WO2021186637A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2021186637A1
WO2021186637A1 PCT/JP2020/012094 JP2020012094W WO2021186637A1 WO 2021186637 A1 WO2021186637 A1 WO 2021186637A1 JP 2020012094 W JP2020012094 W JP 2020012094W WO 2021186637 A1 WO2021186637 A1 WO 2021186637A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
charged particle
particle beam
field
shooting
Prior art date
Application number
PCT/JP2020/012094
Other languages
English (en)
French (fr)
Inventor
真衣 吉原
浩嗣 梶山
千葉 寛幸
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022507928A priority Critical patent/JP7289402B2/ja
Priority to PCT/JP2020/012094 priority patent/WO2021186637A1/ja
Priority to US17/910,875 priority patent/US20230105549A1/en
Publication of WO2021186637A1 publication Critical patent/WO2021186637A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • H01J2237/216Automatic focusing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/2811Large objects

Definitions

  • the present invention relates to a charged particle beam device, and can be particularly suitably used for a charged particle beam device having an autofocus function.
  • a scanning electron microscope which is a kind of charged particle beam device, is used to perform high-magnification observation of a continuous field in a wide area.
  • SEM scanning electron microscope
  • the user manually performs the high-magnification observation. I often did it.
  • various scanning electron microscopes equipped with an automatic continuous shooting function have been developed. Further, when the surface of the sample to be observed is not horizontal and flat, it is necessary to take an image while automatically focusing (autofocusing) when performing continuous photography automatically.
  • Patent Document 1 and Patent Document 2 disclose a scanning electron microscope for measuring the length of a semiconductor. Then, in these scanning electron microscopes, the focusing position is automatically set, and each time a shooting field of view is shot at one location, the focus position is automatically moved to the focusing position, and after focusing, the shooting field of view is measured. A method of performing long processing is disclosed.
  • Patent Document 1 and Patent Document 2 when the shooting field of view is wide, it is necessary to automatically move to the focusing position every time shooting is performed, which requires a lot of time. Therefore, when photographing a sample using a charged particle beam device, a technique capable of shortening the photographing time as much as possible is desired.
  • the surface of the sample may not always be in the same focus position as the focusing position, so there is a problem that the focus is greatly deviated.
  • a scan mark is likely to remain in the field of view during autofocus. Therefore, there is a problem that an accurate photographed image cannot be obtained because a scan mark or beam damage is also photographed in the photographed image. Therefore, a technique for obtaining a more accurate photographed image when photographing a sample using a charged particle beam device is desired.
  • the charged particle beam apparatus includes an electron gun capable of irradiating an electron beam, an objective lens for focusing the electron beam, a stage for placing a sample, and the above-mentioned at the time of analysis of the sample.
  • an electron gun capable of irradiating an electron beam
  • an objective lens for focusing the electron beam
  • a stage for placing a sample
  • the above-mentioned at the time of analysis of the sample When the sample is installed on the stage and the sample is irradiated with the electron beam, a detector capable of detecting secondary electrons or reflected electrons emitted from the sample as a signal, the electron gun, and the objective
  • a control unit that is electrically connected to the lens, the stage, and the detector, and has an image processing control circuit that can convert the signal detected by the detector into a captured image, and at the time of analysis of the sample.
  • An imaging function for automatically continuously photographing each of the plurality of imaging fields to be analyzed among the samples as the imaging image, and automatic focus of each of the plurality of imaging fields during analysis of the sample. It is equipped with an auto-focus function for automatically calculating those focus values.
  • each focus of the plurality of shooting visual fields is performed in the first focus value calculation field of view adjacent to the shooting field of view designated as the shooting target among the plurality of shooting fields of view, and the focus of each of the plurality of shooting fields of view is performed.
  • the focus value calculated in the first focus value calculation visual field is used for the calculation of each focus value.
  • the imaging time can be shortened. At that time, a more accurate photographed image can be obtained.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • FIG. 5 is a confirmation screen when the autofocus area is modified in FIG.
  • Embodiment 1 It is a flowchart of execution of automatic continuous shooting in Embodiment 1. It is a schematic diagram which shows the relationship between the focus adjustment position and the photographing position during wide area continuous photography in Embodiment 1.
  • FIG. It is a schematic diagram which shows the relationship between the focus adjustment position and the photographing position following FIG.
  • FIG. It is a schematic diagram which shows the relationship between the focus adjustment position and the photographing position following FIG.
  • FIG. is a schematic diagram which shows the relationship between the focus adjustment position and the photographing position following FIG.
  • FIG. It is a schematic diagram which shows the relationship between the focus adjustment position and the photographing position following FIG.
  • (Embodiment 1) ⁇ Configuration of charged particle beam device>
  • the charged particle beam device 1 according to the first embodiment will be described below with reference to FIG.
  • a scanning electron microscope (SEM) is exemplified as the charged particle beam device 1.
  • the charged particle beam device 1 shown in FIG. 1 analyzes (observes) the sample SAM by irradiating the sample SAM arranged in the sample chamber 7 with an electron beam from the electron gun 3 provided inside the lens barrel 2. , Analysis).
  • the charged particle beam device 1 includes a sample chamber 7 and a lens barrel 2 attached to the sample chamber 7 and forming an electron beam column.
  • the lens barrel 2 focuses on an electron gun 3 capable of irradiating an electron beam (charged particle beam), a condenser lens 4 for focusing the electron beam, a deflection coil 5 for scanning the electron beam, and a sample SAM surface.
  • An objective lens 6 or the like for matching is provided.
  • sample SAM Inside the sample chamber 7, there are a holder 9 for mounting the sample SAM, a stage 8 for installing the holder 9 (sample SAM), a secondary electron detector 10, a backscattered electron detector 11, an optical camera 12, and the like. It is provided. At the time of analysis of the sample SAM, the sample SAM and the holder 9 are transported to the inside of the sample chamber 7, installed on the stage 8, and focused on the intersection with the optical axis OA. In the present application, the holder 9 on which the sample SAM is mounted may be simply described as "sample SAM".
  • the secondary electron detector 10 can detect the secondary electrons emitted from the sample SAM as a signal, and the backscattered electron detector 11 irradiates the sample SAM with the electron beam. If so, the backscattered electrons emitted from the sample SAM can be detected as a signal. Further, the optical camera 12 can capture the sample SAM or the optical image (low magnification image, photographed image) of the holder 9 on which the sample SAM is mounted.
  • the charged particle beam device 1 includes a plurality of secondary electron detectors 10 and a plurality of backscattered electron detectors 11.
  • the plurality of secondary electron detectors 10 and the plurality of backscattered electron detectors 11 are provided inside the sample chamber 7 so as to face the sample SAM from different directions during analysis of the sample SAM.
  • a three-dimensional SEM image photographed image
  • the secondary electron detector 10 and the backscattered electron detector 11 may be provided outside the lens barrel 2 or inside the lens barrel 2. Further, the optical camera 12 does not necessarily have to be mounted on the charged particle beam device 1. In addition, the charged particle beam device 1 may include other lenses, other electrodes, and other detectors.
  • the charged particle beam device 1 includes a vacuum pump 13 and a general control unit C0.
  • the comprehensive control unit C0 is electrically or physically connected to the scanning signal control unit C1, the vacuum control unit C3, the signal control unit C2, the stage control unit C4, and the storage medium MD, and controls them.
  • the control performed by the control units C1 to C4 is performed by the comprehensive control unit C0.
  • the comprehensive control unit C0 including the control units C1 to C4 and the storage medium MD may be regarded as one control unit, and the comprehensive control unit C0 may be simply referred to as a “control unit”.
  • the scanning signal control unit C1 is electrically connected to the electron gun 3, the condenser lens 4, the deflection coil 5, and the objective lens 6 to control their operations.
  • the electron gun 3 receives a control signal from the scanning signal control unit C1 to generate an electron beam, and the electron beam is irradiated toward the sample SAM.
  • Each of the condenser lens 4, the deflection coil 5, and the objective lens 6 receives a control signal from the scanning signal control unit C1 to excite a magnetic field.
  • the magnetic field of the condenser lens 4 focuses the electron beam so that it has an appropriate beam diameter.
  • the magnetic field of the deflection coil 5 deflects the electron beam and scans it two-dimensionally on the sample SAM.
  • the magnetic field of the objective lens 6 causes the electron beam to refocus the electron beam on the sample SAM. Further, the sample SAM can be focused by adjusting the exciting intensity of the objective lens 6.
  • the signal control unit C2 is electrically connected to the secondary electron detector 10, the backscattered electron detector 11, and the optical camera 12, and controls their operations. Further, the signal control unit C2 includes an image processing control circuit capable of processing the signals detected by these and converting each signal into a captured image (image data). The captured image is output to the monitor 20. For example, the photographed image includes a low magnification image 33 and an SEM image described later.
  • the vacuum control unit C3 is electrically connected to the vacuum pump 13 and controls the operation of the vacuum pump 13.
  • the insides of the lens barrel 2 and the sample chamber 7 are evacuated by the vacuum pump 13.
  • the charged particle beam device 1 may have a configuration in which the inside of the sample chamber 7 can be adjusted to a low vacuum by using an atmosphere inlet or a needle valve.
  • the stage control unit C4 is electrically connected to the stage 8 and has a function of controlling the operation of the stage 8 and always linking the field of view and the coordinates of the stage 8.
  • the storage medium MD can store information such as each field of view, the coordinates of the stage 8, and the acquired photographed image (image data), and each information is associated with each other.
  • the stage 8 is an XY-axis drive mechanism that can be driven in a direction parallel to the mounting surface of the charged particle beam device 1, and a Z-axis drive that can be driven in a direction (height direction) perpendicular to the mounting surface described above. It has a mechanism, an R-axis drive mechanism that can be driven in the rotational direction, and a T-axis drive mechanism that can be driven in an inclined direction that is inclined with respect to the XY plane.
