WO2023134173A1 - 一种供电设备、车辆及其供电方法 - Google Patents

一种供电设备、车辆及其供电方法 Download PDF

Info

Publication number
WO2023134173A1
WO2023134173A1 PCT/CN2022/114951 CN2022114951W WO2023134173A1 WO 2023134173 A1 WO2023134173 A1 WO 2023134173A1 CN 2022114951 W CN2022114951 W CN 2022114951W WO 2023134173 A1 WO2023134173 A1 WO 2023134173A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
load
switch
vehicle
circuit
Prior art date
Application number
PCT/CN2022/114951
Other languages
English (en)
French (fr)
Inventor
封宁波
陈冰
王天宇
王全武
窦吉庆
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023134173A1 publication Critical patent/WO2023134173A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of vehicle charging and discharging, and in particular to a power supply device, a vehicle and a power supply method thereof.
  • BEV battery electric vehicle
  • PHEV plug-in hybrid Plug-in hybrid electric vehicle
  • HEV hybrid electric vehicle
  • the power supply part of a new energy vehicle is generally composed of a high voltage power battery and a low voltage battery; among them, the low voltage battery is mainly used for automatic driving equipment, car entertainment equipment and other terminal equipment.
  • Power supply with the development of new energy vehicles, the number of the above-mentioned equipment is increasing, which leads to the gradual increase in the demand for low-voltage loads inside the car, which increases the failure rate. Due to the needs of automatic driving and driving safety, the reliability of low-voltage power supply The requirements have increased instead.
  • the current low-voltage power supply system in the vehicle is a DC-to-DC DCDC circuit, and the battery is directly connected to the load. Any short circuit or failure of any device will cause the load current to increase, which will cause the low-voltage power supply system to be powered down or protected, making the dual backup power supply Can't really play a backup role.
  • the present application provides a power supply device, a vehicle and a power supply method thereof, which can ensure the reliability of backup power supply when any one of the load and the storage battery fails.
  • the present application provides a power supply device for a vehicle, which can be applied to various vehicles, for example, a new energy vehicle, and the vehicle can include: an in-vehicle load device and a storage battery.
  • the power supply device may include: a direct current to direct current (DCDC) circuit and a switch; wherein, the output terminal of the DCDC circuit is coupled to one end of the switch and serves as the first power supply port of the power supply device, and the other end of the switch is used as the second power supply port of the power supply device ;
  • the first power supply port is used for coupling with the first load in the load device in the vehicle, and the second power supply port is used for coupling with the second load and the storage battery in the load device in the vehicle respectively.
  • the first load can include one of the important two-way backup loads in the in-vehicle load equipment
  • the second load can include the other one of the important two-way backup loads in the in-vehicle load equipment.
  • two backup loads take power from both ends of the switch respectively.
  • the initial state of the switch is conduction, so that the DCDC circuit supplies power to the battery through the switch under normal working conditions, and the important dual-circuit backup loads in the load equipment in the car can take power from the front and back of the switch respectively, that is, through the DCDC circuit and the battery. Provide normal power supply for two important dual-circuit backup loads at the same time.
  • the switch When it is detected that the first load coupled to the first power supply port fails, the switch can be turned off, and the battery can be used to supply power to the second load coupled to the second power supply port to ensure that one of the important dual backup loads is normally powered by the battery ;
  • the switch can also be turned off, and the DCDC circuit can supply power to the first load coupled to the first power supply port to ensure important dual backup loads One of them is normally powered by a DCDC circuit.
  • the switch when a DCDC circuit failure is detected, the switch can be turned off, and the battery can supply power to the second load coupled to the second power supply port, so as to ensure that one of the important dual backup loads is normally powered by the battery; or, when detecting When the DCDC circuit breaks down and the protection function is disconnected, the switch can be kept on, and the battery can supply power to the first load coupled to the first power supply port and the second load coupled to the second power supply port at the same time, ensuring important The two circuits of the dual-circuit backup load are normally powered by the battery.
  • DCDC circuits and switches can be integrated in the same casing, which is conducive to reducing the number of parts, improving assembly efficiency, reducing material costs, and shortening the development cycle. .
  • the DCDC circuit and the switch can also be integrated on the same circuit board, which is beneficial to reduce the number of parts, improve assembly efficiency, reduce material costs, and shorten the development cycle.
  • the DCDC circuit and the switch can also be arranged on different circuit boards, which is convenient for maintenance and inspection.
  • the switch may specifically be an electronic switch, such as a bidirectional (also called top-to-top) switch tube, and the switch tube may specifically be a metal oxide semiconductor field effect transistor (MOSFET). ), insulated gate bipolar transistor (IGBT), bipolar junction transistor (BJT), etc.
  • the switch can also be a mechanical switch, such as a relay, a contactor, and the like. There can be one or more switches, which are not limited here.
  • the present application provides a vehicle, including: an in-vehicle load device, a storage battery, and the power supply device in any one of the first aspects.
  • a vehicle including: an in-vehicle load device, a storage battery, and the power supply device in any one of the first aspects.
  • the technical effect of the corresponding solution in the second aspect can refer to the technical effect that can be obtained by the corresponding solution in the first aspect, and the repeated parts will not be described in detail.
  • the vehicle when applied to a new energy vehicle, the vehicle will also include an on-board charger (OBC).
  • OBC on-board charger
  • the OBC also includes a DCDC circuit, and the OBC and the power supply device may share one DCDC circuit, or different DCDC circuits may be provided respectively, which is not limited here.
  • the load equipment in the car may include but not limited to the car radio, car navigator, assisted driving equipment and automatic parking equipment, etc., which can be powered by low voltage (12/24/36/48V) All devices powered by batteries can be regarded as in-vehicle load devices.
  • the important loads of the in-vehicle load equipment can be, for example, brake equipment and other equipment that play a key role in normal driving, or it can be considered that the loads with backup are all important loads, and two of the important two-way backup loads are respectively connected to the first power supply
  • the port is coupled to the second power supply port to ensure that under a single fault, one of the two backup loads can supply power normally, thereby improving the reliability of the backup power supply.
  • the secondary load in the load equipment in the car can be, for example, a car radio and other equipment that has little effect on normal driving, or a load without backup can be considered as a secondary load, and the secondary load can be powered from the first power supply port and the second power supply port.
  • Any port among the ports takes power that is, the first load may also include a secondary load in the load device in the vehicle, and the second load may also include a secondary load in the load device in the vehicle.
  • the numbers of the first load and the second load connected to the first power supply port and the second power supply port may be the same or different.
  • the storage battery 400 includes at least one of the following types of batteries: lead-acid batteries, lithium-ion batteries, nickel-metal hydride batteries, lithium polymer batteries, nickel-cadmium batteries, and supercapacitors. It should be noted that any Any device or device that can be used to store and/or release electric energy can be used as a storage battery in this application.
  • the present application also provides a power supply method for a vehicle according to any one of the second aspects, including setting the initial state of the switch to conduction, so that the DCDC circuit supplies power to the battery through the switch in the normal working state, and the vehicle
  • the important dual-circuit backup loads in the internal load equipment can be powered from the front and rear of the switch respectively, that is, the two important dual-circuit backup loads can be powered normally at the same time through the DCDC circuit and the battery.
  • the switch When it is detected that the first load coupled to the first power supply port fails, the switch can be turned off, and the battery can be used to supply power to the second load coupled to the second power supply port to ensure that one of the important dual backup loads is normally powered by the battery ;
  • the switch can also be turned off, and the DCDC circuit can supply power to the first load coupled to the first power supply port to ensure important dual backup loads One of them is normally powered by a DCDC circuit.
  • the switch when a DCDC circuit failure is detected, the switch can be turned off, and the battery can supply power to the second load coupled to the second power supply port, so as to ensure that one of the important dual backup loads is normally powered by the battery; or, when detecting When the DCDC circuit breaks down and the protection function is disconnected, the switch can be kept on, and the battery can supply power to the first load coupled to the first power supply port and the second load coupled to the second power supply port at the same time, ensuring important The two circuits of the dual-circuit backup load are normally powered by the battery.
  • Fig. 1 is a schematic diagram of the system structure of a new energy vehicle
  • FIG. 2 is a schematic structural diagram of an existing power supply device
  • FIG. 3 is a schematic structural diagram of another existing power supply device
