WO2021184744A1 - 一种基于欧标双枪大功率快充系统及方法 - Google Patents

一种基于欧标双枪大功率快充系统及方法 Download PDF

Info

Publication number
WO2021184744A1
WO2021184744A1 PCT/CN2020/121178 CN2020121178W WO2021184744A1 WO 2021184744 A1 WO2021184744 A1 WO 2021184744A1 CN 2020121178 W CN2020121178 W CN 2020121178W WO 2021184744 A1 WO2021184744 A1 WO 2021184744A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charger
gun
power
circuit
Prior art date
Application number
PCT/CN2020/121178
Other languages
English (en)
French (fr)
Inventor
严国刚
熊金峰
张建利
陈涛
Original Assignee
金龙联合汽车工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙联合汽车工业(苏州)有限公司 filed Critical 金龙联合汽车工业(苏州)有限公司
Priority to US17/621,559 priority Critical patent/US20220410736A1/en
Publication of WO2021184744A1 publication Critical patent/WO2021184744A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention belongs to the technical field of charging, and relates to a high-power fast charging system and method based on European standard double guns.
  • European standard DC charging which uses a single-gun charging method.
  • the European standard single-gun charging is adopted.
  • the charging time is long, and the charging resources need to be occupied for a long time.
  • the utilization rate of the vehicle is reduced, which affects operation.
  • the performance is not fully utilized, which affects the efficiency of use.
  • the European standard charging requires that the insulation test of the system is completed by the charger, so the vehicle does not perform the insulation test at the beginning of charging, which poses a safety hazard.
  • the current charging system does not support different chargers to charge the same car, resulting in idleness.
  • the purpose of the present invention is to provide a high-power fast charging system based on the European standard double guns and capable of solving the problem of low charging power of the European standard single gun, so that different chargers can charge a new energy vehicle, and ensuring the safety of the charging system. method.
  • a dual-gun high-power fast charging system based on the European standard includes: a battery management system, and at least two corresponding charging communication modules, a charger, and a charging high-voltage circuit, each of the chargers is used to connect at least A charging gun;
  • the battery management system independently controls the charging communication module, independently controls the charging high-voltage circuit, and performs mapping management on the control signal and the charging high-voltage circuit;
  • the charging communication module includes an EVCC and a SECC, and the EVCC and the SECC are connected in a wired manner.
  • a further technical solution is that an electronic lock is provided on the charger, and the electronic lock is locked when a communication signal is generated.
  • a high-power fast charging method based on the European standard dual guns is applied to the high-power fast charging system based on the European standard dual guns as described in the first aspect.
  • the high-power fast charging method based on the European standard dual guns include:
  • the battery management system judges that the charger stops charging, it disconnects the charging circuit and performs adhesion detection on the charging circuit. After the detection is completed, the vehicle battery system exits charging and enters the standby mode.
  • the process of determining the charging start according to the insertion condition of the dual guns includes:
  • Case 2 When the two guns are inserted into the same charger one after another, the charging circuit corresponding to the first charging gun inserted first starts to enter the charging process, and the charging power is normally requested, and then the charging circuit corresponding to the second charging gun inserted is activated, and the battery
  • the management system monitors the charging stage of the charging circuit that is started later. After starting the charging circuit and entering the pre-charging stage, the battery management system controls the charging circuit that is started first to request a reduction in charging power. Resume normal charging power request;
  • Case 3 When the dual guns are inserted into different chargers, the first charger inserted first starts to enter the charging process, and the charging power is normally requested, and the second charger inserted later starts, and the battery management system starts according to the second charger that is started later. After the second charger that started later enters the pre-charging stage, the battery management system controls the first charger that started first to request to reduce the charging power, and after the second charger that started later, after the pre-charge is completed, the two guns The corresponding charger resumes the normal charging power request.
  • the first situation includes:
  • the charger When the charger starts the charging circuit successively, it performs handshake communication through the carrier communication signal according to the first charging circuit that is started correspondingly, and enters the charging phase; when the communication enters the pre-charging phase, the vehicle battery system turns off the insulation detection and initiates a pre-charge request. Normal charging starts when it is met, and the second charging circuit starts at the same time.
  • the battery management system controls the first charging circuit to reduce the charging demand power, and starts normal charging after the second charging circuit is pre-charged. Dual gun charging is based on the charging power allowed by the current vehicle battery system, and charging according to the maximum charging power request;
  • the vehicle battery system requests charging according to the maximum charging power.
  • the second situation includes:
  • the charger When the dual guns are inserted into the charging one after another, when the first charging gun is inserted, the charger normally starts the first charging circuit, handshake communication through the carrier communication signal, and enters the charging phase.
  • the communication enters the pre-charging phase the vehicle battery The system turns off the insulation detection, initiates a pre-charge request, and the conditions are met to start normal charging; when the second charging gun is inserted, the charger starts the second charging circuit, and the second charging circuit performs handshake communication.
  • the second charging circuit enters During the pre-charging phase, the battery management system controls the first charging circuit to reduce the required charging power, and starts normal charging after the second charging circuit is precharged.
  • the dual gun charging is based on the current vehicle battery system's allowable charging power and according to the maximum charging Power request to charge.
  • the third situation includes:
  • the charging starts normally, and handshake communication is carried out through the carrier communication signal to enter the charging phase.
  • the vehicle battery system shuts down the insulation detection and initiates the pre-charging phase.
  • Charge request the condition is met to start normal charging; when the second charger is plugged into the gun, the second charger will start charging, and the second charger will perform handshake communication.
  • the battery management system controls the second charger. A charger reduces the charging required power, and starts normal charging after the second charger is precharged.