  • Each of these drive mechanisms is a mechanism used for analyzing any part of the sample SAM and the holder 9 installed on the stage 8. As a result, the part of the sample SAM to be analyzed can be moved to the center of the imaging field of view.
  • the charged particle beam device 1 includes a monitor 20, a mouse 21, and a trackball 22 electrically connected to the integrated control unit C0, either outside or inside.
  • a monitor 20 When the user works on the monitor 20 using the mouse 21 or the trackball 22, various information is input to the general control unit C0 or output from the general control unit C0.
  • the user manually operates the stage 8 the user can also use the mouse 21 or the trackball 22 to perform the work.
  • the charged particle beam device 1 has a photographing function for automatically continuously photographing each of a plurality of imaging fields of the sample SAM to be analyzed as an imaging image at the time of analysis of the sample SAM. It is equipped with an autofocus function for automatically focusing each of a plurality of shooting fields and automatically calculating their focus values.
  • the shooting function and the autofocus function in the first embodiment will be described below with reference to these setting methods and operation methods.
  • step S1 the holder 9 on which the sample SAM is mounted is conveyed to the inside of the sample chamber 7 and installed on the stage 8. Then, the comprehensive control unit C0 adjusts each drive mechanism of the stage 8 so that the portion of the sample SAM to be analyzed is located at the center of the field of view. After that, the analysis of the sample SAM is started.
  • step S2 the low magnification image (photographed image) 33 is photographed.
  • the comprehensive control unit C0 outputs the selection screen 31 of the focus adjustment field of view shift function on the monitor 20, and outputs the low magnification image display unit 32, the buttons 34 to 44, and the check boxes 45 and 46. Is output to the selection screen 31.
  • the low-magnification image display unit 32 is provided to display the low-magnification image 33 of the sample SAM, the button 34 is provided to capture an optical image, the button 35 is provided to capture an SEM image, and the button 36 is provided. Is provided to output the image data of the low magnification image 33 taken outside the charged particle beam device 1. Further, the enlargement button 41 is provided for enlarging and displaying the low magnification image 33, and the reduction button 42 is provided for reducing and displaying the low magnification image 33.
  • the button 37 for adding an area, the button 38 for deleting an area, the button 39 for selecting an area, and the button 40 for shooting conditions are buttons related to the setting of the continuous shooting setting area 47 of the sample SAM and the shooting conditions, which will be described later.
  • the save setting button 43 is provided to store the above settings and the shooting conditions in the storage medium MD, and the shooting start button 44 completes the above settings and starts shooting in the shooting field of view. It is provided for the purpose.
  • check box 45 is provided to set whether or not to use the autofocus function
  • check box 46 is to set whether or not to use the focus adjustment field of view shift function, that is, to set the AF shift area 54 described later. It is provided in.
  • the low magnification image 33 is taken.
  • the optical camera 12 takes a picture of the holder 9 including the sample SAM or a part of the sample SAM.
  • an electron beam is emitted from the electron gun 3 to the sample SAM, and the secondary electron detector 10 or the backscattered electron detector 11 photographs a part of the holder 9 or the sample SAM including the sample SAM. Will be done. These can also be superimposed on the optical camera image.
  • the low-magnification image 33 photographed by these is displayed on the low-magnification image display unit 32.
  • the charged particle beam device 1 according to the first embodiment does not include the optical camera 12
  • a low-magnification image 33 of the sample SAM is photographed by another device provided with the optical camera 12, and the captured data is displayed on the low-magnification image display unit. It can be displayed on 32.
  • step S3 the continuous shooting setting area 47 is set.
  • the continuous shooting setting area 47 is displayed on the low magnification image 33. Will be done.
  • a plurality of continuous shooting setting areas 47 exist, one or a plurality of continuous shooting setting areas 47 can be set by using the area setting cursor 48.
  • the low magnification image 33 can be enlarged or reduced by using the enlargement button 41 or the reduction button 42. Further, the set continuous shooting setting area 47 can be deleted by clicking the button 38 for deleting the area.
  • step S4 shooting conditions are set.
  • the magnification, the acceleration voltage, the margin amount between the fields of view, the signal to be used, the scanning speed, and the saved name are obtained for the selected continuous shooting setting area 47.
  • Various shooting conditions such as can be set.
  • step S5 whether or not to use the autofocus function is set.
  • the user checks the check box 45. In this case, the next step is step S7.
  • step S6 normal continuous shooting is performed.
  • Normal continuous shooting is a method of acquiring an SEM image of a shooting area group without performing focusing before and after shooting.
  • step S7 whether or not to use the focus adjustment field of view shift function is set.
  • the focus adjustment field of view shift function is performed (YES)
  • the focus adjustment shift function will be described later.
  • step S8 continuous shooting using autofocus is performed in each field of view, and an SEM image of the shooting area group is acquired.
  • step S9 the autofocus area is confirmed.
  • the comprehensive control unit C0 displays the focus adjustment field of view confirmation screen 50 on the monitor 20 as shown in FIG. Is output, and the low magnification image display unit 32, the enlargement button 41, the reduction button 42, the confirmation button 51, the correction button 52, the confirmation button 53, and the check box 56 on which the low magnification image 33 and the continuous shooting setting area 47 are displayed are displayed. Output to the confirmation screen 50.
  • the confirmation button 51 is provided to confirm the autofocus area, and is provided to confirm a plurality of shooting fields (automatic continuous shooting area 55) and AF shift area 54, as will be described later.
  • the correction button 52 is provided to correct the autofocus area, and is provided to correct the AF shift area 54.
  • the confirmation button 53 is provided to confirm the autofocus area.
  • the check box 56 focuses on one shooting field of view in two or more focus value calculation fields of view 64 (AF shift area 54, etc.). It is provided for this purpose.
  • the user selects an arbitrary continuous shooting setting area 47 with respect to the continuous shooting setting area 47 set in step S3, and confirms the autofocus shift area (AF shift area) 54.
  • the automatic continuous shooting area 55 plural shooting fields of view
  • the AF shift area 54 arranged outside the area 47 is displayed on the low magnification image display unit 32.
  • the automatic continuous shooting area 55 is an area composed of a plurality of shooting fields of view, but at least a part thereof includes a continuous shooting setting area 47 in each of the plurality of shooting fields of view.
  • the AF shift area 54 is an area that does not include the continuous shooting setting area 47.
  • the comprehensive control unit C0 automatically determines the automatic continuous shooting area 55 and the AF shift area 54 with respect to the continuous shooting setting area 47.
  • the automatic continuous shooting area 55 is determined based on the magnification set in step S4, the margin amount between the shooting fields of view, and the like.
  • the position, number, and shape of the AF shift area 54 can be corrected by the user clicking the correction button 52.
  • the position of the AF shift area 54 can be changed with respect to FIG. 6, and as shown in FIG. 8, the number of AF shift areas 54 can be changed with respect to FIG. Can be increased or decreased).
  • the user can arbitrarily change the shape of the AF shift region 54 after the low magnification image 33 is enlarged and displayed by clicking the enlargement button 41.
  • the focus can be highly accurate. You can get the value.
  • step S10 the autofocus area is fixed.
  • the confirmation button 53 By clicking the confirmation button 53, the setting of the automatic continuous shooting area 55 and the AF shift area 54 is completed.
  • the AF shift area 54 is a field of view for adjusting the focus before performing automatic continuous shooting, and is an area where actual shooting is not performed.
  • the AF shift area 54 is automatically set near the automatic continuous shooting area 55, but as described above, the user can appropriately modify the AF shift area 54 on the low magnification image 33 of the confirmation screen 50. Therefore, for example, it is possible to prevent a problem that the AF shift area 54 automatically set by the comprehensive control unit C0 deviates significantly from the focus value of the first image of the automatic continuous shooting area 55.
  • the execution of automatic continuous photographing in the first embodiment will be described below with reference to steps S21 to S28 shown in FIG.
  • the automatic continuous shooting uses the autofocus function and the shooting function provided in the charged particle beam device 1, and is automatically performed by the comprehensive control unit C0 including the control units C1 to C4. Further, in steps S21 to S28, the AF shift region 54 is used as an example of the field of view 64 for calculating the focus value, which will be described later, in the calculation of the focus value by autofocus.
  • step S21 automatic continuous shooting is started following step S10.
  • step S22 the visual field is moved.
  • the designated AF shift region 54 is arranged directly under the objective lens 6.
  • step S23 the scanning signal control unit C1 executes autofocus of the AF shift region 54.
  • the entire field of view is autofocused.
  • autofocus is performed at the same position in each field of view.
  • the search range of the focus value when the movement of the stage 8 in the X direction and the Y direction is large, the search range of the focus value becomes large. Further, when the movement of the stage 8 in the X direction and the Y direction is small, the search range of the focus value becomes small. Therefore, the time required for focus adjustment is shortened, and the throughput is improved.
  • step S24 the focus value of the AF shift area 54 is calculated.
  • step S25 the stage 8 is moved by the stage control unit C4, so that the first field of view of the automatic continuous shooting area 55 is arranged directly under the objective lens 6. That is, the designated field of view 61, which will be described later, designated as the imaging target is arranged directly below the objective lens 6.
  • step S26 the designated field of view 61 is automatically photographed using the focus value calculated in step S24.
  • step S27 it is determined whether or not to continue shooting in another shooting field of view. If the shooting is continued (YES), the next step is step S23, and if the shooting is not continued (NO), the next step is step S28, and the automatic continuous shooting is completed.
  • the coordinates, focus value, file storage location, etc. of the autofocused stage 8 are stored in the storage medium MD by the comprehensive control unit C0. Further, the photographed image and the coordinates of the stage 8 where the image was taken are also stored in the storage medium MD by the comprehensive control unit C0. For example, as shown in FIG. 17, such information can be stored in the storage medium MD as a recording table 70.
  • the automatic continuous imaging region 55 includes a plurality of imaging fields to be analyzed in the sample SAM.
  • the plurality of shooting fields of view correspond to the regions indicated by reference numerals 60 to 63, but for convenience of explanation, in the following description, the plurality of shooting fields of view 60 to 63 are designated as the planned field of view 60 to be shot and the shooting target.