  • FIG. 4 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • coupling in the embodiments of this application refers to the energy transfer relationship, for example, the coupling between A and B refers to the ability to transfer energy between A and B, where there are many possibilities for the specific form of energy, Such as electric energy, magnetic field potential energy, etc.
  • electric energy can be transferred between A and B
  • it is reflected in the circuit connection relationship, that is, A and B can be directly electrically connected, or can be indirectly electrically connected through other conductors or circuit components.
  • the magnetic field potential energy can be transferred between A and B, it is reflected in the circuit connection relationship, that is, electromagnetic induction can occur between A and B, so that the magnetic field potential energy can be transferred from A to B.
  • using “magnetic coupling” specifically refers to the scene where energy can be transferred between A and B through a magnetic field.
  • a new energy vehicle mainly includes a charging circuit 101 , a low-voltage load device 102 , a low-voltage battery 103 , a high-voltage power battery 104 , a motor 105 , wheels 106 and a DCDC circuit 107 .
  • the low-voltage load device 102 may be a functional circuit inside a new energy vehicle or an on-board device.
  • the high-voltage power battery 104 may be a battery with large capacity and high power.
  • the high-voltage power battery 104 can drive the motor 105 to work, and the motor 105 can then drive the wheels 106 to rotate, thereby realizing the movement of the new energy vehicle.
  • the high-voltage power battery 104 can also supply power to the low-voltage battery 103 through the DCDC circuit 107 , or can also supply power to an external load of the new energy vehicle (such as another new energy vehicle) through the charging circuit 101 .
  • New energy vehicles can generally be charged through charging piles. Similar to the relationship between gas stations and conventional cars, charging piles can "refuel" new energy vehicles, that is, they can charge new energy vehicles.
  • the charging pile mainly includes a power circuit and a charging gun. One end of the power circuit is coupled to the power frequency grid, and the other end is coupled to the charging gun through a cable.
  • the power circuit in the charging pile can regard the power frequency grid as an AC input source, receive the AC power provided by the power frequency grid, and convert the received AC power into charging power suitable for new energy vehicles.
  • the operator can insert the charging gun into the charging socket of the new energy vehicle to couple the charging gun with the charging circuit 101 in the new energy vehicle, and the power circuit of the charging pile can then provide charging power to the charging circuit 101 through the charging gun.
  • the charging circuit 101 provides a part of the received charging electric energy to the high-voltage power battery 104, and the high-voltage power battery 104 further stores the part of electric energy.
  • the charging circuit 101 in a new energy vehicle has at least two working modes: a charging mode and a discharging mode. Specifically, in the charging mode, the charging circuit 101 receives the charging electric energy provided by the charging pile, and provides the received charging electric energy to the high-voltage power battery 104 . In the discharge mode, the charging circuit 101 receives the battery power provided by the high-voltage power battery 104, and the charging circuit 101 can also provide the battery power provided by the high-voltage power battery 104 to the external load of the vehicle.
  • the current low-voltage power supply system in the vehicle is a DC-to-DC DCDC circuit, and the battery is directly connected to the load. Any short circuit or failure of any device will cause the load current to increase, which will cause the low-voltage power supply system to be powered down or protected, making the dual backup power supply Can't really play a backup role.
  • Fig. 2 exemplarily shows a schematic structural diagram of an existing power supply device.
  • the current low-voltage power supply system in the vehicle is a direct current to direct current (DCDC) circuit
  • the battery is directly connected to the load, that is, the DCDC circuit and the battery supply power to the vehicle load.
  • the DCDC circuit can be awakened.
  • the DCDC circuit supplies power to the battery, and at the same time supplies power to the load on the vehicle.
  • DCDC circuit fails, the discharge time of the battery is short, and when the load or the battery is short-circuited, the entire voltage network is abnormally pulled to a low voltage, which will cause the vehicle to lose control.
  • Fig. 3 exemplarily shows a schematic structural diagram of another existing power supply device.
  • the low-voltage lithium battery module and the DCDC charging module are directly connected to the low-voltage load of the vehicle at the same time.
  • the low-voltage lithium battery module can be equipped with a bidirectional electronic fuse (efuse) to cut off the low-voltage lithium battery pack from the circuit separately, and the load is connected to the DCDC.
  • a fuse can also be arranged separately in the charging module.
  • the DCDC charging module fails, or the load and battery have a short-circuit fault, the low-voltage lithium battery module itself will still be disconnected from the low-voltage (LV) power line, and the DCDC charging module will start the protection mechanism, resulting in the low-voltage system of the vehicle being disconnected. electricity.
  • the DCDC charging module and the low-voltage lithium battery module are two independent electronic control units (ECUs), and the two can only communicate and report through the controller area network (CAN) bus, which has a slow response speed and cannot be linked to control.
  • ECUs electronice control unit
  • Fig. 4 exemplarily shows a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • the power supply device 200 provided by the present application can be applied to various vehicles, such as new energy vehicles.
  • the power supply device 200 provided by the present application may include: a direct current to direct current (DCDC) circuit 201 and a switch 202; wherein, the input end of the DCDC circuit 201 is connected to the high-voltage battery 500, and the output end of the DCDC circuit 201 is coupled to one end of the switch 202
  • the first power supply port A of the power supply device 200 the other end of the switch 202 is used as the second power supply port B of the power supply device 200; the first power supply port A is used to couple with the first load in the load device 300 in the vehicle, the second end
  • the two power supply ports B are respectively used to couple with the second load in the load device 300 in the vehicle and the battery 400 .
  • the first load may include one of the important two-way backup loads in the in-vehicle load device 300, and the second load may include another one of the important two-way backup loads in the in-vehicle load device, that is, the important loads are all two-way control, wherein One path serves as a backup, and the two backup loads take power from both ends of the switch 202 respectively.
  • the initial state of the switch 202 is conduction, so that the DCDC circuit 201 supplies power to the storage battery 400 through the switch 202 under normal working conditions, and the important two-way backup loads in the load device 300 in the vehicle can obtain power from the front and back of the switch 202 respectively, that is, Through the DCDC circuit 201 and the storage battery 400 , two important dual-circuit backup loads can be powered normally at the same time.
  • the state of the control switch 202 becomes off; the fault includes: the first load coupled to the first power supply port A fails, or the second power supply port B is coupled to The second load fails, or the storage battery 400 fails.
  • the switch 202 when it is detected that the first load coupled to the first power supply port A fails, the switch 202 can be turned off, and the battery 400 can supply power to the second load coupled to the second power supply port B, so as to ensure the important two-way backup load One of them is normally powered by the battery 400; when it is detected that the second load coupled to the second power supply port B and/or the battery 400 fails, the switch 202 can also be turned off, and the DCDC circuit 201 can be used to supply power to the first power supply port A. The connected first load supplies power to ensure that one of the important dual-path backup loads is normally powered by the DCDC circuit 201 .
  • the switch 202 can be turned off, and the battery 400 is used to supply power to the second load coupled to the second power supply port B, so as to ensure that one of the important dual backup loads is normally powered by the battery 400 or, when it is detected that the DCDC circuit 201 is faulty and has a protective function disconnected, the on state of the switch 202 can be kept, and the first load and the second power supply port B coupled to the first power supply port A are simultaneously connected through the storage battery 400 The coupled second load supplies power to ensure that the two important dual-circuit backup loads are normally powered by the storage battery 400 .
  • the switch 202 By controlling the state of the switch 202, it can be ensured that under any single failure of the load device 300 in the vehicle when there is a short circuit, the DCDC circuit 201 fails, or the battery 400 fails, the important loads can be powered, and the important low-voltage loads of the whole vehicle can still be backed up.
  • the reliability of power supply improves the reliability of redundant power supply for low-voltage loads and ensures the safety of the entire vehicle.
  • the in-vehicle load device 300 may include but not limited to the car radio, car navigator, assisted driving equipment, automatic parking equipment, etc. in the car, which can be powered by a low-voltage (12/24/36/48V) battery
  • the devices that supply power can be regarded as the in-vehicle load device 300, which will not be enumerated one by one in this embodiment of the present application.
  • the important loads in the in-vehicle load device 300 can be, for example, brake equipment and other equipment that plays a key role in normal driving, or it can be considered that the loads with backup are all important loads, and the two channels in the important two-way backup load are respectively connected to the first
  • the power supply port A is coupled to the second power supply port B to ensure that under a single failure, one of the two backup loads can supply power normally, thereby improving the reliability of the backup power supply.