  • the dual guns request the corresponding charger according to the maximum charging power to charge according to the charging power allowed by the current vehicle battery system.
  • a further technical solution is that: after the vehicle battery system exits charging and enters the standby mode, it further includes:
  • the vehicle battery system controls the secondary charging according to the selection.
  • the method further includes:
  • the charging process if there is an insulation abnormality, the charging process will be exited and the fault will be reported.
  • the high-power fast charging system based on the European standard of double guns is composed of the battery management system, the charging communication module, the charger and the charging high-voltage circuit.
  • Fig. 1 is a schematic diagram of a high-power fast charging system based on the European standard double gun provided by the present application;
  • FIG. 2 is a flowchart of a high-power fast charging method based on the European standard double gun provided by this application;
  • Fig. 3 is a flowchart of another high-power fast charging method based on the European standard double gun provided by the present application.
  • this application provides a dual-gun high-power fast charging control system, which can solve the problems of slow charging, long time occupation of charging resources by vehicles, and low vehicle utilization efficiency. Improve the utilization rate of chargers, and perform insulation testing for the initial charging of the system to increase system safety. In the process of designing the dual gun charging scheme, the compatibility and timing differences when the dual gun system is connected are solved.
  • the present application provides a high-power fast charging system based on the European standard double guns.
  • the system includes: a battery management system, and at least two corresponding charging communication modules, chargers and charging high-voltage circuits, Each charger is used to connect at least one charging gun; the battery management system independently controls the charging communication module and independently controls the charging high-voltage circuit, and the control signal and the charging high-voltage circuit are mapped and managed; different charging control units and chargers The information exchange between them is carried out independently.
  • the charging communication module includes EVCC (Electric Vehicle Communication Controller) and SECC (Supply Equipment Communication Controller), and the EVCC and SECC are connected in a wired manner.
  • EVCC and SECC realize the function of charging control unit.
  • the charging communication modules (EVCC and SECC) are mainly controlled independently through the battery management system (BMS), and the charging high-voltage circuit is also independently controlled, and the control signal and the high-voltage circuit are mapped and managed.
  • BMS battery management system
  • Different charging control units and charging The information exchange between the devices is carried out independently, without the need for a charger to perform collaborative processing, which can meet the requirement of single and double gun charging for the same charger, and different chargers to charge the same vehicle.
  • a multi-gun charging scheme can be designed according to the battery system capacity and the configured power battery.
  • the black device in FIG. 1 is a charging stand, and the gray device is a charging plug.
  • the dotted lines between two EVCCs, two SECCs, and two chargers indicate multiple serial connections, and the two channels correspond.
  • the dotted line between the high-voltage circuit and the control system indicates that it has an internal processing mechanism and is a completed system.
  • an electronic lock is provided on the charger, and the electronic lock is locked when a communication signal is generated.
  • the electronic lock is a hardware mechanical lock, which is locked when entering data interaction to prevent the charging gun from being plugged in by mistake.
  • This application also provides a high-power fast charging method based on the European standard double guns, which is applied to the above system.
  • the corresponding explanations for different stages of charging are shown in Table 1:
  • Serial number Charging stage explain 1 HAND SHAKE Handshake phase 2 SESSION STEUP Data interaction stage 3 CHARGE PARAM Parameter configuration stage 4 CABLE CHECK Insulation detection stage 5 PRECHARGE Pre-charge stage 6 START CHARGE Start charging 7 CHARGING LOOP Charging process 8 STOP CHARGE End charging 9 WELENDING ETECTION Adhesion detection stage
  • the method may include:
  • Step 1 Open the charging compartment door and power on the vehicle battery system for self-test. After the self-test is completed, turn on the system insulation test and enter the standby state.
  • Step 2 Wait for the gun signal, enter the charging mode when the gun signal is detected, and interlock the discharge.
  • Interlocking the discharge is a protection mechanism of software interlocking to prevent abnormal operation of the vehicle.
  • Step 3 Determine whether to enter the dual-gun charging mode according to the number of detected plug-in signals, and perform adhesion detection on the charging high-voltage circuit. After the adhesion detection is normal, the charging is allowed.
  • Adhesion detection is performed when there is a signal.
  • Step 4 Determine the charging start process according to the insertion of the dual guns.
  • step 4 may include three situations.
  • the charger starts charging, and according to the detected hardware input signal (PP signal), it recognizes the dual gun charging, and enters the charging according to the European standard procedure.
  • PP signal detected hardware input signal
  • the first is that when the charger starts the charging circuit successively, it performs handshake communication through the carrier communication signal (CP signal) according to the first charging circuit that is started correspondingly, and enters the charging phase; when the communication enters the precharging phase (PRECHARGE), the vehicle battery The system turns off the insulation detection, initiates a pre-charge request, and starts normal charging when the conditions are met.
  • the second charging circuit starts.
  • the battery management system controls the first charging circuit to reduce the charging demand power. Yes, the charging request current is reduced to 10A to prevent the battery voltage from rising continuously, resulting in the unsuccessful pre-charging of the second charging circuit.
  • the second charging circuit is pre-charged, the normal charging starts.
  • the dual gun charging is allowed according to the current vehicle battery system.
  • the charging power is charged according to the maximum charging power request;
  • the vehicle battery system requests charging according to the maximum charging power.
  • Case 2 When the two guns are inserted into the same charger one after another, the charging circuit corresponding to the first charging gun inserted first starts to enter the charging process, and the charging power is normally requested, and then the charging circuit corresponding to the second charging gun inserted is activated, and the battery
