 is not particularly limited, but for example, natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a resin material such as epoxy or phenol or Artificial graphite, silicon (Si), graphite mixed with silicon, non-graphitized carbon material, lithium titanate, Li 4 Ti 5 O 12, etc., which are produced by firing using pitch-based materials obtained from petroleum or coal as raw materials, are used. be able to.
  • the above materials may be contained alone or in combination of two or more as the negative electrode active material.
  • the negative electrode facing portion 13A and the negative electrode non-opposing portion 13B of the negative electrode 13 may have the same configuration or may have different configurations. By using the same configuration for the negative electrode facing portion 13A and the negative electrode non-opposing portion 13B, the manufacturing cost can be reduced. By using different configurations for the negative electrode facing portion 13A and the negative electrode non-opposing portion 13B, it becomes easy to freely design the capacity of the negative electrode non-opposing portion 13B with respect to the battery capacity. Can be stored.
  • the capacity of the negative electrode non-opposing portion 13B means the amount of charge of lithium ions that can be stored in the negative electrode non-opposing portion 13B.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used.
  • stainless steel, titanium and the like can be applied in addition to copper, and any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the power generation element 1 is impregnated with an electrolytic solution.
  • the electrolytic solution is not particularly limited, but in the case of a lithium ion battery, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC). ), Methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC) and other aproton organic solvents can be applied.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • MPC Methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • other aproton organic solvents can be applied.
  • lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, and lithium chloride are added to the solvent of two or more mixed organic compounds among these aprotonic organic solvents.
  • an electrolytic solution in which two or more of these mixed lithium salts are dissolved can be applied.
  • a solid electrolyte may be applied instead of the electrolytic solution.
  • the solid electrolyte is not particularly limited, and examples thereof include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide.
  • the separator 5 can be omitted.
  • the negative electrode facing portion 13A is a portion of the negative electrode 13 that is in contact with the positive electrode 12, and the negative electrode non-opposing portion 13B is a portion other than that.
  • a metal tab (not shown) is connected to the positive electrode current collector 22, the negative electrode current collector 23, and the capacity recovery electrode current collector 24. Then, the exterior material 6 is sealed so that only these tab portions are exposed to the outside of the exterior material 6 (see FIG. 1) such as a laminated film. Then, what the tabs are connected to is the positive electrode terminal 2, the negative electrode terminal 3, and the capacitance recovery electrode terminal 4 shown in FIG.
  • the power generation element 1 is manufactured by facing the positive electrode 12 and the negative electrode 13 via the separator 5 and winding or laminating them.
  • the capacity recovery electrode 14 may be arranged near the winding axis (central axis) of the winding body or at the outermost peripheral portion. Further, when the power generation element 1 is configured by stacking, the capacity recovery pole 14 may be arranged as a part of the laminated body.
  • FIG. 3 is a circuit diagram showing an example of the charging / discharging device 350 applied to the present embodiment.
  • the battery pack 300 (secondary battery, secondary battery system) includes the cell 100 shown in FIG. 1, a protection circuit (not shown), a housing, and the like, and includes a positive electrode terminal 2 and a negative electrode. The terminal 3 and the capacity recovery electrode terminal 4 are projected.
  • the battery pack 300 may include a plurality of cells 100.
  • the battery pack 300 may be configured to include a plurality of battery modules (not shown) including a plurality of cells 100.
  • the term "secondary battery” is a concept that includes a cell, a battery module, or a battery pack of a lithium ion battery.
  • the charge / discharge device 350 (capacity recovery device, secondary battery system) includes an ammeter 351, a voltmeter 352, 359, a resistor 353, a power supply 354, a charge / discharge changeover switch 356, and a capacity recovery switch 357. It includes a negative electrode changeover switch 358 and a control unit 500.
  • each of the switches 356, 357, and 358 has three terminals (unsigned) and switches the connection state between the three terminals. However, these switches 356, 357, and 358 can be set so that none of the three terminals is connected to each other.
  • the voltmeter 352 measures the voltage between the positive electrode terminal 2 and the negative electrode terminal 3, and the voltmeter 359 measures the voltage between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4.
  • the control unit 500 calculates the voltage between the positive electrode terminal 2 and the capacitance recovery electrode terminal 4 by adding or subtracting the measurement results of the voltmeters 352 and 359.
  • the capacity recovery switch 357 and the charge / discharge changeover switch 356 have either the negative electrode terminal 3 or the capacity recovery electrode terminal 4 of the battery pack 300, and either the resistor 353 or the power supply 354, based on the control by the control unit 500. Connecting.
  • the positive / negative electrode changeover switch 358 connects either the positive electrode terminal 2 or the negative electrode terminal 3 to one end of the ammeter 351 based on the control by the control unit 500.
  • the other end of the ammeter 351 is connected to the resistor 353 and the power supply 354.
  • the voltmeter 352,359 and the ammeter 351 supply the measurement result to the control unit 500.
  • the control unit 500 makes the capacitance recovery switch 357 always select the capacitance recovery electrode terminal 4.
  • the configuration of the charging / discharging device 350 is not limited to that shown in FIG. 3, and any two terminals selected from the positive electrode terminal 2, the negative electrode terminal 3, and the capacity recovery electrode terminal 4 of the battery pack 300 are not limited to those shown in FIG. Any circuit can be used as long as it can be connected to the resistor 353, the power supply 354, and the like.
  • control unit 500 includes hardware as a general computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the control program to be executed and various data are stored.
  • the inside of the control unit 500 shows a function realized by a control program or the like as a block.
  • control unit 500 includes a timing determination unit 502, an electric energy calculation unit 504 (electric energy calculation process), and a capacity recovery processing unit 510 (capacity recovery process). Further, the capacity recovery processing unit 510 includes an electric energy monitoring unit 512 (electric energy monitoring process) and a voltage monitoring unit 514 (voltage monitoring process).
  • the capacity recovery processing unit 510 executes the capacity recovery processing.
  • the capacitance recovery process means that a current having a current density equal to or higher than a predetermined current density is passed from the positive electrode terminal 2 or the negative electrode terminal 3 to the capacitance recovery electrode terminal 4 by a predetermined amount of electricity, and the negative electrode is not applied from the capacitance recovery electrode 14 (see FIG. 2). It means a process of supplying lithium ions to the facing portion 13B (see FIG. 2).
  • the capacity recovery processing unit 510 outputs a signal to the capacity recovery switch 357 and the positive / negative electrode changeover switch 358, and connects the capacity recovery electrode terminal 4 with the positive electrode terminal 2 or the negative electrode terminal 3.
  • the capacitance recovery processing unit 510 outputs a signal to the charge / discharge changeover switch 356, and controls the current flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3.
  • a current is passed from the positive electrode terminal 2 to the capacitance recovery electrode terminal 4, "potential difference between the negative electrode facing portion 13A and the negative electrode non-opposing portion 13B” and “lithium ion contained in the electrolytic solution near the negative electrode facing portion 13A".
  • a part of the lithium ions released from the capacity recovery electrode 14 is taken into the negative electrode non-opposing portion 13B by using "the difference in concentration with the lithium ion contained in the electrolytic solution in the vicinity of the negative electrode non-opposing portion 13B" as a driving force.
  • the reaction species can be supplied to the negative electrode non-opposing portion 13B even by controlling the current flowing from the positive electrode terminal 2 to the capacitance recovery electrode terminal 4. In this case, since no current flows through the negative electrode terminal 3, the overcharge reaction of the negative electrode can be suppressed. On the other hand, when a current is passed from the negative electrode terminal 3 to the capacitance recovery electrode terminal 4, the reaction species are not supplied to the positive electrode 12, so that the amount of lithium ions supplied to the negative electrode non-opposing portion 13B can be controlled. It will be easier.
