WO2021250733A1 - 荷電粒子線装置、およびそのフォーカス調整方法 - Google Patents

荷電粒子線装置、およびそのフォーカス調整方法 Download PDF

Info

Publication number
WO2021250733A1
WO2021250733A1 PCT/JP2020/022503 JP2020022503W WO2021250733A1 WO 2021250733 A1 WO2021250733 A1 WO 2021250733A1 JP 2020022503 W JP2020022503 W JP 2020022503W WO 2021250733 A1 WO2021250733 A1 WO 2021250733A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
charged particle
particle beam
focus
height information
Prior art date
Application number
PCT/JP2020/022503
Other languages
English (en)
French (fr)
Inventor
啓介 五十嵐
偉健 陳
真衣 吉原
寛幸 千葉
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022530359A priority Critical patent/JP7367215B2/ja
Priority to PCT/JP2020/022503 priority patent/WO2021250733A1/ja
Priority to US18/007,588 priority patent/US20230230798A1/en
Publication of WO2021250733A1 publication Critical patent/WO2021250733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination

Definitions

  • the present disclosure relates to a charged particle beam device and a focus adjustment method thereof.
  • Charged particle beam devices such as scanning electron microscopes, transmission electron microscopes, and converged ion beam devices irradiate a sample with a charged particle beam, and transmit, scatter, and reflect charged particles, and secondary electrons generated from the sample surface. It is a device that can be observed and processed by detecting it with a detector.
  • the charged particle beam device offers remarkable advantages such as extremely high resolution as compared with an optical microscope and elemental analysis by detecting X-rays emitted from a sample.
  • Patent Document 1 discloses a function that can secure a state in which a focus point is in focus when observing a particle defect with a scanning electron microscope without spending time and effort.
  • the present disclosure discloses a sample holder for holding a sample, a sample stage for moving the sample, a charged particle gun and a charged particle beam for irradiating the sample with a charged particle beam, and a charged particle beam.
  • An objective lens whose focus can be adjusted by changing the intensity of the convergence effect on the sample, a detector that detects electrons from the sample and outputs a signal for forming an electron image, and optics for taking an optical image of the sample. Control that calculates the height information of the sample based on the optical image obtained by imaging the sample with the image pickup device and the optical image pickup device, and automatically sets the focus adjustment value of the observation point based on the height information.
  • FIG. 1 It is a figure which shows the basic structure example of the charged particle beam apparatus 101 by this embodiment. It is a figure which shows the basic structure example of the charge particle beam apparatus control software 112a by this embodiment. It is a flowchart for demonstrating the focus automatic adjustment function by this Embodiment. It is a drawing which shows the selection screen of the automatic focus adjustment function based on a height information map. It is a figure which shows the execution form (example) of the automatic focus adjustment function based on a height information map. It is a figure which shows the execution form (example) of the automatic focus adjustment function based on a height information map. A flowchart for explaining the focus automatic adjustment function when the automatic adjustment function is selected first is shown. It is a figure which shows the example of the focus automatic adjustment function which can be executed in the configuration provided with the stage tilt mechanism 110t.
  • the embodiment of the present disclosure may be implemented by software running on a general-purpose computer, or may be implemented by dedicated hardware or a combination of software and hardware.
  • FIG. 1 is a diagram showing a basic configuration example of the charged particle beam device 101 according to the present embodiment.
  • the charged particle beam device 101 is, for example, a charged particle gun 102, a charged particle beam barrel 103, an objective lens 104, a control circuit 105, a detector 106, an optical camera 107, a sample 108, and a sample holder 109.
  • the charged particle beam device 101 shown in FIG. 1 is a device that irradiates a sample 108 arranged in the sample chamber 111 from the internal space of the charged particle beam barrel 103 with a charged particle beam to observe and process the sample 108.
  • the configuration of the charged particle beam device 101 may be equipped with other lenses, detectors, and the like, and is not limited thereto.
  • the focus adjustment of the charged particle beam device 101 can be adjusted by changing the excitation of the objective lens 104 or changing the position of the stage 110.
  • the stage 110 has an XY axis drive mechanism that drives the sample in the horizontal plane direction (XY direction) and a Z drive mechanism that drives the sample in the height direction (Z direction) with respect to the device installation surface.
  • the stage 110 may have an R drive mechanism that drives in the rotation direction and a T drive mechanism that drives in the tilt direction.
  • FIG. 2 is a diagram showing a basic configuration example of the charged particle beam device control software 112a according to the present embodiment.
  • the software 112a is stored in, for example, a memory (not shown) of the computer 112, and when the processor (not shown) of the computer 112 executes each function, each program is read from the memory and stored in the internal memory of the processor. Expand to realize each function.
  • the charged particle beam device control software 112a includes, for example, a main routine 200 for observing, photographing, and analyzing a general charged particle image, a stage control routine 201 for controlling the operation of the stage 110, and an optical camera 107.
  • Optical camera control routine 202 for controlling operation, signal processing routine 203 for generating height map and focus value map described later, height map storage area 204, focus control routine 205, image display routine 206, focus value. It is composed of a map storage area 207.