  • the management system monitors the charging stage of the charging circuit that is started later. After starting the charging circuit and entering the pre-charging stage, the battery management system controls the charging circuit that is started first to request a reduction in charging power. Resume normal charging power request.
  • the specific implementation is: when the two guns are inserted into the charging one after another, when the first charging gun is inserted, the charger normally starts the first charging circuit, handshake communication through the carrier communication signal (CP signal), and enters the charging phase
  • the vehicle battery system closes the insulation detection, initiates a precharge request, and starts normal charging when the conditions are met;
  • the charger starts the second charging circuit, the first The two charging circuits perform handshake communication.
  • the battery system is controlled according to the second charging state.
  • the battery management system controls the first charging circuit to reduce the charging demand power.
  • the charging request current is reduced to 10A to prevent the battery voltage from rising continuously, leading to unsuccessful pre-charging of the second charging circuit.
  • the second charging circuit is pre-charged, the normal charging starts.
  • the dual gun charging is allowed according to the current vehicle battery system.
  • the charging power is charged according to the maximum charging power request.
  • Case 3 When the dual guns are inserted into different chargers, the first charger inserted first starts to enter the charging process, and the charging power is normally requested, and the second charger inserted later starts, and the battery management system starts according to the second charger that is started later. After the second charger that started later enters the pre-charging stage, the battery management system controls the first charger that started first to request to reduce the charging power, and after the second charger that started later, after the pre-charge is completed, the two guns The corresponding charger resumes the normal charging power request.
  • case three it is specifically implemented as follows: when different chargers are plugged into the gun for charging, when the first charger is plugged into the gun, charging is normally started, handshake communication is carried out through the carrier communication signal (CP signal), and the charging phase is entered.
  • CP signal carrier communication signal
  • PRECHARGE pre-charging In the phase
  • the vehicle battery system turns off the insulation detection, initiates a precharge request, and the conditions are met to start normal charging; when the second charger is plugged in, the second charger is started to charge, and the second charger performs handshake communication.
  • the battery management system controls the first charger to reduce the required charging power.
  • the charging request current is reduced to 10A to prevent the battery voltage from rising continuously, causing the second charging circuit to fail to pre-charge. Successfully, normal charging starts after the second charger is precharged.
  • the dual guns request the corresponding charger to charge according to the maximum charging power according to the charging power allowed by the current vehicle battery system.
  • Step 5 Enter the charging phase. When the battery is fully charged, the vehicle battery system requests to stop charging.
  • Step 6 When the battery management system determines that the charger stops charging, it disconnects the charging circuit and performs adhesion detection on the charging circuit. After the detection is completed, the vehicle battery system exits charging and enters a standby mode.
  • the electronic lock is released, and the plug-in gun status is checked. After the charging gun is pulled out, the battery system exits charging and enters the standby mode.
  • the vehicle battery system controls the secondary charging according to the selection.
  • This application considers that the system control is effective, the charging unit is independently controlled, the state of the plug-in gun is recognized, the charger starts charging, and the battery system enters the charging process separately.
  • Plug in the guns to start first start to enter the charging process, normally request charging power, then plug in the guns, the system monitors according to the post-system charging stage, and then starts to enter the pre-charge stage, the system controls the first to start the charging request to output low power, and then start After the pre-charge is completed, the dual guns resume normal charging power request.
  • the battery system After the normal charging is completed or the charging is stopped manually, the battery system ends the charging mode and enters the standby mode. You can choose to recharge without removing the gun.
  • the simultaneous and sequential insertion of the guns are activated simultaneously and successively.
  • the system detects the charging signal, and the charging unit performs independent control. It can respond at any time during any charging stage and enter the Power charging.
  • the dual-gun and multi-gun European standard charging can be met when the battery capacity is sufficient or the battery charging rate allows, solving the problem of high-power charging and improving charging efficiency ,
  • the charging time is shortened by half, which solves the problem of long-term occupation of charging resources by new energy vehicles and idle charging resources.
  • the low-level signal of the charging control unit needs to share the same ground, which improves the signal reliability.
  • the output voltage should be higher than the target voltage to prevent current backflow.
  • the same charger can be started at the same time during the dual gun output charging process, or it can be started sequentially.
  • the charger can actively set the first gun to stop or reduce the output , To ensure that the second gun is pre-charged and stable.
  • the charger When the charger actively stops charging during the charging process, it can be set to re-plug the gun and enter the charging again to ensure the safety and reliability of the high-voltage circuit.
  • the European standard dual-gun high-power fast charging system and method provided in this application aim at the situation where the European standard single-gun charging power is insufficient and the charging resources are not reasonably used.
  • the dual-gun high-power fast charging system based on the European standard composed of the charger and the charging high-voltage circuit solves the problem of idle charger by designing the system compatibility and timing difference when the dual-gun system is connected, so that the charging speed becomes faster and avoids Vehicles occupy charging resources for a long time, and the vehicle utilization efficiency is not high; insulation detection is performed on the initial charging of the vehicle battery system, which increases the safety of the system.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features. Therefore, the defined “first” and “second” features may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, “plurality” means two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于欧标双枪大功率快充系统及方法,该系统包括:电池管理系统(BMS),以及至少两路对应的充电通信模块(EVCC和SECC)、充电机和充电高压回路,每个充电机用于连接至少一个充电枪;电池管理系统(BMS)对充电通信模块(EVCC和SECC)进行独立控制,并对充电高压回路进行独立控制,控制信号和充电高压回路进行映射管理;不同的充电控制单元与充电机之间的信息交互独立进行。通过设计双枪系统接入时的系统兼容性和时序差异来解决充电机闲置的问题,使得充电速度变快,避免了车辆长时间占用充电资源,车辆利用效率不高的问题;对车辆电池系统初始充电进行绝缘检测,增加了系统安全性。