  • the electric energy calculation unit 504 calculates the amount of electricity flowing between the capacity recovery electrode terminal 4 and the negative electrode terminal 3 based on the output of the ammeter 351 when the capacity is recovered. That is, the electric energy calculation unit 504 determines that the battery capacity of the battery pack 300, the capacity of the negative electrode non-opposing portion 13B (see FIG. 2), the capacity retention rate for determining that the life of the battery pack 300 has been reached, and the recovery efficiency. Based on at least one or more parameters selected from, the energized electric energy Q, which is the electric energy to be energized in the capacity recovery process, is calculated.
  • the electric energy monitoring unit 512 ends the capacity recovery process. That is, the capacity recovery switch 357 and the charge / discharge changeover switch 356 are operated to cut off the current between the capacity recovery electrode terminal 4 and the negative electrode terminal 3. Further, the voltage monitoring unit 514 ends the capacitance recovery process when the voltage of the capacitance recovery electrode terminal 4 with respect to the negative electrode terminal 3 reaches a predetermined limit voltage VL.
  • the timing determination unit 502 determines the timing of the capacity recovery process based on the inputs from the ammeter 351 and the voltmeter 352 and 359.
  • the capacity recovery process can be performed at any time, and may be before the start of use of the battery pack 300. By performing the capacity recovery process before the start of use of the battery pack 300, the capacity decrease due to the immobilization of the reaction species due to the use of the battery can be compensated for during the use of the battery pack 300.
  • the capacity recovery process By supplying lithium ions to the negative electrode non-opposing portion 13B (see FIG. 2) by the capacity recovery process, a part or all of the lithium ions fixed and reduced when the battery pack 300 is charged can be partially or all of the negative electrode when the battery is discharged. It can be supplied from the non-opposing portion 13B. Further, since lithium ions are less likely to be emitted from the negative electrode non-opposing portion 13B as compared with the negative electrode facing portion 13A, less lithium ions are emitted from the negative electrode non-opposing portion 13B during continuous high current density discharge. Then, near the discharge end of the battery pack 300, the battery voltage reaches the lower limit value and the discharge is stopped due to the potential rise of the negative electrode 13. This makes it possible to avoid the use of the over-discharged region of the positive electrode.
  • the current density in the capacitance recovery process is not particularly limited, but is preferably in the range of 0.001C to 1C when a current is passed from the positive electrode terminal 2 to the capacitance recovery electrode terminal 4.
  • 0.001C means 1/1000 of the current density at which the capacity of the capacity recovery electrode 14 facing the negative electrode non-opposing portion 13B can be fully charged from a complete discharge in one hour.
  • the current density is preferably in the range of 0.1C to 10C.
  • the current density smaller than 10C, it is possible to suppress a sudden rise in the voltage between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 due to the overvoltage. As a result, it is possible to suppress a situation in which the voltage between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 exceeds a preset limit voltage before the assumed amount of electricity is passed. As long as the limit voltage is not exceeded, recovery processing may be performed with a current density larger than 10C. In this case, the time required for the capacity recovery process can be further shortened.
  • the electric energy calculation unit 504 determines that the energized electric energy Q is the battery capacity Xb, the capacity Xa of the negative electrode non-opposing portion 13B (see FIG. 2), and the capacity retention rate Y that determines that the life of the battery pack 300 has been reached. It is calculated based on at least one or more parameters selected from the recovery efficiency Z and the limiting voltage VL.
  • the capacity retention rate Y represents the ratio of the charge or discharge capacity to the initial charge or discharge capacity.
  • the recovery efficiency Z is the amount of electricity Q that flows from the negative electrode terminal to the capacity recovery electrode terminal in the capacity recovery process, and is applied to the positive electrode 12 via the negative electrode non-opposing portion 13B in the charging / discharging of the battery after the capacity recovery process. Represents the ratio of the amount of charge of the supplied lithium ions.
  • the energized electric energy Q in the capacity recovery process satisfies the following equation (1) by using, for example, the battery capacity Xb, the capacity retention rate Y for determining that the life of the battery pack 300 has been reached, and the recovery efficiency Z.
  • the amount of electricity is preferable.
  • the energizing electric energy Q is preferably an electric energy satisfying the following equation (2) with respect to the capacity Xa of the negative electrode non-opposing portion 13B, for example.
  • the above-mentioned limiting voltage VL adopts the same value as the full charge voltage of the battery pack 300, and the capacity is recovered when it becomes equal to the full charge voltage.
  • the process can be terminated.
  • the voltage monitoring unit 514 ends the capacitance recovery process, so that the current flowing between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 is also stopped. ..
  • the one-time capacity recovery process is not necessarily limited to continuous charging, and may be divided into a plurality of charging times.
  • the capacity recovery process may be performed a plurality of times. Further, even if the limit voltage VL is set to a value lower than the full charge voltage and the voltage of the capacitance recovery electrode terminal 4 with respect to the negative electrode terminal 3 reaches the limit voltage VL, the current is limited so as not to exceed the full charge voltage. good.
  • FIG. 4 is an example of a graph showing a transition of the capacity retention rate for a suitable example and a comparative example. More specifically, FIG. 4 shows lithium ions subjected to recovery treatment in which lithium ions corresponding to 80% of the capacity of the negative electrode non-opposing portion 13B (see FIG. 2) are supplied to the negative electrode non-opposing portion 13B before the start of use.
  • the horizontal axis of FIG. 4 represents the number of cycles, and the vertical axis represents the capacity retention rate with respect to the initial discharge capacity. “1 cycle” in this embodiment is the result of continuous charging / discharging in an environment of 50 ° C.
  • the decrease in the capacity retention rate is suppressed by supplying lithium ions to the negative electrode non-opposing portion 13B.
  • the capacity retention rate decreased to 93.8% after 50 cycles, while in the example subjected to the capacity recovery treatment, the capacity retention rate was 99.6% after 50 cycles. showed that.
  • FIG. 5 is a diagram showing the positive electrode utilization rate after 50 cycles for the examples and comparative examples shown in FIG.
  • a lithium ion battery in which lithium ions corresponding to 80% of the capacity Xa of the negative electrode non-opposing portion 13B were supplied to the positive electrode before the start of use was applied, and the positive electrode utilization rate was measured under the same conditions as in FIG. Is shown.
  • the positive electrode utilization rate is an index showing the degree of deterioration of the positive electrode material, and the lower the value, the more the deterioration has progressed.
  • standardization is performed using the positive electrode utilization rate immediately after lithium ions are supplied from the capacitance recovery electrode 14 (see FIG. 2) to the negative electrode non-opposing portion 13B or the positive electrode 12.
  • the positive electrode utilization rate maintained a large value. This indicates that the deterioration of the positive electrode is suppressed by setting the lithium ion supply destination to the negative electrode non-opposing portion 13B.
  • the cell 100 shown in FIG. 1 contains a positive electrode 12 (see FIG. 2), a negative electrode 13, and a capacity recovery electrode 14, and is sealed.
  • the present invention is also applicable to unsealed cells.
  • the positive electrode 12 and the negative electrode 13 may be wound or laminated and installed in a container (not shown), and the electrolytic solution may be injected into the container and charged / discharged without sealing. ..
  • the container may be temporarily sealed and stored at a high temperature and high voltage, and then the temporary sealing may be removed.
  • the container applied to the cell 100 may be a battery container before sealing the product, but may be another container for immersing the positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14 in the electrolytic solution. ..
  • the capacity recovery electrode 14 is temporarily introduced into the container, and the amount of electricity determined by any of the above methods is passed between the negative electrode non-opposing portion 13B and the capacity recovery electrode 14, and then the capacity recovery electrode 14 is moved. After removal, the cell may be sealed. According to this method, the capacity decrease of the cell generated in the initial stage is compensated by the capacity recovery process, and the lithium ion for compensating for the capacity decrease generated during charging / discharging or storage after sealing is added to the negative electrode non-opposing portion. Since the negative electrode provided in the 13B can be manufactured in advance, the life of the bipolar cell similar to that of the conventional lithium ion battery can be extended.
  • the present embodiment can be considered to relate to a method for manufacturing a lithium ion battery (secondary battery).