  • the secondary load in the load device 300 in the vehicle can be, for example, a device that has little effect on normal driving, such as a car radio, or it can be considered that a load without backup is a secondary load, and the secondary load can be obtained from the first power supply port A and the second Any port in the two power supply ports B takes power, that is, the first load may also include a secondary load in the in-vehicle load device 300 , and the second load may also include a secondary load in the in-vehicle load device 300 .
  • the numbers of the first load and the second load connected to the first power supply port A and the second power supply port B may be the same or different, which is not limited here.
  • the storage battery 400 is used to supply power to the load device 300 in the vehicle, wherein the storage battery 400 may include at least one of the following types of batteries: lead-acid batteries, lithium-ion batteries, nickel-metal hydride batteries, lithium polymer batteries, nickel-cadmium batteries, and supercapacitors, etc. , and it should be noted that any device or device that can be used to store and/or release electric energy can be used as the storage battery 400 of the present application.
  • the DCDC circuit 201 can convert the input direct current into the charging voltage of the storage battery 400 .
  • the DCDC circuit 201 can be composed of devices such as a switch tube, a diode, an inductor, and a capacitor.
  • the adjustment of the working state of the DCDC circuit 201 is realized by adjusting the working state of the above-mentioned devices (for example, switching tubes).
  • direct current can be input to the DCDC circuit 201 through the high-voltage battery 500.
  • the high-voltage battery can be a high-voltage, large-capacity, and high-power storage battery, which is used to drive the motor in the new energy vehicle, and the motor drives the wheels. Rotate, so that the new energy vehicle can drive.
  • the switch 202 can specifically be an electronic switch, such as a bidirectional (also called top-to-top) switch tube, and the switch tube can specifically be a metal oxide semiconductor field effect transistor (MOSFET), an insulated gate bipolar Transistor (insulated gate bipolar transistor, IGBT), bipolar junction transistor (bipolar junction transistor, BJT), etc.
  • the switch 202 can also be a mechanical switch, such as a relay, a contactor, and the like. There can be one or more switches 202, which is not limited here.
  • Each switch may include a first electrode, a second electrode and a control electrode, wherein the control electrode is used to control the switch to be turned on or off.
  • the control electrode of the switch is the gate
  • the first electrode of the switch can be the source of the switch
  • the second electrode can be the drain of the switch
  • the first electrode can be the drain of the switch
  • the second electrode can be the source of the switch.
  • the DCDC circuit 201 and the switch 202 can be integrated in the same casing. Specifically, the DCDC circuit 201 and the switch 202 can also be integrated on the same circuit board, or the DCDC circuit 201 and the switch 202 can also be respectively arranged on different circuit boards, which is not limited here.
  • the DCDC circuit 201 can also be integrated with other components inside the vehicle.
  • the vehicle when applied to a new energy vehicle, the vehicle will also include an on board charger (OBC) .
  • OBC on board charger
  • the OBC also includes a DCDC circuit.
  • the OBC and the power supply device 200 may share one DCDC circuit 201 , or may be provided with different DCDC circuits, which is not limited here.
  • the present application also provides a vehicle, including: an in-vehicle load device 300, a storage battery 400, and the power supply device 200 described in any one of the above-mentioned embodiments.
  • a vehicle including: an in-vehicle load device 300, a storage battery 400, and the power supply device 200 described in any one of the above-mentioned embodiments.
  • the in-vehicle load device 300 may include but not limited to the car radio, car navigator, assisted driving equipment, automatic parking equipment, etc. in the car, and the equipment that can be powered by a low-voltage (12/24/36/48V) battery It can be regarded as the in-vehicle load device 300, which will not be enumerated one by one in the embodiment of the present application.
  • the important loads in the in-vehicle load device 300 can be, for example, brake equipment and other equipment that plays a key role in normal driving, or it can be considered that the loads with backup are all important loads, and the two channels in the important two-way backup load are respectively connected to the first
  • the power supply port A is coupled to the second power supply port B to ensure that under a single failure, one of the two backup loads can supply power normally, thereby improving the reliability of the backup power supply.
  • the secondary load in the load device 300 in the vehicle can be, for example, a device that has little effect on normal driving, such as a car radio, or it can be considered that a load without backup is a secondary load, and the secondary load can be obtained from the first power supply port A and the second Any port in the two power supply ports B takes power, that is, the first load may also include a secondary load in the in-vehicle load device 300 , and the second load may also include a secondary load in the in-vehicle load device 300 .
  • the numbers of the first load and the second load connected to the first power supply port A and the second power supply port B may be the same or different, which is not limited here.
  • the storage battery 400 is used to supply power to the load device 300 in the vehicle, wherein the storage battery 400 may include at least one of the following types of batteries: lead-acid batteries, lithium-ion batteries, nickel-metal hydride batteries, lithium polymer batteries, nickel-cadmium batteries, and supercapacitors, etc. , and it should be noted that any device or device that can be used to store and/or release electric energy can be used as the storage battery 400 of the present application.
  • the input end of the DCDC circuit 201 can be coupled to a high voltage battery 500, which is used to provide driving power for the new energy vehicle, and the vehicle will also include an OBC.
  • the OBC also includes a DCDC circuit.
  • the OBC and the power supply device 200 may share one DCDC circuit 201 , or may be provided with different DCDC circuits, which is not limited here.
  • the present application also provides a power supply method for any vehicle described in the above embodiments, including: setting the initial state of the switch 202 to conduction, so that the DCDC circuit 201 supplies power to the vehicle through the switch 202 in a normal working state.
  • the storage battery 400 supplies power, and the important dual-circuit backup loads in the in-vehicle load device 300 can obtain power from the front and back of the switch 202 respectively, that is, the DCDC circuit 201 and the storage battery 400 can supply power to two important dual-circuit backup loads simultaneously.
  • the state of the control switch 202 becomes off; the fault includes: the first load coupled to the first power supply port A fails, or the second power supply port B is coupled to The second load fails, or the storage battery 400 fails.
  • the switch 202 can be turned off, and the battery 400 can supply power to the second load coupled to the second power supply port B, so as to ensure the important two-way backup load One of them is normally powered by the battery 400; when it is detected that the second load coupled to the second power supply port B and/or the battery 400 fails, the switch 202 can also be turned off, and the DCDC circuit 201 can be used to supply power to the first power supply port A.
  • the connected first load supplies power to ensure that one of the important dual-path backup loads is normally powered by the DCDC circuit 201 .
  • the switch 202 can be turned off, and the battery 400 is used to supply power to the second load coupled to the second power supply port B, so as to ensure that one of the important dual backup loads is normally powered by the battery 400 or, when it is detected that the DCDC circuit 201 is faulty and has a protective function disconnected, the on state of the switch 202 can be kept, and the first load and the second power supply port B coupled to the first power supply port A are simultaneously connected through the storage battery 400
  • the coupled second load supplies power to ensure that the two important dual-circuit backup loads are normally powered by the storage battery 400 .
  • the switch 202 By controlling the state of the switch 202, it can be ensured that under any single failure of the load device 300 in the vehicle when there is a short circuit, the DCDC circuit 201 fails, or the battery 400 fails, the important loads can be powered, and the important low-voltage loads of the whole vehicle can still be backed up.
  • the reliability of power supply improves the reliability of redundant power supply for low-voltage loads and ensures the safety of the entire vehicle.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device. Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the embodiment of the present application also provides a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • random access memory random access memory
  • flash memory read only memory
  • EPROM memory EPROM memory
  • non-volatile read-only memory Electrical Programmable ROM, EPROM
  • registers hard disk, programmable Removable disk or any other storage medium in this field.
  • the steps of the methods or algorithms described in the embodiments of this application can be directly embedded in the OBC.
  • the OBC may include RAM memory, flash memory, ROM memory, EPROM memory, registers, hard disk, removable disk or any other form of storage medium in the art, used to store the steps of the methods or algorithms provided by the embodiments of the present application.
  • the storage medium can be connected with the control module or processor (or controller) in the OBC, so that the control module, processor (or controller) can read information from the storage medium, and can store information to the storage medium. Write a message.
  • the storage medium can also be integrated into the control module, processor (or controller).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种供电设备、车辆及其供电方法,车辆可以包括:车内负载设备(300)、蓄电池(400)和供电设备(200),供电设备(200)包括:DCDC电路(201)和开关(202);其中,DCDC电路(201)的输出端与开关(202)的一端耦接且作为供电设备(200)的第一供电端口A,开关(202)的另一端作为供电设备(200)的第二供电端口B;第一供电端口A用于与车内负载设备(300)中的第一负载耦接,第二供电端口B用于分别与车内负载设备(300)中的第二负载和蓄电池(400)耦接;通过控制开关(202)的状态,可以保障车内负载设备(300)出现短路、DCDC电路(201)出现故障、以及蓄电池(400)故障失效中的任何单一故障下,重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。