  • the stage drive mechanism is controlled by the stage control routine 201. Further, the stage control routine 201 has a function of linking the stage coordinates of the stage 110 with the field of view (corresponding the coordinates of the optical image with the image obtained by the charged particle beam device).
  • Focus adjustment is controlled by the focus control routine 205.
  • the optical image captured by the optical camera 107 controlled by the optical camera control routine 202 is processed by the signal processing routine 203, the generated height map is stored in the height map storage area 204, and the generated focus value map is generated. Is stored in the focus value map storage area 207.
  • the information processed by the computer 112 is output to the monitor 113 and can be confirmed by the user.
  • the configuration of the charged particle beam device control software 112a may also retain other functions, and is not limited to this.
  • FIG. 3 is a flowchart for explaining the automatic focus adjustment function according to the present embodiment.
  • the automatic focus adjustment function generally has a function of generating a height information map from an optical stereo image of a sample, a function of generating a focus value map from the height information map, and an automatic focus based on the focus value map. It is composed of functions for adjusting and performing observations.
  • Step 101 The charged particle beam device 101 is started up and started.
  • Step 102 The computer 112 (processor of the computer 112) detects that the sample holder 109 in which the sample 108 is set is attached to the stage 110 of the sample chamber 111 by a user (operator). Specifically, after mounting the sample holder 109 on the stage 110, the user notifies the computer of the completion of mounting (for example, clicking the mounting complete button on the UI).
  • Step 103 The observation sample 108 is imaged by the optical camera 107 and an optical image is taken. Specifically, for example, when the attachment of the sample holder 109 to the stage 110 is completed, the selection screen 301 (see FIG. 4) of the automatic focus adjustment function based on the height information map is automatically opened (for example,). Pop-up display).
  • the selection screen 301 for automatic focus adjustment based on the height information map has a focus automatic adjustment function setting button 302 for setting whether or not to use the automatic focus adjustment function, and whether or not to adjust the focus with the objective lens.
  • the working distance (WD) indicates the distance between the lower surface of the objective lens 104 and the sample 108.
  • the user can arbitrarily select both to change the WD by moving the stage 110 in the vertical direction or to adjust the WD with the objective lens while keeping the WD constant. Further, it is possible to set the WD to an arbitrary value desired by the user, adjust the focus while keeping the WD constant, and observe the WD.
  • the user clicks the optical image shooting button 307 and captures an optical image with the optical camera 107.
  • the user may specify a target position for optical imaging (a position on the sample 108) in advance, automatically start optical imaging, and acquire an optical image.
  • the optical image obtained by imaging is displayed on the image display unit (image display area) 308, and can be superimposed on the charged particle image.
  • Step 104 When the user clicks the stereo image creation button 309 on the automatic focus adjustment selection screen 301, the processor of the computer 112 creates a stereo image by the signal processing routine 203 based on the optical image captured in step 103.
  • (V) Step 105 When the user clicks the height map creation button 308 on the automatic focus adjustment selection screen 301, the processor uses the height information map of the sample 108 (each coordinate value on the sample 108) based on the stereo image created in step 104. And the set information of the height at that position).
  • the height at a specific coordinate can be calculated, for example, by estimating the distance from a stereo image (composed of two images acquired at different angles) to the target coordinate using the parallax method.
  • the parallax method is introduced as a stereo vision method in paragraphs [0002] to [0003] of International Publication No. 2018/043433.
  • the generated height information map is linked to the stage coordinates and stored in the height map storage area 204 in association with the observation field.
  • Step 106 When the user clicks the focus value map creation button 310 on the automatic focus adjustment selection screen 301, the processor uses the focus value map in each region of the sample 108 based on the height information map of the sample 108 created in step 104. To create.
  • the relative focus value of each point of the sample 108 is offset (for example, the height of the reference point when the coordinate having the highest height is used as the reference point is used as the offset, and the difference value from the focus value of the reference point is used as the offset value. By calculating in advance together with the relative focus value), it is linked to the stage coordinates and stored in the focus value map storage area 207.
  • Step 107 The processor determines whether the focus automatic adjustment function setting button 302 on the focus automatic adjustment selection screen 301 is selected (checked). At this time, the user is required to click either the objective lens adjustment selection button 303 or the stage height adjustment selection button 305 to select the focus adjustment control method. When the objective lens adjustment is selected, the user arbitrarily selects WD with the WD setting button 304. If the focus automatic adjustment function setting button 302 is not checked (No in step 107), the process proceeds to step 108. If the focus automatic adjustment function setting button 302 is checked (Yes in step 107), the process proceeds to step 109.
  • Step 108 The user makes normal focus adjustments.