  • the capacity recovery pole 14 may be rephrased as a “capacity adjustment pole”.
  • the method for manufacturing a secondary battery has the following steps. Step S1: The positive electrode 12 (see FIG. 2) and the negative electrode 13 of the secondary battery are installed in a state where they can be charged and discharged. Step S2: The capacity recovery electrode 14 as the third electrode is installed so that the reaction type of the secondary battery can be moved to and from the negative electrode non-opposing portion 13B.
  • Step S3 Based on at least one or more parameters selected from the battery capacity Xb, the capacity Xa of the negative electrode non-opposing portion, the capacity retention rate Y for determining that the battery has reached the end of its life, and the recovery efficiency Z. To calculate the energized electric energy Q. Step S4: The calculated energizing electric energy Q is passed from the negative electrode 13 to the capacity recovery electrode 14.
  • Step S10 A current is passed from the negative electrode 13 to the capacitance recovery electrode 14 until the voltage of the capacitance recovery electrode 14 with respect to the negative electrode 13 reaches a predetermined limiting voltage VL.
  • the capacity recovery device (350) has a positive electrode terminal 2 connected to the positive electrode 12, a negative electrode facing portion 13A facing the positive electrode 12, and a non-negative negative electrode facing portion 13A other than the positive electrode 12.
  • a secondary battery (300) including a negative electrode terminal 3 connected to a negative electrode 13 having a portion 13B and a capacitance recovery electrode terminal 4 connected to a capacitance recovery electrode 14 for moving a reaction species to the positive electrode terminal 2 or the negative electrode terminal 3.
  • the capacity recovery processing unit 510 that recovers the capacity of the secondary battery (300) by moving the reaction species from the capacity recovery pole 14 to the positive electrode 12 or the negative pole 13 and the secondary At least selected from the battery capacity Xb of the battery (300), the capacity Xa of the negative electrode non-opposing portion 13B, the capacity retention rate Y for determining that the life of the secondary battery (300) has been reached, and the recovery efficiency Z.
  • the capacity recovery processing unit 510 includes an electricity amount calculation unit 504 that calculates the energization electricity amount Q, which is the amount of electricity to be energized based on one or more kinds of parameters, and the capacity recovery processing unit 510 is a capacity recovery extreme from the positive electrode terminal 2 or the negative electrode terminal 3.
  • the child 4 is provided with an electricity amount monitoring unit 512 in which a current corresponding to the energized electricity amount Q is passed and the reaction type of the secondary battery (300) is moved from the capacity recovery electrode 14 to the positive electrode 12 or the negative electrode 13.
  • the reaction type of the secondary battery (300) is moved from the capacity recovery electrode 14 to the positive electrode 12 or the negative electrode 13, so that the cumulative battery capacity of the secondary battery (300) can be improved.
  • the electric energy calculation unit 504 determines the energized electric energy Q so as to satisfy the relationship of “Q ⁇ Xb ⁇ (1-Y) / Z”. As a result, the effect of extending the battery life by the capacity recovery process can be sufficiently brought out.
  • the electric energy calculation unit 504 determines the electric energy (Q) so as to satisfy the relationship of "Q ⁇ 0.6Xa". This also makes it possible to fully bring out the effect of extending the battery life by the capacity recovery process.
  • the capacitance recovery device (350) when the voltage of the capacitance recovery electrode terminal 4 with respect to the negative electrode terminal 3 reaches a predetermined limiting voltage VL, the current flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 It is more preferable to include a voltage monitoring unit 514 that stops or limits the voltage. Thereby, the overcharge reaction in the secondary battery (300) can be suppressed.
  • the limiting voltage VL is equal to the full charge voltage of the secondary battery (300).
  • the positive electrode 12 and the capacity recovery electrode 14 having the same configuration can be applied, and the manufacturing cost can be suppressed.
  • the method of manufacturing the secondary battery (300) includes a process of installing the positive electrode 12 and the negative electrode 13 of the secondary battery (300) in a state where they can be charged and discharged, and a capacity adjusting pole (14) as the third pole. ) Is installed so that the reaction type of the secondary battery (300) can be moved between the negative electrode 13 and the negative electrode non-opposing portion 13B, which is a portion of the negative electrode 13 that does not face the positive electrode 12, and the battery capacity Xb. , The amount of electricity to be energized based on at least one parameter selected from the capacity Xa of the negative electrode non-opposing portion 13B, the capacity retention rate Y for determining that the battery life has been reached, and the recovery efficiency Z.
  • the method of manufacturing the secondary battery (300) includes a process of installing the positive electrode 12 and the negative electrode 13 of the secondary battery (300) in a state where they can be charged and discharged, and a capacity adjusting electrode (14) as the third electrode.
  • a capacity adjusting electrode (14) as the third electrode.
  • It may include a capacitance adjusting process in which a current is passed from the negative electrode 13 to the capacitance adjusting electrode (14) until the voltage of the capacitance adjusting electrode (14) reaches a predetermined limiting voltage VL. This also makes it possible to further increase the cumulative battery capacity that can be used until the life of the secondary battery.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • another configuration may be added to the configuration of the above embodiment, and a part of the configuration may be replaced with another configuration. That is, other forms that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired.
  • the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, as follows.
  • the capacity recovery processing unit 510 includes both the electric energy monitoring unit 512 and the voltage monitoring unit 514, but only one of the two may be provided. That is, the capacitance recovery process is based on only one of the amount of electricity flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 or the voltage of the capacitance recovery electrode terminal 4 with respect to the positive electrode terminal 2 or the negative electrode terminal 3. May be terminated.
  • FIG. 6 is an exploded perspective view showing a main part of the cell in the modified example.
  • the negative electrode 13 is larger than the positive electrode 12, and the separator 5 is larger than the negative electrode 13.
  • the portion facing the positive electrode 12 is the negative electrode facing portion 13A, and the peripheral portion thereof is the negative electrode non-opposing portion 13B.
