WO2023142086A1 - 电池管理装置、系统 - Google Patents

电池管理装置、系统 Download PDF

Info

Publication number
WO2023142086A1
WO2023142086A1 PCT/CN2022/075100 CN2022075100W WO2023142086A1 WO 2023142086 A1 WO2023142086 A1 WO 2023142086A1 CN 2022075100 W CN2022075100 W CN 2022075100W WO 2023142086 A1 WO2023142086 A1 WO 2023142086A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection state
battery
conversion device
charging
state conversion
Prior art date
Application number
PCT/CN2022/075100
Other languages
English (en)
French (fr)
Inventor
李向涛
李宝
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/075100 priority Critical patent/WO2023142086A1/zh
Priority to CN202280006983.2A priority patent/CN116897486A/zh
Publication of WO2023142086A1 publication Critical patent/WO2023142086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and further, relate to a battery management system and a battery management device.
  • the embodiment of the present application provides a battery management method and device, in order to solve the technical problem that the battery device is not compatible with different voltage platforms.
  • the first aspect of the present application provides a battery management device.
  • the battery management device includes: a battery device, a connection state conversion device, and a control device; the battery device includes: a first battery pack and a second battery pack, wherein, The negative pole of the first battery pack is connected to the positive pole of the second battery pack; the connection state conversion device includes: a first connection state conversion device, the first terminal of the first connection state conversion device is connected to the first connection state conversion device The positive pole of a battery pack is connected, the second end of the first connection state conversion device is connected to the positive pole of the charging interface; the second connection state conversion device, the first end of the second connection state conversion device is connected to the first The second end of the connection state conversion device is connected, the second end of the second connection state conversion device is connected to the first end of the third connection state conversion device; the second end of the third connection state conversion device is connected to the The negative pole connection of the charging interface; the fourth connection state conversion device, the first end of the fourth connection state conversion device is connected to the second end of the third connection
  • the battery management device when the charging device on the low-voltage charging platform is charging the electric device on the high-voltage platform, the battery management device can independently charge any one of the two battery packs without setting up a booster module.
  • the charging signal access of the low-voltage platform can be realized, and then the battery pack can be charged normally, which saves the cost and solves the problem of increasing the cost of adding a booster module in the new energy vehicle for the normal charging of the battery in the related technology.
  • the battery management device further includes: a fifth connection state conversion device, the first terminal of the fifth connection state conversion device is connected to the negative pole of the first battery pack, and the fifth The second end of the connection state conversion device is connected to the second end of the second connection state conversion device.
  • the battery management device further includes: a sixth connection state conversion device, the first terminal of the sixth connection state conversion device is connected to the positive pole of the first battery pack; the sixth The second end of the connection state conversion device is connected to the first end of the high-voltage load; the second end of the high-voltage load is connected to the negative pole of the second battery pack.
  • the battery management device further includes: a seventh connection state conversion device, the first terminal of the seventh connection state conversion device is connected to the negative pole of the second battery pack; the seventh The second end of the connection state conversion device is connected to the second end of the high-voltage load; the first end of the high-voltage load is connected to the positive pole of the first battery pack.
  • the battery management device further includes: an eighth connection state conversion device, a pre-charging resistor; the first end of the pre-charging resistor is electrically connected to the second end of the eighth connection state conversion device connected; the second end of the pre-charging resistor is connected to the first end of the high-voltage load; the first end of the eighth connection state conversion device is electrically connected to the first end of the first connection state conversion device.
  • the battery management device further includes: when the nominal voltage of the battery device is higher than the platform voltage of the charging device, the charging device charges the first charging the battery pack, the control device controls the connection state conversion device to be in the first connection state; the first connection state includes: the first connection state conversion device is turned on, and the third connection state conversion device is turned on is on, the second connection state switching device is off, and the fourth connection state switching device is off.
  • the charging device when the low-voltage platform charging device is charging the high-voltage platform electric device, by controlling the connection state conversion device to be in the first connection state, the charging device charges the first battery pack, which can facilitate charging safety.
  • the battery management device further includes: when the nominal voltage of the battery device is higher than the platform voltage of the charging device, the charging device provides the The second battery pack is charged, and the control device controls the connection state conversion device to be in the second connection state; the second connection state includes: the second connection state conversion device is turned on, and the fourth connection state conversion The device is turned on, the first connection state switching device is off, and the third connection state switching device is off.
  • the charging device when the low-voltage platform charging device is charging the high-voltage platform electric device, by controlling the connection state conversion device to be in the second connection state, the charging device can charge the second battery pack, which can be beneficial to charging safety.
  • the battery management device further includes: when the nominal voltage of the battery device is higher than the platform voltage of the charging device, the charging device controls the connection state conversion device to be in the first In the case of a connection state, the control device is further configured to control the connection state switching device to switch from the first connection state to the second connection state when the first battery pack reaches a first preset SOC.
  • the control device controls the connected state conversion device to switch from the second connected state to the first connected state; in the first battery pack
  • the control device controls the connection state conversion device to switch from the first connection state to the second connection state; when the second battery pack reaches the fourth preset SOC, The control means controls the connection state switching means to switch from the second connection state to the first connection state.
  • the first battery pack and the second battery pack can be charged alternately, which can ensure the power balance of the two battery packs.
  • the battery management device further includes: when the nominal voltage of the battery device is not higher than the platform voltage of the charging device, the charging device charges the battery device through the charging interface
  • the control device controls the connection state conversion device to be in a third connection state;
  • the third connection state includes: the first connection state conversion device is turned on, and the fourth connection state conversion device is turned on On, the second connection state switching device is off, the third connection state switching device is off, and the fifth connection state switching device is off.
  • a second aspect of the present application provides a connection state conversion device, where the connection state conversion device includes the connection relationship of the connection state conversion device described in any one of the foregoing first aspects.
  • a third aspect of the present application provides a battery management system, the battery system comprising the battery management device described in the first aspect.
  • the fourth aspect of the present application provides a battery control method, which is applied to the connection circuit of the connection state switching device of the second aspect above.
  • Fig. 1 includes a schematic diagram of an application scenario of a battery management device provided by one or more embodiments of the present application.
  • Fig. 2 includes a schematic diagram of an application scenario of a battery management device provided by one or more embodiments of the present application.
  • Fig. 3 includes a schematic diagram of a working state of a battery management device provided by one or more embodiments of the present application.
  • Fig. 4 includes a schematic diagram of a working state of a battery management device provided by one or more embodiments of the present application.