  • normal focus adjustment is a method in which the user manually adjusts the focus each time the observation field of view is moved. Although omitted in the present specification, scanning transmission electron microscope image observation is performed. In a configuration that also adds a function, the sample 108 is thin-film processed to have an almost uniform height, and in many cases, the user manually adjusts the amount of defocus for shooting. Therefore, this branch is provided. May be good.
  • Step 109 The user arbitrarily moves the field of view (the observation field of view can be moved to any coordinate position desired to be observed on the sample 108). This visual field movement is executed by driving the stage 110 to which the sample 108 is attached while controlling the stage control routine 201.
  • the user can arbitrarily input the visual field movement amount using a mouse, a trackball, a joystick, or the like.
  • Step 110 The processor automatically adjusts the focus based on the focus value map created in step 106, following the field of view movement performed in step 109. If the automatic focus adjustment function is set by the above procedure, the user can omit the manual focus adjustment.
  • Step 111 Based on the main routine 200, the processor can arbitrarily perform functions such as observation, photographing, and analysis of a general charged particle image. At this time, the user does not need to adjust the focus, so that the operation time is greatly reduced.
  • Step S112 The processor determines whether the visual field movement is continued. When the visual field movement is continued (Yes in step 112), the process proceeds to step 109, and the process from step 109 to step 111 is repeated again. When the visual field movement ends (No in step 112: for example, when the user inputs an instruction to end the process, or when the electron image acquisition and analysis for all the coordinates to be observed are completed), the process is performed. It ends in step 113.
  • FIG. 3 ⁇ Modification example of automatic focus adjustment function>
  • a method is shown in which a button for each step shown in FIG. 4 is provided and executed step by step.
  • the automatic focus adjustment selection screen 301 is shown. It is determined whether or not the automatic adjustment function is selected by the focus automatic adjustment function setting button 302 above.
  • the system may be configured so that steps 103 to 106 are automatically executed.
  • FIG. 7 shows a flowchart for explaining the focus automatic adjustment function when the automatic adjustment function is first selected.
  • a height information map is created based on a stereo image generated by imaging a sample 108 using an optical camera 107, but the method is not limited to this method, and the optical camera 107 is not limited to this method. It is also possible to acquire height information in each region (each coordinate position) of the sample 108 by using a laser interferometer instead of the above, and to create a height information map of the sample. In this case, the focus value map is calculated from the height information map of the sample 108 obtained from the laser interferometer, and the focus is automatically adjusted according to the movement of the visual field.
  • ⁇ Execution mode of automatic focus adjustment function> 5 and 6 are diagrams showing an execution mode (example) of the automatic focus adjustment function based on the height information map.
  • a focus value map is created in each region (each coordinate) of the sample 108 (see FIGS. 5 (d) and 6 (b)).
  • the user can observe any initial field of view. Further, it is possible to automatically adjust the focus of the first observation field of view arbitrarily selected here based on the focus value map.
  • the focus is automatically adjusted accordingly (FIGS. 5 (e) and 6 (d)).
  • the focus automatically adjusted here is executed by referring to the focus value map of each area created in (iv).
  • the charged particle beam from the charged particle beam barrel 103 is irradiated to the sample 108 arranged in the sample chamber 111 for observation, and the detector 106 detects the brightness signal of the charged particle beam image. It is possible to make observations.
  • FIG. 8 is a diagram showing an example of an automatic focus adjustment function that can be executed in a configuration including a stage tilting mechanism 110t.
  • the XY coordinates are determined by an optical image with an inclination of 0 degrees, and then two optical images taken by inclining the sample (for example, an optical image taken by inclining the sample 108 by plus 3 degrees and an optical image taken by tilting the sample 108 by minus 3 degrees).
  • a map in the Z direction of the sample 108 may be created from the optical image taken by the user and used as a focus value map.
  • the height information of the sample is calculated based on the optical image obtained by imaging the sample with the optical image pickup device, or the height information measured by the laser interferometer is measured.
  • the focus adjustment value of the observation point is automatically set based on the height information.
  • 101 charged particle beam device 102 charged particle gun, 103 charged particle beam barrel, 104 objective lens, 105 control circuit, 106 detector, 107 optical camera, 108 sample, 109 sample holder, 110 stage, 110t stage tilt mechanism, 111 Sample chamber, 112 computer, 113 monitor, 112a charged particle beam device control software, 200 main routine, 201 stage control routine, 202 optical camera control routine, 203 signal processing routine, 204 height map storage area, 205 focus control routine, 206 Image display routine, 207 focus value map storage area, 301 automatic focus adjustment function selection screen based on height information map, 302 automatic focus adjustment function setting button, 303 objective lens adjustment selection button, 304 working distance setting button, 305 stage Height adjustment selection button, 306 image display, 307 optical image shooting button, 308 height map creation button, 309 stereo image creation button, 310 focus value map creation button