  • the field of view 61, the adjusted field of view 62 that has been photographed and has not been autofocused, and the completed field of view 63 that has been photographed and has been autofocused will be described.
  • the AF shift region 54 is a region not included in the automatic continuous shooting region 55, and is a region of the sample SAM that is not subject to analysis.
  • each of the plurality of shooting fields of view 60 to 63 is focused in the field of view 64 for calculating the focus value, and the AF shift region 54, the adjusted field of view 62, and the completed field of view 63 are used as the field of view 64 for calculating the focus value. Used accordingly.
  • the focus is performed in the field of view 64 for calculating the focus value adjacent to the designated field of view 61, and the focus is set.
  • the focus value calculated in the field of view 64 for calculating the focus value is used for calculating the value.
  • the field of view 64 for calculating the focus value is the AF shift region 54.
  • the focus is performed on the adjusted field of view 62 that has already been photographed as the field of view 64 for calculating the focus value, and the focus value is calculated.
  • the focus value calculated in the adjustment field of view 62 is used.
  • the stage 8 moves so that the second designated field of view 61 is arranged directly under the objective lens 6, and the second designated field of view 61 is photographed.
  • FIG. 14 shows a state in which shooting of a plurality of designated visual fields 61 is completed.
  • the shooting field of view that has been shot and has been autofocused is the completed field of view 63.
  • the stage 8 is moved in the vertical direction and is adjacent to the adjustment field of view 62 in the vertical direction.
  • the planned field of view 60 is designated as the designated field of view 61.
  • the stage 8 is moved in the left-right direction, and each planned field of view 60 in the second row is photographed. That is, continuous shooting of a plurality of shooting fields of view is performed like a single stroke.
  • the stage 8 may be moved in the vertical direction of the completed field of view 63.
  • the completed visual field 63 is set as the focus value calculation visual field 64, and the information of the completed visual field 63 stored in the storage medium MD is used. That is, by using the coordinates of the stage 8 and the already calculated focus value, it is possible to take a picture of the designated field of view 61.
  • the upper left shooting field of view is set as the first designated field of view 61, but the first shooting field of view can be arbitrarily set.
  • the shooting order can be set arbitrarily.
  • the autofocus is performed at a low magnification and at a high speed so that no beam trace remains, and the completed field of view 63 (field of view 64 for calculating the focus value) is formed again at the place where the contrast is obtained.
  • the autofocus of the above may be executed to take a picture of the designated field of view 61.
  • the imaging field of view may be depressed due to beam damage.
  • the amount of dent may be calculated in advance before wide-area imaging after scanning, and the focus value may be calculated in consideration of the amount of dent.
  • the first It is also possible to link an arbitrary shooting field of view in the automatic continuous shooting area 55 with the same field of view in the second automatic continuous shooting area 55 and change the focus value relatively.
  • the autofocus performed before the shooting of the designated field of view 61 is the AF shift area 54 that is not the analysis target, the adjusted field of view 62 that has been shot, and the completed field of view 63 that has been shot. Is used as the visual field 64 for calculating the focus value. Therefore, the problem that a scan mark or beam damage remains in the designated field of view 61 at the time of autofocus is solved. Therefore, it is possible to acquire a captured image so that the scan mark or beam damage is not reflected. That is, a more accurate photographed image can be obtained by the technique disclosed in the first embodiment.
  • the autofocus of the next designated field of view 61 is performed using the adjusted field of view 62 that has already been shot. Therefore, it is not necessary to move the stage 8 from the start of shooting to the end of autofocus. Further, when the next designated visual field 61 is autofocused using the completed visual field 63, the information of the completed visual field 63 already stored in the storage medium MD is used. That is, according to the technique disclosed in the first embodiment, the shooting time can be shortened as much as possible.
  • the comprehensive control unit C0 outputs the output screen 71 for the wide area continuous shooting image on the monitor 20 and connects them.
  • the stitched image display unit 72 can display the low magnification image 33, and each SEM image (photographed image) for which automatic continuous shooting has been completed can be pasted on the low magnification image 33.
  • the stitched image 73 is each SEM image (photographed image) based on the coordinates of the stage 8 corresponding to the focus values obtained by the focus of each of the plurality of imaging fields, for example, using the recording table 70 of FIG. ) Are joined together.
  • the user can also use the enlargement button 41 or the reduction button 42 to enlarge or reduce the spliced image 73 for confirmation.
  • the topography image 76 in which each SEM image is joined is output to the stitched image display unit 72.
  • the stitched image 73 and the topography image 76 are switched. With such a topography image 76, the user can grasp the overall unevenness of the sample SAM.
  • the unevenness can be enlarged or reduced at an arbitrary magnification. Further, when the user clicks and drags the topography image 76 in the left-right direction, the shape of the topography image 76 viewed from an arbitrary angle can be confirmed.
  • the designated visual field 61 is focused using the visual field 64 for calculating the focus value at one location.
  • the designated visual field 61 is focused by using the visual field 64 for calculating the focus value at two or more locations. Therefore, each of the operations described below is performed with a check inserted in the check box 56 shown in FIGS. 5 to 10.
  • FIG. 20 is a flowchart of execution of automatic continuous shooting in the second embodiment.
  • steps S21 to S23 the same work as in the first embodiment is performed, but in the second embodiment, a plurality of AF shift areas 54 are set around the automatic continuous shooting area 55.
  • the setting of the plurality of AF shift areas 54 is as described with reference to FIG.
  • step S29 if the focus of all the AF shift areas 54 determined in step S10 is not completed (NO), steps S22 and S23 are repeated.
  • step S24 the next step is step S24.
  • steps S24 to S28 the same work as in the first embodiment is performed, but when shooting is continued in step S27 (YES), the process proceeds to step S30 and autofocus is performed. If the shooting is not continued in step S27 (NO), the next step is step S28, and the automatic continuous shooting ends.
  • the focus is the focus value calculation field of view at two positions adjacent to the designated field of view 61 at different positions.
  • the focus value is calculated at 64, and the focus values calculated in the two focus value calculation visual fields 64 are used.
  • the two focus value calculation visual fields 64 are the two AF shift regions 54.
  • the focus value of the designated visual field 61 can be calculated, for example, by linearly interpolating the focus values calculated in the two focus value calculation visual fields 64.
  • the photographed adjusted field of view 62 and the AF shift region 54 adjacent to the second designated field of view 61 have two focus values.
  • the field of view for calculation is 64. Therefore, the focus of the second designated visual field 61 is performed in the visual field 64 for calculating the focus value at two locations, and the focus value calculated in the visual field 64 for calculating the focus value at the two locations is used for calculating the focus value. Be done. After that, the stage 8 moves so that the second designated field of view 61 is arranged directly under the objective lens 6, and the second designated field of view 61 is photographed.
  • the shooting field of view that has been photographed and has been autofocused becomes the completed field of view 63, and the focus of the third designated field of view 61 is the line in the two focus value calculation fields of view 64. Will be.
  • the adjusted field of view 62 and the completed field of view 63 may be used as the field of view 64 for calculating the focus value at two locations, and the AF shift area 54 and the completed field of view 54 may be used.
  • the field of view 63 may be used as the field of view 64 for calculating the focus value at two locations.
  • the focus value is calculated using the two focus value calculation visual fields 64 for the one designated visual field 61, so that the focus of the designated visual field 61 is more accurate.
  • the value is obtained. That is, by the technique disclosed in the second embodiment, a photographed image more accurate than that of the first embodiment can be obtained.
  • the time required for calculating the focus value increases because the visual fields 64 for calculating the focus value at two locations are used. Therefore, when priority is given to shortening the shooting time, or when the accuracy required for the shot image may be slightly lower, it is effective to use the technique disclosed in the first embodiment. On the contrary, when a more accurate photographed image is required, it is effective to use the technique disclosed in the second embodiment.
  • the visual field 64 for calculating the focus value at three or more locations may be used for the focus of the designated visual field 61.
  • the distance from the designated field of view 61 is short as a candidate for the field of view 64 for calculating the focus value at three or more places
  • eight shooting fields of view located around the designated field of view 61 can be mentioned. That is, the shooting fields of view located on the top, bottom, left, and right of the designated field of view 61 and the shooting fields of view at diagonally upper right, diagonally upper left, diagonally lower right, and diagonally lower left of the designated field of view 61 are candidates for the field of view 64 for calculating the focus value at three or more locations. Become.
  • the focus value is calculated, so that a more accurate photographed image can be obtained.
  • the above-mentioned linear interpolation can also be used to calculate the focus value of the designated field of view 61 in this case.
  • Modification example 24 to 26 are schematic views showing a modified example of the automatic continuous shooting region 55 used in the first and second embodiments.
  • the part to be analyzed in the sample SAM may have various shapes, for example, the outer shape 65 shown in FIGS. 24 and 25, and a plurality of parts such as the outer shape 65 shown in FIG. 26. There may be a gap between the shooting fields of view. However, even with such an outer shape 65, the techniques disclosed in the first and second embodiments can be applied.
  • the autofocus adjustment is illustrated as an example of the automatic continuous shooting function, but instead of the autofocus adjustment, the automatic continuous shooting function is an autostigma adjustment, an autobrightness adjustment, or an autocontrast adjustment. Also, the technique disclosed in the above embodiment can be applied.
  • the number of users who perform various operations on the monitor 20 is not limited to one, and a plurality of users may divide the various operations. Further, a part or all of the operations performed by the user can be performed by the artificial intelligence provided in the comprehensive control unit C0. That is, the user may be artificial intelligence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