Description

一种供电设备、车辆及其供电方法
相关申请的交叉引用
本申请要求在2022年01月14日提交中国专利局、申请号为202210042974.0、申请名称为“一种供电设备、车辆及其供电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆充放电技术领域,特别涉及一种供电设备、车辆及其供电方法。
背景技术
随着新能源汽车的发展以及碳中和战略目标的要求,传统的燃油动力车目前正在被新能源汽车逐步取代,新能源汽车如:纯电动车(battery electric vehicle,BEV)、插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)以及混合动力汽车(hybrid electric vehicle,HEV)。新能源汽车的供电部分一般由高压动力电池(high voltage power battery)以及低压电池(low voltage battery)共同组成;其中,低压电池主要用于给进行自动驾驶设备、车用娱乐设备以及其他终端设备进行供电,随着新能源汽车的发展,上述设备的数量不断增加,导致汽车内部对于低压负载的需求逐渐增大,使得故障失效率增高,由于自动驾驶、行车安全等需求,对低压供电可靠性的要求却反而提高。当前车辆内的低压供电系统均为直流转直流DCDC电路、蓄电池与负载直接相连,任意设备出现短路或故障失效均会导致负载电流增大,使低压供电系统掉电或保护,使得双路备份供电无法真正起到备份作用。
发明内容
本申请提供一种供电设备、车辆及其供电方法,能在负载和蓄电池任意一个发生故障时保证备份供电的可靠性。
第一方面,本申请提供了一种车辆的供电设备,可以应用于各种车辆,例如可以应用于新能源汽车,车辆可以包括:车内负载设备和蓄电池。供电设备可以包括:直流转直流(DCDC)电路和开关;其中,DCDC电路的输出端与开关的一端耦接且作为供电设备的第一供电端口,开关的另一端作为供电设备的第二供电端口;第一供电端口用于与车内负载设备中的第一负载耦接,第二供电端口用于分别与车内负载设备中的第二负载和蓄电池耦接。第一负载可以包括车内负载设备中重要双路备份负载中的一路,第二负载可以包括车内负载设备中重要双路备份负载中的另一路,即重要负载均为双路控制,其中一路作为备份,两路备份负载分别从开关的两端取电。开关的初始状态为导通,使得在正常工作状态下DCDC电路经过开关给蓄电池供电,车内负载设备中的重要双路备份负载均可以分别从开关的前后取电,即通过DCDC电路和蓄电池可以为重要双路备份负载的两路同时正常供电。当检测到第一供电端口耦接的第一负载出现故障时,可以断开开关,通过蓄电池给第二供电端口耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池正常供 电;当检测到第二供电端口耦接的第二负载和/或蓄电池出现故障时,也可以断开开关,通过DCDC电路向第一供电端口耦接的第一负载供电,保证重要双路备份负载其中的一路通过DCDC电路正常供电。进一步地,当检测到DCDC电路发生故障时,可以断开开关,通过蓄电池为第二供电端口耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池正常供电;或者,当检测到DCDC电路发生故障且具有保护功能断开时,可以保持开关的导通状态,通过蓄电池同时为第一供电端口耦接的第一负载和第二供电端口耦接的第二负载供电,保证重要双路备份负载的两路通过蓄电池正常供电。通过控制开关的状态,可以保障车内负载设备出现短路、DCDC电路出现故障、以及蓄电池故障失效中的任何单一故障下,重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。
作为一种可能的实施方式,基于集成模块化思维,在设计供电设备时,可以将DCDC电路和开关集成在同一机壳中,有利于减少零件数量,提升装配效率,降低物料成本,缩短开发周期。
作为一种可能的实施方式,DCDC电路和开关还可以集成在同一电路板,有利于减少零件数量,提升装配效率,降低物料成本,缩短开发周期。或者,DCDC电路和开关也可以分别设置在不同的电路板,便于维修检测。
作为一种可能的实施方式,开关具体可以为电子开关,例如双向(也可以称为对顶)的开关管,开关管具体可以为金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET)、绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),双极结型管(bipolar junction transistor,BJT)等。或者开关也可以为机械开关,例如继电器,接触器等。开关可以为一个也可以为多个,在此不做限定。
第二方面,本申请提供了一种车辆,包括:车内负载设备、蓄电池和第一方面中任一项的供电设备。第二方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
作为一种可能的实施方式,当应用于新能源汽车时,车辆内部还会包括车载充电机(OBC)。
作为一种可能的实施方式,OBC内也会包括DCDC电路,OBC与供电设备可以共用一个DCDC电路,也可以分别设置不同的DCDC电路,在此不做限定。
作为一种可能的实施方式,车内负载设备可以包括但不限于汽车内部的车载收音机、车载导航器、辅助驾驶设备以及自动泊车设备等等,能被低压(12/24/36/48V)的电池进行供电的设备均可以视作车内负载设备。车内负载设备其中的重要负载例如可以为刹车设备等对于正常驾驶起到关键作用的设备,或者可以认为具有备份的负载均为重要负载,重要双路备份负载中的两路分别与第一供电端口和第二供电端口耦接,以保证单一故障下,其中双路备份负载其中的一路可以正常供电,提升备份供电的可靠性。车内负载设备中的次要负载例如可以为车载收音机等对于正常驾驶影响作用不大的设备,或者可以认为没有备份的负载为次要负载,次要负载可以从第一供电端口和第二供电端口中任意端口取电,即第一负载还可以包括车内负载设备中的次要负载,第二负载还可以包括车内负载设备中的次要负载。第一供电端口和第二供电端口连接的第一负载和第二负载的数量可以相同也可以不同。
作为一种可能的实施方式,蓄电池400包括以下至少一种类型的电池:铅酸电池、锂 离子电池、镍氢电池、锂聚合物电池、镍镉电池以及超级电容等,并且需要说明的,任何可以用于存储电能和或释放电能的设备或器件均可以作为本申请的蓄电池。