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

高さの異なる領域を有する試料であっても自動フォーカス調整を可能とする技術を提案する。本開示による荷電粒子線装置は、試料を保持する試料ホルダと、試料を移動させる試料ステージと、試料に荷電粒子線を照射する荷電粒子銃および荷電粒子線鏡筒と、荷電粒子線に対する収束作用の強度を変更することでフォーカス調整が可能な対物レンズと、試料からの電子を検出し、電子像を形成するための信号を出力する検出器と、試料の光学画像を撮影する光学撮像装置と、光学撮像装置で試料を撮像して得られる光学画像に基づいて試料の高さ情報を算出し、当該高さ情報に基づいて観察箇所のフォーカス調整値の設定を自動で実行する制御装置と、を備える(図5参照)。

Description

荷電粒子線装置、およびそのフォーカス調整方法
 本開示は、荷電粒子線装置およびそのフォーカス調整方法に関する。
 走査電子顕微鏡や透過電子顕微鏡、収束イオンビーム装置などに代表される荷電粒子線装置は、試料に荷電粒子線を照射し、透過および散乱、反射した荷電粒子、試料表面より発生した二次電子を検出器で検出することにより観察や加工を行うことができる装置である。荷電粒子線装置は光学顕微鏡と比較して分解能が極めて高いことや試料から放出されたX線を検出することにより元素分析もできることなど著しい利点を提供している。このような荷電粒子線装置を用いて試料観察を行うには荷電粒子線の試料に対するフォーカス制御が重要となる。この点、例えば、特許文献1には、走査型電子顕微鏡で粒子欠陥を観察する際に、フォーカス点が合った状態を時間と手間をかけずに確保できる機能が開示されている。
特開2003-007243号公報
 しかしながら、特許文献1に開示されるようなフォーカス自動調整が可能な荷電粒子線装置であっても、高さの異なる領域を有する大きい試料を観察する場合、高さの異なる領域に視野を移動させたとき、荷電粒子線(ビーム)のフォーカスが合わなくなってしまう。このため、ユーザは、観察視野を移動させる度に毎回手動でフォーカス調整する必要があることが多かった。フォーカス調整は荷電粒子線装置の使用には必須の作業である。この作業を視野移動する度に行うことは手間になり、使用効率向上の妨げとなり、観察時間の増大の要因となる。さらに、荷電粒子線装置の専門知識を有さない不慣れなユーザにはフォーカス調整は困難な場合があり、幅広いユーザへの装置使用の普及の妨げにもなっている。
 本開示は、高さの異なる領域を有する試料であっても自動フォーカス調整を可能とする技術を提案する。
 上記課題を解決するために、本開示は、試料を保持する試料ホルダと、試料を移動させる試料ステージと、試料に荷電粒子線を照射する荷電粒子銃および荷電粒子線鏡筒と、荷電粒子線に対する収束作用の強度を変更することでフォーカス調整が可能な対物レンズと、試料からの電子を検出し、電子像を形成するための信号を出力する検出器と、試料の光学画像を撮影する光学撮像装置と、光学撮像装置で試料を撮像して得られる光学画像に基づいて試料の高さ情報を算出し、当該高さ情報に基づいて観察箇所のフォーカス調整値の設定を自動で実行する制御装置と、を備える荷電粒子線装置について提案する。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例をいかなる意味においても限定するものではない。
 本開示の技術によれば、高さの異なる領域を有する試料に対して自動フォーカス調整が可能となる。
本実施形態による荷電粒子線装置101の基本構成例を示す図である。 本実施形態による荷電粒子線装置制御ソフトウェア112aの基本構成例を示す図である。 本実施形態によるフォーカス自動調整機能を説明するためのフローチャートである。 高さ情報マップに基づくフォーカスの自動調整機能の選択画面を示す図面である。 高さ情報マップに基づくフォーカスの自動調整機能の実行形態(例)を示す図である。 高さ情報マップに基づくフォーカスの自動調整機能の実行形態(例)を示す図である。 最初に自動調整機能を選択する場合のフォーカス自動調整機能を説明するためのフローチャートを示している。 ステージ傾斜機構110tを備える構成において実行可能なフォーカス自動調整機能の例を示す図である。
 以下、添付図面を参照して本開示の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った具体的な実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
 更に、本開示の実施形態は、後述されるように、汎用コンピュータ上で稼動するソフトウェアで実装しても良いし専用ハードウェア又はソフトウェアとハードウェアの組み合わせで実装しても良い。
 <荷電粒子線装置の基本構成例>
 図1は、本実施形態による荷電粒子線装置101の基本構成例を示す図である。荷電粒子線装置101は、例えば、荷電粒子銃102と、荷電粒子線鏡筒103と、対物レンズ104と、制御回路105と、検出器106と、光学カメラ107と、試料108と、試料ホルダ109と、ステージ110と、試料室111と、これらを制御するコンピュータ112と、モニタ113と、を備える。
 図1に示される荷電粒子線装置101は、荷電粒子線鏡筒103の内部空間から試料室111に配置された試料108に対して荷電粒子線を照射して観察や加工を行う装置である。荷電粒子線装置101の構成はこれ以外に他のレンズや検出器などを搭載されても良く、これに限るものでない。荷電粒子線装置101のフォーカス調整は対物レンズ104の励磁を変更する、もしくはステージ110の位置を変更することにより調整することが可能である。
 ステージ110は、試料を装置設置面に対して水平面方向(XY方向)に駆動するXY軸駆動機構や高さ方向(Z方向)に駆動するZ駆動機構を有する。またこの他に、ステージ110は、回転方向に駆動するR駆動機構や傾斜方向に駆動するT駆動機構を有していてもよい。これらの駆動機構により、試料室111内のステージ110に取り付けた試料ホルダ109および試料108を移動させることが可能である。これによりユーザが指定する任意の視野に移動し観察を行うことが可能である。また、水平移動だけではなく、R駆動機構やT駆動機構により回転あるいは傾斜させて後述のステレオ像を生成することができる。
 <荷電粒子線装置制御ソフトウェアの基本構成例>
 図2は、本実施形態による荷電粒子線装置制御ソフトウェア112aの基本構成例を示す図である。当該ソフトウェア112aは、例えば、コンピュータ112のメモリ(図示せず)に格納され、コンピュータ112のプロセッサ(図示せず)が各機能を実行する際に上記メモリから各プログラムを読み込み、プロセッサの内部メモリに展開して各機能を実現する。