荷電粒子線装置1を用いて試料SAMの撮影を行う際に、撮影時間を短縮でき、より正確な撮影像を得られる技術を提供する。荷電粒子線装置1は、電子銃3と、対物レンズ6と、ステージ8と、検出器10,11と、総合制御部C0と、撮影機能と、オートフォーカス機能とを備える。複数の撮影視野の各々のフォーカスは、複数の撮影視野のうち撮影対象に指定された指定視野61に隣接するフォーカス値算出用視野64において行われ、複数の撮影視野の各々のフォーカス値の算出には、フォーカス値算出用視野64において算出されたフォーカス値が用いられる。

Description

荷電粒子線装置
 本発明は、荷電粒子線装置に関し、特に、オートフォーカス機能を備える荷電粒子線装置に好適に使用できる。
 従来、荷電粒子線装置の一種である走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、広域で連続した視野の高倍率観察が行われているが、上記高倍率観察はユーザが手動で行う場合が多かった。しかし近年では、作業時間の短縮のために、広域を自動的に連続撮影したいという要求が増加し、自動連続撮影機能を搭載した様々な走査型電子顕微鏡が開発されている。また、観察対象となる試料の表面が水平且つ平坦ではない場合には、自動的に連続撮影をする際に、自動で焦点合わせ(オートフォーカス)を行いながら撮影する必要がある。
 例えば、特許文献1および特許文献2には、半導体の測長用の走査型電子顕微鏡が開示されている。そして、これらの走査型電子顕微鏡において、自動的に焦点合わせ位置を設定し、1箇所の撮影視野を撮影する度に自動的に焦点合わせ位置へ移動し、焦点合わせを行った後に撮影視野の測長処理を行う方法が開示されている。
特開2010-244740号公報 特開2005-201810号公報
 しかしながら、特許文献1および特許文献2では、撮影視野が広域の場合、撮影の度に自動的に焦点合わせ位置へ移動する必要があり、多くの時間が必要とされる。従って、荷電粒子線装置を用いて試料の撮影を行う際に、撮影時間を出来る限り短縮できる技術が望まれる。
 また、試料の表面は、焦点合わせ位置と常に同じフォーカス位置とならない場合もあるので、フォーカスが大きくずれてしまうという課題がある。特に、帯電しやすい試料またはビームのダメージを受けやすい試料の場合、オートフォーカス時に視野内にスキャンした跡が残り易い。それ故、撮影像にスキャン跡またはビームダメージも撮影されるので、正確な撮影像が得られないという課題がある。従って、荷電粒子線装置を用いて試料の撮影を行う際に、より正確な撮影像を得られる技術が望まれる。
 その他の課題および新規な特徴は、本明細書の記述および添付図面から明らかになる。
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 一実施の形態における荷電粒子線装置は、電子ビームを照射可能な電子銃と、前記電子ビームを集束するための対物レンズと、試料を設置するためのステージと、前記試料の解析時において、前記ステージに前記試料が設置され、且つ、前記試料に前記電子ビームが照射された場合、前記試料から放出される二次電子または反射電子を信号として検出可能な検出器と、前記電子銃、前記対物レンズ、前記ステージおよび前記検出器に電気的に接続され、且つ、前記検出器において検出された前記信号を撮影像へ変換可能な画像処理制御回路を有する制御部と、前記試料の解析時において、前記試料のうち解析対象となる複数の撮影視野の各々を、前記撮影像として自動的に連続撮影するための撮影機能と、前記試料の解析時において、前記複数の撮影視野の各々のフォーカスを自動で行い、それらのフォーカス値を自動で算出するためのオートフォーカス機能と、を備える。ここで、前記複数の撮影視野の各々のフォーカスは、前記複数の撮影視野のうち撮影対象に指定された前記撮影視野に隣接する第1フォーカス値算出用視野において行われ、前記複数の撮影視野の各々のフォーカス値の算出には、前記第1フォーカス値算出用視野において算出されたフォーカス値が用いられる。
 一実施の形態によれば、荷電粒子線装置を用いて試料の撮影を行う際に、撮影時間を短縮できる。また、その際に、より正確な撮影像を得られる。
実施の形態1における荷電粒子線装置を示す模式図である。 実施の形態1における自動連続撮影の設定のフローチャートである。 実施の形態1におけるフォーカス調整視野シフト機能の選択画面である。 図3において連続撮影設定領域を追加した際の選択画面である。 実施の形態1におけるフォーカス調整視野の確認画面である。 図5において任意の領域を選択した際の確認画面である。 図5においてオートフォーカス領域を修正した際の確認画面である。 図5においてオートフォーカス領域を修正した際の確認画面である。 図5においてオートフォーカス領域を修正した際の確認画面である。 図5においてオートフォーカス領域を修正した際の確認画面である。 実施の形態1における自動連続撮影の実行のフローチャートである。 実施の形態1における広域連続撮影中のフォーカス調整位置および撮影位置の関係を示す模式図である。 図12に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 図13に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 図14に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 図14に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 実施の形態1における各情報の記録例を示す記録表である。 実施の形態1における自動連続撮影後の出力画面である。 実施の形態1における自動連続撮影後の出力画面である。 実施の形態2における自動連続撮影の実行のフローチャートである。 実施の形態2における広域連続撮影中のフォーカス調整位置および撮影位置の関係を示す模式図である。 図21に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 図22に続くフォーカス調整位置および撮影位置の関係を示す模式図である。 自動連続撮影領域の変形例を示す模式図である。 自動連続撮影領域の変形例を示す模式図である。 自動連続撮影領域の変形例を示す模式図である。
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 (実施の形態1)
 <荷電粒子線装置の構成>
 以下に図1を用いて、実施の形態1における荷電粒子線装置1を説明する。図1では、荷電粒子線装置1として、例えば走査型電子顕微鏡(SEM)が例示されている。
 図1に示される荷電粒子線装置1は、鏡筒2の内部に備えられた電子銃3から、試料室7に配置された試料SAMへ電子ビームを照射することで、試料SAMを解析(観察、分析)するための装置である。
 荷電粒子線装置1は、試料室7と、試料室7に取り付けられ、且つ、電子ビームカラムを構成する鏡筒2とを備える。鏡筒2は、電子ビーム(荷電粒子ビーム)を照射可能な電子銃3、電子ビームを集束するためのコンデンサレンズ4、電子ビームを走査するための偏向コイル5、および、試料SAM表面に焦点を合わせるための対物レンズ6などを備える。
 試料室7の内部には、試料SAMを搭載するためのホルダ9、ホルダ9(試料SAM)を設置するためのステージ8、二次電子検出器10、反射電子検出器11および光学カメラ12などが設けられている。試料SAMの解析時において、試料SAMおよびホルダ9は、試料室7の内部へ搬送され、ステージ8に設置され、光軸OAとの交点にフォーカスされる。なお、本願では、試料SAMが搭載されたホルダ9を、単に「試料SAM」として説明する場合もある。
 二次電子検出器10は、試料SAMに電子ビームが照射された場合、試料SAMから放出される二次電子を信号として検出可能であり、反射電子検出器11は、試料SAMに電子ビームが照射された場合、試料SAMから放出される反射電子を信号として検出可能である。また、光学カメラ12は、試料SAM、または、試料SAMを搭載するホルダ9の光学像(低倍像、撮影像)を撮影可能である。
 また、図1では詳細な図示を省略しているが、荷電粒子線装置1は、複数の二次電子検出器10および複数の反射電子検出器11を備えている。複数の二次電子検出器10および複数の反射電子検出器11は、試料SAMの解析時において互いに異なる方向から試料SAMに対向するように、試料室7の内部に設けられている。このような複数の二次電子検出器10および複数の反射電子検出器11によって、三次元のSEM像(撮影像)を取得できる。
 なお、二次電子検出器10および反射電子検出器11は、鏡筒2の外部に設けられていてもよいし、鏡筒2の内部に設けられていてもよい。また、光学カメラ12は、必ずしも荷電粒子線装置1に搭載されてなくてもよい。また、荷電粒子線装置1は、これら以外に他のレンズ、他の電極および他の検出器を含んでもよい。
 試料室7の外部において、荷電粒子線装置1は、真空ポンプ13および総合制御部C0を備える。総合制御部C0は、走査信号制御部C1、真空制御部C3、信号制御部C2、ステージ制御部C4および記憶媒体MDに電気的または物理的に接続され、これらを統括する。本願では、各制御部C1~C4によって行われる制御を、総合制御部C0が行うと説明する場合もある。また、各制御部C1~C4および記憶媒体MDを含む総合制御部C0を1つの制御ユニットと見做し、総合制御部C0を単に「制御部」と称する場合もある。
 走査信号制御部C1は、電子銃3、コンデンサレンズ4、偏向コイル5および対物レンズ6に電気的に接続され、これらの動作を制御する。電子銃3は、走査信号制御部C1からの制御信号を受けて電子ビームを生成し、電子ビームは、試料SAMへ向かって照射される。