第三方面,本申请还提供了一种第二方面中任一项的车辆的供电方法,包括将开关的初始状态设置为导通,使得在正常工作状态下DCDC电路经过开关给蓄电池供电,车内负载设备中的重要双路备份负载均可以分别从开关的前后取电,即通过DCDC电路和蓄电池可以为重要双路备份负载的两路同时正常供电。当检测到第一供电端口耦接的第一负载出现故障时,可以断开开关,通过蓄电池给第二供电端口耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池正常供电;当检测到第二供电端口耦接的第二负载和/或蓄电池出现故障时,也可以断开开关,通过DCDC电路向第一供电端口耦接的第一负载供电,保证重要双路备份负载其中的一路通过DCDC电路正常供电。进一步地,当检测到DCDC电路发生故障时,可以断开开关,通过蓄电池为第二供电端口耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池正常供电;或者,当检测到DCDC电路发生故障且具有保护功能断开时,可以保持开关的导通状态,通过蓄电池同时为第一供电端口耦接的第一负载和第二供电端口耦接的第二负载供电,保证重要双路备份负载的两路通过蓄电池正常供电。通过控制开关的状态,可以保障车内负载设备出现短路、DCDC电路出现故障、以及蓄电池故障失效中的任何单一故障下,重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种新能源汽车的系统结构示意图;
图2为现有的一种供电设备的结构示意图;
图3为现有的另一种供电设备的结构示意图;
图4为本申请实施例提供的供电设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“耦合”指的是能量传递关系,例如,A与B耦合,指的是A与B之间能够传递能量,其中,能量的具体形式存在多种可能,例如电能、磁场势能等。在A与B之间能够传递电能时,反映在电路连接关系上,便是A与B之间可以直接电连接,也可以通过其它导体或电路元件间接电连接。在A与B之间能够传递磁场势 能时,反映在电路连接关系上,便是A与B之间可以发生电磁感应,使得磁场势能可以从A传递至B,有鉴于此,本申请实施例中,以“磁耦合”特指A与B之间可以通过磁场传递能量的场景。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
随着新能源汽车的发展,传统的燃油动力车目前正在被新能源汽车逐步取代,图1示例性示出了一种新能源汽车的系统结构示意图。参照图1所示,新能源汽车主要包括充电电路101、低压负载设备102、低压电池103、高压动力电池104、电机105、车轮106以及DCDC电路107。其中,低压负载设备102可以为新能源汽车内部的功能电路或车载设备。高压动力电池104可以为大容量、高功率的蓄电池。
在新能源汽车行驶时,高压动力电池104可以驱动电机105工作,电机105进而驱动车轮106转动,从而实现新能源汽车的移动。此外,高压动力电池104还可以通过DCDC电路107为低压电池103供电,或者,也可以通过充电电路101为新能源汽车的外部负载(如另一辆新能源汽车)供电。
新能源汽车一般可以通过充电桩充电。类似于加油站与常规汽车之间的关系,充电桩可以为新能源汽车“加油”,也就是可以为新能源汽车充电。继续如图1所示,充电桩主要包括电源电路和充电枪。电源电路的一端与工频电网耦合,另一端通过线缆与充电枪耦合。一般来说,充电桩中的电源电路可以将工频电网视作交流输入源,接收工频电网提供的交流电,将接收到的交流电转换为与新能源汽车相适配的充电电能。操作人员可以将充电枪插入新能源汽车的充电插口,使充电枪与新能源汽车内的充电电路101耦合,充电桩的电源电路进而可以通过充电枪将充电电能提供给充电电路101。充电电路101将接收到的一部分充电电能提供给高压动力电池104,高压动力电池104进而存储该部分电能。一般,新能源汽车中的充电电路101至少具有两种工作模式:充电模式和放电模式。具体来说,在充电模式下,充电电路101接收充电桩提供的充电电能,并将所接收到的充电电能提供给高压动力电池104。在放电模式下,充电电路101接收高压动力电池104提供的电池电能,充电电路101也可以将高压动力电池104提供的电池电能提供给车辆外部负载。
由于新能源汽车内部的低压负载设备102数量正在不断增加,导致新能源汽车内部对于低压负载的需求也在逐渐增大,使得故障失效率增高,由于自动驾驶、行车安全等需求,对低压供电可靠性的要求却反而提高。当前车辆内的低压供电系统均为直流转直流DCDC电路、蓄电池与负载直接相连,任意设备出现短路或故障失效均会导致负载电流增大,使低压供电系统掉电或保护,使得双路备份供电无法真正起到备份作用。
图2示例性示出了现有的一种供电设备的结构示意图。参阅图2所示,当前车辆内的低压供电系统均为直流转直流(DCDC)电路、蓄电池与负载直接相连,即DCDC电路与蓄电池给整车负载供电。具体地,在车辆启动前,蓄电池给负载供电,同时可以唤醒DCDC电路,在车辆启动后,DCDC电路给蓄电池补电,同时给车上负载供电。其缺点为:在DCDC电路出现故障时,蓄电池放电时间短,并且,在负载或蓄电池出现短路故障时,整个电压网络被异常拉到低电压,会导致整车失控。
图3示例性示出了现有的另一种供电设备的结构示意图。参阅图3所示,低压锂电模块与DCDC充电模块同时与整车低压负载直连,其中低压锂电模块内部可以具备双向电子保险丝(efuse)单独将低压锂电池组从回路中切断,并且负载与DCDC充电模块内也可以 单独布置保险丝。其缺点为:DCDC充电模块发生故障,或负载和蓄电池出现短路故障时,仍然会导致低压锂电池模块自身与低压(LV)功率线断开,DCDC充电模块启动保护机制,导致整车低压系统断电。并且,DCDC充电模块与低压锂电模块是两个独立的电子控制单元(ECU),二者只能通过控制器局域网络(controller area network,CAN)总线进行通讯上报,响应速度慢,无法联动控制。
图4示例性示出了本申请实施例提供的一种供电设备的结构示意图。参照图4所示,本申请提供的供电设备200,可以应用于各种车辆,例如可以应用于新能源汽车,车辆还可以包括:车内负载设备300、蓄电池400以及高压电池500。本申请提供的供电设备200可以包括:直流转直流(DCDC)电路201和开关202;其中,DCDC电路201的输入端与高压电池500相连接,DCDC电路201的输出端与开关202的一端耦接且作为供电设备200的第一供电端口A,开关202的另一端作为供电设备200的第二供电端口B;第一供电端口A用于与车内负载设备300中的第一负载耦接,第二供电端口B用于分别与车内负载设备300中的第二负载和蓄电池400耦接。第一负载可以包括车内负载设备300中重要双路备份负载中的一路,第二负载可以包括车内负载设备中重要双路备份负载中的另一路,即重要负载均为双路控制,其中一路作为备份,两路备份负载分别从开关202的两端取电。开关202的初始状态为导通,使得在正常工作状态下DCDC电路201经过开关202给蓄电池400供电,车内负载设备300中的重要双路备份负载均可以分别从开关202的前后取电,即通过DCDC电路201和蓄电池400可以为重要双路备份负载的两路同时正常供电。当检测到出现以下故障中的一种或多种时,控制开关202的状态变为断开;故障包括:第一供电端口A耦接的第一负载出现故障,或第二供电端口B耦接的第二负载出现故障,或蓄电池400出现故障。