 荷電粒子線装置制御ソフトウェア112aは、例えば、一般的な荷電粒子像の観察、撮影、および分析をするためのメインルーチン200、ステージ110の動作を制御するためのステージ制御ルーチン201、光学カメラ107の動作を制御するための光学カメラ制御ルーチン202、後述の高さマップおよびフォーカス値マップを生成するための信号処理ルーチン203、高さマップ記憶領域204、フォーカス制御ルーチン205、画像表示ルーチン206、フォーカス値マップ記憶領域207により構成される。
 ステージ駆動機構は、ステージ制御ルーチン201により制御される。また、ステージ制御ルーチン201はステージ110のステージ座標と視野をリンクさせる(光学画像の座標と荷電粒子線装置による画像とを対応付ける)機能を有する。
 フォーカス調整は、フォーカス制御ルーチン205により制御される。光学カメラ制御ルーチン202で制御される光学カメラ107で撮像した光学画像は、信号処理ルーチン203で処理され、生成された高さマップは高さマップ記憶領域204に格納され、生成されたフォーカス値マップはフォーカス値マップ記憶領域207に格納される。コンピュータ112で処理される情報はモニタ113に出力されユーザは確認することが可能である。なお、荷電粒子線装置制御ソフトウェア112aの構成は、これ以外の機能も保持しても良く、これに限るものではない。
 <フォーカス自動調整機能>
 図3は、本実施形態によるフォーカス自動調整機能を説明するためのフローチャートである。フォーカス自動調整機能は、概略的に、試料の光学ステレオ像から高さ情報マップを生成する機能、当該高さ情報マップからフォーカス値マップを生成する機能、および当該フォーカス値マップに基づいてフォーカスを自動調整して観察等を実行する機能によって構成される。
(i)ステップ101
 荷電粒子線装置101を立ち上げ開始する。
(ii)ステップ102
 コンピュータ112(コンピュータ112のプロセッサ)は、試料108をセットした試料ホルダ109が試料室111のステージ110にユーザ(オペレータ)によって取り付けられたことを検知する。具体的には、試料ホルダ109をステージ110に取り付けた後、ユーザが取り付け完了をコンピュータに通知する(例えば、UI上の取付完了ボタンをクリックするなど)。
(iii)ステップ103
 光学カメラ107で観察試料108を撮像し光学画像を撮影する。具体的には、例えば、試料ホルダ109のステージ110への取り付けが完了すると、自動的に高さ情報マップに基づいたフォーカスの自動調整機能の選択画面301(図4参照)が開かれる(例えば、ポップアップ表示)。
 高さ情報マップに基づいたフォーカスの自動調整の選択画面301は、フォーカスの自動調整機能を使用するか否かを設定するフォーカス自動調整機能設定ボタン302と、フォーカスを対物レンズで調整するか否かを設定する対物レンズ調整選択ボタン303と、作動距離設定ボタン304と、フォーカスをステージ高さの上下動で調整するか否かを設定するステージ高さ調整ボタン305と、光学画像および荷電粒子像を表示する像表示部306と、光学像撮影ボタン307と、高さマップ作成ボタン308と、ステレオ像作成ボタン309と、フォーカス値マップ作成ボタン310と、を有する。ここで、作動距離(Working Distance:WD)は、対物レンズ104下面と試料108の間の距離を示している。フォーカスの調整は、ステージ110を上下方向に移動させることによりWDを変える、または、WDを一定のまま対物レンズで調整する両方をユーザは任意に選択可能である。さらに、WDをユーザが望む任意の値に設定し、WDを常に一定としてフォーカス調整を行い観察することが可能である。
 当該ステップでは、ユーザが光学像撮影ボタン307をクリックし、光学カメラ107で光学画像を撮像する。なお、ユーザが予め光学撮像の対象位置(試料108上の位置)を指定し、自動的に光学撮像を開始し、光学画像を取得するようにしてもよい。撮像して得られた光学画像は、像表示部(像表示領域)308に表示され、荷電粒子像と重ね合わせることも可能である。
(iv)ステップ104
 ユーザがフォーカスの自動調整の選択画面301上でステレオ像作成ボタン309をクリックすると、コンピュータ112のプロセッサは、ステップ103で撮像した光学画像に基づき、信号処理ルーチン203によりステレオ像を作成する。
(v)ステップ105
 ユーザがフォーカスの自動調整の選択画面301上の高さマップ作成ボタン308をクリックすると、上記プロセッサは、ステップ104で作成したステレオ像に基づき試料108の高さ情報マップ(試料108上の各座標値とその位置における高さの組情報)を作成する。特定の座標における高は、例えば、ステレオ像(異なる角度で取得した2枚の画像から構成される)から視差法を用いて対象の座標までの距離をする推定することにより算出することができる。なお、視差法については、ステレオビジョン法として、国際公開第2018/043437号の段落[0002]から[0003]に紹介されている。
 生成された高さ情報マップは、ステージ座標とリンクし、観察視野と関連付けて高さマップ記憶領域204に保存される。
(vi)ステップ106
 ユーザがフォーカスの自動調整の選択画面301上のフォーカス値マップ作成ボタン310をクリックすると、上記プロセッサは、ステップ104で作成した試料108の高さ情報マップに基づき、試料108の各領域におけるフォーカス値マップを作成する。試料108の各点の相対的なフォーカス値をオフセット(例えば、高さが一番高い座標を基準点としたときの当該基準点の高さをオフセットとし、基準点のフォーカス値との差分値を相対的フォーカス値とする)とともに事前に計算することで、ステージ座標とリンクさせ、フォーカス値マップ記憶領域207に保存される。
(vii)ステップ107
 上記プロセッサは、フォーカスの自動調整の選択画面301上のフォーカス自動調整機能設定ボタン302が選択されているか(チェックが入れられているか)判断する。このとき、ユーザは対物レンズ調整選択ボタン303またはステージ高さ調整選択ボタン305のどちらかをクリックしてフォーカスの調整制御方法を選択することが要求される。対物レンズ調整を選択した場合、ユーザはWD設定ボタン304でWDを任意選択する。フォーカス自動調整機能設定ボタン302にチェックを入れない場合(ステップ107でNoの場合)、処理はステップ108に進む。フォーカス自動調整機能設定ボタン302にチェックが入っている場合(ステップ107でYesの場合)、処理はステップ109に移行する。
(viii)ステップ108
 ユーザは通常のフォーカス調整を行う。ここで、「通常のフォーカス調整とは、観察視野を移動する度に毎回ユーザが操作して手動でフォーカスを調整する方法である。本明細書では省略しているが、走査透過電子顕微鏡像観察機能も付加する構成においては、試料108は薄膜加工されておりほぼ均一な高さとなり、なおかつユーザが手動でデフォーカスの量を調整して撮影する場合が多いので、この分岐を設けるようにしてもよい。