 コンデンサレンズ4、偏向コイル5および対物レンズ6の各々は、走査信号制御部C1からの制御信号を受けて磁界を励磁する。コンデンサレンズ4の磁界によって、電子ビームは、適切なビーム径になるように集束される。偏向コイル5の磁界によって、電子ビームは、偏向され、試料SAM上において2次元的に走査される。対物レンズ6の磁界によって、電子ビームは試料SAM上に電子ビームを再度集束する。また、対物レンズ6の励磁強度を調整することで、試料SAMの焦点合わせを行うこともできる。
 信号制御部C2は、二次電子検出器10、反射電子検出器11および光学カメラ12に電気的に接続され、これらの動作を制御する。また、信号制御部C2は、これらで検出された信号を処理し、各信号を撮影像(画像データ)へ変換可能な画像処理制御回路を備えている。上記撮影像はモニタ20へ出力される。例えば上記撮影像には、後述の低倍像33およびSEM像などが含まれる。
 真空制御部C3は、真空ポンプ13に電気的に接続され、真空ポンプ13の動作を制御する。荷電粒子線装置1において試料SAMの解析を行う際には、鏡筒2および試料室7の各々の内部は、真空ポンプ13によって真空排気される。また、荷電粒子線装置1は、大気導入口またはニードルバルブを用いて、試料室7の内部を低真空に調整できる構成を有していてもよい。
 ステージ制御部C4は、ステージ8に電気的に接続され、ステージ8の動作を制御し、常に視野とステージ8の座標とをリンクさせる機能を有する。記憶媒体MDは、各視野、ステージ8の座標および取得された撮影像(画像データ)などの情報を保存可能であり、各情報は、互いに関連付けされている。
 ステージ8は、荷電粒子線装置1の載置面に対して平行な方向に駆動可能なXY軸駆動機構、上記載置面に対して垂直な方向(高さ方向)に駆動可能なZ軸駆動機構、回転方向に駆動可能なR軸駆動機構、および、XY面に対して傾斜する傾斜方向に駆動可能なT軸駆動機構を有している。これらの各駆動機構は、ステージ8上に設置された試料SAMおよびホルダ9のうち、任意の部位を解析するために使用される機構である。これらによって、試料SAMのうち解析対象となる部位を、撮影視野の中心へ移動させることができる。
 荷電粒子線装置1は、その外部または内部において、総合制御部C0に電気的に接続されたモニタ20、マウス21およびトラックボール22を備える。ユーザがマウス21またはトラックボール22を用いてモニタ20上で作業することで、各種の情報が、総合制御部C0へ入力または総合制御部C0から出力される。また、ユーザがステージ8をマニュアル操作する場合には、ユーザは、マウス21またはトラックボール22を使用して作業を行うこともできる。
 実施の形態1における荷電粒子線装置1は、試料SAMの解析時において、試料SAMのうち解析対象となる複数の撮影視野の各々を、撮影像として自動的に連続撮影するための撮影機能と、複数の撮影視野の各々のフォーカスを自動で行い、それらのフォーカス値を自動で算出するためのオートフォーカス機能とを備える。
 以下に、実施の形態1における撮影機能およびオートフォーカス機能について、これらの設定方法および操作方法などを交えながら説明する。
 <自動連続撮影の設定>
 以下に図2~図10を用いて、実施の形態1における自動連続撮影の設定について説明する。以下では、図2のフローチャートに示される各ステップS1~S10と、図3~図10とを対比させながら説明を行う。
 まず、ステップS1では、試料SAMを搭載したホルダ9が、試料室7の内部へ搬送され、ステージ8上に設置される。そして、総合制御部C0は、試料SAMのうち解析対象となる部位が視野の中心に位置するように、ステージ8の各駆動機構を調整する。その後、試料SAMの解析が開始される。
 ステップS2では、低倍像(撮影像)33の撮影が行われる。まず、図3に示されるように、総合制御部C0は、フォーカス調整視野シフト機能の選択画面31をモニタ20上に出力し、低倍像表示部32、ボタン34~44およびチェックボックス45、46を選択画面31に出力する。
 低倍像表示部32は試料SAMの低倍像33を表示するために設けられ、ボタン34は光学像を撮影するために設けられ、ボタン35はSEM像を撮影するために設けられ、ボタン36は荷電粒子線装置1の外部で撮影された低倍像33の画像データを出力するために設けられている。また、拡大ボタン41は低倍像33を拡大表示するために設けられ、縮小ボタン42は低倍像33を縮小表示するために設けられている。
 領域追加用のボタン37、領域削除用のボタン38、領域選択用のボタン39および撮影条件用のボタン40は、後述の試料SAMの連続撮影設定領域47の設定および撮影条件などに関するボタンである。また、保存設定用のボタン43は、上記設定および上記撮影条件などを記憶媒体MDに記憶させるために設けられ、撮影開始用のボタン44は、上記設定を完了し、撮影視野の撮影を開始するために設けられている。
 また、チェックボックス45は、オートフォーカス機能の使用有無を設定するために設けられ、チェックボックス46は、フォーカス調整視野シフト機能の使用有無を設定するため、すなわち後述のAFシフト領域54を設定するために設けられている。
 ユーザが光学像撮影用のボタン34またはSEM像撮影用のボタン35をクリックすることで、低倍像33の撮影が行われる。ユーザがボタン34をクリックした場合、光学カメラ12によって、試料SAMを含むホルダ9または試料SAMの一部が撮影される。ユーザがボタン35をクリックした場合、電子銃3から試料SAMへ電子ビームが照射され、二次電子検出器10または反射電子検出器11によって、試料SAMを含むホルダ9または試料SAMの一部が撮影される。これらは、光学カメラ像上に重ね合わせることもできる。これらによって撮影された低倍像33は、低倍像表示部32に表示される。
 ボタン34およびボタン35の代わりに、ユーザが外部画像インポート用のボタン36をクリックすることで、荷電粒子線装置1の外部で撮影された低倍像33を低倍像表示部32に表示させることもできる。ボタン34および35で取得した低倍像33上に外部画像を貼り付けることもできる。実施の形態1における荷電粒子線装置1が光学カメラ12を備えていない場合、光学カメラ12を備えた他の装置によって試料SAMの低倍像33を撮影し、その撮影データを低倍像表示部32に表示させることができる。
 ステップS3では、連続撮影設定領域47の設定が行われる。まず、図4に示されるように、ユーザが領域追加用のボタン37をクリックすることで、広域に自動連続撮影したい領域の設定が行われ、低倍像33上に連続撮影設定領域47が表示される。次に、複数の連続撮影設定領域47が存在している場合、領域設定用のカーソル48を用いることで、1つまたは複数の連続撮影設定領域47を設定することができる。
 なお、ステップS3の作業時には、拡大ボタン41または縮小ボタン42を用いることで、低倍像33を拡大または縮小させることができる。また、領域削除用のボタン38をクリックすることで、設定された連続撮影設定領域47を削除することもできる。
 ステップS4では、撮影条件の設定が行われる。まず、ユーザは、領域選択用のボタン39をクリックし、任意の連続撮影設定領域47を選択する。次に、ユーザが撮影条件用のボタン40をクリックすることで、選択されている連続撮影設定領域47に対して、倍率、加速電圧、視野間のマージン量、使用する信号、走査スピードおよび保存名などの様々な撮影条件を設定することができる。
 ステップS5では、オートフォーカス機能の使用有無が設定される。各撮影視野でオートフォーカス機能を使用する場合(YES)、ユーザは、チェックボックス45にチェックを入れる。この場合、次工程はステップS7となる。
 チェックボックス45にチェックが無い場合(NO)、次工程はステップS6となり、通常の連続撮影が実施される。通常の連続撮影は、撮影前後において焦点合わせを実施せずに、撮影領域群のSEM像を取得する方法である。
 ステップS7では、フォーカス調整視野シフト機能の使用有無が設定される。フォーカス調整視野シフト機能をする場合(YES)、ユーザは、チェックボックス46にチェックを入れる。なお、フォーカス調整シフト機能については後述する。次に、ユーザは、保存設定用のボタン43をクリックし、撮影像の保存先を設定する。次に、ユーザは、撮影開始用のボタン44をクリックする。この場合、次工程はステップS9となる。
 チェックボックス46にチェックが無い場合(NO)、次工程はステップS8となり、各視野でオートフォーカスを使用した連続撮影が実施され、撮影領域群のSEM像が取得される。
 ステップS9では、オートフォーカス領域の確認が行われる。まず、チェックボックス45、46がチェックされている状態で、ユーザがボタン44をクリックすることで、図5に示されるように、総合制御部C0は、モニタ20上にフォーカス調整視野の確認画面50を出力し、低倍像33および連続撮影設定領域47が表示されている低倍像表示部32、拡大ボタン41、縮小ボタン42、確認ボタン51、修正ボタン52、確定ボタン53およびチェックボックス56を確認画面50に出力する。
 確認ボタン51は、オートフォーカス領域を確認するために設けられ、後述するように、複数の撮影視野(自動連続撮影領域55)およびAFシフト領域54を確認するために設けられている。修正ボタン52は、オートフォーカス領域を修正するために設けられ、AFシフト領域54を修正するために設けられている。確定ボタン53は、オートフォーカス領域を確定するために設けられている。
 また、後述の実施の形態2で詳細に説明するが、チェックボックス56は、1箇所の撮影視野に対して、2箇所以上のフォーカス値算出用視野64(AFシフト領域54など)においてフォーカスを行うために設けられている。