  • Fig. 5 includes a schematic diagram of a working state of a battery management device provided by one or more embodiments of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected, or integrally connected. It can be directly connected, or indirectly connected through an intermediary, and can be internally connected between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • the battery device includes a battery that provides electrical energy for an electrical device or a load device.
  • the battery device may include a storage battery or a secondary battery. From the type of battery, the battery device can be lithium ion battery, lithium metal battery, lead acid battery, nickel chromium battery, nickel metal hydride battery, lithium sulfur battery, lithium air battery or sodium ion battery, etc., in the embodiment of the present application Not specifically limited.
  • a battery device may include cells/cells, battery packs, and/or battery packs.
  • the battery device may include a battery management device, for example, a battery management system (battery management system, BMS).
  • BMS battery management system
  • the battery management device may be used to perform control and management work on the battery device, such as safety monitoring, collection and configuration parameters, and control of charging and discharging.
  • the embodiment of the application does not specifically limit the function of the battery management device.
  • SOC State Of Charge
  • SOC State Of Charge
  • the charging device includes, for example, a charging pile or a charging machine, for charging the battery device.
  • the charging device can output charging power according to the charging demand of the BMS to charge the battery device.
  • the charging device can output voltage and current according to the required voltage and required current sent by the BMS, and charge the battery device with the participation of the BMS.
  • Electric devices including various electric devices that obtain electric energy from battery devices, including but not limited to motors, vehicles, ships, and spacecraft, etc., as an example, the motor of a hybrid car is connected to a battery device and obtains electric energy from the battery device To realize the driving function, the embodiment of the present application does not specifically limit the electric device.
  • the charging device charges the battery device, and the battery device provides electric energy for the electric device.
  • the charging input of the charging device may not match the battery device, and the power supply output of the battery device may not be compatible with the electric device.
  • the charging pile of the 400-volt platform cannot charge the electric vehicle of the 800-volt platform, and the electric vehicle of the 400-volt platform cannot be charged by the charging pile of the 800-volt platform, and the battery device of the 400-volt platform cannot charge the 800-volt platform.
  • the motor and other system components of the 400-volt platform are not compatible with the battery device of the 800-volt platform.
  • the embodiment of the present application provides a battery management device, which is expected to improve the compatibility of the battery device in terms of charging input and/or power supply output, so as to solve the technical problem that the battery device is not compatible with different voltage platforms.
  • FIG. 1 shows a schematic diagram of an application scenario of a battery management device provided by one or more embodiments of the present application.
  • FIG. 1 includes a battery device, a connection state conversion device, and a control device.
  • the battery device includes: a first battery pack and a second battery pack.
  • the negative pole of the first battery pack is connected to the positive pole of the second battery pack.
  • the battery pack is, for example, composed of a plurality of cells connected in series and/or in parallel and includes a positive pole and a negative pole.
  • the charging device is, for example, a charging pile or a charging gun. Aircraft etc.
  • other electrical components can also be connected, for example, the positive pole and the negative pole of the battery device can be respectively connected to the main positive, main negative switch or relay, etc. according to the requirements. The embodiment does not limit this.
  • the connection state conversion device includes: a first connection state conversion device K1, a second connection state conversion device K2, a third connection state conversion device K3, and a fourth connection state conversion device K4.
  • the first connection state conversion device K1 the first terminal of the first connection state conversion device K1 is connected to the positive pole of the first battery pack
  • the second terminal of the first connection state conversion device K1 is connected to the positive pole of the charging interface.
  • the second connection state conversion device K2, the first end of the second connection state conversion device K2 is connected to the second end of the first connection state conversion device K1, and the second end of the second connection state conversion device K2 is converted to the third connection state
  • the first end of the device K3 is connected.
  • the second end of the third connection state conversion device K3 is connected to the negative pole of the charging interface.
  • connection state conversion device K4 the first end of the fourth connection state conversion device K4 is connected to the second end of the third connection state conversion device K3, the second end of the fourth connection state conversion device K4 is connected to the second battery pack Negative connection.
  • conduction of the connection state conversion device means that there is an electrical connection between the two ends of the connection state conversion device, for example, current can flow from one end of the connection state conversion device to the other end of the connection state conversion device, and the connection The disconnection of the state conversion device means that there is no electrical connection between the two ends of the connection state conversion device, for example, current cannot flow from one end of the connection state conversion device to the other end of the connection state conversion device.
  • the control device is used to control the connection state conversion device to be in the first connection state, the second connection state, the third connection state, and the fourth connection state.
  • the control device may be a functional unit implemented by software and/or hardware.
  • the control device includes a processor or a processing unit, which may be coupled with a memory and execute instructions stored in the memory, so as to manage and/or control the battery device.
  • Functions such as control for example, the control device may include a control circuit to implement functions such as management and/or control of the battery device.
  • the control device can be used as a part of the BMS, or as the BMS itself, and realize the above-mentioned management and/or control functions.
  • the control device controls the connection state switching device to switch between different connection states.
  • the control means may send a control signal to the connection state switching means, so that the connection state switching means switches from the first connection state to the second connection state in response to detecting the control signal.
  • the embodiment of the present application does not limit the type and implementation form of the control signal.
  • sending the control signal can be realized by sending a control command, high level, low level, power on, power off, and the like.
  • the battery management device further includes a fifth connection state conversion device K5, the first end of the fifth connection state conversion device K5 is connected to the negative pole of the first battery pack, and the fifth connection state The second end of the conversion device K5 is connected to the second end of the second connection state conversion device K2.
  • the battery management device further includes a sixth connection state conversion device K6.
  • the first end of the sixth connection state switching device K6 is connected to the positive pole of the first battery pack.
  • the second end of the sixth connection state switching device K6 is connected to the first end of the high voltage load.
  • the second end of the high voltage load is connected to the negative pole of the second battery pack.
  • the battery management device further includes a seventh connection state conversion device K7 , the first terminal of the seventh connection state conversion device K7 is connected to the negative pole of the second battery pack.
  • the second end of the seventh connection state switching device K7 is connected to the second end of the high voltage load.
  • the first end of the high voltage load is connected to the positive pole of the first battery pack.
  • the battery management device further includes an eighth connection state conversion device K8 , which is a pre-charging resistor.
  • the first end of the pre-charging resistor is electrically connected to the second end of the eighth connection state switching device K8.
  • the second end of the precharging resistor is connected to the first end of the high voltage load.
  • the first end of the eighth connection state conversion device K8 is electrically connected to the first end of the first connection state conversion device K1 .
  • the pre-charging resistor refers to the resistor that slowly charges the capacitor at the initial stage of high-voltage power-on of the vehicle.