(ix)ステップ109
 ユーザは、任意に視野移動を行う(試料108上で観察したい任意の座標位置に観察視野を移動することができる)。この視野移動は、ステージ制御ルーチン201で試料108を取り付けたステージ110を制御しながら駆動することで実行される。ここでユーザは、図示していないがマウスやトラックボール、ジョイスティックなどを用いて任意に視野移動量の入力を行うことが可能である。
(x)ステップ110
 上記プロセッサは、ステップ109で行った視野移動に追随して、ステップ106で作成したフォーカス値マップに基づいて、自動でフォーカスを調整する。上記の手順によりフォーカスの自動調整機能が設定されていればユーザは手動によるフォーカスの調整を省略することができる。
(xi)ステップ111
 上記プロセッサは、メインルーチン200に基づいて、一般的な荷電粒子像の観察および撮影、分析といった機能をユーザは任意に実行させることができる。このときにユーザはフォーカスの調整を行う必要がないため操作時間が大幅に短縮される。
(xii)ステップS112
 上記プロセッサは、視野移動が継続されているか判断する。視野移動が継続される場合(ステップ112でYesの場合)、処理はステップ109に移行し、ステップ109からステップ111の処理が再度繰り返される。視野移動が終了する場合(ステップ112でNoの場合:例えば、ユーザによって処理終了の指示が入力された場合や観察すべき全ての座標について電子像を取得および分析が終了した場合など)、処理はステップ113で終了する。
 <フォーカス自動調整機能の変形例>
 図3の説明では、図4に示したステップごとのボタンを設け、段階的に実行させてゆく方式を示したが、ステップ102にて試料108をセットした後に、フォーカスの自動調整の選択画面301上のフォーカス自動調整機能設定ボタン302により自動調整機能が選択されているか判断される。自動調整機能が選択されている場合には、自動的にステップ103からステップ106までが実行されるようにシステムを構成してもよい。図7は、最初に自動調整機能を選択する場合のフォーカス自動調整機能を説明するためのフローチャートを示している。
 <高さ情報マップ作成の変形例>
 図3のステップ103から105では、光学カメラ107を用いて試料108を撮像して生成されたステレオ像に基づいて高さ情報マップを作成しているが、この手法に限定されず、光学カメラ107の代わりにレーザ干渉計を用いて試料108の各領域(各座標位置)における高さ情報を取得し、試料の高さ情報マップを作成することも可能である。この場合、レーザ干渉計から得た試料108の高さ情報マップによりフォーカス値マップを算出し、視野移動に追随してフォーカスを自動調整することになる。
 <フォーカスの自動調整機能の実行形態>
 図5および図6は、高さ情報マップに基づくフォーカスの自動調整機能の実行形態(例)を示す図である。
(i)まず、ユーザは、試料108を試料ホルダ109にセットする(図5(a)参照)。
(ii)次に、視野移動させ、光学カメラで2枚の画像を撮影する(図5(b)参照)。このときステージ110、もしくは光学カメラ107を左右XY移動させ少なくとも2枚の試料108の光学画像を撮影する。
(iii)取得した2枚の画像からステレオ像を作成し、試料108の高さ情報を計算して高さ情報マップを作成する(図5(c)および図6(a)参照)。
(iv)高さ情報マップに基づき、試料108の各領域(各座標)におけるフォーカス値マップを作成する(図5(d)、図6(b)参照)。ここで図6(c)に示すように、ユーザは、任意の最初の観察視野を観察することができる。また、ここで任意に選択した最初の観察視野のフォーカスをフォーカス値マップに基づいて自動調整すること可能である。
(v)高さの異なる視野に移動するとフォーカスも追随して自動で調整される(図5(e)および図6(d))。ここで自動調整されるフォーカスは(iv)で作成した各領域のフォーカス値マップを参照して実行される。図5(e)に示すようにステージ移動に伴い、フォーカス値F=αやフォーカス値F=βのようにステージ座標とリンクして調整することが可能である。ここで荷電粒子線鏡筒103からの荷電粒子線を試料室111に配置された試料108に対して照射して観察を行い、検出器106で荷電粒子線画像の明るさ信号を検出することで観察を行うことが可能である。
 <試料を傾斜させた画像を用いたフォーカス自動調整の例>
 図8は、ステージ傾斜機構110tを備える構成において実行可能なフォーカス自動調整機能の例を示す図である。この場合、傾斜0度の光学画像にてXY座標を決め、続いて試料を傾斜させて撮影した2つの光学画像(例えば、試料108をプラス3度傾斜させて撮影した光学画像とマイナス3度傾斜させて撮影した光学画像)から試料108のZ方向のマップを作成し、フォーカス値マップに使用してもよい。
 <まとめ>
 本実施形態の荷電粒子線装置によれば、光学撮像装置で試料を撮像して得られる光学画像に基づいて試料の高さ情報を算出、あるいは、レーザ干渉計で計測した高さ情報を計測し、当該高さ情報に基づいて観察箇所のフォーカス調整値の設定を自動で実行する。これにより、ユーザは高さの異なる箇所(領域)を有する大きい試料を観察する際に、どの観察視野に移動しても自動でフォーカスを調整することができる。視野移動に追随してフォーカスが自動調整されるため、ユーザが調整することなく常に最適なフォーカスで観察することが可能である。また、観察時間を短縮できるため、業務の効率化やユーザビリティの向上につながる。さらに、フォーカス調整をユーザがする必要がなくなるため、荷電粒子線装置の操作に不慣れなユーザも簡便に取り扱うことが可能となる。
101 荷電粒子線装置、102 荷電粒子銃、103 荷電粒子線鏡筒、104対物レンズ、105 制御回路、106 検出器、107 光学カメラ、108 試料、109 試料ホルダ、110 ステージ、110t ステージ傾斜機構、111 試料室、112 コンピュータ、113 モニタ、112a 荷電粒子線装置制御ソフトウェア、200 メインルーチン、201 ステージ制御ルーチン、202 光学カメラ制御ルーチン、203 信号処理ルーチン、204 高さマップ記憶領域、205 フォーカス制御ルーチン、206 画像表示ルーチン、207 フォーカス値マップ記憶領域、301 高さ情報マップに基づくフォーカスの自動調整機能の選択画面、302 フォーカス自動調整機能設定ボタン、303 対物レンズ調整選択ボタン、304 作動距離設定ボタン、305 ステージ高さ調整選択ボタン、306 像表示部、307 光学像撮影ボタン、308 高さマップ作成ボタン、309 ステレオ像作成ボタン、310 フォーカス値マップ作成ボタン