  • Capacity recovery electrode (capacity adjustment electrode) 300 battery pack (secondary battery system, secondary battery) 350 charge / discharge device (capacity recovery device, secondary battery system) 504 Electric energy calculation unit (electric energy calculation process) 510 Capacity Recovery Processing Unit (Capacity Recovery Process) 512 Electric energy monitoring unit (Electric energy monitoring process) 514 Voltage monitoring unit (voltage monitoring process) Q Amount of electricity energized Y Capacity retention rate Z Recovery efficiency VL Limit voltage Xa Capacity of non-opposite part of negative electrode Xb Battery capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池の寿命までに使用できる累積電池容量をより高める。そのため、容量回復装置(350)は、正極に接続された正極端子と正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と正極または負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池(300)の、容量回復極から正極または負極に反応種を移動させることによって、二次電池の容量回復を行う容量回復処理部(510)と、二次電池の電池容量と、負極非対向部の容量と、二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて通電すべき電気量である通電電気量を算出する電気量算出部(504)と、を備え、容量回復処理部(510)は、反応種を容量回復極から正極または負極に移動させる電気量監視部(512)を備える。

Description

容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム
 本発明は、容量回復装置、二次電池の製造方法、容量回復方法および二次電池システムに関する。
 本技術分野の背景技術として、下記特許文献1には、「リチウムイオン電池の容量回復方法は、劣化原因がリチウムイオンの減少であるか否かを判定し、リチウムイオンの減少量を算出し、リチウムイオン補充用電極と正極又は負極とを接続してリチウムイオン補充用電極から減少量に相当するリチウムイオンを放出させ、リチウムイオン電池にリチウムイオンを補充して電池容量を回復させる。」と記載されている(要約参照)。
 また、下記特許文献2には、「リチウムのドープ・脱ドープが可能な炭素材料を負極活物質として負極1を作製し、リチウム遷移金属複合酸化物を正極活物質として正極2を作製し、これら負極1,正極2を電池組して電池を製造するに際して、電池組する前に予め負極に不可逆容量相当分のリチウムをドープしておく。」と記載されている(要約参照)。
国際公開第2012/124211号 特開平7-235330号公報
 ところで、リチウムイオン電池等の二次電池については、最終的な二次電池の寿命までに使用できる累積電池容量をより高めたいという要望がある。
 この発明は上述した事情に鑑みてなされたものであり、二次電池の累積電池容量をより高める容量回復装置、二次電池の製造方法、容量回復方法および二次電池システムを提供することを目的とする。
 上記課題を解決するため本発明の容量回復装置は、正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復装置であって、前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復処理部と、前記二次電池の電池容量と、前記負極非対向部の容量と、前記二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて通電すべき電気量である通電電気量を算出する電気量算出部と、を備え、前記容量回復処理部は、前記正極端子または前記負極端子から前記容量回復極端子に前記通電電気量に対応する電流を流し、前記二次電池の反応種を前記容量回復極から前記正極あるいは前記負極に移動させる電気量監視部を備えることを特徴とする。
 本発明によれば、二次電池の最終的な寿命までに使用できる累積電池容量をより高めることができる。
好適な第1実施形態に適用されるセルの一例を示す断面図である。 図1におけるセルの発電要素1を概念的に示す断面図である。 本実施形態に適用される充放電装置の一例を示す回路図である。 好適な実施例および比較例について、容量維持率の推移を示すグラフの一例である。 実施例および比較例について、50サイクル後の正極利用率を示す図である。 変形例におけるセルの要部を示す分解斜視図である。
[実施形態の前提]
 リチウムイオン電池は、非水電解質二次電池の一種であり、エネルギー密度が高いため、携帯機器のバッテリーや、近年では電気自動車のバッテリーとしても用いられている。但し、リチウムイオン電池は、使用に伴い劣化し、電池容量が減少することが知られている。リチウムイオン電池では、正極の活物質としてリチウム金属酸化物、負極の活物質とし黒鉛等の炭素材が用いられるのが一般的である。リチウムイオン電池の正極および負極は、微小な活物質粒子群にバインダや導電剤等を加えてスラリー化した後、金属箔に塗布して形成する。
 充電時には正極の活物質から放出されたリチウムイオンが負極の活物質に吸蔵され、放電時には負極の活物質に吸蔵されたリチウムイオンが放出され正極の活物質に吸蔵される。このように、リチウムイオンが電極間を移動することで電極間に電流が流れる。このようなリチウムイオン電池では、(1)正極活物質の電気的な孤立、(2)負極活物質の電気的な孤立、および(3)電極間を往来するリチウムイオンの固定化によって容量が減少する。
 これらの要因のうち、上述した(3)による容量減少分については、内部にリチウムを含む第3の電極を備えたリチウムイオン電池を作製し、第3の電極から正極または負極にリチウムイオンを補充することによって容量減少分を回復させることが可能である。電池のユーザーは、「容量回復をするほどではないが容量が低下してきた電池」を一定期間は使い続けることになる。これでは、容量回復を加味した最終的な電池寿命までにユーザーが使用できる累積電池容量が低下するという問題が生じる。また、それを防ぐために頻繁に電池を容量回復すると、電池を使えない期間が長くなり、ユーザーの利便性を低下させる。それに対し、予めリチウムイオンを過剰に正極あるいは負極に加えておくと、リチウムイオンの減少を電池使用時に補うことができ、累積電池容量を向上させることができると考えられる。但し、通常は正極容量に対して負極容量を大きく設計するため、正極と負極との対向面にリチウムイオンを過剰に加えてしまうと、高電流密度の放電時にも正極の過放電領域を使うことになり、正極材料劣化を促進してしまう。
 上述した特許文献1の技術を適用すると、リチウムデンドライトの形成を抑制した適切な量のリチウムイオンを補充して、リチウムイオン電池の容量を回復させることができる。すなわち第1活物質および該第1活物質よりも電極電位が卑である第2活物質を含む正極と、負極と、電解質液と、リチウムイオンを放出するリチウムイオン補充用電極(第3電極)と、をリチウムイオン電池に備え、充放電時の電圧が第1活物質に対応する電極電位を保持する領域である第1プラトー領域の長さを計測し、充放電時の電圧が第2活物質に対応する電極電位を保持する領域である第2プラトー領域の長さを計測し、第1プラトー領域および第2プラトー領域の長さが所定状態の場合には劣化原因がリチウムイオンの減少であると判定し、第3電極からのリチウムイオンを適量供給することができる。
 また、上述した特許文献2の技術を適用すると、正極活物質の利用効率が高く、正極活物質の使用量に見合った電池容量が得られる非水電解液二次電池の製造方法を実現できる。すなわち、リチウムのドープ・脱ドープが可能な炭素材料を負極活物質として負極を作製し、リチウム遷移金属複合酸化物を正極活物質として正極を作製し、これら負極、正極を電池組して電池を製造するに際して、電池組する前に予め負極に不可逆容量相当分のリチウムをドープするとよい。
 しかし、特許文献1の技術を適用した電池システムは、容量回復のタイミングを判定し、容量回復する方法に関するものであり、容量回復が必要と判定されるまでは容量低下した電池を使い続けることになる。例えば容量回復を加味した最終的な電池寿命までにユーザーが使用できる累積電池容量等の点で改善の余地がある。
 また、特許文献2の技術を適用した非水電解液二次電池は、二次電池の組み立て前に負極に不可逆容量相当分のリチウムイオンをドープしておくため累積電池容量を向上させることができる。しかし、電池の組み立て後には正極または負極にリチウムイオンを供給することができないため、電池出荷後の電池使用に伴うリチウムイオンの固定化による容量減少を回復することはできず、累積電池容量の点から更なる改善の余地がある。また、この技術では、負極全体にリチウムイオンをドープするため、高電流密度の放電時にも正極の過放電領域を使うことになり、正極材料劣化の観点からも改善の余地がある。さらに、二次電池の製造時に負極を電解液中で予備充電する必要があるため電池製造の工程が増えるとともに、充電された負極は水分との反応性が高いため湿度管理がより厳格になり、製造コストの観点でも改善の余地がある。
 そこで、後述する好適な実施形態では、充電および放電の繰り返しに伴って生じる副反応による反応種の固定化等を原因とする劣化により減少した電池容量を回復する二次電池において、正極材料劣化を抑制しながら、最終的な二次電池の寿命までに使用できる累積電池容量を向上するものである。