  • Types of the pre-charging resistors may include aluminum case resistors, thermistor resistors, power resistors, cement resistors, ceramic resistors, etc., which are not limited in the embodiments disclosed in the present application. If there is no pre-charging resistor, there may be a danger of excessive charging current and breakdown of the capacitor. High-voltage electricity is directly added to the capacitor, which is equivalent to an instantaneous short circuit. Excessive short-circuit current will damage the high-voltage electrical components.
  • the pre-charging circuit formed by the eighth connection state conversion device K8 and the pre-charging resistor can protect the safety of the circuit.
  • FIG. 3 is a schematic diagram of a working state of a battery management device disclosed in an embodiment of the present application.
  • the charging device charges the first battery pack through the charging interface, and the control device controls the connection state conversion device to be in the first connection state.
  • the first connection state includes: the first connection state conversion device K1 is on, the third connection state conversion device K3 is on, the second connection state conversion device K2 is off, and the fourth connection state conversion device K4 is off.
  • the charging device charges the first battery pack through the charging interface, and the control device controls the connection state conversion device to be in the first connection state.
  • the control device controls the connection state conversion device In the first connection state.
  • FIG. 4 is a schematic diagram of a working state of a battery management device disclosed in an embodiment of the present application.
  • the charging device charges the second battery pack through the charging interface, and the control device controls the connection state conversion device to be in the second connection state.
  • the second connection state includes: the second connection state switching device K2 is on, the fourth connection state switching device K4 is on, the first connection state switching device K1 is off, and the third connection state switching device K3 is off.
  • the charging device charges the second battery pack through the charging interface, then the control device controls the connection state conversion device to be in the second connection state.
  • the control device controls the connection state conversion device In the second connection state.
  • whether the target battery pack is the first battery pack or the second battery pack may be determined according to the remaining power of the battery pack.
  • the battery pack with low power can be preferentially selected as the target battery pack, and when the power of the target battery pack exceeds a certain value of the power of another battery pack, the target battery pack can be switched, that is, the target battery pack is set to a battery pack that is not charging, so that The first battery pack and the second battery pack can be charged in turn to ensure the balance of electric power of the two battery packs.
  • the present application optionally, it is possible to detect whether there is a battery failure in the first battery pack and the second battery pack and their circuits.
  • the battery pack is charged, at this time the surviving battery pack is the target battery pack.
  • the battery pack with the latest charging time earlier may be used as the target battery pack.
  • the high-voltage platform is an 800V charging platform
  • the low-voltage platform is a 400V charging platform.
  • the above-mentioned charging equipment equipped with the first battery pack and the second battery pack is an 800V electric vehicle.
  • the voltages of the first battery pack and the second battery pack are divided into is 400V.
  • the control module detects that the charging interface is connected to the charging signal of the 400V low-voltage platform, it determines that the first battery pack with low remaining power is the target battery pack, and controls the connection state conversion device to switch to the first connection state, thereby realizing Charge the first battery pack.
  • the control module detects the charging signal, and switches the connection state of the connection state switching device, so that the electric device with two battery packs connected in series, that is, the electric device supporting the high-voltage platform, can be used without setting
  • the battery pack is split into two battery packs that support the low-voltage platform, and then independently adapted to the charging signal of the low-voltage platform for charging.
  • the cost is reduced, thereby solving the problem in the related technology that a booster module is specially added to charge the battery normally, which increases the cost of the electrical device.
  • the control device when the nominal voltage of the battery device is higher than the platform voltage of the charging device, and the charging device controls the connection state conversion device to be in the first connection state, the control device is also used to When a battery pack reaches the first preset SOC, the control device controls the connection state conversion device to switch from the first connection state to the second connection state. When the second battery pack reaches the second preset SOC, the control device controls the connection state switching device to switch from the second connection state to the first connection state. When the first battery pack reaches the third preset SOC, the control device controls the connection state switching device to switch from the first connection state to the second connection state. When the second battery pack reaches the fourth preset SOC, the control device controls the connection state switching device to switch from the second connection state to the first connection state.
  • the two battery packs can be charged alternately to ensure the power balance of the two battery packs.
  • the control device controls the connection state conversion device to switch from the first connection state to the second connection state, which means that when the charging device charges the first battery pack, the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device charges the second battery pack.
  • the control device controls the connection state conversion device to switch to the first connection state, and the charging device charges the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device charges the second battery pack.
  • the control device controls the connection state switching device to switch to the first connection state, and the charging device charges the first battery pack.
  • the SOC among the battery packs may be consistent.
  • the sizes of the first preset SOC and the second preset SOC may be the same, and the sizes of the third preset SOC and the fourth preset SOC may be the same, which is not limited in the embodiments disclosed in the present application.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device starts to charge the second battery pack.
  • the control device controls the connection state conversion device to switch to the first connection state, and the charging device continues to charge the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device starts to charge the second battery pack.
  • the control device controls the connection state conversion device to switch to the first connection state, and the charging device continues to charge the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device starts to charge the second battery pack.
  • the control device controls the connection state conversion device to switch to the first connection state, and the charging device continues to charge the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device starts to charge the second battery pack.
  • the control device controls the connection state conversion device to switch to the first connection state, and the charging device continues to charge the first battery pack.
  • the control device controls the connection state conversion device to switch to the second connection state, and the charging device starts to charge the second battery pack. Charging stops when the SOC of the second battery pack reaches 100%.
  • FIG. 5 is a schematic diagram of a working state of a battery management device disclosed in an embodiment of the present application.
  • the control device controls the connection state conversion device to be in the third connection state.
  • the third connection state includes: the first connection state conversion device K1 is on, the fourth connection state conversion device K4 is on, the second connection state conversion device K2 is off, the third connection state conversion device K3 is off, and the fifth connection state The switching device K5 is disconnected.
  • the nominal voltage of the electric device is not higher than the platform voltage of the charging device, and the charging device charges the battery device through the charging interface, the control device controls the connection state conversion device to be in the third connection state, which means, for example When the charging pile on the 400-volt voltage platform is charging the electric vehicle on the 400-volt voltage platform, in the third connection state, the charging pile can charge the two battery packs normally at the same time.
  • the embodiment of the present application also provides a computer-readable storage medium for storing a computer program, and the computer program is used to execute the connection method of the connection conversion device in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池管理装置,其中,电池管理装置包括:电池装置,连接状态转换装置,充电装置,用电装置,控制装置。电池装置与连接状态转换装置电连接;连接状态转换装置与充电装置电连接;连接状态转换装置与用电装置电连接;控制装置用于控制连接状态转换装置处于第一连接状态,第二连接状态,第三连接状态,第四连接状态。该装置能够提高电池装置与不同电压平台的兼容性。