Claims (12)

  1.  試料を保持する試料ホルダと、
     前記試料を移動させる試料ステージと、
     前記試料に荷電粒子線を照射する荷電粒子銃および荷電粒子線鏡筒と、
     前記荷電粒子線に対する収束作用の強度を変更することでフォーカス調整が可能な対物レンズと、
     前記試料からの電子を検出し、電子像を形成するための信号を出力する検出器と、
     前記試料の光学画像を撮影する光学撮像装置と、
     前記光学撮像装置で前記試料を撮像して得られる光学画像に基づいて前記試料の高さ情報を算出し、当該高さ情報に基づいて観察箇所のフォーカス調整値の設定を自動で実行する制御装置と、
    を備える荷電粒子線装置。
  2.  請求項1において、
     前記制御装置は、前記設定されたフォーカス調整値に従って、前記試料の前記観察箇所に前記荷電粒子線を照射し、前記電子像を形成し、出力する荷電粒子線装置。
  3.  請求項1において、
     前記制御装置は、試料位置を水平方向に移動させて光学撮像装置で撮像した少なくとも2枚の光学画像から得られるステレオ像に基づいて、試料の高さ情報マップを作成する荷電粒子線装置。
  4.  請求項1において、
     前記試料ステージは、試料傾斜機構を備え、
     前記制御装置は、試料傾斜角度が異なる少なくとも2枚の光学画像からステレオステレオ像に基づいて、前記試料の高さ情報マップを作成する荷電粒子線装置。
  5.  請求項3または4において、
     前記制御装置は、前記試料の高さ情報マップに基準点を設定し、当該基準点の高さ位置を示すオフセット値と、前記試料の各領域における、前記基準点との相対的なフォーカス値とを算出することにより、前記試料のフォーカス値マップを作成する荷電粒子線装置。
  6.  請求項5において、
     前記制御装置は、前記試料のフォーカス値マップに基づいて、前記試料ステージの移動による観察視野移動に追随し、フォーカスの自動調整を実行する荷電粒子線装置。
  7.  請求項1において、
     前記試料ステージは、少なくともxyz3軸方向の駆動機構を備え、
     前記制御装置は、前記高さ情報およびフォーカス値と、前記試料ステージの座標とをリンクさせる荷電粒子線装置。
  8.  請求項1において、
     前記制御装置は、前記高さ情報情基づいたフォーカス自動調整の条件を設定するためのユーザインターフェイスを表示装置の画面上に表示させる荷電粒子線装置。
  9.  請求項8において、
     前記ユーザインターフェイスは、前記フォーカス自動調整を前記対物レンズによる調整、あるいは前記試料ステージによる調整を選択できるようにする選択欄と、前記対物レンズの作動距離を設定欄と、を含み、
     前記制御装置は、前記対物レンズの前記作動距離を一定にして前記フォーカス自動調整を実行する荷電粒子線装置。
  10.  請求項8において、
     前記ユーザインターフェイスは、前記光学撮像装置で撮像した前記光学画像と前記電子像を重ね合わせて表示する像表示欄を含む荷電粒子線装置。
  11.  試料を保持する試料ホルダと、
     前記試料を移動させる試料ステージと、
     前記試料に荷電粒子線を照射する荷電粒子銃および荷電粒子線鏡筒と、
     前記荷電粒子線に対する収束作用の強度を変更することでフォーカス調整が可能な対物レンズと、
     前記試料からの電子を検出し、電子像を形成するための信号を出力する検出器と、
     前記試料の各領域における高さ情報を計測するレーザ干渉計と、
     前記レーザ干渉計で計測した高さ情報に基づいて観察箇所のフォーカス調整値の設定を自動で実行する制御装置と、
    を備える荷電粒子線装置。
  12.  荷電粒子線装置に載置された試料に対するフォーカスを自動調整するフォーカス調整方法であって、
     前記荷電粒子線装置の動作を制御する制御装置が、光学撮像装置によって取得した前記試料の光学画像を取得することと、
     前記制御装置が、前記光学画像に基づいて前記試料の高さ情報を算出することと、
     前記制御装置が、前記高さ情報に基づいて前記試料の観察箇所のフォーカス調整値を設定することと、
     前記制御装置が、前記フォーカス調整値に基づいて、前記荷電粒子線装置のフォーカスを制御することと、
    を含むフォーカス調整方法。
PCT/JP2020/022503 2020-06-08 2020-06-08 荷電粒子線装置、およびそのフォーカス調整方法 WO2021250733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022530359A JP7367215B2 (ja) 2020-06-08 2020-06-08 荷電粒子線装置、およびそのフォーカス調整方法
PCT/JP2020/022503 WO2021250733A1 (ja) 2020-06-08 2020-06-08 荷電粒子線装置、およびそのフォーカス調整方法
US18/007,588 US20230230798A1 (en) 2020-06-08 2020-06-08 Charged Particle Beam Apparatus and Focus Adjusting Method Therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022503 WO2021250733A1 (ja) 2020-06-08 2020-06-08 荷電粒子線装置、およびそのフォーカス調整方法