具体地,当检测到第一供电端口A耦接的第一负载出现故障时,可以断开开关202,通过蓄电池400给第二供电端口B耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池400正常供电;当检测到第二供电端口B耦接的第二负载和/或蓄电池400出现故障时,也可以断开开关202,通过DCDC电路201向第一供电端口A耦接的第一负载供电,保证重要双路备份负载其中的一路通过DCDC电路201正常供电。进一步地,当检测到DCDC电路201发生故障时,可以断开开关202,通过蓄电池400为第二供电端口B耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池400正常供电;或者,当检测到DCDC电路201发生故障且具有保护功能断开时,可以保持开关202的导通状态,通过蓄电池400同时为第一供电端口A耦接的第一负载和第二供电端口B耦接的第二负载供电,保证重要双路备份负载的两路通过蓄电池400正常供电。通过控制开关202的状态,可以保障车内负载设备300出现短路、DCDC电路201出现故障、以及蓄电池400故障失效中的任何单一故障下,重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。
示例性的,车内负载设备300可以包括但不限于汽车内部的车载收音机、车载导航器、辅助驾驶设备以及自动泊车设备等等,能被低压(12/24/36/48V)的电池进行供电的设备均可以视作车内负载设备300,本申请实施例对此不再一一枚举。车内负载设备300其中的重要负载例如可以为刹车设备等对于正常驾驶起到关键作用的设备,或者可以认为具有备份的负载均为重要负载,重要双路备份负载中的两路分别与第一供电端口A和第二供电端口B耦接,以保证单一故障下,其中双路备份负载其中的一路可以正常供电,提升备份供电的可靠性。车内负载设备300中的次要负载例如可以为车载收音机等对于正常驾驶影 响作用不大的设备,或者可以认为没有备份的负载为次要负载,次要负载可以从第一供电端口A和第二供电端口B中任意端口取电,即第一负载还可以包括车内负载设备300中的次要负载,第二负载还可以包括车内负载设备300中的次要负载。第一供电端口A和第二供电端口B连接的第一负载和第二负载的数量可以相同也可以不同,在此不做限定。
蓄电池400用于为车内负载设备300供电,其中,蓄电池400可以包括以下至少一种类型的电池:铅酸电池、锂离子电池、镍氢电池、锂聚合物电池、镍镉电池以及超级电容等,并且需要说明的,任何可以用于存储电能和或释放电能的设备或器件均可以作为本申请的蓄电池400。
DCDC电路201可以将输入的直流电转化为蓄电池400的充电电压,具体实现时,DCDC电路201可以由:开关管、二极管、电感、电容等器件组成。通过调节上述器件(例如开关管)的工作状态来实现DCDC电路201的工作状态调整。在应用于新能源汽车时,可以通过高压电池500对DCDC电路201输入直流电,高压电池可以为高电压、大容量以及高功率的蓄电池,用于驱动新能源汽车中的电机工作,电机进而驱动车轮转动,从而使得新能源汽车驱动行驶。
开关202在导通的状态下可以连通DCDC电路201和蓄电池400之间的双向流通的电压信号,开关202在导通的状态下可以阻断DCDC电路201和蓄电池400之间双向流通的电压信号。开关202具体可以为电子开关,例如双向(也可以称为对顶)的开关管,开关管具体可以为金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET)、绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),双极结型管(bipolar junction transistor,BJT)等。或者开关202也可以为机械开关,例如继电器,接触器等。开关202可以为一个也可以为多个,在此不做限定。每个开关皆可以包括第一电极、第二电极和控制电极,其中,控制电极用于控制开关的导通或断开。当开关导通时,开关的第一电极和第二电极之间可以传输电流,当开关断开时,开关的第一电极和第二电极之间无法传输电流。以MOSFET为例,开关的控制电极为栅极,开关的第一电极可以是开关的源极,第二电极可以是开关的漏极,或者,第一电极可以是开关的漏极,第二电极可以是开关的源极。
集成模块化贯穿在车辆的开发、工艺设计等环节的全过程,有利于减少零件数量,提升装配效率,降低物料成本,缩短开发周期,是车辆开发设计的主要趋势。基于集成模块化思维,在设计供电设备200时,可以将DCDC电路201和开关202集成在同一机壳中。具体地,DCDC电路201和开关202还可以集成在同一电路板,或,DCDC电路201和开关202也可以分别设置在不同的电路板,在此不做限定。
进一步地,为了减少对整车体积的需求,还可以将DCDC电路201与其他车辆内部的部件集成,例如当应用于新能源汽车时,车辆内部还会包括车载充电机(on board charger,OBC)。OBC内也会包括DCDC电路,OBC与供电设备200可以共用一个DCDC电路201,也可以分别设置不同的DCDC电路,在此不做限定。
基于同一发明构思,本申请还提供了一种车辆,包括:车内负载设备300、蓄电池400和上述实施例中任一所述的供电设备200。通过供电设备200中的控制开关202的状态,可以保障车内负载设备300出现短路、DCDC电路201出现故障、以及蓄电池400故障失效中的任何单一故障下,车辆内的重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。
车内负载设备300可以包括但不限于汽车内部的车载收音机、车载导航器、辅助驾驶设备以及自动泊车设备等等,能被低压(12/24/36/48V)的电池进行供电的设备均可以视作车内负载设备300,本申请实施例对此不再一一枚举。车内负载设备300其中的重要负载例如可以为刹车设备等对于正常驾驶起到关键作用的设备,或者可以认为具有备份的负载均为重要负载,重要双路备份负载中的两路分别与第一供电端口A和第二供电端口B耦接,以保证单一故障下,其中双路备份负载其中的一路可以正常供电,提升备份供电的可靠性。车内负载设备300中的次要负载例如可以为车载收音机等对于正常驾驶影响作用不大的设备,或者可以认为没有备份的负载为次要负载,次要负载可以从第一供电端口A和第二供电端口B中任意端口取电,即第一负载还可以包括车内负载设备300中的次要负载,第二负载还可以包括车内负载设备300中的次要负载。第一供电端口A和第二供电端口B连接的第一负载和第二负载的数量可以相同也可以不同,在此不做限定。
蓄电池400用于为车内负载设备300供电,其中,蓄电池400可以包括以下至少一种类型的电池:铅酸电池、锂离子电池、镍氢电池、锂聚合物电池、镍镉电池以及超级电容等,并且需要说明的,任何可以用于存储电能和或释放电能的设备或器件均可以作为本申请的蓄电池400。
当应用于新能源汽车时,DCDC电路201的输入端可以耦接高压电池500,高压电池500用于为新能源汽车提供驱动动力,车辆内部还会包括OBC。OBC内也会包括DCDC电路,OBC与供电设备200可以共用一个DCDC电路201,也可以分别设置不同的DCDC电路,在此不做限定。