 ユーザは、ステップS3において設定された連続撮影設定領域47に対して、任意の連続撮影設定領域47を選択し、オートフォーカスシフト領域(AFシフト領域)54を確認する。図6に示されるように、ユーザが確認ボタン51をクリックすることで、連続撮影設定領域47の一部を含むように配置された自動連続撮影領域55(複数の撮影視野)と、連続撮影設定領域47の外部に配置されたAFシフト領域54とが、低倍像表示部32に表示される。
 後述するように、自動連続撮影領域55は、複数の撮影視野によって構成される領域であるが、複数の撮影視野の各々において、少なくともその一部は連続撮影設定領域47を含んでいる。逆に、AFシフト領域54は、連続撮影設定領域47を含まない領域である。
 なお、総合制御部C0は、連続撮影設定領域47に対して、自動連続撮影領域55およびAFシフト領域54を自動で決定する。自動連続撮影領域55は、ステップS4において設定された倍率および各撮影視野間のマージン量などに基づいて決定される。
 また、ユーザが修正ボタン52をクリックすることで、AFシフト領域54の位置、数および形状が修正可能とされる。
 例えば、図7に示されるように、図6に対してAFシフト領域54の位置を変更することができ、図8に示されるように、図6に対してAFシフト領域54の数を変更(増加または減少)することができる。また、図9および図10に示されるように、ユーザが拡大ボタン41をクリックすることで、低倍像33が拡大表示された後、ユーザは、AFシフト領域54の形状を任意に変更できる。
 AFシフト領域54として指定された領域に例えば穴など平坦ではない箇所が存在していると、フォーカス値に誤差が生じることもあるので、AFシフト領域54の修正を行うことで、精度の高いフォーカス値を得ることができる。
 ステップS10では、オートフォーカス領域の確定が行われる。確定ボタン53をクリックすることで、自動連続撮影領域55およびAFシフト領域54の設定が終了する。
 後で詳細に説明するが、AFシフト領域54は、自動連続撮影を実施する前にフォーカス調整する視野であり、実際の撮影が行われない領域である。AFシフト領域54は、自動連続撮影領域55の近くに自動で設定されるが、上述のように、ユーザは、確認画面50の低倍像33上においてAFシフト領域54を適切に修正できる。従って、例えば総合制御部C0によって自動で設定されたAFシフト領域54が、自動連続撮影領域55の1枚目のフォーカス値と大きくずれてしまうような不具合を防止することができる。
 <自動連続撮影の実行>
 以下に図11に示されるステップS21~S28を用いて、実施の形態1における自動連続撮影の実行について説明する。なお、自動連続撮影は、荷電粒子線装置1に備えられるオートフォーカス機能および撮影機能が用いられ、各制御部C1~C4を含む総合制御部C0によって自動で行われる。また、ステップS21~S28において、オートフォーカスによるフォーカス値の算出は、後述のフォーカス値算出用視野64の一例としてAFシフト領域54を用いている。
 まず、ステップS21では、ステップS10に続いて自動連続撮影が開始される。次に、ステップS22では、視野の移動が行われる。ステージ制御部C4によってステージ8が移動することで、指定したAFシフト領域54が対物レンズ6の直下に配置される。
 次に、ステップS23では、走査信号制御部C1によってAFシフト領域54のオートフォーカスが実行される。このとき、視野全体がオートフォーカスされる。図9または図10のように、ユーザがAFシフト領域54を任意の大きさへ設定した場合、各視野において同じ位置でオートフォーカスが実施される。また、フォーカス値の探索範囲に関して、X方向およびY方向におけるステージ8の移動が大きい場合、フォーカス値の探索範囲は大きくなる。また、X方向およびY方向のステージ8の移動が小さい場合、フォーカス値の探索範囲は小さくなる。それ故、フォーカス調整に掛かる時間が短くなり、スループットが向上する。
 次に、ステップS24では、AFシフト領域54のフォーカス値が算出される。
 次に、ステップS25では、ステージ制御部C4によってステージ8が移動することで、自動連続撮影領域55の1枚目の視野が対物レンズ6の直下に配置される。すなわち、撮影対象に指定された後述の指定視野61が対物レンズ6の直下に配置される。
 次に、ステップS26では、ステップS24で算出されたフォーカス値を用いて、指定視野61が自動的に撮影される。
 次に、ステップS27では、他の撮影視野の撮影を継続するか否かが判断される。撮影を継続する場合(YES)、次工程はステップS23となり、撮影を継続しない場合(NO)、次工程はステップS28となり、自動連続撮影が終了する。
 なお、オートフォーカスを行ったステージ8の座標、フォーカス値およびファイルの保存場所などは、総合制御部C0によって記憶媒体MDに保存される。また、撮影された撮影像および撮影を行ったステージ8の座標なども、総合制御部C0によって記憶媒体MDに保存される。例えば、図17に示されるように、これらの情報を記録表70として記憶媒体MDに保存することもできる。
 以下に図12~図16を用いて、実施の形態1における広域連続撮影中のフォーカス調整位置および撮影位置の関係を説明する。
 自動連続撮影領域55は、試料SAMのうち解析対象となる複数の撮影視野を含んでいる。複数の撮影視野は符号60~63で示される領域に相当するが、説明の便宜上、以下の説明では複数の撮影視野60~63を、撮影予定のある予定視野60、撮影対象に指定された指定視野61、撮影済であり且つオートフォーカスが行われていない調整視野62、撮影済であり且つオートフォーカス済である完了視野63として説明する。
 また、AFシフト領域54は、自動連続撮影領域55に含まれない領域であり、試料SAMのうち解析対象外の領域である。
 また、複数の撮影視野60~63の各々のフォーカスは、フォーカス値算出用視野64において行われるが、フォーカス値算出用視野64としてAFシフト領域54、調整視野62および完了視野63が、その状況に応じて用いられる。
 まず、図12に示されるように、自動連続撮影領域55のうち1番目の指定視野61を撮影する場合、そのフォーカスは、指定視野61に隣接するフォーカス値算出用視野64において行われ、そのフォーカス値の算出には、フォーカス値算出用視野64において算出されたフォーカス値が用いられる。なお、図12では、フォーカス値算出用視野64はAFシフト領域54である。その後、対物レンズ6の直下に指定視野61が配置されるようにステージ8が移動し、1番目の指定視野61の撮影が行われる。
 次に、図13に示されるように、2番目の指定視野61を撮影する場合、そのフォーカスは、フォーカス値算出用視野64として撮影済の調整視野62において行われ、そのフォーカス値の算出には、調整視野62において算出されたフォーカス値が用いられる。その後、対物レンズ6の直下に2番目の指定視野61が配置されるようにステージ8が移動し、2番目の指定視野61の撮影が行われる。
 図14は、複数の指定視野61の撮影が完了した状態を示している。撮影済であり且つオートフォーカス済である撮影視野は、完了視野63となる。
 図15に示されるように、自動連続撮影領域55の端部に位置する撮影視野(調整視野62)を撮影した後では、上下方向にステージ8が移動され、上下方向において調整視野62に隣接する予定視野60が指定視野61に指定される。その後、左右方向にステージ8を移動させ、2列目の各予定視野60の撮影が行われる。すなわち、一筆書きのように複数の撮影視野の連続撮影が行われる。
 また、一筆書きの連続撮影に代えて、図16に示されるように、1列目の複数の撮影視野の撮影が完了した場合、完了視野63の上下方向にステージ8を移動させてもよい。図16のように実施する際には、完了視野63がフォーカス値算出用視野64として設定され、記憶媒体MDに保存されている完了視野63の情報が用いられる。すなわち、そのステージ8の座標と既に算出されたフォーカス値とを用いることで、指定視野61の撮影を行うこともできる。
 また、実施の形態1では、左上の撮影視野を1番目の指定視野61としていたが、1番目に撮影する撮影視野は、任意に設定可能である。また、撮影する順番も任意に設定可能である。
 また、フォーカス値がずれてオートフォーカスが失敗した場合、ビーム跡が残らないように低倍率で高速のオートフォーカスを実施し、コントラストがつく箇所において、再び完了視野63(フォーカス値算出用視野64)のオートフォーカスを実行し、指定視野61の撮影を行ってもよい。
 また、試料SAMが軟らかい材料で構成されている場合、試料SAMの撮影を行うと、撮影視野がビームダメージによって窪むこともある。その場合、スキャン後の広域撮影の前に予め窪み量を計算し、窪み量を考慮したフォーカス値を算出してもよい。
 また、同じ形状の複数の自動連続撮影領域55が並んでいて、且つ、自動連続撮影領域55のうちのある視野のフォーカス値が、他の視野のフォーカス値よりも大きいまたは小さい場合、1番目の自動連続撮影領域55の任意の撮影視野と、2番目の自動連続撮影領域55の同じ視野とをリンクさせ、相対的にフォーカス値を変更することも可能である。
 以上のように、実施の形態1における自動連続撮影では、指定視野61の撮影前に行われるオートフォーカスは、解析対象外のAFシフト領域54、撮影済の調整視野62および撮影済の完了視野63が、フォーカス値算出用視野64として用いられる。それ故、オートフォーカス時において、指定視野61にスキャン跡またはビームダメージが残るという不具合が解消される。従って、スキャン跡またはビームダメージ写りこまないように、撮影像を取得することができる。すなわち、実施の形態1に開示した技術によって、より正確な撮影像を得ることができる。