Publications (1)

Publication Number Publication Date
WO2021250733A1 true WO2021250733A1 (ja) 2021-12-16

Family

ID=78847008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022503 WO2021250733A1 (ja) 2020-06-08 2020-06-08 荷電粒子線装置、およびそのフォーカス調整方法

Country Status (3)

Country Link
US (1) US20230230798A1 (ja)
JP (1) JP7367215B2 (ja)
WO (1) WO2021250733A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022127536A (ja) * 2021-02-19 2022-08-31 株式会社キーエンス 拡大観察装置、拡大画像観察方法、拡大画像観察プログラム及びコンピュータで読み取り可能な記録媒体並びに記憶した機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310223A (ja) * 2005-05-02 2006-11-09 Ebara Corp 試料検査装置
JP2016011896A (ja) * 2014-06-30 2016-01-21 株式会社ホロン 荷電粒子線装置における高さ測定装置およびオートフォーカス装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472166B2 (ja) 2000-12-22 2010-06-02 オリンパス株式会社 3次元撮像装量

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310223A (ja) * 2005-05-02 2006-11-09 Ebara Corp 試料検査装置
JP2016011896A (ja) * 2014-06-30 2016-01-21 株式会社ホロン 荷電粒子線装置における高さ測定装置およびオートフォーカス装置

Also Published As

Publication number Publication date
JPWO2021250733A1 (ja) 2021-12-16
US20230230798A1 (en) 2023-07-20
JP7367215B2 (ja) 2023-10-23

Similar Documents

Publication Publication Date Title
JP4988662B2 (ja) 荷電粒子線装置
JP4855726B2 (ja) 拡大観察装置、拡大観察装置の操作方法、拡大観察装置操作プログラムおよびコンピュータで読み取り可能な記録媒体並びに記録した機器
US9741531B2 (en) Charged particle beam device enabling facilitated EBSD detector analysis of desired position and control method thereof
CN106941065B (zh) 样品位置对准方法和带电粒子束装置
US10867771B2 (en) Electron microscope and specimen tilt angle adjustment method
WO2021250733A1 (ja) 荷電粒子線装置、およびそのフォーカス調整方法
JP5470596B1 (ja) 機能解除モードと機能拡張モードを有する荷電粒子線装置
JP6360620B2 (ja) 荷電粒子線装置、荷電粒子線装置のアライメント方法、アライメントプログラム、及び記憶媒体
JP2020080309A (ja) 試料を検査するための荷電粒子顕微鏡、およびこの荷電粒子顕微鏡の収差を決定する方法
JPWO2016157403A6 (ja) 荷電粒子線装置、荷電粒子線装置のアライメント方法、アライメントプログラム、及び記憶媒体
JP4456962B2 (ja) 試料表示装置、試料表示装置の操作方法、試料表示装置操作プログラムおよびコンピュータで読み取り可能な記録媒体又は記録した機器
JP4397730B2 (ja) 電子顕微鏡の絞り補正方法及び装置
WO2020129164A1 (ja) 撮像装置
JPWO2021250733A5 (ja)
WO2021186637A1 (ja) 荷電粒子線装置
JP7059439B2 (ja) 荷電粒子線装置
JP7394535B2 (ja) 粒子線分析装置
JP5502794B2 (ja) 電子顕微鏡
US20230115486A1 (en) Charged Particle Beam System and Control Method Therefor
JP7223861B2 (ja) 透過型電子顕微鏡および撮像方法
WO2021192123A1 (ja) 荷電粒子線装置
WO2019215861A1 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939477

Country of ref document: EP

Kind code of ref document: A1