Description

一种基于欧标双枪大功率快充系统及方法 技术领域
本发明属于充电技术领域,涉及一种基于欧标双枪大功率快充系统及方法。
背景技术
目前新能源车辆采用欧标直流充电,采用的是单枪充电方式。基于当前新能源车辆电量逐渐增加,采用欧标单枪充电,充电时间长,需要长时间占用充电资源,车辆利用率降低,影响运营等;并且在配套使用功率型动力电池时,动力电池的功率性能没有完全发挥,影响使用效率。欧标充电要求系统绝缘检测是由充电机完成,因此车辆在充电初始没有进行绝缘检测,存在安全隐患。目前充电系统不支持不同充电机给同台车充电,造成闲置。
发明内容
本发明目的是:提供一种能够解决欧标单枪充电功率小的问题,使得不同充电机可以给一台新能源车充电,且保证充电系统安全性的基于欧标双枪大功率快充系统及方法。
本发明的技术方案是:
第一方面,一种基于欧标双枪大功率快充系统,包括:电池管理系统,以及至少两路对应的充电通信模块、充电机和充电高压回路,每个所述充电机用于连接至少一个充电枪;
所述电池管理系统对所述充电通信模块进行独立控制,并对充电高压回路进行独立控制,控制信号和充电高压回路进行映射管理;
不同的充电控制单元与充电机之间的信息交互独立进行。
其进一步的技术方案是:所述充电通信模块包括EVCC和SECC,所述EVCC和所述SECC之间通过有线方式连接。
其进一步的技术方案是:所述充电机上设置有电子锁,所述电子锁在产生通信信号时锁止。
第二方面,一种基于欧标双枪大功率快充方法,应用于如第一方面所述 的基于欧标双枪大功率快充系统中,所述基于欧标双枪大功率快充方法包括:
打开充电舱门,对车辆电池系统上电自检,自检完成后开启系统绝缘检测,进入待机状态;
等待插枪信号,当检测到插枪信号时进入充电模式,并对放电进行互锁;
根据检测到的插枪信号的数量判断是否进入双枪充电模式,并对充电高压回路进行粘连检测,粘连检测正常后允许进入充电;
根据双枪的插入情况确定充电启动的流程;
进入充电阶段,当电池充满电后,车辆电池系统请求停止充电;
当电池管理系统判断充电机停止充电时,断开充电回路,并对充电回路进行粘连检测,检测完成后,车辆电池系统退出充电进入待机模式。
其进一步的技术方案是:所述根据双枪的插入情况确定充电启动的流程,包括:
情况一,当双枪同时插入充电机时,根据充电机先后启动或同时启动的机制进入充电阶段;
情况二,当双枪先后插入相同的充电机时,先插入的第一充电枪对应的充电回路先启动进入充电流程,正常请求充电功率,后插入的第二充电枪对应的充电回路启动,电池管理系统根据后启动的充电回路的充电阶段进行监测,后启动充电回路进入预充电阶段后,电池管理系统控制先启动的充电回路请求降低充电功率,后启动的充电回路预充完成后,双枪恢复正常充电功率请求;
情况三,当双枪插入不同充电机时,先插入的第一充电机先启动进入充电流程,正常请求充电功率,后插入的第二充电机启动,电池管理系统根据后启动的第二充电机的充电阶段进行监测,后启动的第二充电机进入预充电阶段后,电池管理系统控制先启动的第一充电机请求降低充电功率,后启动的第二充电机预充完成后,双枪向对应的充电机恢复正常充电功率请求。
其进一步的技术方案是:所述情况一包括:
当充电机先后启动充电回路时,根据对应启动的第一充电回路通过载波通信信号进行握手通信,进入充电阶段;当通信进入预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足时开始正常充电,同时第二充电回路启动,在第二充电回路进入预充阶段时,电池管理系统控制第一充 电回路降低充电需求功率,在第二充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电;
当充电机同时启动充电回路时,根据系统控制要求,双枪充电回路预充过程全部执行完成后,车辆电池系统按照最大充电功率请求充电。
其进一步的技术方案是:所述情况二包括:
当双枪先后插入充电时,当第一把充电枪插入时,充电机正常启动第一路充电回路,通过载波通信信号进行握手通信,进入充电阶段,当通信进入到预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二把充电枪插入时,充电机启动第二路充电回路,第二路充电回路进行握手通信,当第二路充电回路进入预充电阶段时,电池管理系统控制第一路充电回路降低充电需求功率,在第二路充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电。
其进一步的技术方案是:所述情况三包括:
当不同充电机插枪充电时,当第一充电机插枪时正常启动充电,通过载波通信信号进行握手通信,进入充电阶段,当通信进入预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二充电机插枪时,启动第二充电机充电,第二个充电枪进行握手通信,当第二充电机进入预充电阶段时,电池管理系统控制第一充电机降低充电需求功率,在第二充电机预充完成后开始正常充电,双枪根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求对应的充电机进行充电。
其进一步的技术方案是:所述车辆电池系统退出充电进入待机模式之后,还包括:
在不拔充电枪的情况下,所述车辆电池系统根据选择控制二次充电。
其进一步的技术方案是:所述方法还包括:
在绝缘检测过程中,若有绝缘异常,则退出充电流程,并上报故障。
本发明的优点是:
针对欧标单枪充电功率不足的情况,充电资源没有合理利用的情况,通过电池管理系统、充电通信模块、充电机和充电高压回路组成的基于欧标的双枪大功率快充系统,通过设计双枪系统接入时的系统兼容性和时序差异来 解决充电机闲置的问题,使得充电速度变快,避免了车辆长时间占用充电资源,车辆利用效率不高的问题;对车辆电池系统初始充电进行绝缘检测,增加了系统安全性。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1是本申请提供的一种基于欧标双枪大功率快充系统的示意图;
图2是本申请提供的一种基于欧标双枪大功率快充方法的流程图;
图3是本申请提供的另一种基于欧标双枪大功率快充方法的流程图。
具体实施方式
实施例:
针对欧标单枪充电功率不足、充电资源没有合理利用等情况,本申请提供了双枪大功率快速充电控制系统,可以解决充电慢,车辆长时间占用充电资源,车辆利用效率不高等问题,同时提高充电机利用率,并对系统充电初始进行绝缘检测,增加系统安全性。在设计双枪充电方案过程中,解决双枪系统接入时的兼容性和时序差异等问题。
结合参考图1至图3,本申请提供了一种基于欧标双枪大功率快充系统,该系统包括:电池管理系统,以及至少两路对应的充电通信模块、充电机和充电高压回路,每个充电机用于连接至少一个充电枪;电池管理系统对充电通信模块进行独立控制,并对充电高压回路进行独立控制,控制信号和充电高压回路进行映射管理;不同的充电控制单元与充电机之间的信息交互独立进行。
可选的,如图1所示,充电通信模块包括EVCC(Electric Vehicle Communication Controller)和SECC(Supply Equipment Communication Controller),EVCC和SECC之间通过有线方式连接。EVCC和SECC实现充电控制单元的功能。
本申请中,主要通过电池管理系统(BMS)对充电通信模块(EVCC和SECC)进行独立控制,并对充电高压回路也进行独立控制,控制信号和高压回路进行映射管理,不同充电控制单元与充电机之间信息交互独立进行, 不需要充电机做协同处理,可以满足同一充电机单双枪充电,不同充电机给同台车充电。在实际应用中,可以根据电池系统容量和配置功率型电池设计多枪充电方案。
示例性的,图1中的黑色器件为充电座,灰色器件为充电插头。两个EVCC、两个SECC、两个充电机之间的虚线表示多个串联,两路是对应的。高电压回路与控制系统之间的虚线表示具备内在的处理机制,是一个完成的系统。
可选的,充电机上设置有电子锁,电子锁在产生通信信号时锁止。
电子锁是硬件机械锁,在进入数据交互时锁止,防止充电枪误拔插操作。
本申请还提供一种基于欧标双枪大功率快充方法,应用于上述系统中,对于充电不同阶段的对应解释如表1所示:
表1
序号 充电阶段 解释说明
1 HAND SHAKE 握手阶段
2 SESSION STEUP 数据交互阶段
3 CHARGE PARAM 参数配置阶段
4 CABLE CHECK 绝缘检测阶段
5 PRECHARGE 预充电阶段
6 START CHARGE 开始充电
7 CHARGING LOOP 充电过程
8 STOP CHARGE 结束充电
9 WELENDING ETECTION 粘连检测阶段
如图2和图3所示,该方法可以包括:
步骤1,打开充电舱门,对车辆电池系统上电自检,自检完成后开启系统绝缘检测,进入待机状态。
步骤2,等待插枪信号,当检测到插枪信号时进入充电模式,并对放电进行互锁。
对放电进行互锁是软件互锁的保护机制,防止车辆异常操作。
步骤3,根据检测到的插枪信号的数量判断是否进入双枪充电模式,并对充电高压回路进行粘连检测,粘连检测正常后允许进入充电。
粘连检测在有信号时就进行检测。
步骤4,根据双枪的插入情况确定充电启动的流程。
可选的,步骤4可以包括三种情况。
情况一,当双枪同时插入充电机时,根据充电机先后启动或同时启动的机制进入充电阶段。
双枪同时插入后,充电机启动充电,根据检测的硬件输入信号(PP信号),识别双枪充电,根据欧标步骤进入充电。
对于情况一,该可以分为以下两种可能的实现:
第一种,当充电机先后启动充电回路时,根据对应启动的第一充电回路通过载波通信信号(CP信号)进行握手通信,进入充电阶段;当通信进入预充电阶段(PRECHARGE)时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足时开始正常充电,同时第二充电回路启动,在第二充电回路进入预充阶段时,电池管理系统控制第一充电回路降低充电需求功率,示例性的,充电请求电流降为10A,以防止电池电压持续上升,导致第二路充电回路预充不成功,在第二充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电;
第二种,当充电机同时启动充电回路时,根据系统控制要求,双枪充电回路预充过程全部执行完成后,车辆电池系统按照最大充电功率请求充电。
情况二,当双枪先后插入相同的充电机时,先插入的第一充电枪对应的充电回路先启动进入充电流程,正常请求充电功率,后插入的第二充电枪对应的充电回路启动,电池管理系统根据后启动的充电回路的充电阶段进行监测,后启动充电回路进入预充电阶段后,电池管理系统控制先启动的充电回路请求降低充电功率,后启动的充电回路预充完成后,双枪恢复正常充电功率请求。