Description

电池管理装置、系统 技术领域
本申请实施例涉及电池技术领域,进一步地,涉及一种电池管理系统和电池管理装置。
背景技术
随着现代社会能源短缺和环境污染问题的加剧,电动汽车作为新能源汽车一经推出便受到了各界的广泛认可。常规的家用电动汽车基于400伏电压平台设计开发并迅速占领市场,电动汽车的电池、电机、以及相关系统部件均适用于400伏电压平台,因此市场提供与400伏电压平台适配的充电设备为电动汽车充电。
随着电动汽车对续航里程要求的提高以及基于电动汽车的货运需求和客运需求的增长,电动汽车的电池容量越来越大,充电时间越来越长,故出现了基于800伏电压平台的电动汽车和充电设备,大大缩短了充电时间。但是400伏电压平台的充电设备无法为800伏电压平台的电动汽车充电,400伏电压平台的电动汽车也不能使用800伏电压平台的充电设备充电,并且,400伏电压平台的电池装置无法为800伏电压平台的电机等系统部件供电,400伏电压平台的电机等系统部件也无法与800伏电压平台的电池装置兼容。
发明内容
本申请实施例提供一种电池管理方法、装置,以期解决电池装置与不同电压平台无法兼容的技术问题。
本申请第一方面提供了一种电池管理装置,所述电池装置管理装置包括:电池装置,连接状态转换装置,控制装置;所述电池装置包括:第一电池组和第二电池组,其中,所述第一电池组的负极与所述第二电池组的正极连接;所述连接状态转换装置包括:第一连接状态转换装置,所述第一连接状态转换装置的第一端与所述第一电池组的正极连接,所述第一连接状态转换装置的第二端与充电接口的正极连接;第二连接状态转换装置,所述第二连接状态转换装 置的第一端与所述第一连接状态转换装置的第二端连接,所述第二连接状态转换装置的第二端与第三连接状态转换装置的第一端连接;所述第三连接状态转换装置的第二端与所述充电接口的负极连接;第四连接状态转换装置,所述第四连接状态转换装置的第一端与所述第三连接状态转换装置的第二端连接,所述第四连接状态转换装置的第二端与所述第二电池组的负极连接;所述控制装置用于控制所述连接状态转换装置处于第一连接状态,第二连接状态,第三连接状态,第四连接状态。
本申请实施例中,电池管理装置在低电压充电平台充电装置为高电压平台用电装置充电时,能够单独为两个电池组中的任一电池组单独充电,不需要设置升压模块,也可以实现低电压平台的充电信号接入,进而使电池组正常充电,节约了成本,解决了相关技术在新能源车辆中专门增设升压模块为电池正常充电,增加了成本的问题。
在一些可能的实施例中,所述电池管理装置还包括:第五连接状态转换装置,所述第五连接状态转换装置的第一端与所述第一电池组的负极连接,所述第五连接状态转换装置的第二端与所述第二连接状态转换装置的第二端连接。
在一些可能的实施例中,所述电池管理装置还包括:第六连接状态转换装置,所述第六连接状态转换装置的第一端与所述第一电池组的正极连接;所述第六连接状态转换装置的第二端与高压负载的第一端连接;所述高压负载的第二端与所述第二电池组的负极连接。
在一些可能的实施例中,所述电池管理装置还包括:第七连接状态转换装置,所述第七连接状态转换装置的第一端与所述第二电池组的负极连接;所述第七连接状态转换装置的第二端与高压负载的第二端连接;所述高压负载的第一端与所述第一电池组的正极连接。
在一些可能的实施例中,所述电池管理装置还包括:第八连接状态转换装置,预充电阻;所述预充电阻的第一端与所述第八连接状态转换装置的第二端电连接;所述预充电阻的第二端与所述高压负载的第一端连接;所述第八连接状态转换装置的第一端与所述第一连接状态转换装置的第一端电连接。
在一些可能的实施例中,所述电池管理装置还包括:在所述电池装置的标称电压高于充电装置的平台电压的情况下,所述充电装置通过所述充电接口为 所述第一电池组充电,则所述控制装置控制所述连接状态转换装置处于第一连接状态;所述第一连接状态包括:所述第一连接状态转换装置导通,所述第三连接状态转换装置导通,所述第二连接状态转换装置断开,所述第四连接状态转换装置断开。
本申请实施例中,在低电压平台充电装置为高电压平台用电装置充电时,通过控制连接状态转换装置处于第一连接状态,充电装置为第一电池组充电,可以有利于充电安全。
在一些可能的实施例中,所述电池管理装置还包括:在所述电池装置的标称电压高于所述充电装置的平台电压的情况下,所述充电装置通过所述充电接口为所述第二电池组充电,则所述控制装置控制所述连接状态转换装置处于第二连接状态;所述第二连接状态包括:所述第二连接状态转换装置导通,所述第四连接状态转换装置导通,所述第一连接状态转换装置断开,所述第三连接状态转换装置断开。
本申请实施例中,在低电压平台充电装置为高电压平台用电装置充电时,通过控制连接状态转换装置处于第二连接状态,充电装置为第二电池组充电,可以有利于充电安全。
在一些可能的实施例中,所述电池管理装置还包括:在所述电池装置的标称电压高于所述充电装置的平台电压,所述充电装置控制所述连接状态转换装置处于所述第一连接状态情况下,所述控制装置还用于在所述第一电池组达到第一预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第一连接状态转换到第二连接状态;在所述第二电池组达到第二预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第二连接状态转换到第一连接状态;在所述第一电池组达到第三预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第一连接状态转换到第二连接状态;在所述第二电池组达到第四预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第二连接状态转换到第一连接状态。
在本申请实施例中,使第一电池组和第二电池组之间可以轮流充电,可以保证两个电池组的电量均衡。
在一些可能的实施例中,所述电池管理装置还包括:在所述电池装置的标 称电压不高于所述充电装置的平台电压,所述充电装置通过所述充电接口为所述电池装置充电的情况下,所述控制装置控制所述连接状态转换装置处于第三连接状态;所述第三连接状态包括:所述第一连接状态转换装置导通,所述第四连接状态转换装置导通,所述第二连接状态转换装置断开,所述第三连接状态转换装置断开,所述第五连接状态转换装置断开。
本申请第二方面提供了一种连接状态转换装置,所述连接状态转换装置包括前述第一方面任一项所述的连接状态转换装置的连接关系。
本申请第三方面提供了一种电池管理系统,所述电池系统包括前述第一方面所述的电池管理装置。
本申请第四方面提供了一种电池控制方法,该方法应用于上述第二方面的连接状态转换装置的连接电路。