基于同一发明构思,本申请还提供了一种上述实施例中任意所述车辆的供电方法,包括:将开关202的初始状态设置为导通,使得在正常工作状态下DCDC电路201经过开关202给蓄电池400供电,车内负载设备300中的重要双路备份负载均可以分别从开关202的前后取电,即通过DCDC电路201和蓄电池400可以为重要双路备份负载的两路同时正常供电。当检测到出现以下故障中的一种或多种时,控制开关202的状态变为断开;故障包括:第一供电端口A耦接的第一负载出现故障,或第二供电端口B耦接的第二负载出现故障,或蓄电池400出现故障。具体地,当检测到第一供电端口A耦接的第一负载出现故障时,可以断开开关202,通过蓄电池400给第二供电端口B耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池400正常供电;当检测到第二供电端口B耦接的第二负载和/或蓄电池400出现故障时,也可以断开开关202,通过DCDC电路201向第一供电端口A耦接的第一负载供电,保证重要双路备份负载其中的一路通过DCDC电路201正常供电。进一步地,当检测到DCDC电路201发生故障时,可以断开开关202,通过蓄电池400为第二供电端口B耦接的第二负载供电,保证重要双路备份负载其中的一路通过蓄电池400正常供电;或者,当检测到DCDC电路201发生故障且具有保护功能断开时,可以保持开关202的导通状态,通过蓄电池400同时为第一供电端口A耦接的第一负载和第二供电端口B耦接的第二负载供电,保证重要双路备份负载的两路通过蓄电池400正常供电。通过控制开关202的状态,可以保障车内负载设备300出现短路、DCDC电路201出现故障、以及蓄电池400故障失效中的任何单一故障下,重要负载都得到供电,整车重要低压负载仍然可以保证备份供电的可靠性,提升低压负载的冗余供电可靠性,保障了整车安全。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种可读存储介质,用于存储上述实施例提供的方法或算法。例如,随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、EPROM存储器、非易失性只读存储器(Electronic Programmable ROM,EPROM)、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入OBC。OBC可以包括RAM存储器、闪存、ROM存储器、EPROM存储器、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介,用于存储本申请实施例提供的方法或算法的步骤。示例性地,存储媒介可以与OBC中的控制模块或者处理器(或控制器)连接,以使得控制模块、处理器(或控制器)可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到控制模块、处理器(或控制器)中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种车辆的供电设备,所述车辆包括车内负载设备和蓄电池,其特征在于,所述供电设备包括:直流转直流DCDC电路和开关;
    所述DCDC电路的输出端与所述开关的一端耦接且作为所述供电设备的第一供电端口,所述开关的另一端作为所述供电设备的第二供电端口;
    所述第一供电端口用于与所述车内负载设备中的第一负载耦接,所述第二供电端口用于分别与所述车内负载设备中的第二负载和所述蓄电池耦接;
    所述开关的初始状态为导通,当出现以下故障中的一种或多种时所述开关的状态变为断开,所述故障包括:所述第一供电端口耦接的第一负载出现故障,或所述第二供电端口耦接的第二负载出现故障,或所述蓄电池出现故障。
  2. 如权利要求1所述的供电设备,其特征在于,所述开关的初始状态为导通,所述开关用于当所述DCDC电路发生故障时,状态变为断开;
    或,当所述DCDC电路发生故障且具有保护功能断开时,所述开关用于保持导通状态。
  3. 如权利要求1或2所述的供电设备,其特征在于,所述DCDC电路和所述开关安装在同一机壳内。
  4. 如权利要求3所述的供电设备,其特征在于,所述DCDC电路和所述开关集成在同一电路板,或,所述DCDC电路和所述开关分别设置在不同的电路板。
  5. 如权利要求1-4任一项所述的供电设备,其特征在于,所述开关为电子开关。
  6. 如权利要求5所述的供电设备,其特征在于,所述电子开关为双向的金属氧化物半导体场效应晶体管,双向的绝缘栅双极型晶体管,双向的双极结型管。
  7. 如权利要求1-4任一项所述的供电设备,其特征在于,所述开关为机械开关。
  8. 如权利要求7所述的供电设备,其特征在于,所述机械开关为继电器或接触器。
  9. 一种车辆,其特征在于,包括:车内负载设备、蓄电池以及如权利要求1-8任一项所述供电设备。
  10. 如权利要求9所述的车辆,其特征在于,还包括车载充电机。
  11. 如权利要求10所述的车辆,其特征在于,所述车载充电机与所述供电设备共用同一DCDC电路,或所述车载充电机与所述供电设备具有不同的DCDC电路。
  12. 如权利要求9-11任一项所述的车辆,其特征在于,所述第一负载包括所述车内负 载设备中重要双路备份负载中的一路,所述第二负载包括所述车内负载设备中重要双路备份负载中的另一路。
  13. 如权利要求12所述的车辆,其特征在于,所述第一负载还包括所述车内负载设备中的次要负载,和/或,所述第二负载还包括所述车内负载设备中的次要负载。
  14. 如权利要求9-13任一项所述的车辆,其特征在于,所述蓄电池为铅酸电池、锂离子电池、镍氢电池、锂聚合物电池、镍镉电池或超级电容。
  15. 一种如权利要求9-14任一项所述车辆的供电方法,其特征在于,包括:
    设置所述开关的初始状态为导通;
    当检测到出现以下故障中的一种或多种时,控制所述开关的状态变为断开;
    所述故障包括:所述第一供电端口耦接的第一负载出现故障,或所述第二供电端口耦接的第二负载出现故障,或所述蓄电池出现故障。
  16. 如权利要求15所述的供电方法,其特征在于,还包括:
    当检测到所述DCDC电路发生故障时,控制所述开关断开;
    或,当检测到所述DCDC电路发生故障且具有保护功能断开时,保持所述开关的导通状态。
PCT/CN2022/114951 2022-01-14 2022-08-25 一种供电设备、车辆及其供电方法 WO2023134173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210042974.0 2022-01-14
CN202210042974.0A CN114454733A (zh) 2022-01-14 2022-01-14 一种供电设备、车辆及其供电方法