对于情况二,具体实现为:当双枪先后插入充电时,当第一把充电枪插入时,充电机正常启动第一路充电回路,通过载波通信信号(CP信号)进行握手通信,进入充电阶段,当通信进入到预充电阶段(PRECHARGE)时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二把充电枪插入时,充电机启动第二路充电回路,第二路充电回路进行握手通信,此时电池系统根据第二路充电状态进行控制,当第二路充电回路进入 预充电阶段时,电池管理系统控制第一路充电回路降低充电需求功率,示例性的,充电请求电流降为10A,以防止电池电压持续上升,导致第二路充电回路预充不成功,在第二路充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电。
情况三,当双枪插入不同充电机时,先插入的第一充电机先启动进入充电流程,正常请求充电功率,后插入的第二充电机启动,电池管理系统根据后启动的第二充电机的充电阶段进行监测,后启动的第二充电机进入预充电阶段后,电池管理系统控制先启动的第一充电机请求降低充电功率,后启动的第二充电机预充完成后,双枪向对应的充电机恢复正常充电功率请求。
对于情况三,具体实现为:当不同充电机插枪充电时,当第一充电机插枪时正常启动充电,通过载波通信信号(CP信号)进行握手通信,进入充电阶段,当通信进入预充电阶段(PRECHARGE)时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二充电机插枪时,启动第二充电机充电,第二个充电枪进行握手通信,当第二充电机进入预充电阶段时,电池管理系统控制第一充电机降低充电需求功率,示例性的,充电请求电流降为10A,以防止电池电压持续上升,导致第二路充电回路预充不成功,在第二充电机预充完成后开始正常充电,双枪根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求对应的充电机进行充电。
低于不同的充电机,同样需要在第二路预充电时降低充电需求功率,防止电压持续上升,影响另一路预充电。
步骤5,进入充电阶段,当电池充满电后,车辆电池系统请求停止充电。
步骤6,当电池管理系统判断充电机停止充电时,断开充电回路,并对充电回路进行粘连检测,检测完成后,车辆电池系统退出充电进入待机模式。
可选的,粘连检测完成后,电子锁解除,检查插枪状态,充电枪拔出后,电池系统退出充电,进入待机模式。
在退出充电后,在不拔充电枪的情况下,车辆电池系统根据选择控制二次充电。
需要注意的是,在实际应用中,在绝缘检测过程中,若有绝缘异常,则退出充电流程,并上报故障。
充电状态下可以根据实际充电需要随时停止,不需要拔枪并再次启动充 电。
本申请考虑系统控制有效,对充电单元进行独立控制,对插枪状态进行识别,充电机启动充电,电池系统分别进入充电流程。
同时插枪,同时启动同时进入充电阶段;先后启动,先启动先进入充电阶段,后启动进入预充阶段,先启动控制请求输出小功率,后启动预充完成后,双枪恢复正常充电功率请求。
先后插枪启动,先启动进入充电流程,正常请求充电功率,后插枪启动,系统根据后系统充电阶段进行监测,后启动进入预充阶段后,系统控制先启动充电请求输出小功率,后启动预充完成后,双枪恢复正常充电功率请求。
正常充电完成或手动停止充电后,电池系统结束充电模式,进入待机,在不拔枪的情况下可以选择二次充电。
充电模式下,系统对独立充电单元控制过程中,对同时插枪、先后插枪同时启动和先后启动,系统对充电信号进行检测,充电单元进行独立控制,可以在任何充电阶段随时响应,进入大功率充电。
根据本申请提供的基于欧标双枪大功率快充系统及方法,在电池容量足够或电池充电倍率允许条件下,可以满足双枪和多枪欧标充电,解决大功率充电问题,提高充电效率,充电时间缩短一半,解决新能源车辆长时间占用充电资源以及充电资源闲置的问题。
对于本申请提供的基于欧标双枪大功率快充系统及方法,要求充电控制单元低电平信号需要共地,提高信号可靠性,不同控制单元到充电座需要一一对应,充电机在预充过程中输出电压要高于目标电压,防止电流倒灌。
同一个充电机在双枪输出充电过程中可以做同时启动,也可以做先后启动,在先后启动时,当第二把枪进入充电过程,充电机可以主动设置第一把枪停止输出或降低输出,确保第二把枪预充稳定。
充电机在充电过程中主动停止充电的情况下,可以设置重新拔枪再进入充电,确保高电压回路安全可靠。
综上所述,本申请提供的基于欧标双枪大功率快充系统及方法,针对欧标单枪充电功率不足的情况,充电资源没有合理利用的情况,通过电池管理系统、充电通信模块、充电机和充电高压回路组成的基于欧标的双枪大功率快充系统,通过设计双枪系统接入时的系统兼容性和时序差异来解决充电机 闲置的问题,使得充电速度变快,避免了车辆长时间占用充电资源,车辆利用效率不高的问题;对车辆电池系统初始充电进行绝缘检测,增加了系统安全性。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或者两个以上。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于欧标双枪大功率快充系统,其特征在于,包括:电池管理系统,以及至少两路对应的充电通信模块、充电机和充电高压回路,每个所述充电机用于连接至少一个充电枪;
    所述电池管理系统对所述充电通信模块进行独立控制,并对充电高压回路进行独立控制,控制信号和充电高压回路进行映射管理;
    不同的充电控制单元与充电机之间的信息交互独立进行。
  2. 根据权利要求1所述的基于欧标双枪大功率快充系统,其特征在于,所述充电通信模块包括EVCC和SECC,所述EVCC和所述SECC之间通过有线方式连接。