[第1実施形態]
〈セル100の構成〉
 図1は、好適な第1実施形態に適用されるセル100の一例を示す断面図である。
 図1において、セル100は、リチウムイオン電池のセルであり、発電要素1と、正極端子2と、負極端子3と、容量回復極端子4と、外装材6と、を備えている。発電要素1にはセパレータ5が含まれている。外装材6は、ラミネートフィルム等である。
 図2は、図1におけるセルの発電要素1を概念的に示す断面図である。
 図2において、発電要素1は、複数のセパレータ5と、複数の正極12と、複数の負極13と、一対の容量回復極14(容量調整極)と、を備えている。正極12は、正極集電体22に塗布されており、負極13は、負極集電体23に塗布されており、容量回復極14は、容量回復極集電体24に塗布されている。
 ここで、負極13を構成する部分のうち、セパレータ5を挟んで正極12に対向している部分を負極対向部13Aと呼ぶ。また、負極13を構成する部分のうち、セパレータ5を挟んで正極12に対向していない部分を負極非対向部13Bと呼ぶ。図示の例では、負極非対向部13Bは、セパレータ5を挟んで容量回復極14に対向している。容量回復極14は、電極としては最も外側に配置されている。また、容量回復極14の外側にも、セパレータ5が配置されている。セパレータ5は特に制限されないが、例えばポリプロピレン等が用いられる。セパレータ5としてポリプロピレン以外にも、ポリエチレン等のポリオレフィン製の微孔性フィルムや不織布等を用いることができる。
 正極12、負極13および容量回復極14は、それぞれ、適切な電極活物質、導電剤、結着剤等の混合体を、正極集電体22、負極集電体23および容量回復極集電体24に塗布して作製されたものである。但し、容量回復極14は、反応種の金属、例えばリチウム金属、あるいは反応種の金属合金、例えばリチウム金属合金であってもよい。正極12および容量回復極14の電極活物質は、反応種を内部に含むものが好ましい。
 リチウムイオン電池の反応種は、リチウムイオンである。この場合、リチウムイオン電池は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有化合物を含んでいる。正極12および容量回復極14の電極活物質の種類は特に制限されないが、例えば、コバルト酸リチウム、マンガン置換コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、オリビン型リン酸鉄リチウム等のリン酸遷移金属リチウム、LiwNixCoyMnz2(ここで、w、x、y、zは0または正の値)が挙げられる。正極12および容量回復極14の電極活物質として上記の材料が一種単独または二種以上含まれていてもよい。また、正極12と容量回復極14とは、同じ構成を適用してもよい。このように、正極12と容量回復極14とで同じ構成を適用することにより、製造コストを低減できる。
 正極集電体22および容量回復極集電体24には、厚さが10~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等の集電箔が用いられる。集電箔の材質も、アルミニウムの他に、ステンレス鋼、チタン等も適用可能である。集電箔の材質、形状、製造方法等は、特に制限されることなく、任意の集電体を使用することができる。
 負極13の電極活物質は、リチウムイオンを可逆的に挿入脱離可能な物質を含んでいる。負極13の電極活物質の種類は特に制限されないが、例えば、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、シリコン(Si)、シリコンを混合した黒鉛、難黒鉛化炭素材、チタン酸リチウム、Li4Ti512等を用いることができる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。
 負極13の負極対向部13Aおよび負極非対向部13Bは同じ構成であってもよいし、異なる構成でもよい。負極対向部13Aと負極非対向部13Bとで同じ構成を用いることにより、製造コストを低減できる。負極対向部13Aと負極非対向部13Bとで異なる構成を用いることにより、電池容量に対する負極非対向部13Bの容量を自由に設計しやすくなり、例えばより多くのリチウムイオンを負極非対向部13Bに蓄えられる。ここで、負極非対向部13Bの容量とは、負極非対向部13Bに貯めることのできるリチウムイオンの電荷量を意味する。負極集電体23には、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。但し、負極13の材質は、銅の他に、ステンレス鋼、チタン等も適用可能であり、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。
 発電要素1には、電解液が含侵されている。電解液は特に制限されないが、リチウムイオン電池の場合、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)等の非プロトン性有機系溶媒を適用することができる。
 また、電解液として、これら非プロトン性有機系溶媒のうち2種以上の混合有機化合物の溶媒に、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、ヨウ化リチウム、塩化リチウム、臭化リチウム、LiB[OCOCF34、LiB[OCOCF2CF34、LiPF4(CF32、LiN(SO2CF32、LiN(SO2CF2CF32等のリチウム塩、あるいは、これらの2種以上の混合リチウム塩を溶解した電解液を適用することができる。
 また、電解液の代りに固体電解質を適用してもよい。固体電解質は特に制限されないが、例えば、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーが挙げられる。これらの固体高分子電解質を用いた場合、セパレータ5を省略できる。セパレータ5を省略した場合、負極対向部13Aは、負極13のうち正極12に接する部分になり、負極非対向部13Bは、それ以外の部分になる。
 正極集電体22、負極集電体23、容量回復極集電体24には、金属のタブ(図示略)が接続されている。そして、これらタブ部分だけがラミネートフィルム等の外装材6(図1参照)の外部に露出するように外装材6を封止する。そして、タブを結合させたものが図1に示す正極端子2、負極端子3および容量回復極端子4となる。発電要素1は、正極12と負極13とをセパレータ5を介して対向させ、捲回または積層することにより、作製される。捲回によって発電要素1を構成する場合、容量回復極14は、捲回体の捲回軸(中心軸)付近または最外周部に配置してもよい。また、積層によって発電要素1を構成する場合、容量回復極14は、積層体の一部として配置してもよい。
〈充放電装置350〉
 図3は、本実施形態に適用される充放電装置350の一例を示す回路図である。
 図3において、電池パック300(二次電池、二次電池システム)は、図1に示すセル100、保護回路(図示せず)、および筐体等を含むものであり、正極端子2と、負極端子3と、容量回復極端子4とが突出している。但し、電池パック300は、複数個のセル100を含んでもよい。また、電池パック300は、複数個のセル100を含む電池モジュール(図示略)を複数個含む構成であってもよい。本明細書において、「二次電池」は、リチウムイオン電池のセル、電池モジュールまたは電池パックを含む概念である。
 充放電装置350(容量回復装置、二次電池システム)は、電流計351と、電圧計352,359と、抵抗353と、電源354と、充放電切替スイッチ356と、容量回復スイッチ357と、正負極切替スイッチ358と、制御部500と、を備えている。このうち、各スイッチ356,357,358は何れも3個の端子(符号なし)を有し、3個の端子間の接続状態を切り替えるものである。但し、これらスイッチ356,357,358は、3個の端子の何れもが相互に接続されない状態にすることができる。
 電圧計352は、正極端子2と負極端子3の間の電圧を測定し、電圧計359は、負極端子3と容量回復極端子4の間の電圧を測定する。なお、制御部500は、電圧計352,359の計測結果を加算または減算することによって、正極端子2と容量回復極端子4との間の電圧を計算する。容量回復スイッチ357と、充放電切替スイッチ356とは、制御部500による制御に基づいて、電池パック300の負極端子3または容量回復極端子4の何れかと、抵抗353または電源354の何れかと、を接続する。正負極切替スイッチ358は、制御部500による制御に基づいて、正極端子2または負極端子3の何れかと、電流計351の一端とを接続する。電流計351の他端は、抵抗353と電源354とに接続されている。電圧計352,359および電流計351は、計測結果を制御部500に供給する。
 但し、制御部500は、正負極切替スイッチ358に負極端子3を選択させる場合、容量回復スイッチ357には必ず容量回復極端子4を選択させる。なお、充放電装置350の構成は図3のものに限られるわけではなく、電池パック300の正極端子2と、負極端子3と、容量回復極端子4と、から選択される任意の2つの端子を、抵抗353および電源354等に接続できる回路であればよい。
〈制御部500〉
 図3において、制御部500は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラムや、各種データ等が格納されている。図3において、制御部500の内部は、制御プログラム等によって実現される機能を、ブロックとして示している。
 すなわち、制御部500は、タイミング決定部502と、電気量算出部504(電気量算出過程)と、容量回復処理部510(容量回復過程)と、を備えている。また、容量回復処理部510は、電気量監視部512(電気量監視過程)と、電圧監視部514(電圧監視過程)と、を備えている。