Publications (1)

Publication Number Publication Date
WO2023134173A1 true WO2023134173A1 (zh) 2023-07-20

Family

ID=81408785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114951 WO2023134173A1 (zh) 2022-01-14 2022-08-25 一种供电设备、车辆及其供电方法

Country Status (2)

Country Link
CN (1) CN114454733A (zh)
WO (1) WO2023134173A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454733A (zh) * 2022-01-14 2022-05-10 华为数字能源技术有限公司 一种供电设备、车辆及其供电方法
WO2024065766A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 供电电路及其控制方法、电子设备、车辆
WO2024103262A1 (zh) * 2022-11-15 2024-05-23 华为技术有限公司 供电装置、供电系统和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336631A (ja) * 2006-06-12 2007-12-27 Toyota Motor Corp 電源システム
WO2014079603A2 (de) * 2012-11-26 2014-05-30 Siemens Aktiengesellschaft Elektrische schaltungsanordnung für ein elektrisch angetriebenes fahrzeug, fahrzeug und entsprechendes verfahren
CN110103718A (zh) * 2019-05-06 2019-08-09 奇瑞汽车股份有限公司 一种电动汽车用高压双向dcdc的旁路保护系统
CN111661030A (zh) * 2020-06-10 2020-09-15 中国第一汽车股份有限公司 混合动力车辆的起动机控制方法、系统及混合动力车辆
CN112622870A (zh) * 2020-12-29 2021-04-09 中国第一汽车股份有限公司 一种发动机起机方法、车辆电气系统及储存介质
CN114454733A (zh) * 2022-01-14 2022-05-10 华为数字能源技术有限公司 一种供电设备、车辆及其供电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207916585U (zh) * 2017-12-30 2018-09-28 上海康丘乐电子电器科技有限公司 一种车载供电系统及电动汽车
JP6909245B2 (ja) * 2019-02-18 2021-07-28 矢崎総業株式会社 電力分配システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336631A (ja) * 2006-06-12 2007-12-27 Toyota Motor Corp 電源システム
WO2014079603A2 (de) * 2012-11-26 2014-05-30 Siemens Aktiengesellschaft Elektrische schaltungsanordnung für ein elektrisch angetriebenes fahrzeug, fahrzeug und entsprechendes verfahren
CN110103718A (zh) * 2019-05-06 2019-08-09 奇瑞汽车股份有限公司 一种电动汽车用高压双向dcdc的旁路保护系统
CN111661030A (zh) * 2020-06-10 2020-09-15 中国第一汽车股份有限公司 混合动力车辆的起动机控制方法、系统及混合动力车辆
CN112622870A (zh) * 2020-12-29 2021-04-09 中国第一汽车股份有限公司 一种发动机起机方法、车辆电气系统及储存介质
CN114454733A (zh) * 2022-01-14 2022-05-10 华为数字能源技术有限公司 一种供电设备、车辆及其供电方法

Also Published As

Publication number Publication date
CN114454733A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023134173A1 (zh) 一种供电设备、车辆及其供电方法
JP5772784B2 (ja) 車両、電源システムおよび電源システムの制御方法
JP5523480B2 (ja) 高信頼性駆動用バッテリー
US7816804B2 (en) Power supply device and control method of the power supply device
JP5660102B2 (ja) 車両の電源装置
WO2021184744A1 (zh) 一种基于欧标双枪大功率快充系统及方法
KR101673822B1 (ko) 친환경 차량의 릴레이 융착 검출 장치 및 그 방법
WO2018205331A1 (zh) 电动汽车的自循环充放电装置和动力总成系统
CN103187771A (zh) 电动汽车及其放电装置
WO2013097830A1 (zh) 用于电动汽车的大功率充电系统及其控制方法
US9346366B2 (en) Charge/discharge system
JP5817837B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
EP4213328A1 (en) Electric power conversion system and vehicle
US20230238807A1 (en) Power distribution module
CN108110855A (zh) 一种可兼容的辅源充电系统及其充电方法
WO2020001265A1 (zh) 车辆的对外充电方法和装置
CN104908604A (zh) 机载电网
CN115366833B (zh) 矿用无人驾驶车辆的冗余电源控制器
WO2023142086A1 (zh) 电池管理装置、系统
CN104716290A (zh) 电池组件和包括电池组件的混合电动车辆
CN207826160U (zh) 插电式混合动力车用电气架构
US20240198812A1 (en) Electric vehicle and control method of the same
CN210733862U (zh) 一种充电控制系统
CN110682827A (zh) 一种双电池系统的电动汽车辅助电源
WO2024065766A1 (zh) 供电电路及其控制方法、电子设备、车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919810

Country of ref document: EP

Kind code of ref document: A1