附图说明
图1包括本申请一个或多个实施例提供的一种电池管理装置的应用场景的示意图。
图2包括本申请一个或多个实施例提供的一种电池管理装置的应用场景示意图。
图3包括本申请一个或多个实施例提供的一种电池管理装置工作状态示意图。
图4包括本申请一个或多个实施例提供的一种电池管理装置的工作状态示意图。
图5包括本申请一个或多个实施例提供的一种电池管理装置的工作状态示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都 属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
电池装置包括为用电装置或者负载装置提供电能的电池。电池装置可以包括蓄电池或二次电池。从电池的种类而言,电池装置可以是锂离子电池、锂金属电池、铅酸电池、镍铬电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,电池装置可以包括电芯/电池单体、电池组、和/或电池包。电池装置可以包括电池管理装置,作为示例例如包括电池管理系统(battery management system,BMS),电池管理装置可以用于 对电池装置进行安全监控、采集和配置参数、控制充放电等控制管理工作,本申请实施例对于电池管理装置的作用不作具体限定。SOC(State Of Charge,荷电状态)是指电池的荷电状态,也叫剩余电量。代表的是电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。
充电装置,例如包括充电桩或充电机,用于给电池装置充电。充电装置可以按照BMS的充电需求输出充电功率,以给电池装置充电。例如,充电装置可以按照BMS发送的需求电压和需求电流输出电压和电流,并在BMS的参与下给电池装置充电。
用电装置,包括从电池装置获取电能的各种用电设备,包括但不限于电机,车辆,船舶,和航天器等,作为示例,混动汽车的电机与电池装置连接并从电池装置获取电能实现行驶功能,本申请实施例对用电装置不作具体限定。
作为常见的场景,充电装置为电池装置充电,电池装置为用电装置提供电能。然而,在一些特殊场景下,充电装置充电输入可能无法与电池装置相匹配,以及电池装置的供电输出无法与用电装置兼容。例如400伏电压平台的充电桩无法为800伏电压平台的电动汽车充电,400伏电压平台的电动汽车也不能使用800伏电压平台的充电桩充电,并且,400伏电压平台的电池装置无法为800伏电压平台的电机等系统部件供电,400伏电压平台的电机等系统部件也无法与800伏电压平台的电池装置兼容。
针对上述情况,本申请实施例提供了一种电池管理装置,期望提高电池装置在充电输入和/或供电输出方面的兼容性,以期解决电池装置与不同电压平台无法兼容的技术问题。
图1示出了本申请一个或多个实施例提供的电池管理装置的应用场景的示意图,图1中包括电池装置,连接状态转换装置,控制装置。
其中,电池装置包括:第一电池组和第二电池组。其中,第一电池组的负极与第二电池组的正极连接。本申请实施例中,电池组例如是由多个电芯通过串联和/或并联方式构成且包括正极和负极,充电装置例如是充电桩或者充电枪,用电装置例如是电机或者车辆、船舶、飞行器等。本领域技术人员能够理解,在图1所示的应用场景中还可以接入其他电器元件,例如根据需要可以在电池装置的正极和负极分别接入主正、主负开关或继电器等,本申请实施例对此不做限定。
连接状态转换装置包括:第一连接状态转换装置K1,第二连接状态转换装置K2,第三连接状态转换装置K3,第四连接状态转换装置K4。其中,第一连接状态转换装置K1,第一连接状态转换装置K1的第一端与第一电池组的正极连接,第一连接状态转换装置K1的第二端与充电接口的正极连接。第二连接状态转换装置K2,第二连接状态转换装置K2的第一端与第一连接状态转换装置K1的第二端连接,第二连接状态转换装置K2的第二端与第三连接状态转换装置K3的第一端连接。第三连接状态转换装置K3的第二端与充电接口的负极连接。第四连接状态转换装置K4,第四连接状态转换装置K4的第一端与第三连接状态转换装置K3的第二端连接,第四连接状态转换装置K4的第二端与第二电池组的负极连接。本领域技术人员能够理解,连接状态转换装置导通意味着该连接状态转换装置两端之间存在电连接,例如电流可以从该连接状态转换装置的一端流向该连接状态转换装置的另一端,连接状态转换装置断开意味着该连接状态转换装置两端之间不存在电连接,例如电流无法从该连接状态转换装置的一端流向该连接状态转换装置的另一端。
控制装置用于控制连接状态转换装置处于第一连接状态,第二连接状态,第三连接状态,第四连接状态。作为示例,控制装置可以为软件和/或硬件实现的功能单元,例如控制装置包括处理器或处理单元,其可以与存储器耦合并执行存储器中存储的指令,以实现对电池装置进行管理和/或控制等功能,还例如控制装置可以包括控制电路来实现对电池装置进行管理和/或控制等功能。控制装置可以作为BMS的一部分,也可以作为BMS本身,并实现上述管理和/或控制等功能。在本申请的一个或多个实施例中,控制装置控制连接状态转换装置在不同的连接状态之间转换。例如控制装置可以向连接状态转换装置发送控制信号,使得连接状态转换装置响应于检测到控制信号从第一连接状态转换换到第二连接状态。本申请实施例对控制信号的类型和实现形式不作限定,例如发送控制信号可以通过发送控制指令、高电平、低电平、通电、断电等方式实现。
在本申请的一些实施例中,参考图2,电池管理装置还包括第五连接状态转换装置K5,第五连接状态转换装置K5的第一端与第一电池组的负极连接,第五连接状态转换装置K5的第二端与第二连接状态转换装置K2的第二端连接。
在本申请的一些实施例中,参考图2,电池管理装置还包括第六连接状态转换装置K6。第六连接状态转换装置K6的第一端与第一电池组的正极连接。第六连接状态转换装置K6的第二端与高压负载的第一端连接。高压负载的第二端与第二电池组的负极连接。
在本申请的一些实施例中,参考图2,电池管理装置还包括第七连接状态转换装置K7,第七连接状态转换装置K7的第一端与第二电池组的负极连接。第七连接状态转换装置K7的第二端与高压负载的第二端连接。高压负载的第一端与第一电池组的正极连接。
在本申请的一些实施例中,参考图2,电池管理装置还包括第八连接状态转换装置K8,预充电阻。预充电阻的第一端与第八连接状态转换装置K8的第二端电连接。预充电阻的第二端与高压负载的第一端连接。第八连接状态转换装置K8的第一端与第一连接状态转换装置K1的第一端电连接。