 容量回復処理部510は、容量回復処理を実行する。ここで、容量回復処理とは、正極端子2あるいは負極端子3から容量回復極端子4に所定の電流密度以上の電流を所定の電気量だけ流し、容量回復極14(図2参照)から負極非対向部13B(図2参照)にリチウムイオンを供給する処理を意味する。容量回復処理では、容量回復処理部510は、容量回復スイッチ357および正負極切替スイッチ358に信号を出力し、容量回復極端子4と、正極端子2または負極端子3とを接続する。また、容量回復処理部510は、充放電切替スイッチ356に信号を出力し、容量回復極端子4と、正極端子2または負極端子3との間を流れる電流を制御する。正極端子2から容量回復極端子4に電流を流す場合には、「負極対向部13Aと負極非対向部13Bとの間の電位差」と、「負極対向部13A近傍の電解液に含まれるリチウムイオンと負極非対向部13B近傍の電解液に含まれるリチウムイオンとの濃度差」と、を駆動力として、容量回復極14から放出されたリチウムイオンの一部が負極非対向部13Bに取り込まれる。これと同時に、負極対向部13Aから負極非対向部13Bに電子が移動することで負極対向部13Aからリチウムイオンが放出され、正極12に取り込まれる現象が生じる。これにより、正極端子2から容量回復極端子4に電流を流す制御によっても、負極非対向部13Bに反応種を供給することができる。この場合、負極端子3には電流が流れないため、負極の過充電反応を抑制することができる。一方、負極端子3から容量回復極端子4に電流を流す場合には、正極12に反応種が供給されることがないため、負極非対向部13Bに供給されるリチウムイオン量を制御することが容易になる。
 電気量算出部504は、容量回復の際に、電流計351の出力に基づいて、容量回復極端子4と、負極端子3との間に流れた電気量を算出する。すなわち、電気量算出部504は、電池パック300の電池容量と、負極非対向部13B(図2参照)の容量と、電池パック300の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて、容量回復処理において通電すべき電気量である通電電気量Qを算出する。
 電気量監視部512は、容量回復極端子4と負極端子3との間に流れた電気量が通電電気量Qに到達した場合、容量回復処理を終了させる。すなわち、容量回復スイッチ357および充放電切替スイッチ356を操作して、容量回復極端子4と、負極端子3との間の電流を遮断する。また、電圧監視部514は、負極端子3に対する容量回復極端子4の電圧が所定の制限電圧VLに達すると、容量回復処理を終了させる。
 タイミング決定部502は、電流計351および電圧計352,359からの入力に基づいて、容量回復処理のタイミングを決定する。容量回復処理は任意のタイミングで可能であり、電池パック300の使用開始前であってもよい。電池パック300の使用開始前に容量回復処理を行うことにより、電池の使用に伴う反応種の固定化による容量減少を、電池パック300の使用中に補うことができる。
 容量回復処理により、負極非対向部13B(図2参照)にリチウムイオンを供給しておくことで、電池パック300の充電時に固定され減少するリチウムイオンの一部あるいは全てを、電池の放電時に負極非対向部13Bから供給することができる。また、負極対向部13Aと比較して、負極非対向部13Bからはリチウムイオンが放出されにくいため、連続した高電流密度の放電時には負極非対向部13Bからはリチウムイオンがあまり放出されない。すると、電池パック300の放電末端近くでは、負極13の電位上昇により、電池電圧が下限値に到達し放電が停止する。これにより、正極の過放電領域の使用を回避することができる。
 容量回復処理における電流密度は特に限定されないが、正極端子2から容量回復極端子4に電流を流す場合には0.001Cから1Cの範囲内が好ましい。ここで、0.001Cとは、負極非対向部13Bと対向している容量回復極14の容量を、1時間で完全放電から満充電できる電流密度の1000分の1を意味する。電流密度を0.001Cより大きくすることで、負極対向部13Aにリチウムイオンが供給されることを抑制するとともに、回復処理に要する時間を低減することができる。また、電流密度を1Cより小さくすることで、過電圧によって正極端子2と容量回復極端子4との間の電圧が急上昇することを抑制できる。これにより、想定する電気量を流す前に正極端子2と容量回復極端子4との間の電圧が予め設定した制限電圧を超過する事態を抑制することができる。なお、制限電圧を超過しない限りは、1Cよりも大きな電流密度で回復処理しても構わない。この場合、容量回復処理に要する時間をさらに短時間化できる。
 負極端子3から容量回復極端子4に電流を流す場合には、電流密度は0.1Cから10Cの範囲内が好ましい。電流密度を0.1Cより大きくすることで、負極対向部13Aにリチウムイオンが供給されることを抑制するとともに、回復処理に要する時間を低減することができる。また、電流密度を10Cより小さくすることで、過電圧によって負極端子3と容量回復極端子4との間の電圧が急上昇することを抑制できる。これにより、想定する電気量を流す前に負極端子3と容量回復極端子4との間の電圧が予め設定した制限電圧を超過する事態を抑制することができる。なお、制限電圧を超過しない限りは、10Cよりも大きな電流密度で回復処理しても構わない。この場合、容量回復処理に要する時間をさらに短時間化できる。
 電気量算出部504は、通電電気量Qを、電池容量Xbと、負極非対向部13B(図2参照)の容量Xaと、電池パック300の寿命に達したと判定する容量維持率Yと、回復効率Zと、制限電圧VLと、から選択される少なくとも1種以上のパラメータに基づいて算出する。ここで、容量維持率Yとは、初回の充電あるいは放電容量に対する、充電あるいは放電容量の割合を表す。また、回復効率Zとは、容量回復処理において負極端子から容量回復極端子に流した通電電気量Qのうち、容量回復処理後の電池の充放電において負極非対向部13Bを介して正極12に供給されたリチウムイオンの電荷量の割合を表す。
 容量回復処理における通電電気量Qは、例えば、電池容量Xbと、電池パック300の寿命に達したと判定する容量維持率Yと、回復効率Zと、を用いて、下式(1)を満たす電気量とすることが好ましい。
 Q ≧ Xb×(1-Y)/Z   …(1)
 また、通電電気量Qは、例えば負極非対向部13Bの容量Xaに対して以下の下式(2)を満たす電気量とすることが好ましい。
 Q ≧ 0.6Xa        …(2)
 これらの関係式を満たすように通電電気量Qを設定することにより、容量回復処理による電池寿命の延長効果を十分に引き出すことができる。
 例えば正極12と容量回復極14とを同じ構成のものを用いている場合、上述した制限電圧VLは、電池パック300の満充電電圧と同じ値を採用し、満充電電圧に等しくなったら容量回復処理を終了することができる。負極端子3に対する容量回復極端子4の電圧が制限電圧VLに達すると、電圧監視部514が容量回復処理を終了させるため、負極端子3と容量回復極端子4の間に流れる電流も停止される。これにより、電池パック300における過充電反応を抑制することができる。なお、1回の容量回復処理は、必ずしも連続的に充電を行うことに限られず、複数回の充電に分けて行ってもよい。また、複数回の容量回復処理を行ってもよい。また、制限電圧VLを満充電電圧よりも低い値にしておき、負極端子3に対する容量回復極端子4の電圧が制限電圧VLに達すると、満充電電圧を超えないように電流を制限してもよい。
〈実施例〉
 図4は、好適な実施例および比較例について、容量維持率の推移を示すグラフの一例である。
 より詳細には、図4は、使用開始前に負極非対向部13B(図2参照)の容量の80%に相当するリチウムイオンを、負極非対向部13Bに供給する回復処理を施したリチウムイオン電池である電池パック300の、容量維持率の推移の一例を示す。図4の横軸はサイクル数を表し、縦軸は初回放電容量に対する容量維持率を表す。本実施例における「1サイクル」は、電池容量を1時間で完全放電から満充電できる電流密度を用いて、50℃環境下で連続充放電した結果である。また、比較例として、「負極非対向部13Bにリチウムイオンを供給しない」こと以外の構成が同じリチウムイオン電池の結果を併記した。図4において○印が実施例のデータであり、印が比較例のデータである。
 図4に示すように、負極非対向部13Bにリチウムイオンを供給することにより、容量維持率の低下が抑制されている。容量回復処理を施していない比較例では、50サイクル後において容量維持率が93.8%まで低下した一方、容量回復処理を施した実施例では、50サイクル後において99.6%の容量維持率を示した。
 図5は、図4に示した実施例および比較例について、50サイクル後の正極利用率を示す図である。
 比較例については、使用開始前に負極非対向部13Bの容量Xaの80%に相当するリチウムイオンを正極に供給したリチウムイオン電池を適用し、図4と同条件で測定した後の正極利用率を示す。正極利用率は、正極材料劣化の度合いを示す指標であり、値が低いほど劣化が進行した状態であることを表す。ここでは、容量回復極14(図2参照)から負極非対向部13Bあるいは正極12にリチウムイオンを供給した直後の正極利用率を用いて規格化している。正極12にリチウムイオンを供給した比較例と比較して、負極非対向部13Bにリチウムイオンを供給した実施例は、正極利用率が大きい値を維持した。これは、リチウムイオンの供給先を負極非対向部13Bとすることで、正極劣化が抑制されることを示している。
 以上の実施例に示すように、本実施形態によれば、正極12の材料劣化を抑制しつつ、最終的な二次電池の寿命までに使用できる累積電池容量を向上させることができる。
[他の実施形態]
 以下、他の好適な実施形態について説明する。
 図1に示したセル100は、正極12(図2参照)、負極13および容量回復極14を内蔵し、封止されている。しかし、本発明は、封止していないセルについても適用可能である。
 例えば、セルの製造段階において、正極12および負極13を捲回あるいは積層して容器(図示せず)に設置し、その容器に電解液を注液し、封止せずに充放電してもよい。あるいは、容器に仮の封止をして高温度・高電圧で保管し、その後に仮の封止を外してもよい。また、セル100に適用される容器としては、製品の封止前の電池容器でもよいが、正極12、負極13および容量回復極14を電解液に浸漬するための別の容器であってもよい。
 そして、容量回復極14を一時的に容器に導入し、上述した何れかの方法により定めた電気量を負極非対向部13Bと容量回復極14との間で流し、その後、容量回復極14を除去した後、セルを封止してもよい。