  3. 根据权利要求1所述的基于欧标双枪大功率快充系统,其特征在于,所述充电机上设置有电子锁,所述电子锁在产生通信信号时锁止。
  4. 一种基于欧标双枪大功率快充方法,其特征在于,应用于如权利要求1所述的基于欧标双枪大功率快充系统中,所述基于欧标双枪大功率快充方法包括:
    打开充电舱门,对车辆电池系统上电自检,自检完成后开启系统绝缘检测,进入待机状态;
    等待插枪信号,当检测到插枪信号时进入充电模式,并对放电进行互锁;
    根据检测到的插枪信号的数量判断是否进入双枪充电模式,并对充电高压回路进行粘连检测,粘连检测正常后允许进入充电;
    根据双枪的插入情况确定充电启动的流程;
    进入充电阶段,当电池充满电后,车辆电池系统请求停止充电;
    当电池管理系统判断充电机停止充电时,断开充电回路,并对充电回路进行粘连检测,检测完成后,车辆电池系统退出充电进入待机模式。
  5. 根据权利要求4所述的基于欧标双枪大功率快充方法,其特征在于,所述根据双枪的插入情况确定充电启动的流程,包括:
    情况一,当双枪同时插入充电机时,根据充电机先后启动或同时启动的机制进入充电阶段;
    情况二,当双枪先后插入相同的充电机时,先插入的第一充电枪对应的充电回路先启动进入充电流程,正常请求充电功率,后插入的第二充电枪对应的充电回路启动,电池管理系统根据后启动的充电回路的充电阶段进行监 测,后启动充电回路进入预充电阶段后,电池管理系统控制先启动的充电回路请求降低充电功率,后启动的充电回路预充完成后,双枪恢复正常充电功率请求;
    情况三,当双枪插入不同充电机时,先插入的第一充电机先启动进入充电流程,正常请求充电功率,后插入的第二充电机启动,电池管理系统根据后启动的第二充电机的充电阶段进行监测,后启动的第二充电机进入预充电阶段后,电池管理系统控制先启动的第一充电机请求降低充电功率,后启动的第二充电机预充完成后,双枪向对应的充电机恢复正常充电功率请求。
  6. 根据权利要求5所述的基于欧标双枪大功率快充方法,其特征在于,所述情况一包括:
    当充电机先后启动充电回路时,根据对应启动的第一充电回路通过载波通信信号进行握手通信,进入充电阶段;当通信进入预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足时开始正常充电,同时第二充电回路启动,在第二充电回路进入预充阶段时,电池管理系统控制第一充电回路降低充电需求功率,在第二充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电;
    当充电机同时启动充电回路时,根据系统控制要求,双枪充电回路预充过程全部执行完成后,车辆电池系统按照最大充电功率请求充电。
  7. 根据权利要求5所述的基于欧标双枪大功率快充方法,其特征在于,所述情况二包括:
    当双枪先后插入充电时,当第一把充电枪插入时,充电机正常启动第一路充电回路,通过载波通信信号进行握手通信,进入充电阶段,当通信进入到预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二把充电枪插入时,充电机启动第二路充电回路,第二路充电回路进行握手通信,当第二路充电回路进入预充电阶段时,电池管理系统控制第一路充电回路降低充电需求功率,在第二路充电回路预充完成后开始正常充电,双枪充电根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求充电。
  8. 根据权利要求5所述的基于欧标双枪大功率快充方法,其特征在于,所述情况三包括:
    当不同充电机插枪充电时,当第一充电机插枪时正常启动充电,通过载波通信信号进行握手通信,进入充电阶段,当通信进入预充电阶段时,车辆电池系统关闭绝缘检测,发起预充请求,条件满足开始正常充电;当第二充电机插枪时,启动第二充电机充电,第二个充电枪进行握手通信,当第二充电机进入预充电阶段时,电池管理系统控制第一充电机降低充电需求功率,在第二充电机预充完成后开始正常充电,双枪根据当前的车辆电池系统允许的充电功率,按照最大充电功率请求对应的充电机进行充电。
  9. 根据权利要求4所述的基于欧标双枪大功率快充方法,其特征在于,所述车辆电池系统退出充电进入待机模式之后,还包括:
    在不拔充电枪的情况下,所述车辆电池系统根据选择控制二次充电。
  10. 根据权利要求4至9任一所述的基于欧标双枪大功率快充方法,其特征在于,所述方法还包括:
    在绝缘检测过程中,若有绝缘异常,则退出充电流程,并上报故障。
PCT/CN2020/121178 2020-03-20 2020-10-15 一种基于欧标双枪大功率快充系统及方法 WO2021184744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/621,559 US20220410736A1 (en) 2020-03-20 2020-10-15 European standard-based double-gun high-power quick charging system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010199157.7 2020-03-20
CN202010199157.7A CN111452639B (zh) 2020-03-20 2020-03-20 一种基于欧标双枪大功率快充系统及方法