预充电阻是指在整车高压上电初期对电容进行缓慢充电的电阻。预充电阻的类型可以包括铝壳电阻、热敏电阻、功率电阻、水泥电阻、陶瓷电阻等,本申请公开的实施例对此并不限定。如果没有预充电阻,可能发生充电电流过大从而击穿电容的危险。高压电直接加在电容上,相当于瞬间短路,过大的短路电流会损坏高压电气元件。第八连接状态转换装置K8和预充电阻构成的预充回路,可以保护电路安全。
图3是本申请一实施例公开的一种电池管理装置工作状态示意图。在电池装置的标称电压高于充电装置的平台电压的情况下,充电装置通过充电接口为第一电池组充电,则控制装置控制连接状态转换装置处于第一连接状态。
第一连接状态包括:第一连接状态转换装置K1导通,第三连接状态转换装置K3导通,第二连接状态转换装置K2断开,第四连接状态转换装置K4断开。
在在电池装置的标称电压高于充电装置的平台电压的情况下,充电装置通过充电接口为第一电池组充电,则控制装置控制连接状态转换装置处于第一连接状态是指,在电池装置的标称电压高于充电桩的平台电压时,例如400伏电压平台的充电桩在为800伏电压平台的电动汽车充电的情况下,若给第一电池组充电,控制装置控制连接状态转换装置处于第一连接状态。
图4是本申请一实施例公开的一种电池管理装置工作状态示意图。在电池 装置的标称电压高于充电装置的平台电压的情况下,充电装置通过充电接口为第二电池组充电,则控制装置控制连接状态转换装置处于第二连接状态。
第二连接状态包括:第二连接状态转换装置K2导通,第四连接状态转换装置K4导通,第一连接状态转换装置K1断开,第三连接状态转换装置K3断开。
在在电池装置的标称电压高于充电装置的平台电压的情况下,充电装置通过充电接口为第二电池组充电,则控制装置控制连接状态转换装置处于第二连接状态是指,在电池装置的标称电压高于充电桩的平台电压时,例如400伏电压平台的充电桩在为800伏电压平台的电动汽车充电的情况下,若给第二电池组充电,控制装置控制连接状态转换装置处于第二连接状态。
在本申请的一些实施例中,可选的,目标电池组是第一电池组还是第二电池组,可以根据电池组的剩余电量决定。可以优先选择电量低的电池组作为目标电池组,还可以在目标电池组电量超过另一电池组的电量一定值时,切换目标电池组,即将目标电池组设置为未在充电的电池组,使第一电池组和第二电池组之间可以轮流充电,保证两个电池组的电量均衡。
在本申请的一些实施例中,可选的,可以检测第一电池组和第二电池组及其线路是否存在电池故障,在任一电池组或其线路出现故障时,将单独对未故障的电池包进行充电,此时该未故障的电池组即是目标电池组。
在本申请的一些实施例中,可选的,当第一电池组和第二电池组的剩余电量相同或相近时,可以将最近充电时间较早的电池组作为目标电池组。
例如,高电压平台是800V充电平台,低电压平台是400V充电平台,上述搭载第一电池组和第二电池组的充电设备为800V电动汽车,第一电池组和第二电池组的电压大小分为400V。当控制模块检测到充电接口接入400V的低电压平台的充电信号时,确定剩余电量低的第一电池组为目标电池组,通过控制连接状态转换装置转换到第一连接状态,由此实现了向第一电池组充电。
上述方案中,通过控制模块检测充电信号,并切换控制连接状态转换装置转的连接状态,能够使得串联有两个电池组的用电装置,即支持高电压平台的用电装置,能够在不设置增压模块的情况下,将电池组拆分为两个支持低电压平台的电池组,进而单独适配于低电压平台的充电信号进行充电。相对于设置增压模块进行低电压平台的充电适配,降低了成本,从而解决了相关技术中, 专门增设升压模块为电池正常充电,增加了用电装置成本的问题。
在本申请的一些实施例中,可选的,在电池装置的标称电压高于充电装置的平台电压,充电装置控制连接状态转换装置处于第一连接状态情况下,控制装置还用于在第一电池组达到第一预设SOC的情况下,控制装置控制连接状态转换装置从第一连接状态转换到第二连接状态。在第二电池组达到第二预设SOC的情况下,控制装置控制连接状态转换装置从第二连接状态转换到第一连接状态。在第一电池组达到第三预设SOC的情况下,控制装置控制连接状态转换装置从第一连接状态转换到第二连接状态。在第二电池组达到第四预设SOC的情况下,控制装置控制连接状态转换装置从第二连接状态转换到第一连接状态。
两个电池组可以交替进行充电,保证两个电池组的电量均衡。在第一电池组达到第一预设SOC的情况下,控制装置控制连接状态转换装置从第一连接状态转换到第二连接状态,是指在充电装置为第一电池组充电,第一电池组的SOC达到第一预设SOC的情况下,控制装置控制连接状态转换装置转换到第二连接状态,充电装置为第二电池组充电。在第二电池组的SOC达到第二预设SOC的情况下,控制装置控制连接状态转换装置转换到第一连接状态,充电装置为第一电池组充电。在第一电池组的SOC达到第三预设SOC的情况下,控制装置控制连接状态转换装置转换到第二连接状态,充电装置为第二电池组充电。在第二电池组的SOC达到第四预设SOC的情况下,控制装置控制连接状态转换装置转换到第一连接状态,充电装置为第一电池组充电。
在本申请的一些实施例中,可选的,电池组每次交替充电,电池组之间的SOC可以是一致的。例如,第一预设SOC、第二预设SOC的大小可以相同,第三预设SOC、第四预设SOC之间的大小可以相同,本申请公开的实施例对此并不限定。例如,当第一电池组SOC达到20%时,控制装置控制连接状态转换装置转换到第二连接状态,充电装置开始为第二电池组充电。当第二电池组SOC达到20%时,控制装置控制连接状态转换装置转换到第一连接状态,充电装置继续为第一电池组充电。当第一电池组SOC达到40%时,控制装置控制连接状态转换装置转换到第二连接状态,充电装置开始为第二电池组充电。当第二电池组SOC达到40%时,控制装置控制连接状态转换装置转换到第一连接状态,充电装置继续为第一电池组充电。当第一电池组SOC达到60%时,控制装 置控制连接状态转换装置转换到第二连接状态,充电装置开始为第二电池组充电。当第二电池组SOC达到60%时,控制装置控制连接状态转换装置转换到第一连接状态,充电装置继续为第一电池组充电。当第一电池组SOC达到80%时,控制装置控制连接状态转换装置转换到第二连接状态,充电装置开始为第二电池组充电。当第二电池组SOC达到80%时,控制装置控制连接状态转换装置转换到第一连接状态,充电装置继续为第一电池组充电。当第一电池组SOC达到100%时,控制装置控制连接状态转换装置转换到第二连接状态,充电装置开始为第二电池组充电。当第二电池组SOC达到100%时,充电停止。
图5是本申请一实施例公开的一种电池管理装置工作状态示意图。在电池装置的标称电压不高于充电装置的平台电压,充电装置通过充电接口为电池装置充电的情况下,控制装置控制连接状态转换装置处于第三连接状态。第三连接状态包括:第一连接状态转换装置K1导通,第四连接状态转换装置K4导通,第二连接状态转换装置K2断开,第三连接状态转换装置K3断开,第五连接状态转换装置K5断开。