 また、実施の形態1における自動連続撮影では、撮影済の調整視野62を用いて、次の指定視野61のオートフォーカスが行われる。このため、撮影開始からオートフォーカス終了時までの間、ステージ8を移動させる必要が無い。また、完了視野63を用いて、次の指定視野61のオートフォーカスを行う場合、記憶媒体MDに既に保存されている完了視野63の情報が用いられる。すなわち、実施の形態1に開示した技術によって、撮影時間を出来る限り短縮することができる。
 <繋ぎ合わせ像およびトポグラフィ像の作製>
 図18に示されるように、自動連続撮影領域55の各々の撮影視野の撮影が終了した後、総合制御部C0は、広域連続撮影像用の出力画面71をモニタ20上に出力し、繋ぎ合わせ像(撮影像)73を表示するための繋ぎ合わせ像表示部72、2D/3D切替ボタン74、繋ぎ合わせ像73を保存するための保存ボタン75、拡大ボタン41および縮小ボタン42、を出力画面71に出力する。
 繋ぎ合わせ像表示部72は低倍像33を表示可能であり、低倍像33上に自動連続撮影が完了した各SEM像(撮影像)を貼り付けることができる。繋ぎ合わせ像73は、例えば図17の記録表70などを用いて、複数の撮影視野の各々のフォーカスによって得られたフォーカス値に対応するステージ8の座標を基にして、各SEM像(撮影像)を繋ぎ合わせることで作製される。また、ユーザは、拡大ボタン41または縮小ボタン42を用いて、繋ぎ合わせ像73を拡大または縮小させて確認することもできる。
 図19に示されるように、ユーザが2D/3D切替ボタン74をクリックすることで、繋ぎ合わせ像表示部72に、各SEM像を繋ぎ合わせたトポグラフィ像76が出力される。ユーザが2D/3D切替ボタン74をクリックする度に、繋ぎ合わせ像73とトポグラフィ像76とが切り替わる。このようなトポグラフィ像76によって、ユーザは、試料SAMの全体的な凹凸を把握できる。
 なお、繋ぎ合わせ像表示部72において、マウス21を用いて、ユーザがトポグラフィ像76を上下方向にクリックおよびドラックすると、任意の倍率で凹凸を拡大または縮小することができる。また、ユーザがトポグラフィ像76を左右方向にクリックおよびドラックすると、任意の角度から見たトポグラフィ像76の形状を確認することができる。
 (実施の形態2)
 以下に図20~図23を用いて、実施の形態2における荷電粒子線装置1を説明する。なお、以下では、主に実施の形態1との相違点について説明する。
 実施の形態1では、指定視野61のフォーカスは、1箇所のフォーカス値算出用視野64を用いて行われていた。実施の形態2では、指定視野61のフォーカスは、2箇所以上のフォーカス値算出用視野64を用いて行われる。従って、以下で説明する各作業は、図5~図10に示されるチェックボックス56にチェックが挿入された状態で行われる。
 図20は、実施の形態2における自動連続撮影の実行のフローチャートである。
 ステップS21~S23では、実施の形態1と同様の作業が行われるが、実施の形態2では、自動連続撮影領域55の周辺に、複数のAFシフト領域54が設定されている。複数のAFシフト領域54の設定については、図8で説明した通りである。
 それ故、ステップS29では、ステップS10で確定された全てのAFシフト領域54のフォーカスが終了していない場合(NO)、ステップS22とステップS23とが繰り返される。全てのAFシフト領域54のフォーカスが終了した場合(YES)、次工程はステップS24となる。
 ステップS24~S28では、実施の形態1と同様の作業が行われるが、ステップS27で撮影を継続する場合(YES)、ステップS30へ移行してオートフォーカスが実施される。ステップS27で撮影を継続しない場合(NO)、次工程はステップS28となり、自動連続撮影が終了する。
 以下に図21~図23を用いて、実施の形態2における広域連続撮影中のフォーカス調整位置および撮影位置の関係を説明する。
 まず、図21に示されるように、自動連続撮影領域55のうち1番目の指定視野61を撮影する場合、そのフォーカスは、指定視野61に互いに異なる位置で隣接する2箇所のフォーカス値算出用視野64で行われ、そのフォーカス値の算出には、2箇所のフォーカス値算出用視野64において算出されたフォーカス値が用いられる。なお、図12では、2箇所のフォーカス値算出用視野64は、2箇所のAFシフト領域54である。その後、対物レンズ6の直下に指定視野61が配置されるようにステージ8が移動し、1番目の指定視野61の撮影が行われる。
 なお、指定視野61のフォーカス値の算出は、例えば、2箇所のフォーカス値算出用視野64において算出されたフォーカス値を線形補間することで計算できる。
 次に、図22に示されるように、2番目の指定視野61を撮影する場合、撮影済の調整視野62と、2番目の指定視野61に隣接するAFシフト領域54とが2箇所のフォーカス値算出用視野64となる。従って、2番目の指定視野61のフォーカスは、2箇所のフォーカス値算出用視野64において行われ、そのフォーカス値の算出には、2箇所のフォーカス値算出用視野64において算出されたフォーカス値が用いられる。その後、対物レンズ6の直下に2番目の指定視野61が配置されるようにステージ8が移動し、2番目の指定視野61の撮影が行われる。
 その後、図23に示されるように、撮影済であり且つオートフォーカス済である撮影視野は、完了視野63となり、3番目の指定視野61のフォーカスは、2箇所のフォーカス値算出用視野64において行われる。
 また、ここでは図示はしないが、自動連続撮影が進行するに連れて、調整視野62および完了視野63が2箇所のフォーカス値算出用視野64として用いられる場合もあるし、AFシフト領域54および完了視野63が2箇所のフォーカス値算出用視野64として用いられる場合もある。
 このように、実施の形態2では、1箇所の指定視野61に対して、2箇所のフォーカス値算出用視野64を用いてフォーカス値の算出が行われるので、より高精度な指定視野61のフォーカス値が得られる。すなわち、実施の形態2に開示した技術によって、実施の形態1よりも正確な撮影像を得ることができる。
 なお、実施の形態2では、実施の形態1と比較して、2箇所のフォーカス値算出用視野64を用いている分、フォーカス値の算出に掛かる時間が増加する。従って、撮影時間の短縮を優先する場合、または、撮影像に要求される精度が若干低くても構わない場合には、実施の形態1に開示した技術を用いることが有効である。逆に、より正確な撮影像が要求される場合には、実施の形態2に開示した技術を用いることが有効である。
 なお、指定視野61のフォーカスに、3箇所以上のフォーカス値算出用視野64が用いられてもよい。その場合、3箇所以上のフォーカス値算出用視野64の候補として、指定視野61からの距離が近い方が好ましいことを考慮すると、指定視野61の周囲に位置する8箇所の撮影視野が挙げられる。すなわち、指定視野61の上下左右に位置する撮影視野と、指定視野61の斜め右上、斜め左上、斜め右下および斜め左下の撮影視野とが、3箇所以上のフォーカス値算出用視野64の候補となる。
 このように、1箇所の指定視野61に対して、2箇所以上のフォーカス値算出用視野64を用いることで、フォーカス値の算出が行われるので、更に正確な撮影像を得ることができる。なお、この場合における指定視野61のフォーカス値の算出にも、上述の線形補間を用いることができる。
 (変形例)
 図24~図26は、実施の形態1および実施の形態2で用いられる自動連続撮影領域55の変形例を示す模式図である。
 試料SAMの解析対象となる箇所は、例えば図24および図25に示される外形65のように、様々な形状を成している場合もあり、図26に示される外形65のように、複数の撮影視野の間に隙間を有する場合もある。しかし、そのような外形65であっても、実施の形態1および実施の形態2に開示した技術を適用することができる。
 以上、上記実施の形態に基づいて本発明を具体的に説明したが、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上記実施の形態では、自動連続撮影機能の一例としてオートフォーカス調整を例示したが、オートフォーカス調整の代わりに、自動連続撮影機能がオートスティグマ調整、オート明るさ調整またはオートコントラスト調整である場合にも、上記実施の形態で開示した技術を適用できる。
 また、上記実施の形態において、モニタ20上で各種の操作を行うユーザは1人に限られず、複数のユーザが各種の操作を分業してもよい。また、ユーザによって行われる操作の一部または全部を、総合制御部C0に備えられた人工知能が行うこともできる。すなわち、ユーザが人工知能である場合もある。
1  荷電粒子線装置
2  鏡筒
3  電子銃
4  コンデンサレンズ
5  偏向コイル
6  対物レンズ
7  試料室
8  ステージ
9  ホルダ
10  二次電子検出器
11  反射電子検出器
12  光学カメラ
13  真空ポンプ
20  モニタ
21  マウス
22  トラックボール
31  選択画面
32  低倍像表示部
33  低倍像(撮影像)
34~44  ボタン
45、46  チェックボックス
47  連続撮影設定領域
48  カーソル
50  確認画面
51  確認ボタン
52  修正ボタン
53  確定ボタン
54  オートフォーカスシフト領域(AFシフト領域)
55  自動連続撮影領域(複数の撮影視野)
56  チェックボックス
60  予定視野(撮影視野)
61  指定視野(撮影視野)
62  調整視野(撮影視野)
63  完了視野(撮影視野)
64  フォーカス値算出用視野
65  外形
70  記録表
71  出力画面
72  繋ぎ合わせ像表示部
73  繋ぎ合わせ像(撮影像)
74  2D/3D切替ボタン
75  保存ボタン
76  トポグラフィ像
C0~C4  制御部
MD  記憶媒体
OA  光軸
S1~S10、S21~S30  ステップ
SAM  試料