 この方法によれば、初期段階で発生するセルの容量減少分を容量回復処理によって補うとともに、封止後の充放電中あるいは保存中に発生する容量減少を補うためのリチウムイオンを負極非対向部13Bに予め備えた負極を製造できるため、従来のリチウムイオン電池と同様の二極式セルを長寿命化することができる。
 すなわち、本実施形態は、リチウムイオン電池(二次電池)の製造方法に関するものと考えることができる。この場合、容量回復極14は、「容量調整極」と言い換えてもよい。
 以下、本実施形態に係る二次電池の製造方法をまとめて説明する。
 二次電池の製造方法は、次のような工程を有する。
・ステップS1:二次電池の正極12(図2参照)と、負極13とを、充電および放電が可能な状態に設置する。
・ステップS2:第三極としての容量回復極14を、負極非対向部13Bとの間で二次電池の反応種を移動させることができるように設置する。
・ステップS3:電池容量Xbと、負極非対向部の容量Xaと、電池の寿命に達したと判定する容量維持率Yと、回復効率Zと、から選択される少なくとも1種以上のパラメータに基づいて通電電気量Qを算出する。
・ステップS4:算出した通電電気量Qを負極13から容量回復極14に流す。
 また、上述したステップS3,S4に代えて、以下のステップS10を実行してもよい。
・ステップS10:負極13に対する容量回復極14の電圧が所定の制限電圧VLに達するまで、負極13から容量回復極14に電流を流す。
[実施形態の効果]
 以上のように、好適な実施形態によれば、容量回復装置(350)は、正極12に接続された正極端子2と正極12に対向する負極対向部13Aとそれ以外の部分である負極非対向部13Bとを有する負極13に接続された負極端子3と正極端子2または負極端子3に反応種を移動させる容量回復極14に接続された容量回復極端子4とを備える二次電池(300)の容量回復装置(350)であって、容量回復極14から正極12または負極13に反応種を移動させることによって、二次電池(300)の容量回復を行う容量回復処理部510と、二次電池(300)の電池容量Xbと、負極非対向部13Bの容量Xaと、二次電池(300)の寿命に達したと判定する容量維持率Yと、回復効率Zと、から選択される少なくとも1種以上のパラメータに基づいて通電すべき電気量である通電電気量Qを算出する電気量算出部504と、を備え、容量回復処理部510は、正極端子2または負極端子3から容量回復極端子4に通電電気量Qに対応する電流を流し、二次電池(300)の反応種を容量回復極14から正極12または負極13に移動させる電気量監視部512を備える。これにより、二次電池(300)の反応種を容量回復極14から正極12または負極13に移動させるため、二次電池(300)の累積電池容量を向上させることができる。
 また、電気量算出部504は、「Q ≧ Xb×(1-Y)/Z」の関係を満たすように通電電気量Qを決定することが好ましい。これにより、容量回復処理による電池寿命の延長効果を十分に引き出すことができる。
 さらに、電気量算出部504は、「Q ≧ 0.6Xa」の関係を満たすように電気量(Q)を決定すると一層好ましい。これによっても、容量回復処理による電池寿命の延長効果を十分に引き出すことができる。
 また、容量回復装置(350)は、負極端子3に対する容量回復極端子4の電圧が所定の制限電圧VLに達すると、容量回復極端子4と正極端子2または負極端子3との間に流れる電流を停止または制限する電圧監視部514を備えることが、さらに好ましい。これにより、二次電池(300)における過充電反応を抑制することができる。
 制限電圧VLは、二次電池(300)の満充電電圧と等しくすると、さらに好ましい。これにより、正極12および容量回復極14として同じ構成のものを適用することができ、製造コストを抑制することができる。
 また、二次電池(300)の製造方法は、二次電池(300)の正極12および負極13を、充電および放電が可能な状態に設置する過程と、第三極としての容量調整極(14)を、負極13のうち正極12に対向しない部分である負極非対向部13Bとの間で二次電池(300)の反応種を移動させることができるように設置する過程と、電池容量Xbと、負極非対向部13Bの容量Xaと、電池の寿命に達したと判定する容量維持率Yと、回復効率Zと、から選択される少なくとも1種以上のパラメータに基づいて、通電すべき電気量である通電電気量Qを算出する過程と、負極13から容量調整極(14)に通電電気量Qを流す容量調整過程と、を含むことが好ましい。これにより、二次電池の寿命までに使用できる累積電池容量をより高めることができる。
 また、二次電池(300)の製造方法は、二次電池(300)の正極12および負極13を、充電および放電が可能な状態に設置する過程と、第三極としての容量調整極(14)を、負極13のうち正極12に対向する以外の部分である負極非対向部13Bとの間で二次電池(300)の反応種を移動させることができるように設置する過程と、負極13に対する容量調整極(14)の電圧が所定の制限電圧VLに到達するまで、負極13から容量調整極(14)に電流を流す容量調整過程と、を含む、ものであってもよい。これによっても、二次電池の寿命までに使用できる累積電池容量をより高めることができる。
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。すなわち、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記実施形態において、容量回復処理部510は電気量監視部512および電圧監視部514の双方を備えたが、両者のうち一方のみを備えてもよい。すなわち、容量回復極端子4と正極端子2または負極端子3との間に流れた電気量、または正極端子2または負極端子3に対する容量回復極端子4の電圧のうち一方のみに基づいて容量回復処理を終了させてもよい。
(2)図2に示した例においては、負極対向部13Aおよび負極非対向部13Bは、負極13の各面毎に分類されていた。しかし、負極13のある一つの面が、負極対向部13Aおよび負極非対向部13Bを含むようにしてもよい。
 図6は、変形例におけるセルの要部を示す分解斜視図である。図6において、正極12よりも負極13が大きく、セパレータ5は負極13よりも大きい。図示の例では、負極13の図示されている面のうち、正極12に対向する部分が負極対向部13Aであり、その周辺部分が負極非対向部13Bになる。
2 正極端子
3 負極端子
4 容量回復極端子
12 正極
13 負極
13A 負極対向部
13B 負極非対向部
14 容量回復極(容量調整極)
300 電池パック(二次電池システム、二次電池)
350 充放電装置(容量回復装置、二次電池システム)
504 電気量算出部(電気量算出過程)
510 容量回復処理部(容量回復過程)
512 電気量監視部(電気量監視過程)
514 電圧監視部(電圧監視過程)
Q 通電電気量
Y 容量維持率
Z 回復効率
VL 制限電圧
Xa 負極非対向部の容量
Xb 電池容量

Claims (10)

  1.  正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復装置であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復処理部と、
     前記二次電池の電池容量と、前記負極非対向部の容量と、前記二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて通電すべき電気量である通電電気量を算出する電気量算出部と、を備え、
     前記容量回復処理部は、前記正極端子または前記負極端子から前記容量回復極端子に前記通電電気量に対応する電流を流し、前記二次電池の反応種を前記容量回復極から前記正極あるいは前記負極に移動させる電気量監視部を備える
     ことを特徴とする容量回復装置。
  2.  前記電気量算出部は、前記通電電気量をQとし、前記電池容量をXbとし、前記二次電池の寿命に達したと判定する容量維持率をYとし、前記回復効率をZとしたとき、「Q ≧ Xb×(1-Y)/Z」の関係を満たすように前記通電電気量を決定する
     ことを特徴とする請求項1に記載の容量回復装置。
  3.  前記電気量算出部は、前記通電電気量をQとし、前記負極非対向部の容量をXaとしたとき、「Q ≧ 0.6Xa」の関係を満たすように前記通電電気量を決定する
     ことを特徴とする請求項1に記載の容量回復装置。
  4.  正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復装置であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復処理部と、
     前記正極端子または前記負極端子に対する前記容量回復極端子の電圧が所定の制限電圧に達すると、前記容量回復極端子と前記正極端子または前記負極端子との間に流れる電流を停止または制限する電圧監視部と、を備える
     ことを特徴とする容量回復装置。
  5.  前記制限電圧は、前記二次電池の満充電電圧と等しい
     ことを特徴とする請求項4に記載の容量回復装置。
  6.  二次電池の正極および負極を、充電および放電が可能な状態に設置する過程と、
     第三極としての容量調整極を、前記負極のうち前記正極に対向しない部分である負極非対向部との間で前記二次電池の反応種を移動させることができるように設置する過程と、
     電池容量と、前記負極非対向部の容量と、前記二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて、通電すべき電気量である通電電気量を算出する過程と、
     前記負極から前記容量調整極に前記通電電気量を流す容量調整過程と、を含む
     ことを特徴とする二次電池の製造方法。
  7.  二次電池の正極および負極を、充電および放電が可能な状態に設置する過程と、
     第三極としての容量調整極を、前記負極のうち前記正極に対向する以外の部分である負極非対向部との間で前記二次電池の反応種を移動させることができるように設置する過程と、
     前記負極に対する前記容量調整極の電圧が所定の制限電圧に到達するまで、前記負極から前記容量調整極に電流を流す容量調整過程と、を含む、