本申请实施例中,用电装置的标称电压不高于充电装置的平台电压,充电装置通过充电接口为电池装置充电的情况下,控制装置控制连接状态转换装置处于第三连接状态是指例如400伏电压平台的充电桩在为400伏电压平台的电动汽车充电的情况下,则在第三连接状态下,充电桩同时为两个电池组正常充电。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的连接转换装置的连接方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种电池管理装置,其特征在于,所述电池装置管理装置包括:电池装置,连接状态转换装置,控制装置;
    所述电池装置包括:第一电池组和第二电池组,其中,所述第一电池组的负极与所述第二电池组的正极连接;
    所述连接状态转换装置包括:
    第一连接状态转换装置,所述第一连接状态转换装置的第一端与所述第一电池组的正极连接,所述第一连接状态转换装置的第二端与充电接口的正极连接;
    第二连接状态转换装置,所述第二连接状态转换装置的第一端与所述第一连接状态转换装置的第二端连接,所述第二连接状态转换装置的第二端与第三连接状态转换装置的第一端连接;
    所述第三连接状态转换装置的第二端与所述充电接口的负极连接;
    第四连接状态转换装置,所述第四连接状态转换装置的第一端与所述第三连接状态转换装置的第二端连接,所述第四连接状态转换装置的第二端与所述第二电池组的负极连接;
    所述控制装置用于控制所述连接状态转换装置处于第一连接状态,第二连接状态,第三连接状态,第四连接状态。
  2. 根据权利要求1所述的装置,其特征在于,所述电池管理装置还包括:
    第五连接状态转换装置,所述第五连接状态转换装置的第一端与所述第一电池组的负极连接,所述第五连接状态转换装置的第二端与所述第二连接状态转换装置的第二端连接。
  3. 根据权利要求1或2所述的装置,其特征在于,所述电池管理装置还包括:
    第六连接状态转换装置,所述第六连接状态转换装置的第一端与所述第一电池组的正极连接;
    所述第六连接状态转换装置的第二端与高压负载的第一端连接;
    所述高压负载的第二端与所述第二电池组的负极连接。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述电池管理装置还包括:
    第七连接状态转换装置,所述第七连接状态转换装置的第一端与所述第二电池组的负极连接;
    所述第七连接状态转换装置的第二端与高压负载的第二端连接;
    所述高压负载的第一端与所述第一电池组的正极连接。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述装置还包括第八连接状态转换装置,预充电阻;
    所述预充电阻的第一端与所述第八连接状态转换装置的第二端电连接;
    所述预充电阻的第二端与所述高压负载的第一端连接;
    所述第八连接状态转换装置的第一端与所述第一连接状态转换装置的第一端电连接。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,在所述电池装置的标称电压高于充电装置的平台电压的情况下,所述充电装置通过所述充电接口为所述第一电池组充电,则所述控制装置控制所述连接状态转换装置处于第一连接状态;
    所述第一连接状态包括:所述第一连接状态转换装置导通,所述第三连接状态转换装置导通,所述第二连接状态转换装置断开,所述第四连接状态转换装置断开。
  7. 根据权利要求1至5中任一项所述的装置,其特征在于,在所述电池装置的标称电压高于所述充电装置的平台电压的情况下,所述充电装置通过所述充电接口为所述第二电池组充电,则所述控制装置控制所述连接状态转换装置处于第二连接状态;
    所述第二连接状态包括:所述第二连接状态转换装置导通,所述第四连接状态转换装置导通,所述第一连接状态转换装置断开,所述第三连接状态转换装置断开。
  8. 根据权利要求1至5中任一项所述的装置,其特征在于,在所述电池装置的标称电压高于所述充电装置的平台电压,所述充电装置控制所述连接状态转换装置处于所述第一连接状态情况下,所述控制装置还用于:
    在所述第一电池组达到第一预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第一连接状态转换到第二连接状态;
    在所述第二电池组达到第二预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第二连接状态转换到第一连接状态;
    在所述第一电池组达到第三预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第一连接状态转换到第二连接状态;
    在所述第二电池组达到第四预设SOC的情况下,所述控制装置控制所述连接状态转换装置从第二连接状态转换到第一连接状态。
  9. 根据权利要求1至5中任一项所述的装置,其特征在于,在所述电池装置的标称电压不高于所述充电装置的平台电压,所述充电装置通过所述充电接口为所述电池装置充电的情况下,所述控制装置控制所述连接状态转换装置处于第三连接状态;
    所述第三连接状态包括:所述第一连接状态转换装置导通,所述第四连接状态转换装置导通,所述第二连接状态转换装置断开,所述第三连接状态转换装置断开,所述第五连接状态转换装置断开。
  10. 一种连接状态转换装置,其特征在于,包括权利要求1至9中任一项所述的连接状态转换装置的连接关系。
  11. 一种电池管理系统,其特征在于,包括如权利要求1至9中任一所述的电池管理装置,所述电池系统还包括所述电池装置。
PCT/CN2022/075100 2022-01-29 2022-01-29 电池管理装置、系统 WO2023142086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/075100 WO2023142086A1 (zh) 2022-01-29 2022-01-29 电池管理装置、系统
CN202280006983.2A CN116897486A (zh) 2022-01-29 2022-01-29 电池管理装置、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075100 WO2023142086A1 (zh) 2022-01-29 2022-01-29 电池管理装置、系统