Claims (13)

  1.  電子ビームを照射可能な電子銃と、
     前記電子ビームを集束するための対物レンズと、
     試料を設置するためのステージと、
     前記試料の解析時において、前記ステージに前記試料が設置され、且つ、前記試料に前記電子ビームが照射された場合、前記試料から放出される二次電子または反射電子を信号として検出可能な検出器と、
     前記電子銃、前記対物レンズ、前記ステージおよび前記検出器に電気的に接続され、且つ、前記検出器において検出された前記信号を撮影像へ変換可能な画像処理制御回路を有する制御部と、
     前記試料の解析時において、前記試料のうち解析対象となる複数の撮影視野の各々を、前記撮影像として自動的に連続撮影するための撮影機能と、
     前記試料の解析時において、前記複数の撮影視野の各々のフォーカスを自動で行い、それらのフォーカス値を自動で算出するためのオートフォーカス機能と、
     を備え、
     前記複数の撮影視野の各々のフォーカスは、前記複数の撮影視野のうち撮影対象に指定された前記撮影視野に隣接する第1フォーカス値算出用視野において行われ、
     前記複数の撮影視野の各々のフォーカス値の算出には、前記第1フォーカス値算出用視野において算出されたフォーカス値が用いられる、荷電粒子線装置。 
  2.  請求項1に記載の荷電粒子線装置において、
     前記第1フォーカス値算出用視野は、前記試料のうち解析対象外のシフト領域である、荷電粒子線装置。
  3.  請求項1に記載の荷電粒子線装置において、
     前記第1フォーカス値算出用視野は、前記複数の撮影視野のうち撮影済の前記撮影視野である、荷電粒子線装置。
  4.  請求項1に記載の荷電粒子線装置において、
     前記複数の撮影視野の各々のフォーカスは、前記第1フォーカス値算出用視野と、前記複数の撮影視野のうち撮影対象に指定された前記撮影視野に、前記第1フォーカス値算出用視野と異なる位置で隣接する第2フォーカス値算出用視野とにおいて行われ、
     前記複数の撮影視野の各々のフォーカス値の算出には、前記第1フォーカス値算出用視野において算出されたフォーカス値、および、前記第2フォーカス値算出用視野において算出されたフォーカス値が用いられる、荷電粒子線装置。
  5.  請求項4に記載の荷電粒子線装置において、
     前記第1フォーカス値算出用視野は、前記試料のうち解析対象外のシフト領域であり、
     前記第2フォーカス値算出用視野は、前記複数の撮影視野のうち撮影済の前記撮影視野である、荷電粒子線装置。
  6.  請求項4に記載の荷電粒子線装置において、
     前記第1フォーカス値算出用視野および前記第2フォーカス値算出用視野の各々は、前記試料のうち解析対象外のシフト領域である、荷電粒子線装置。
  7.  請求項4に記載の荷電粒子線装置において、
     前記第1フォーカス値算出用視野および前記第2フォーカス値算出用視野の各々は、前記複数の撮影視野のうち撮影済の前記撮影視野である、荷電粒子線装置。
  8.  請求項1に記載の荷電粒子線装置において、
     前記検出器は、前記試料の解析時において互いに異なる方向から前記試料に対向するように、複数備えられ、
     前記制御部は、前記荷電粒子線装置の内部または外部に設けられたモニタ上にトポグラフィ像を出力でき、
     前記トポグラフィ像は、前記複数の撮影視野の各々のフォーカスによって得られたフォーカス値に対応する前記ステージの座標を基にして、前記複数の撮影視野の各々の前記撮影像を繋ぎ合わせることで作製される、荷電粒子線装置。
  9.  請求項1に記載の荷電粒子線装置において、
     前記制御部は、
      前記複数の撮影視野を含む前記試料の低倍像を表示するための第1表示部と、
      前記低倍像を撮影するための第1ボタンと、
      前記荷電粒子線装置の外部で撮影された前記低倍像の画像データを出力するための第2ボタンと、
      前記低倍像に、前記試料の連続撮影設定領域を追加するための第3ボタンと、
     を前記荷電粒子線装置の内部または外部に設けられたモニタ上の第1画面に出力し、
     ユーザが前記第1ボタンまたは前記第2ボタンをクリックすることで、前記第1表示部に前記低倍像が表示され、
     ユーザが前記第3ボタンをクリックすることで、前記低倍像上に前記連続撮影設定領域が表示される、荷電粒子線装置。
  10.  請求項9に記載の荷電粒子線装置において、
     前記制御部に電気的に接続された光学カメラを更に備え、
     ユーザが前記第1ボタンをクリックすることで、前記第1表示部に、前記光学カメラによって撮影された光学像が前記低倍像として表示される、荷電粒子線装置。
  11.  請求項9に記載の荷電粒子線装置において、
     前記制御部は、前記試料のうち解析対象外のシフト領域を設定するための第1チェックボックスと、前記連続撮影設定領域の設定を完了するための第4ボタンとを前記第1画面に更に出力し、
     前記第1チェックボックスがチェックされている状態で、ユーザが前記第4ボタンをクリックすることで、前記制御部は、
      前記低倍像および前記連続撮影設定領域が表示されている前記第1表示部と、
      前記複数の撮影視野および前記シフト領域を確認するための第5ボタンと、
      前記シフト領域を修正するための第6ボタンと、
     を前記モニタ上の第2画面に出力し、
     ユーザが前記第5ボタンをクリックすることで、前記連続撮影設定領域の内部を含むように配置された前記複数の撮影視野と、前記連続撮影設定領域の外部に配置された前記シフト領域とが前記第1表示部に表示され、
     ユーザが前記第6ボタンをクリックすることで、前記シフト領域の位置、数および形状が任意に修正可能にされ、
     前記シフト領域は、前記第1フォーカス値算出用視野として利用可能である、荷電粒子線装置。
  12.  請求項11に記載の荷電粒子線装置において、
     前記制御部は、1箇所の前記撮影視野に対して、2箇所以上の前記第1フォーカス値算出用視野においてフォーカスを行うための第2チェックボックスを前記第2画面に更に出力する、荷電粒子線装置。
  13.  請求項11に記載の荷電粒子線装置において、
     前記制御部は、前記低倍像を拡大表示するための拡大ボタンと、前記低倍像を縮小表示するための縮小ボタンと、を前記第1画面および前記第2画面に更に出力する、荷電粒子線装置。
PCT/JP2020/012094 2020-03-18 2020-03-18 荷電粒子線装置 WO2021186637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022507928A JP7289402B2 (ja) 2020-03-18 2020-03-18 荷電粒子線装置
PCT/JP2020/012094 WO2021186637A1 (ja) 2020-03-18 2020-03-18 荷電粒子線装置
US17/910,875 US20230105549A1 (en) 2020-03-18 2020-03-18 Charged Particle Beam Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012094 WO2021186637A1 (ja) 2020-03-18 2020-03-18 荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2021186637A1 true WO2021186637A1 (ja) 2021-09-23

Family

ID=77771707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012094 WO2021186637A1 (ja) 2020-03-18 2020-03-18 荷電粒子線装置

Country Status (3)

Country Link
US (1) US20230105549A1 (ja)
JP (1) JP7289402B2 (ja)
WO (1) WO2021186637A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285746A (ja) * 2004-03-03 2005-10-13 Hitachi High-Technologies Corp 走査型電子顕微鏡を用いた試料の観察方法及びその装置
JP2007212288A (ja) * 2006-02-09 2007-08-23 Toshiba Corp パターン検査方法、パターン検査装置およびプログラム
JP2009085657A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 走査型電子顕微鏡を用いた試料の観察方法およびそのシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285746A (ja) * 2004-03-03 2005-10-13 Hitachi High-Technologies Corp 走査型電子顕微鏡を用いた試料の観察方法及びその装置
JP2007212288A (ja) * 2006-02-09 2007-08-23 Toshiba Corp パターン検査方法、パターン検査装置およびプログラム
JP2009085657A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 走査型電子顕微鏡を用いた試料の観察方法およびそのシステム

Also Published As

Publication number Publication date
US20230105549A1 (en) 2023-04-06
JP7289402B2 (ja) 2023-06-09
JPWO2021186637A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
JP4917329B2 (ja) 画像取得装置、画像取得方法、及び画像取得プログラム
JP3813798B2 (ja) 電子顕微鏡
JP4383950B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
US20050174085A1 (en) Micromanipulation system
JP2009277536A (ja) 複合荷電粒子ビーム装置を用いた断面画像取得方法および複合荷電粒子ビーム装置
US7307253B2 (en) Scanning electron microscope
JP5205306B2 (ja) 走査型電子顕微鏡
JP2007026885A (ja) 拡大観察装置、拡大観察装置の操作方法、拡大観察装置操作プログラムおよびコンピュータで読み取り可能な記録媒体並びに記録した機器
JP5075393B2 (ja) 走査電子顕微鏡
TWI785582B (zh) 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體
US6777679B2 (en) Method of observing a sample by a transmission electron microscope
JP4095743B2 (ja) 透過型電子顕微鏡
WO2021186637A1 (ja) 荷電粒子線装置
JP4083193B2 (ja) 電子顕微鏡
WO2021250733A1 (ja) 荷電粒子線装置、およびそのフォーカス調整方法
JP2005216645A (ja) 透過電子顕微鏡
JP7042361B2 (ja) 撮像装置
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2000294183A (ja) 走査電子顕微鏡及び試料撮影方法
JP4871350B2 (ja) パターン寸法測定方法、及びパターン寸法測定装置
JP7307272B2 (ja) 荷電粒子線装置
JP7446453B2 (ja) 解析システム
JP2003295066A (ja) 顕微鏡装置
JP4822920B2 (ja) 3次元像構築方法および透過電子顕微鏡
JP2006190693A (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925021

Country of ref document: EP

Kind code of ref document: A1