     ことを特徴とする二次電池の製造方法。
  8.  正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復方法であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復過程と、
     前記二次電池の電池容量と、前記負極非対向部の容量と、前記二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて通電する通電電気量を算出する電気量算出過程と、を有し、
     前記容量回復過程は、前記正極端子または前記負極端子から前記容量回復極端子に前記通電電気量に対応する電流を流し、前記二次電池の反応種を前記容量回復極から前記正極または前記負極に移動させる電気量監視過程を含む
     ことを特徴とする容量回復方法。
  9.  正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復方法であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復過程と、
     前記正極端子または前記負極端子に対する前記容量回復極端子の電圧が所定の制限電圧に達すると、前記容量回復極端子と前記正極端子または前記負極端子との間に流れる電流を停止する電圧監視過程と、を有する
     ことを特徴とする容量回復方法。
  10.  正極に接続された正極端子と前記正極に対向する負極対向部とそれ以外の部分である負極非対向部とを有する負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池と、前記二次電池の容量回復を行う容量回復装置と、を備える二次電池システムであって、
     前記容量回復装置は、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復処理部と、
     前記二次電池の電池容量と、前記負極非対向部の容量と、前記二次電池の寿命に達したと判定する容量維持率と、回復効率と、から選択される少なくとも1種以上のパラメータに基づいて通電すべき電気量である通電電気量を算出する電気量算出部と、を備え、
     前記容量回復処理部は、前記正極端子または前記負極端子から前記容量回復極端子に前記通電電気量に対応する電流を流し、前記二次電池の反応種を前記容量回復極から前記正極あるいは前記負極に移動させる電気量監視部を備える
     ことを特徴とする二次電池システム。
PCT/JP2020/038503 2020-03-16 2020-10-12 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム WO2021186777A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045474A JP2021150029A (ja) 2020-03-16 2020-03-16 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム
JP2020-045474 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186777A1 true WO2021186777A1 (ja) 2021-09-23

Family

ID=77770772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038503 WO2021186777A1 (ja) 2020-03-16 2020-10-12 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム

Country Status (2)

Country Link
JP (1) JP2021150029A (ja)
WO (1) WO2021186777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073000A (zh) * 2021-10-29 2023-05-05 宁德时代新能源科技股份有限公司 用于二次电池的充电方法、装置、设备及计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190934A (ja) * 1995-01-10 1996-07-23 Hitachi Ltd 非水系二次電池および電源システム
WO2012124211A1 (ja) * 2011-03-14 2012-09-20 三菱自動車工業株式会社 リチウムイオン電池の容量回復方法
JP2016076358A (ja) * 2014-10-06 2016-05-12 株式会社日立製作所 リチウムイオン二次電池及び電池システム
JP2016091613A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 電池システム及び容量回復方法
JP2016119249A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 リチウムイオン二次電池システム
WO2019013536A1 (ko) * 2017-07-10 2019-01-17 주식회사 엘지화학 리튬 이차전지의 회생 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190934A (ja) * 1995-01-10 1996-07-23 Hitachi Ltd 非水系二次電池および電源システム
WO2012124211A1 (ja) * 2011-03-14 2012-09-20 三菱自動車工業株式会社 リチウムイオン電池の容量回復方法
JP2016076358A (ja) * 2014-10-06 2016-05-12 株式会社日立製作所 リチウムイオン二次電池及び電池システム
JP2016091613A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 電池システム及び容量回復方法
JP2016119249A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 リチウムイオン二次電池システム
WO2019013536A1 (ko) * 2017-07-10 2019-01-17 주식회사 엘지화학 리튬 이차전지의 회생 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073000A (zh) * 2021-10-29 2023-05-05 宁德时代新能源科技股份有限公司 用于二次电池的充电方法、装置、设备及计算机存储介质
CN116073000B (zh) * 2021-10-29 2024-01-23 宁德时代新能源科技股份有限公司 用于二次电池的充电方法、装置、设备及计算机存储介质

Also Published As

Publication number Publication date
JP2021150029A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
US9287540B2 (en) Separators for a lithium ion battery
JP5303857B2 (ja) 非水電解質電池及び電池システム
JP5191502B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池
US10680449B2 (en) Power storage device
WO2018001274A1 (zh) 一种氟代磷酸盐在制备锂离子电池电极中的应用、锂离子电池电极、其制备方法和应用
US11094998B2 (en) Ceramic-coated separators for lithium-containing electrochemical cells and methods of making the same
KR101139426B1 (ko) 리튬 이온 커패시터
CA3137443A1 (en) Rechargeable battery comprising a sulfur dioxide-based electrolyte
JP2019160734A (ja) 組電池、電池パック、車両、及び、定置用電源
WO2016178147A1 (zh) 可于宽温度范围提供高放电脉冲的锂电池组件及形成方法
WO2021186777A1 (ja) 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム
JP6120083B2 (ja) 非水電解液二次電池の製造方法
JP2013197052A (ja) リチウムイオン蓄電デバイス
JP5741942B2 (ja) リチウム二次電池の容量回復方法
WO2021186781A1 (ja) 容量回復装置、容量回復方法および二次電池システム
WO2021186804A1 (ja) 電池容量の回復量診断方法
WO2022176527A1 (ja) 二次電池の容量回復装置、二次電池の容量回復方法および二次電池システム
WO2022034717A1 (ja) 容量回復装置およびプログラム
WO2022168367A1 (ja) 容量回復装置およびプログラム
WO2022244561A1 (ja) 容量回復装置、二次電池システムおよび容量回復方法
JP2000195558A (ja) 非水電解液二次電池の充放電制御装置
WO2022024468A1 (ja) 二次電池
JP2013178936A (ja) リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
WO2023032544A1 (ja) 二次電池用制御装置、二次電池システムおよび二次電池の容量回復方法
JPH11135107A (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925819

Country of ref document: EP

Kind code of ref document: A1