Publications (1)

Publication Number Publication Date
WO2021184744A1 true WO2021184744A1 (zh) 2021-09-23

Family

ID=71675404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121178 WO2021184744A1 (zh) 2020-03-20 2020-10-15 一种基于欧标双枪大功率快充系统及方法

Country Status (3)

Country Link
US (1) US20220410736A1 (zh)
CN (1) CN111452639B (zh)
WO (1) WO2021184744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111452639B (zh) * 2020-03-20 2022-05-31 金龙联合汽车工业(苏州)有限公司 一种基于欧标双枪大功率快充系统及方法
CN114274819B (zh) * 2020-09-28 2024-04-16 比亚迪股份有限公司 车辆、充电装置及计算机可读存储介质
CN114379389A (zh) * 2020-10-20 2022-04-22 中车时代电动汽车股份有限公司 一种欧标受电弓兼双枪充电系统、方法及电子设备
CN113147481A (zh) * 2021-06-10 2021-07-23 奇瑞商用车(安徽)有限公司 一种电动汽车双快充控制系统及方法
CN113306418A (zh) * 2021-06-16 2021-08-27 徐州徐工汽车制造有限公司 双枪充电系统、方法和车辆
CN114312424A (zh) * 2021-11-30 2022-04-12 度普(苏州)新能源科技有限公司 一种移动式储能充电桩的控制系统
CN114475335B (zh) * 2022-01-21 2023-12-22 国创移动能源创新中心(江苏)有限公司 电动汽车的双枪充电方法及装置
CN115871505B (zh) * 2023-02-23 2023-05-30 云南丁旺科技有限公司 功率聚合系统
CN117799458B (zh) * 2024-03-01 2024-05-10 质子汽车科技有限公司 一种可用于新能源商用车的充电线束组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410138A (zh) * 2014-11-24 2015-03-11 重庆长安汽车股份有限公司 一种汽车充放电控制系统及方法
CN104590160A (zh) * 2014-12-22 2015-05-06 重庆长安汽车股份有限公司 一种混合动力汽车充电系统及其控制方法
CN107394292A (zh) * 2017-06-30 2017-11-24 中天储能科技有限公司 一种纯电动汽车电池快速充电管理方法
EP3255718A1 (en) * 2015-02-06 2017-12-13 ZTE Corporation Storage battery device, and charging-discharging monitoring method, device and system thereof
CN107599857A (zh) * 2017-08-24 2018-01-19 华南理工大学 一种基于锂电池的纯电动汽车充电系统和充电方法
CN108258761A (zh) * 2018-01-26 2018-07-06 北京新能源汽车股份有限公司 一种充放电控制方法及电动汽车
CN109733249A (zh) * 2018-12-28 2019-05-10 中国第一汽车股份有限公司 一种新能源汽车充电系统及其控制方法
CN111452639A (zh) * 2020-03-20 2020-07-28 金龙联合汽车工业(苏州)有限公司 一种基于欧标双枪大功率快充系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160054A (zh) * 2015-04-20 2016-11-23 深圳市元正能源系统有限公司 一种双枪充电系统及双枪充电方法
CN108306359B (zh) * 2018-01-19 2021-10-22 深圳市核达中远通电源技术股份有限公司 单双枪自动切换的双枪充电桩系统的控制方法
CN109278576A (zh) * 2018-11-08 2019-01-29 东软睿驰汽车技术(沈阳)有限公司 一种电动车的充电管理方法、系统和电动车
CN110271438A (zh) * 2019-06-11 2019-09-24 东莞市科旺科技股份有限公司 一种双枪同时充电方法
CN110386024B (zh) * 2019-07-11 2020-09-08 南京能瑞电力科技有限公司 一种联合充电控制方法及联合充电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410138A (zh) * 2014-11-24 2015-03-11 重庆长安汽车股份有限公司 一种汽车充放电控制系统及方法
CN104590160A (zh) * 2014-12-22 2015-05-06 重庆长安汽车股份有限公司 一种混合动力汽车充电系统及其控制方法
EP3255718A1 (en) * 2015-02-06 2017-12-13 ZTE Corporation Storage battery device, and charging-discharging monitoring method, device and system thereof
CN107394292A (zh) * 2017-06-30 2017-11-24 中天储能科技有限公司 一种纯电动汽车电池快速充电管理方法
CN107599857A (zh) * 2017-08-24 2018-01-19 华南理工大学 一种基于锂电池的纯电动汽车充电系统和充电方法
CN108258761A (zh) * 2018-01-26 2018-07-06 北京新能源汽车股份有限公司 一种充放电控制方法及电动汽车
CN109733249A (zh) * 2018-12-28 2019-05-10 中国第一汽车股份有限公司 一种新能源汽车充电系统及其控制方法
CN111452639A (zh) * 2020-03-20 2020-07-28 金龙联合汽车工业(苏州)有限公司 一种基于欧标双枪大功率快充系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
CN114954046B (zh) * 2022-06-23 2022-11-15 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统

Also Published As

Publication number Publication date
CN111452639B (zh) 2022-05-31
US20220410736A1 (en) 2022-12-29
CN111452639A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021184744A1 (zh) 一种基于欧标双枪大功率快充系统及方法
US10081261B2 (en) High-voltage battery off-board chargers
US9751423B2 (en) Vehicle control system, vehicle information providing device, and vehicle information providing method
KR102016303B1 (ko) 하이브리드 차량들에서의 고 전압 케이블 검출을 위한 시스템 및 방법
JP2019129568A (ja) 電池システム
CN102832657B (zh) 电池管理系统及电池管理方法
WO2021068552A1 (zh) 一种机车用超大功率电池均衡充电电路及控制管理方法
KR20160020538A (ko) 전기 차량용 충전 시스템 및 전기 차량의 충전을 제어하는 방법
WO2013097830A1 (zh) 用于电动汽车的大功率充电系统及其控制方法
WO2023134173A1 (zh) 一种供电设备、车辆及其供电方法
EP3800083A1 (en) Power-supply and recharge groups of an electric vehicle and methods thereof
WO2023246073A1 (zh) V2v充电控制方法、装置、系统、设备和介质
US20230356621A1 (en) Systems and methods for vehicle-to-load charging session initializing, communicating, and charging
US11524592B2 (en) Mobile discharging device for an energy storage device
US20230182601A1 (en) Protocol for discharging dc power from propulsion battery pack to offboard charging station
US10870363B2 (en) Method for charging electric vehicles
CN116436133B (zh) 应用于大型储能系统的环流控制方法、设备及存储介质
US11345242B2 (en) Vehicle drive system
WO2020001265A1 (zh) 车辆的对外充电方法和装置
WO2024050656A1 (zh) 供电装置、方法和系统
CN114801748A (zh) 车辆高压上下电控制方法、装置、车辆及存储介质
JP2013090459A (ja) 電気自動車用充電装置
CN110654262A (zh) 车辆的充电方法和装置
CN114204163A (zh) 电动汽车电池包加热方法及电子设备
TWI779443B (zh) 電動車輛充電主動式回復系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925360

Country of ref document: EP

Kind code of ref document: A1