Publications (1)

Publication Number Publication Date
WO2023142086A1 true WO2023142086A1 (zh) 2023-08-03

Family

ID=87470244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075100 WO2023142086A1 (zh) 2022-01-29 2022-01-29 电池管理装置、系统

Country Status (2)

Country Link
CN (1) CN116897486A (zh)
WO (1) WO2023142086A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149674A (zh) * 2017-06-27 2019-01-04 北京小米移动软件有限公司 电池模块及电子设备
CN110224455A (zh) * 2019-04-08 2019-09-10 东莞新能德科技有限公司 串并联切换装置及包含串并联切换装置的电池组
CN111355277A (zh) * 2020-02-20 2020-06-30 北京动力源新能源科技有限责任公司 一种汽车电气系统的充电方法及充电装置
CN111546944A (zh) * 2020-04-10 2020-08-18 吉利汽车研究院(宁波)有限公司 一种充电电压切换装置、控制方法及汽车
CN214324892U (zh) * 2020-11-17 2021-10-01 华为技术有限公司 一种高压互锁电路、电池管理系统及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149674A (zh) * 2017-06-27 2019-01-04 北京小米移动软件有限公司 电池模块及电子设备
CN110224455A (zh) * 2019-04-08 2019-09-10 东莞新能德科技有限公司 串并联切换装置及包含串并联切换装置的电池组
CN111355277A (zh) * 2020-02-20 2020-06-30 北京动力源新能源科技有限责任公司 一种汽车电气系统的充电方法及充电装置
CN111546944A (zh) * 2020-04-10 2020-08-18 吉利汽车研究院(宁波)有限公司 一种充电电压切换装置、控制方法及汽车
CN214324892U (zh) * 2020-11-17 2021-10-01 华为技术有限公司 一种高压互锁电路、电池管理系统及车辆

Also Published As

Publication number Publication date
CN116897486A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2020244465A1 (zh) 一种车辆的电池系统、充放电方法及车辆
US20170264136A1 (en) Multiple Energy Accumulator System for Motor Vehicle Electrical Systems
US11097634B2 (en) Start control system of vehicle and vehicle having the same
KR20180038822A (ko) 보조배터리의 릴레이 제어 시스템 및 그 방법
CN111123089A (zh) 继电器检测电路和装置
IT201900001099A1 (it) Gruppo e metodo di ricarica e alimentazione per un veicolo elettrico, e veicolo elettrico comprendente il gruppo di ricarica e alimentazione
JP7466198B2 (ja) 蓄電システム
KR100623750B1 (ko) 연료전지-슈퍼캡 하이브리드 및 그 시동 제어방법
CN211320956U (zh) 一种在线式电源的充放电电路及充放电系统
WO2023142086A1 (zh) 电池管理装置、系统
CN216805183U (zh) 电池控制电路和电动汽车
US11691536B2 (en) Power system for a vehicle
JP7394888B2 (ja) 充電方法及び電力変換装置
JP6668210B2 (ja) 電源制御装置及び電源システム
CN212183150U (zh) 一种用于带抽头电池的机载充电控制器
CN110266068B (zh) 高压电池控制电路、控制方法及存储介质
CN112721734A (zh) 一种充电车辆的控制方法及装置
CN112061056A (zh) 一种降低整车静态电流的处理电路及其方法
WO2023141838A1 (zh) 电池管理方法和电池管理装置
CN219980472U (zh) 电池电路及汽车
WO2023050790A1 (zh) 一种加热系统、加热方法及装置、用电设备
CN220742729U (zh) 一种电池包装置及电池系统
CN210454523U (zh) 一种电动汽车充放电控制电路
CN110682827A (zh) 一种双电池系统的电动汽车辅助电源
CN216153589U (zh) 一种交直流充电装置及车辆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006983.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922915

Country of ref document: EP

Kind code of ref document: A1